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precautionary savings. Specifically, after solving the model explicitly, we theoretically and

quantitatively explore (i) how these ignorance-induced uncertainties interact with intertem-

poral substitution, risk aversion, and the correlation between the equity return and labor

income, and (ii) how they jointly affect strategic asset allocation, precautionary savings, and

the equilibrium asset returns. Furthermore, we use data to test our model’s predictions on the
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tion between the two types of uncertainty is the key to explain the data. Finally, we find that

the welfare costs of ignorance can be very large.
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1 Introduction

Though most macroeconomic and financial models assume agents have a good understanding of

the economic model they use to make optimal decisions, in reality, many ordinary investors/consumers

are ignorant about details of the economic model including the structure and parameters of the

model and the current state of the model economy their decisions are based on. For example,

van Rooija, Lusardic, and Alessie (2010) found that some households do not know the basics

of risk diversification when making financial decisions.1 Mitchell and Lusardi (2014), in a care-

fully designed survey, found that many respondents, not only in the US but around the world,

lack financial literacy, meaning that they do not have necessary skills and knowledge that allows

them to make informed and effective investment decisions.2 Brennen (1998) argued that investors

have incomplete information about the investment opportunity set. Guvenen (2007) empirically

showed that individuals may not have complete information about their own income growth.3

Different types of uncertainty arise due to ignorance about different aspects of the economic

model. In a recent paper, Hansen and Sargent (2015) argued that ignorance provides a useful

way to summarize different types of uncertainty through specifying the details the decision maker

is ignorant about. They examined the implications of ignorance using a simple Friedman (1953)

model to “fine tune” an economy. Specifically, they discussed two types of ignorance: (i) the

agent is ignorant about the conditional distribution of the next period’s state and (ii) the agent is

ignorant about the probability distribution of a response coefficient (a parameter) in an otherwise

fully trusted specification of the conditional distribution of the next period’s state. In other

words, the first type of ignorance represents model uncertainty (or MU) as the agent does not

know the shock distribution, while the second type of ignorance represents parameter uncertainty

(or PU) as the agent does not know model parameters. Bernanke (2007) also argued that policy-

makers usually care about the uncertainty about the structure of the economy (including both

the transmission mechanism of monetary policy and the model parameters) and the current state

of the economy.

Inspired by Hansen and Sargent (2015), in this paper we build a recursive utility version of

a basic Merton (1971) model to study the implications of these two major types of ignorance

for intertemporal consumption-saving-asset allocation, a fundamental topic in modern macroe-

conomics and finance. Our central goal is to provide a unified framework to study how the

1They used the De Nederlandsche Bank (DNB) Household Survey data to study the relationship between financial

literacy and stock market participation, and found that financial literacy affects financial decision-making: Those

with low literacy are much less likely to invest in stocks.
2It is not surprising that people who get any of the three simple questions wrong are unlikely to master more

challenging investment strategies.
3Although both the expected mean of labor income growth and that of the equity return are crucial for financial

decision-making, they are not known a priori and are usually estimated with errors.
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two major types of ignorance (or the two types of uncertainty induced by ignorance: param-

eter uncertainty and model uncertainty) interact with each other and then affect the optimal

consumption-saving-portfolio decisions as well as the equilibrium asset returns. Specifically, we

construct a continuous-time Merton (1971)-Wang (2009) type model with uninsurable labor in-

come and unknown income growth in which the investors have recursive utility and a preference

for robustness. In our recursive utility framework, we also disentangle two distinct aspects of

preferences: the agent’s elasticity of intertemporal substitution (EIS; attitudes towards variation

in consumption across time) with the coefficient of absolute risk aversion (CARA; attitudes to-

wards variation in consumption across states), which are shown to have different roles in driving

consumption saving and portfolio choice decisions.4 As explained below, our model deliver not

only rich theoretical results but also testable implications.

Hansen and Sargent (1995) first discussed how to model MU due to the preference for robust-

ness (RB) within the linear-quadratic-Gaussian (LQG) economic framework.5 In robust control

problems, agents are concerned about the possibility that their true model is misspecified in a

manner that is difficult to detect statistically; consequently, they choose their decisions as if the

subjective distribution over shocks was chosen by an evil agent to minimize their utility.6 In

addition, many empirical and experimental studies have repeatedly supported that individual

agents are ambiguity averse (or have robustness preferences). For example, Ahn, Choi, Gale,

and Kariv (2014) used a rich experiment data set to estimate a portfolio-choice model and found

that about 40 percent of subjects display either statistically significant pessimism or ambiguity

aversion. Bhandari, Borovička, and Ho (2016) identified ambiguity shocks using survey data, and

showed that in the data, the ambiguity shocks are an important source of variation in labor market

variables. It is worth noting that canonical consumption-portfolio choice models with uninsurable

labor income generally do not distinguish between risk and uncertainty, but emphasize the key role

of uncertainty about future labor income in determining strategic consumption-saving-portfolio

decisions.

In our model economy, the investors not only have incomplete information about income

4Constant-relative-risk-aversion (CRRA) utility functions are more common in macroeconomics, mainly due

to balanced-growth requirements. CRRA utility would greatly complicate our analysis because the intertemporal

consumption model with CRRA utility and stochastic labor income has no explicit solution and leads to non-linear

consumption rules. See Kasa and Lei (2017) for a recent application of RB in a continuous-time Blanchard-Yaari

model with CRRA utility and wealth hetergeneity.
5See Hansen and Sargent (2007) for a textbook treatment on robustness and model uncertainty.
6There are three main ways to model ambiguity and robustness in the literature: the multiple priors model

(Gilboa and Schmeidler 1989), the “smooth ambiguity” model (Klibanoff, Marinacci, and Mukerji 2005), and the

multiplier utility and robust control/filtering model (Hansen and Sargent 2001). See Epstein and Schneider (2010)

for a recent review on this topic. In this paper, we follow the line of Hansen and Sargent to introduce robustness

and model uncertainty into our model.
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growth but also are concerned about the model misspecification. In other words, they face both

parameter uncertainty and model uncertainty. Compared with the full-information case in which

income growth is known, parameter uncertainty due to unknown income growth creates an addi-

tional demand for robustness. Furthermore, in the standard problem with parameter uncertainty,

the agent combines a pre-specified prior over the parameter with the observable variables to con-

struct the perceived value of the parameter, and is assumed to have only a single prior (i.e., no

concerns about model misspecification). However, given the difficulty in estimating the mean

growth rate of individual income, the sensitivity of optimal decisions to estimation errors, and

the substantial empirical evidence that agents are not neutral to ambiguity, it is crucial for us to

understand how rational investors facing parameter uncertainty and having multiple priors make

robustly strategic decision rules that work well for a set of possible models.

This paper makes four main contributions to the existing literature. First, we provide a unified

continuous-time recursive utility framework to explore both the normative and positive implica-

tions of parameter and model uncertainty due to ignorance for strategic consumption-portfolio

rules in the presence of uninsurable labor income. We show that the optimal consumption/saving-

portfolio choice problem under both PU and MU can be solved explicitly. Specifically, it can be

formulated by making two additions to the standard full-information rational expectations (FI-

RE) model: (i) imposing an additional constraint on the agent’s information and knowledge about

the mean growth rate of individual income; and (ii) introducing an additional minimization over

the set of probability models subject to the additional constraint. The additional constraint

recognizes that the probability model of the perceived parameter is not unique. Furthermore,

the additional minimization procedure reflects the preference for robustness of the agent who

understands that he does not have complete information about the income growth parameter.

Second, after solving the models explicitly, we can inspect the exact mechanism through

which these two types of induced uncertainty interact and affect different types of demand for the

risky asset and the precautionary saving demand.7 Specifically, we find that the precautionary

saving demand and the strategic asset allocation are mainly affected by the effective coefficient of

absolute risk aversion (γ̃) and this coefficient is determined by the interaction between the CARA

(γ), the EIS (ψ), and the degree of RB (ϑ) via the formula: γ̃ = γ+ ϑ/ψ. This expression clearly

shows that both risk aversion and intertemporal substitution play roles in determining the amount

of precautionary savings and the optimal share invested in the risky asset, but without model

uncertainty, only risk aversion matters in determining these two demands. In addition, we show

this effective coefficient can affect the parameter learning mechanism. As one testable implication,

we show our model can help explain why more educated households hold more risky assets in the

7Maenhout (2004), Liu, Pan, and Wang (2005), Liu (2010), Ju and Miao (2012), and Chen, Ju, and Miao (2014)

examined how model uncertainty and ambiguity affect portfolio choices and/or asset prices.
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data. We quantitatively show that the interaction between the two types of uncertainty is the

key to explain the data.

Third, using the explicit consumption-savings-portfolio rules, we show that a general equilib-

rium under MU and PU can be constructed in the vein of Bewley (1986) and Huggett (1993).8 We

also show that the general equilibrium is unique in such an RU economy with both MU and PU.

Furthermore, after calibrating the RB parameter using the detection error probabilities (DEP),

we find that RB has significant effects on parameter learning and the interaction of MU and PU

has the potential to resolve the risk-free rate puzzle and the equity premium puzzle for plausibly

calibrated RB parameter values.

Finally, we show that the welfare cost of ignorance is non-trivial, underscoring the importance

of studying parameter uncertainty and model uncertainty arising from different types of ignorance

together. Specifically, for a plausibly calibrated robustness parameter, the welfare cost of igno-

rance could be a significant fraction of total wealth. In addition, we show that the welfare cost is

more sensitive to the change in the degree of model uncertainty than to the change in the degree

of parameter uncertainty.

This remainder of the paper is organized as follows. Section 2 provides a literature review.

Section 3 describes our model setup, introducing key elements step by step. Section 4 presents

key theoretical and quantitative results as well as the welfare implications of ignorance. Section

5 provides an extension of the model in which the unknown income growth follows a continuous

Gaussian process and discusses the general equilibrium asset pricing implications of ignorance.

Section 6 concludes.

2 Literature Review

Our paper is related to two broad branches of literature. First, our paper is related to the

broad literature studying consumption-saving and portfolio choices. The recent empirical studies

on household portfolios in the U.S. and major European countries have stimulated research in

allowing for portfolio choice between risky and risk-free financial assets when households receive

labor income and have the precautionary saving motive. The empirical research on household

portfolios documents that the stock market participation rate was increasing in the U.S. and

Europe and the importance of the precautionary saving motive for portfolio choice. See Guiso,

Jappelli, and Terlizzese (1996) and Luigi, Haliassos, and Jappelli (2002). Some recent theoretical

studies have also addressed the importance of parameter uncertainty or model uncertainty in

8Wang (2003) constructs a general equilibrium under full-information rational expectations (FI-RE) in the same

Bewley-Huggett type model economy with CARA utility that we study. Angeletos and Calvet (2006) characterize

a closed-form recursive general equilibrium in a neoclassical growth model with idiosyncratic production risk and

incomplete markets.
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affecting agents’ optimal consumption and portfolio rules. For example, Brennen (1998) showed

that the uncertainty about the mean return on the risky asset has a significant effect on the

portfolio decision of a long-term investor. Maenhout (2004) explored how model uncertainty due

to a preference for robustness affects optimal portfolio choice and the equilibrium equity premium.

Wang (2009) found that incomplete information about labor income growth can significantly affect

optimal consumption-saving and asset allocation.

Second, on the modelling approach, our paper is related to a fast growing literature on model-

ing uncertainty, both model uncertainty and parameter uncertainty. Besides Hansen and Sargent

(2015) as we previously mentioned, this paper is also closely related to Maenhout (2004, 2006),

Garlappi, Uppal, and Wang (2007), Wang (2009), and Collin-Dufresne, Johannes, and Lochstoer

(2016). Maenhout (2004) explored how model uncertainty due to a preference for robustness

reduces the demand for the risky asset and increases the equilibrium equity premium. Maenhout

(2006) analyzed the robust portfolio choice problem when the risk premium is mean-reverting and

developed a new method to calibrate the robustness parameter. Garlappi, Uppal, andWang (2007)

examined how allowing for the possibility of multiple priors about the estimated expected returns

affects optimal asset weights in a static mean-variance portfolio model. Wang (2009) studied

the effects of incomplete information about the mean income growth on a consumer’s consump-

tion/saving and portfolio choice in an incomplete-market economy. Collin-Dufresne, Johannes,

and Lochstoer (2016) studied general equilibrium models with unknown parameters governing

long-run growth and rare events, and showed that parameter learning can generate quantitatively

significant macroeconomic risks that help explain the existing asset pricing puzzles. Luo (2016)

considered state uncertainty (uncertainty about the values of labor income and financial wealth)

within an expected utility partial equilibrium model, and found that state uncertainty due to

limited capacity does not play an important role in determining strategic asset allocation unless

the investors face very tight information-processing constraints.

But our paper is also significantly different from the above papers. Unlike Maenhout (2004),

the present paper explores how the interaction of model uncertainty and parameter uncertainty

affects the strategic consumption/saving-portfolio decisions in the presence of uninsurable la-

bor income. The model presented in this paper can therefore be used to study the relationship

between the correlation between the labor income risk and the equity return risk and the stock-

holding behavior. Unlike Wang (2009) and Collin-Dufresne, Johannes, and Lochstoer (2016),

this paper considers more general concepts of ignorance and induced uncertainty: We not only

consider parameter uncertainty but also model uncertainty due to robustness.9 In addition, un-

9Another key difference between our paper and Wang (2009) is that we not only consider the discrete Markovian

unknown income growth process as in Wang (2009) but also consider a continuous Gaussian unknown process, and

show that these two specifications may lead to distinct interactions between the two types of induced uncertainty;
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like Maenhout (2006) and Garlappi, Uppal, and Wang (2007), this paper focuses on incomplete

information about the mean income growth, rather than incomplete information about the risk

premium, and studies how this type of incomplete information affects the robust consumption

and portfolio rules in an intertemporal setting. The key difference between this paper and Luo

(2016) is that this paper focuses on examining parameter uncertainty that is more difficult to learn

than the state uncertainty discussed in Luo (2016), and examines how it interacts with model

uncertainty within a recursive utility framework in which both types of uncertainty interact with

intertemporal substitution and risk aversion.

3 The Model Setup

In this section, we lay out our continuous-time consumption-portfolio choice model with recursive

utility and two types of ignorance. To help explain the key structure of the model, we will

introduce each of the key elements one by one, starting with specifications of the labor income

and investment opportunity set, followed by the description of the information set, then the

recursive utility, and finally introducing the model uncertainty due to robustness.

To provide an overview, our model is a continuous-time Merton-type model (1971) with unin-

surable labor income and unknown income growth. Specifically, we generalize the Wang (2009)

model in the following three aspects: (i) rather than using the expected utility specification,

we adopt a recursive utility specification; (ii) to better explore the importance of pervasive un-

certainty due to ignorance in investors’ financial decision-making problem, we not only consider

parameter/state uncertainty due to unknown income growth, but also consider model uncertainty

due to a preference for robustness; and (iii) we not only consider the Markovian income growth

specification but also consider a Gaussian income growth specification. The Gaussian specification

can help explore the general equilibrium implications of different types of ignorance. The typical

investor in the model economy has recursive utility and makes strategic consumption-saving-asset

allocation decisions with pervasive uncertainty due to ignorance. Specifically, we assume that the

consumer can access two financial assets: one risk-free asset and one risky asset, and also receive

uninsurable labor income.

3.1 Specifications of Labor Income and Investment Opportunity Set

Labor income (yt) is assumed to follow a continuous-time AR(1) (Ornstein-Uhlenbeck) process:

dyt = (µ (Zt)− ρyt) dt+ σydBy,t, (1)

consequently, they lead to distinct implications for precautionary saving and strategic asset allocation.
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where σy is the unconditional volatility of the income change over an incremental unit of time, the

persistence coefficient ρ governs the speed of convergence or divergence from the steady state,10

By,t is a standard Brownian motion defined on the complete probability space (Ω,Ft,P), and Zt is

a right-continuous Markov chain and is independent of the Brownian motion, By,t. For simplicity,

following the literature, we assume that Zt takes two values, either high (H) or low (L), during

a small time interval, ∆t, and they represent the good or bad states of the regime-switching

macroeconomy, respectively. During ∆t, the good state (H) jumps to the bad state (L) with the

transition probability λ1∆t and the bad state L jumps to the good state H with the transition

probability λ2∆t. The transition densities λ1 and λ2 determine how persistent each state of the

Markov chain is. For convenience, we denote that

λ(Zt) =

{
λ1, Zt = H,

λ2, Zt = L.

Consequently, µ (Zt) also takes two values, either high (µ1) when Zt = H or low (µ2 < µ1) when

Zt = L. If the time-t income growth is high, i.e., µ = µ1, the income growth remains high at time

t + ∆t, with probability 1 − λ1∆t and decreases to µ2 at λ1∆t. Similarly, if the time-t income

growth is low, i.e., µ = µ2, the income growth remains low at time t + ∆t, with probability

1 − λ2∆t and increases to µ1 at λ2∆t. The conditional transition matrix of µ, P , can thus be

written as:

P =

[
1− λ1∆t λ1∆t

λ2∆t 1− λ2∆t

]
,

which means that the stationary distribution over the two income growth regimes is
(

λ2

λ1+λ2
, λ1

λ1+λ2

)
.

The agent can invest in both a risk-free asset with a constant interest rate r and a risky asset

(i.e., the market portfolio) with a risky return ret . The instantaneous return dret of the risky

market portfolio over dt is given by

dret = (r + π) dt+ σedBe,t, (2)

where π is the market risk premium, σe is the standard deviation of the market return, and Be,t

is a standard Brownian motion defined on (Ω,Ft,P) and is correlated with the Brownian motion,

By,t. Let ρye be the contemporaneous correlation between the labor income process and the return

of the risky asset. When ρye = 0, the labor income risk is idiosyncratic and is uncorrelated with

the risky market return; when ρye = 1, the labor income risk is perfectly correlated with the risky

10If ρ > 0, the income process is stationary and deviations of income from the steady state are temporary; if

ρ ≤ 0, income is non-stationary. The ρ = 0 case corresponds to a simple Brownian motion with drift. The larger ρ

is, the less y tends to drift away from y. As ρ goes to ∞, the variance of y goes to 0, which means that y can never

deviate from y.
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market return. Using the Cholesky decomposition, the labor income process can be rewritten as:

dyt = (µ (Zt)− ρyt) dt+ ρyeσydBe,t +
√

1− ρ2yeσydBi,t, (3)

where Bi,t is a standard Brownian motion defined on (Ω,Ft,P) and is independent of Be,t. The

consumer’s financial wealth evolution is given by

dwt = (rwt + yt − ct) dt+ αt (πdt+ σedBe,t) , (4)

where αt denotes the amount of wealth that the investor allocates to the market portfolio at time

t.

3.2 Incomplete Information about Labor Income

Following Wang (2009), in this paper we assume that the parameter governing income growth,

µ (Zt), is unknown to the investors. If the investor does not know the income growth parame-

ter, µ (Zt), he or she has to form a belief about the value of the income growth parameter by

observing the realized labor income y.11 We denote the augmented filtration generated by yt and

Bt as {F
y
t , t ≥ 0}, where Fy

t = σ (ys, Bs, s ≤ t). The available information set Fy
t represents the

information contained in the past paths of yt and Bt, but does not include the true values of Zt

or µ(Zt). Specifically, we use pt to denote his or her time-t belief that the income growth is high,

i.e., pt = Pr (µ = µ1|F
y
t ). Let µ denote the conditional expectation of income growth, µ, with

respect to the incomplete information filtration {Fy
t , t ≥ 0}, and it can be written as:

µ = ptµ1 + (1− pt)µ2 = µ2 + δpt,

where δ = µ1 − µ2 > 0. The corresponding conditional variance is:

var (µ (Zt) |Fy
t ) = δ2pt (1− pt) .

During (t, t+dt), the expected change in dyt ≡ yt+dt−yt is (µ− ρyt) dt and the corresponding

unanticipated change is dyt−(µ− ρyt) dt. Then the unanticipated fluctuation dB̂it of labor income

yt can be written as:

dB̂i,t = dBi,t +
1√

1− ρ2yeσy
(µ− µ) dt, (5)

where B̂i,t is a new standard Brownian motion with respect to Fy
t and is independent of Be,t.

Here B̂it serves as the innovation process for belief updating. Combining (3) with (5), we can

11Sampson (1994) adopted the same learning mechanism and examined how the uncertainty about the income

growth parameter affects aggregate wealth accumulation in a discrete-time CARA precautionary saving model

without portfolio choice.
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rewrite the income process as follows:

dyt = (µ− ρyt) dt+ ρyeσydBe,t +
√

1− ρ2yeσydB̂i,t. (6)

Finally, the belief process can be written as follows:12

dpt = [λ2 − (λ1 + λ2) pt] dt+ σ−1
y δpt (1− pt)

(
ρyedBe,t +

√
1− ρ2yedB̂i,t

)
. (7)

It is worth noting that when λ1 = λ2 = 0, the above belief updating process reduces to the case

with unknown and constant income growth (i.e., Model II of Wang 2009) and (7) reduces to the

following martingale process:

dpt = σ−1
y δpt (1− pt)

(
ρyedBe,t +

√
1− ρ2yedB̂i,t

)
. (8)

3.3 Recursive Utility

In this paper, we assume that agents in our model economy have recursive preferences of the

Kreps-Porteus/Epstein-Zin type, and can disentangle the degree of risk aversion from the elasticity

of intertemporal substitution.13 Specifically, for every stochastic consumption-portfolio stream,

{ct, αt}
∞
t=0, the utility stream, {f (Ut)}

∞
t=0, is recursively defined as follows: For every stochastic

stream, {ct, αt}
∞
t=0, the utility stream, {f (Ut)}

∞
t=0, is recursively defined as follows:

V (Ut) =
(
1− e−β∆t

)
V (ct) + e−β∆tV (CEt [Ut+∆t]) , (9)

where ∆t is time interval, β > 0 is the agent’s subjective discount rate, V (ct) = (−ψ) exp (−ct/ψ),

V (Ut) = (−ψ) exp (−Ut/ψ),

CEt [Ut+∆t] = G−1 (Et [G (Ut+∆t)]) , (10)

is the certainty equivalent of Ut+1 conditional on the period t information, and G (Ut+∆t) =

− exp (−γUt+∆t) /γ. In (9), ψ > 0 governs the elasticity of intertemporal substitution (EIS),

while γ > 0 governs the coefficient of absolute risk aversion (CARA).14 In other words, a high

value of ψ corresponds to a strong willingness to substitute consumption over time, and a high

value of γ implies a high degree of risk aversion. Note that when ψ = 1/γ, the functions V and

G are the same and the recursive utility reduces to the standard time-separable expected utility

function used in Caballero (1990) and Wang (2003, 2009). In addition, ψ = 1/γ also implies that

the consumer is indifferent about the time at which uncertainty is resolved.15

12Note that in this model the income process and the belief process are perfectly correlated.
13Although the expected utility model has many attractive features, it implies that the agent’s elasticity of

intertemporal substitution is the reciprocal of the coefficient of relative risk aversion. However, conceptually risk

aversion and intertemporal substitution capture two distinct aspects of decision-making problem.
14It is well-known that the CARA utility specification is tractable for deriving the consumption function or

optimal consumption-portfolio rules in different settings. See Merton (1971), Caballero (1990), Calvet (2001),

Wang (2003, 2009), Angeletos and Calvet (2006), and Luo (2016).
15Note that the consumer prefers early resolution of uncertainty if γ > 1/ψ and prefers late resolution if γ < 1/ψ.

9



In the standard full-information rational expectations (FI-RE) model, the typical investor

maximizes (9), subject to (4), (6), and (7). Before we introduce model uncertainty due to robust-

ness, we first write down the Hamilton-Jacobi-Bellman (HJB) equation when the typical investor

trusts the model since it can help facilitate the introduction of model uncertainty in the next

section:

βV (Jt) = sup
{ct,αt}

{βV (ct) +DV (Jt)} , (11)

where Jt = −α0 − α1wt − α2yt − α1f (pt),
16

DV (Jt) = V ′ (Jt)
(
(∂J)T ·E [dst]−

γ

2

[
(∂J)T · Σ · ∂J

])
,

st =
[
wt yt f (pt)

]T
, dst =

[
dwt dyt df (pt)

]T
, ∂J =

[
Jw Jy Jf

]T
,

Σ =




α2
tσ

2
e ρyeσyαtσe ρyeαtσeσ

−1
y δpt (1− pt) f

′ (pt)

ρyeσyαtσe σ2y δpt (1− pt) f
′ (pt)

ρyeαtσeσ
−1
y δpt (1− pt) f

′ (pt) δpt (1− pt) f
′ (pt) σ−2

y [δpt (1− pt) f
′ (pt)]

2


 . (12)

f (pt) satisfies the following nonlinear ODE:

rf (pt) =
δ

r + ρ
pt −

[
ρyeπ

σeσy
+

rγ

r + ρ

(
1− ρ2ye

)]
f ′ (pt) δpt (1− pt) + [λ2 − (λ1 + λ2) pt] f

′ (pt) (13)

−
rγ

2σ2y

(
1− ρ2ye

) [
f ′ (pt) δpt (1− pt)

]2
+

1

2σ2y
f ′′ (pt) (δpt (1− pt))

2 .

and the transversality condition, limt→∞E |exp (−βt)Vt| = 0 holds at the optimum. (See Ap-

pendix 7.1 for the derivation.)

3.4 Incorporating Model Uncertainty due to Robustness

As argued in Hansen and Sargent (2007), the simplest version of robustness considers the question

of how to make optimal decisions when the decision-maker does not know the true probability

model that generates the data. The main goal of introducing robustness is to design optimal

policies that not only work well when the reference (or approximating) model governing the

evolution of the state variables is the true model, but also performs reasonably well when there

is some type of model misspecification. To introduce robustness into our model proposed above,

we follow the continuous-time methodology proposed by Anderson, Hansen, and Sargent (2003)

(henceforth, AHS) and adopted in Maenhout (2004) to assume that consumers are concerned

about the model misspecifications and take Equations (4), (6), and (7) as the approximating

16Here α0, α1, and α2 are undetermined coefficients.
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model.17 The corresponding distorting model can thus be obtained by adding an endogenous

distortion υ (st) to the approximating model:

dst = (Λ + Σ · υt) dt+ σ · dBt, (14)

where υt =
[
υ1,t υ2,t υ3,t

]T
, Λ =

[
rwt + yt − ct + αtπ µ2 + δpt − ρyt λ2 − (λ1 + λ2) pt

]T

σ · dBt =




αtσedBe,t

ρyeσydBe,t +
√

1− ρ2yeσydB̂i,t

σ−1
y δpt (1− pt) f

′ (pt)
(
ρyedBe,t +

√
1− ρ2yedB̂i,t

)


 ,

and Σ ≡ σσT is given in (12).

Under RB, the HJB can be thus written as

βV (Jt) = sup
{ct,αt}

inf
υt

{
βV (ct) +DV (Jt) +

1

ϑt
H

}
, (15)

where

DV (Jt) = V ′ (Jt)
(
(∂J)T · E [dst] + (∂J)T · Σ · υt −

γ

2

[
(∂J)T · Σ · ∂J

])
, (16)

the first two terms in (16) are the expected continuation payoff when the state variable follows

(14), i.e., the alternative model based on drift distortion υ (st), H =
(
υTt · Σ · υt

)
/2 is the relative

entropy or the expected log likelihood ratio between the distorted model and the approximating

model and measures the distance between the two models, and 1/ϑt is the weight on the entropy

penalty term.18 More specifically, (∂J)T · Σ · υt is the adjustment to the expected continuation

value when the state dynamics is governed by the distorted model with the mean distortion υt.

The final term, H/ϑt, in (15) quantifies the penalty due to RB. As shown in AHS (2003), the

objective DV defined in (16) plays a crucial role in introducing robustness. A key insight of AHS

(2003) is that this differential expectations operator reflects a particular underlying model for the

state variable. The consumer accepts the approximating model as the best approximating model,

but is still concerned that it is misspecified. He or she therefore wants to consider a range of

models (i.e., the distorted model, (14)) surrounding the approximating model when computing

the continuation payoff. A preference for robustness is then achieved by having the agent guard

against the distorting model that is reasonably close to the approximating model.

17As argued in Hansen and Sargent (2007), the agent’s commitment technology is irrelevant under RB if the

evolution of the state is backward-looking. We therefore do not specify the commitment technology of the consumer

in the RB models of this paper.
18The last term in (17) is due to the investor’s preference for robustness. Note that the ϑt = 0 case corresponds to

the standard expected utility case. This robustness specification is called the multiplier (or penalty) robust control

problem.
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The drift adjustment υ (st) is chosen to minimize the sum of (i) the expected continuation

payoff adjusted to reflect the additional drift component in (14) and (ii) an entropy penalty:

inf
υ

[
V ′ (Jt) (∂J)

T · Σ · υt +
1

ϑt
H

]
, (17)

where ϑt is fixed and state-independent in AHS (2003); whereas it is state-dependent in Maenhout

(2004, 2006). The key reason for using a state-dependent counterpart ϑt in Maenhout (2004) is

to assure the homotheticity or scale invariance of the decision problem with the CRRA utility

function.19 In this paper, we also specify that ϑt is state-dependent (ϑ (st)) in the CARA-

Gaussian setting. The main reason for this specification is to guarantee homotheticity, which

keeps robustness from diminishing as the value of the total wealth increases.20 Note that the

evil agent’s minimization problem, (17), becomes invariant to the scale of total resource, st when

using the state-dependent specification of ϑt. Solving first for the infimization part of (17) yields:

υ∗t = −ϑtV
′ (Jt) ∂J (18)

where ϑt = −ϑ/V (Jt) > 0 and ϑ is a constant (see Appendix 7.3 for the derivation). Following

Uppal and Wang (2003) and Liu, Pan, and Wang (2005), here we can also define “1/V (Jt)” in the

ϑt specification as a normalization factor that is introduced to convert the relative entropy (i.e.,

the distance between the approximating model and the distorted model) to units of utility so that

it is consistent with the units of the expected future value function evaluated with the distorted

model. It is worth noting that adopting a slightly more general specification, ϑt = −ϕϑ/V (Jt)

where ϕ is a constant, does not affect the main results of the paper. The reason is as follows.

We can simply define a new constant, ϑ̃ = ϕϑ, and ϑ̃, rather than ϑ, will enter the decision

rules. It is worth noting that the state-dependent RB specification, ϑt, is similar to the AR(1)

ambiguity shocks proposed in Bhandari, Borovička, and Ho (2016). They identified an AR(1)

ambiguity shock using survey data from the Surveys of Consumers and the Survey of Professional

Forecasters, and found that in the data, the ambiguity shock is an important source of labor

market fluctuations.

Using a given detection error probability, we can easily calibrate the corresponding value of

ϑ̃ that affects the optimal consumption-portfolio rules.21 Substituting for υ∗ in (15) leads to the

following HJB:

βV (Jt) = sup
{ct,αt}

{
βV (ct) + V ′ (Jt)

(
(∂J)T · E [dst]−

1

2
γ̃
[
(∂J)T · Σ · ∂J

])}
, (19)

where γ̃ = γ + ϑ/ψ.

19See Maenhout (2004) for detailed discussions on the appealing features of “homothetic robustness”.
20Note that the impact of robustness wears off if we assume that ϑt is constant. This is clear from the procedure

of solving the robust HJB proposed. (See Appendix 7.3 for the details.)
21See Section ?? for the detailed procedure to calibrate the value of ϑ using the detection error probabilities.
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4 Main Results and Implications

This section presents main results. We first explain our theoretical results, followed by quantitative

results based on a calibration of the key RB parameter. We then test our model implications using

data and quantitatively address welfare implications.

4.1 Theoretical Implications for Robustly Strategic Consumption-Asset Allo-

cation

Since the labor income risk is partially hedged by the risky asset, the discount rate of the labor

income flow is no longer the risk-free rate r for risk-neutral agents. Instead, given that the Sharpe

ratio of the market portfolio is π/σe and the risk-free interest rate is r, there exists a unique

stochastic discount factor ζt in financial market satisfying:

dζt = −ζt

(
rdt+

π

σe
dBe,t

)
,

where ζ0 = 1. As in Koo (1998) and Munk and Sørensen (2010), the present value of the expected

stream of future labor income under incomplete information can be expressed as

h(yt, pt) = EP
t

[∫ ∞

t

ζs
ζt
ysds

∣∣∣∣F
y
t

]
= EQ

t

[∫ ∞

t

e−r(s−t)ysds

∣∣∣∣F
y
t

]
, (20)

where Q is the risk-neutral probability measure with respect to P.

Proposition 1 The human wealth under incomplete information can be decomposed as follows:

h(y, p) = m(y) + n(p), (21)

where (i) the y component, m(y), has the following form

m(y) =
1

r + ρ

[
y +

1

r

(
µ2 −

ρyeσyπ

σe

)]
, (22)

and (ii) the p component, n(p), is the solution of the following differential equation

rn(p) =
δp

r + ρ
+

[
λ2 − (λ1 + λ2) p−

ρyeπ

σeσy
δp(1 − p)

]
n′(p) +

1

2σ2y
δ2p2(1− p)2n′′(p), (23)

subject to the boundary conditions: rn(0) = λ2n
′(0) and rn(1) = δ

r+ρ
− λ1n

′(1).

Proof. See Appendix 7.2.

Following the standard procedure, we can then solve (19) and obtain the robustly strategic

consumption-portfolio rules. The following proposition summarizes the solution:
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Proposition 2 With unknown income growth, the robust consumption, precautionary saving, and

portfolio rules are

c∗t = r (wt + g (yt) + f (pt)) +
(β − r)ψ

r
+

π2

2rγ̃σ2e
, (24)

Γ ≡ Γy + Γp, (25)

α = αs + αy + αp, (26)

where γ̃ ≡ γ + ϑ/ψ is the effective coefficient of absolute risk aversion,

g (yt) =
1

r + ρ

[
yt +

1

r

(
µ2 −

rγ̃σ2y
(
1− ρ2ye

)

2 (r + ρ)
−
ρyeσyπ

σe

)]
(27)

is the agent’s certainty equivalent human wealth when his income growth rate is known to be low

(µ = µ2), f (pt) is the certainty equivalent wealth of learning,

Γy ≡ r [m(yt)− g (yt)] =
rγ̃
(
1− ρ2ye

)
σ2y

2 (r + ρ)2
, (28)

Γp ≡ r [n(pt)− f (pt)] (29)

= −
rγ̃
(
1− ρ2ye

)

(r + ρ)2 (r + λ1 + λ2) (r + 2 (λ1 + λ2))

(
p2t −

r + 2λ1
r + λ1 + λ2

pt −
r + 2λ1

r + λ1 + λ2

λ2
r

)

are the standard precautionary saving demand and the learning-induced precautionary saving de-

mand, respectively,

αs ≡
π

rγ̃σ2e
(30)

is the standard speculation demand,

αy ≡ −
ρyeσy

σe (r + ρ)
(31)

is the labor income-hedging demand,

αp ≡ −
ρye
σeσy

δpt (1− pt) f
′ (pt) (32)

is the learning-induced hedging demand, and f (pt) solves the following non-linear ODE:

rf (pt) =
δ

r + ρ
pt −

[
πρye
σeσy

+
rγ̃
(
1− ρ2ye

)

r + ρ

]
δpt (1− pt) f

′ (pt) + [λ2 − (λ1 + λ2) pt] f
′ (pt) (33)

+
1

2σ2y
[δpt (1− pt)]

2 f ′′ (pt)−
rγ̃
(
1− ρ2ye

)

2σ2y

[
δpt (1− pt) f

′ (pt)
]2
.

subject to the boundary conditions: rf (0) = λ2f
′ (0) and rf (1) = δ

r+ρ
− λ1f

′ (1), for p ∈ [0, 1].

Furthermore, the transversality condition (TVC), limt→∞E |exp (−δt) Jt| = 0, holds at optimum.

Finally, the value function can be written as

V (wt, yt, pt) = −
βψ

r
exp

{
−
r

ψ

[
wt + g (yt) + f (pt) +

(δ − r)ψ

r2
+

π2

2r2γ̃σ2e

]}
. (34)
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Proof. See Appendix 7.3.

Expression (24) clearly shows that the consumption function can be decomposed into four

components: (i) the annuity value of financial wealth, rwt, (ii) the annuity value of the risk-

adjusted and robustness-adjusted certainty equivalent human wealth under incomplete informa-

tion, r (g (yt) + f (pt)), (iii) the effect of the relative impatience measured by ψ (β − r) /r, and

(iv) the wealth effect of investing in the risky asset, π2/
(
2γ̃σ2e

)
.

Furthermore, the certainty equivalent human wealth contains two terms: one is the risk-

adjusted and robustness-adjusted value of labor income, g (yt), and the other is the value of

learning under robustness, f(pt), which is due to the RB agent’s belief updating about his un-

observable income growth. Unlike the incomplete information model of Wang (2009), we can

see from (27) and (33) both the adjusted-certainty equivalent human wealth g (yt) and the value

of learning f (pt) in our model are affected by the preference for robustness. From (27), it is

straightforward to show that g (yt) decreases with the degree of robustness measured by ϑ be-

cause the effective coefficient of absolute aversion (γ̃) increases with ϑ. The higher the degree of

robustness, the lower the risk-adjusted and robustness-adjusted discounted present value of labor

income. Given the complexity of (33), we cannot explicitly inspect how RB affects the value of

learning, f(pt). In the next section, we will quantitatively explore the effects of RB on f(pt) after

calibrating and estimating the parameter values.

From (25), (28), and (29), it is clear that under incomplete information, we can decompose

the precautionary saving demand (Γ) into the standard and learning-induced components. The

standard component (Γy) is mainly determined by the interaction of risk aversion, robustness, and

the stochastic properties of labor income including labor income uncertainty (σ2y) and the correla-

tion between labor income and the equity return (ρye), whereas the learning-induced component

(Γp) is mainly determined by the interaction of risk aversion, robustness, incomplete information

about income growth, and the stochastic properties of both the equity return and labor income

including the volatility of labor income, the equity return, and their correlation.22

From (26), we can see that the total demand for the risky asset contains three components:

(i) the standard speculation demand (αs), (ii) the labor income-hedging demand (αy), and (iii)

the learning-induced hedging demand (αp). Expressions (30) and (31) show that RB reduces the

traditional speculation demand (αs) by a factor, 1 + ϑ, but does not affect the income-hedging

demand of the risky asset (αy). In other words, RB increases the relative importance of the income

hedging demand to the speculation demand by increasing the effective coefficient of absolute risk

aversion (γ̃).

From (32), we can see that the learning-induced hedging demand (αp) is determined by both

the brief p and the marginal value of learning f ′ (p). It is also clear from (33) that when the

22RB can directly affect Γp indirectly via its impact on f (p).
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equity return and labor income are perfectly correlated (i.e., ρye = ±1), the impact of RB on

f (pt) and the learning-induced hedging demand disappears because γ̃
(
1− ρ2ye

)
= 0 in this case.

We will explore the quantitative implication of learning and robustness on αp in the next section

after solving Equation (33) numerically.

4.2 Calibration and Quantitative Findings

In this subsection, to fully explore how RB affects the joint behavior of portfolio choice, con-

sumption, and labor income when the mean of income growth is unknown, we first describe how

we calibrate the value of the RB parameter (ϑ) that governs the degree of robustness, and then

present quantitative results on how the interaction of learning and RB affects the precautionary

saving demand and the portfolio choice.

We adopt the calibration procedure outlined in AHS (2003) and Maenhout (2004) to calibrate

the value of the RB parameter (ϑ) that governs the degree of robustness. Specifically, we calibrate

ϑ by using the method of detection error probabilities (DEP) that is based on a statistical theory

of model selection. We can then infer what values of ϑ imply reasonable fears of model misspec-

ification for empirically-plausible approximating models. The model detection error probability

denoted by q is a measure of how far the distorted model can deviate from the approximating

model without being discarded; low values for this probability mean that agents are unwilling to

discard many models, implying that the cloud of models surrounding the approximating model is

large. In this case, it is easier for the investor to distinguish the two models (see Online Appendix

A for the detailed calibration procedure using the value of q).

Using the data set documented in Campbell (2003), we set the parameter values for asset

returns and volatility, and consumption as follows: π = 0.05, r = 0.02, and σe = 0.156. For

the labor income process, we follow Wang (2009) and Luo, Nie, Wang and Young (2016), and

set that λ1 = λ2 = 0.03, δ = µ1 − µ2 = 0.05, ρ = 0.0834, and σy = 0.182. The magnitude of

the EIS (ψ) is a key issue in macroeconomics and asset pricing. For example, Parker (2002) and

Vissing-Jorgensen and Attanasio (2003) estimate the IES to be well in excess of one. Hall (1988)

and Campbell (2003), on the other hand, estimate its value to be well below one. Here we choose

ψ = 0.3, 0.5, and 0.8 for illustrative purposes.23 Figure 1 illustrates how DEP (q) varies with

the value of ϑ for different values of ψ, γ, p, and ρye. We can see from the left upper panel of

the figure that the stronger the preference for robustness (higher ϑ), the less the value of q is,

holding other parameters constant. For example, when γ = 3 and ψ = 0.5, q = 35% when ϑ = 1,

while q = 18% when ϑ = 4. Both values of q are reasonable as argued in AHS (2002), Maenhout

23Guvenen (2006) finds that stockholders have a higher EIS (around 1.0) than non-stockholders (around 0.1).

Crump, Eusepi, Tambalotti, and Topa (2015) find that the EIS is precisely and robustly estimated to be around

0.8 in the general population using the newly released FRBNY Survey of Consumer Expectations (SCE).
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(2004), and Hansen and Sargent (Chapter 9, 2007). We set the value of ϑ to be in the range of

[1, 4] in our subsequent quantitative analysis. In addition, we can also see from this panel that

given the same value of ϑ, q increases with the value of ψ, and ψ has significant impact on the

relationship between ϑ and q. For example, q is about 20% when ψ = 0.5, while it is about 10%

when ψ = 0.3. We can see from the right upper panel of Figure 1 that the degree of risk aversion

has no impact on the mapping between ϑ and q. In other words, the degree of risk aversion is

irrelevant for calibrating ϑ using DEP, q. From the lower panels of this figure, it is clear that p

and ρye only have trivial impact on the relationship between ϑ and q.

Figure 2 illustrates how the interactions of the brief (p) with the degree of robustness (ϑ),

intertemporal substitution (ψ), risk aversion (γ), and the correlation between the risky asset and

labor income (ρye) affect the learning value (n(pt) or f (pt)). It is clear from the figure that the

value of learning is increasing with the probability that the consumer believes that the current

state is good for given values of ϑ, ψ, γ, and ρye.
24 The result is consistent with that obtained in

Wang (2009)’s expected utility model without the presence for robustness. In addition, since the

consumer is risk- and uncertainty-averse, the risk- and robustness-neutral learning value, n(pt), is

higher than th learning value, f (pt) obtained in our RB model, and f (pt) is decreasing with the

value of ϑ and γ for given p. Furthermore, from the right upper panel of the figure, we can see

that for given p, f (pt) is increasing with ψ and is decreasing with ρye. The intuition for this result

is that the lower the EIS, the larger the amplification effect on RB. In addition, we can see from

the right lower panel of the figure that f (pt) decreases with the degree of the learning-induced

hedging motive due to ρye 6= 0.

Figure 3 shows that both the standard and learning-induced precautionary saving components

(Γy and Γp) are increasing with ϑ, whereas the relative importance of the learning-induced com-

ponent is independent of ϑ.25 Furthermore, we can see from this figure that learning-induced

precautionary savings demand under RB is concave in brief p. Specifically, when the consumer is

more uncertain about the current situation (i.e., the value of p deviates more from 0 or 1, and is

in the interior region of p), this component is higher. It is worth noting that Γp is not symmetric

around p = 0.5, and is skewed to the left. This is due to the fact that both n(pt) and f (pt) are

slightly convex.26 Figure 4 shows that both Γy and Γp are decreasing with ψ. The intuition is

simple: The lower the value of ψ, the greater its contribution to the effective coefficient of risk

aversion (ϑ/ψ).

24The evidence on the value of the correlation between the equity return and labor income is mixed. Following

Campbell and Viceira (2002), here we set ρye = 0.35.
25We can also show that RB has no impact on the relative importance of the learning-induced precautionary

saving by inspecting (28) and (29). The terms with ϑ̇ in these two expressions are just cancelled out.
26It is straightforward to show if we solve the ODE, (33), approximately when δ is small. See Appendix 7.3 for

the detailed proof.
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To separate the different effects of incomplete information and robustness on Γp, we further

decompose Γp as Γp = Γp,1+Γp,2, where Γp,1 is the learning-induced hedging demand when there

is no preference for robustness (i.e., ϑ = 0), and Γp,2 capture the additional learning-induced

hedging demand due to robustness. Figure 5 clearly shows that Γp,2 increases with the value of ϑ

and γ, whereas it decreases with the value of ψ, for given values of p. The interaction of CARA,

EIS, and RB plays an important role in determining the amount of learning-induced precautionary

savings. For example, when ϑ = 1, γ = 3, and ψ = 0.5, the two components are equally important

in determining the learning-induced precautionary saving demand. When ϑ is increased to 2.5 ,

Γp,2 is about 2.7 times larger than Γp,1.

Figure 6 illustrates how RB affects the total demand for the risky asset and the learning-

induced hedging demand (αp). It is clear from the upper panels of the figure that α is decreasing

with ϑ and learning does not have significant impact on αp because ϑ does not appear in the αp

expression explicitly and affects αp via the f ′ (p) term. From the lower panels of the figure, we

can also see that αp accounts for a significant fraction of the total demand for the risky asset.

For example, when ϑ = 4, ψ = 0.5, and p = 0.65, |αp| /α is about 26.5%. Figure 4 shows that α

is increasing with ψ and learning does not have significant impact on αp. The reason is the same

as before: The lower the value of ψ, the greater its contribution to the effective coefficient of risk

aversion (ϑ/ψ). In addition, we can also see that learning-induced demand for the risky asset

under RB is concave in brief p. Specifically, this demand is higher for the more uncertainty-averse

agent when p is greater than 0.5. It is also clear from Figures 6 and 7 that αp is not symmetric

around p = 0.5, and is slightly skewed to the right. This is due to the fact that f (pt) is slightly

convex and the fact that f ′ (pt) appears in Expression (32).

To separate the different effects of incomplete information and ambiguity on αp, we further

decompose αp as αp = αp,1+αp,2, where αp,1 is the learning-induced hedging demand when there

is no preference for robustness (i.e., ϑ = 0), and αp,2 capture the additional learning-induced

hedging demand due to robustness. Figure 8 clearly shows that the relative importance of RB

in learning-induced portfolio choice, αp,2/αp,1, increases with the value of p for given values of ϑ.

We can also see from the figure that when p = 0.5, αp,2/αp,1 = 0. The reason behind this result

is that αp,2 depends on the value of f ′2 (pt) and f ′2 (pt) = 0 when p = 0.5, where f2 (pt) is part

of f (pt): f (pt) ≈ f1 (pt) δ + f2 (pt) δ
2.27 In addition, for given values of p, the ratio, αp,2/αp,1,

increases with ϑ when p is greater than 0.5, whereas it decreases with ϑ when p is less than 0.5.

27See Appendix 7.3 for the derivation of f2 (pt).
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4.3 Testable Implications of Ignorance

Our model has some interesting testable implications. The theoretical and quantitative results in

the previous sections suggest that more ignorance leads to less holding of risky assets. This can be

tested in two steps. First, there is evidence that highly educated people are usually more financial

literate (i.e., less ignorant). For example, Mitchell and Lusardi (2014) provided a recent survey

testing participants’ command of financial principles and planning by using their three-question

(about compounding, inflation and risk) poll. They found that people with more education did

better. In the U.S., for example, 44.3% of those with college degrees answered all three questions

correctly, compared with 31.3% for those with some college, 19.2% of those with only a high school

degree and 12.6% for those with less than a high school degree. Among those with post-graduate

degrees, 63.8% got all answers right. Other countries showed similar results. This suggests that

people with higher education probably have better knowledge about the structure and parameters

of the model, and are thus less ignorant about the model specification and parameter uncertainty.

Second, we test if the education level is positively correlated with risky-asset holdings. To do

this, we use data from the Panel Study of Income Dynamics (PSID) which contains information

about individual households’ wealth, income, and stock holdings. In particular, we divide house-

holds into three groups by their educational levels, and then examine their holdings of stocks, in

both absolute terms and relative terms. The details of the data set are explained in Appendix

7.4. The number of households in each category is reported in Table 1 and the main findings

are summarized in Tables 2 and 3. Specifically, Table 2 shows that the amount of stock holdings

increase with the educational level, not only for the whole sample, but also by income groups.28

To further control the effects of education on income which also influences the absolute level of

stockholding, we report the relative stockholding, defined as the share of stockholding in house-

holds’ total wealth, in Table 3. In Table 3, when calculating households’ wealth, we consider two

cases: one includes home equities and one excludes home equities. It is clear from the table that

the share of wealth invested in stocks is positively correlated with the household’s educational

level in both cases. These findings can therefore be consistent with our model’s predictions and

highlight the importance of ignorance-induced uncertainty in explaining the data. Specifically,

less well-educated investors probably face greater ignorance-induced uncertainty; consequently,

they rationally choose to invest less in the stock market even if the correlation between their

labor income and equity returns is the same as that for the well-educated investors.29

28This is consistent with earlier work in the literature. For example, Tables 1 and 2 in Luo (2016) show a positive

relationship between the mean value of stockholding and the education level at all income and net worth levels using

the Survey of Consumer Finances (SCF) data. Haliassos and Bertaut (1995) also found that the share invested in

the stock market is substantially larger among those with at least a college degree compared to those with less than

high school education at all income levels.
29As documented in Campbell (2006), there is some evidence that households understand their own limitations
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To quantitatively show how our model has the potential to reconcile with the empirical ev-

idence, Table 4 provides a numerical example in which the model matches exactly the relative

risk-asset holdings in the data under reasonable parameter values. First, for parameters that are

not related to MU and PU, we use the same values as in the previous subsection: π = 0.05,

r = 0.02, σe = 0.156, λ1 = λ2 = 0.03, δ = 0.05, ρ = 0.0834, and σy = 0.182. Then, as reported in

the upper panel in Table 4, we set ϑ = 3.92 and p = 0.5 for the least educated group (i.e., people

not finishing high school face significant model and parameter uncertainty), ϑ = 3.3 and p = 0.5

for the group with high school and some college education, and ϑ = 1 and p = 1 for the group

with college and above education. Using (26), we can easily calculate that the optimal amount

invested in the risky asset (α) for these three groups. As the bottom panel in Table 4 shows,

the ratio of the risky assets of the middle educated group to that of the less educated group is

2.76 in the model, while the ratio of the risky assets of the well educated group to that of the

less educated group is 21.4 in the model, both matching exactly the empirical counterparts in the

whole sample.

To further illustrate the importance of the interaction between MU and PU in driving the

key results, Figure 14 shows how the relative risky-asset holding varies with the degree of PU

under different assumptions of MU. Specifically, the blue line shows the ratio of risky assets for

the group with ϑ = 1 (i.e., the group facing relatively less MU) to the group with ϑ = 2 (i.e., the

group facing slightly larger MU); the red thin dashed line shows the ratio of risky assets for the

group with ϑ = 1 to the group with ϑ = 3.5; and the red thick dashed line shows the ratio of risky

assets for the group with ϑ = 1 to the group with ϑ = 4. In other words, these three lines are

comparing three different groups of investors who face different amount of MU to the same group

of investors who face relatively less MU (i.e., ϑ = 1). It is clear that the blue line is relatively

flat, while the red dashed lines are hump-shaped, which suggests that PU can help explain the

relative risky-asset holdings in two groups of investors only if these two groups of investors face

significantly different amount of MU.30 For example, only the red thick dashed line can generate a

ratio of stock holdings between investors with at least a college degree and investors not finishing

high school (which is 21.4 as shown in Table 4), while the other two lines (which represent smaller

differences in MU) cannot. Similarly, without enough amount of PU (that is, if p is close to either

0 or 1), the model has difficulty in generating a high ratio of risky-asset holdings. So, this exercise

shows that the interaction between MU and PU is important in explaining the relative risky-asset

holding in the data.

and constraints, and avoid investment opportunities for which they feel unqualified.
30Note that p = 0 and p = 1 refer to cases without parameter uncertainty, while a value of p between 0 and 1

represents a positive amount of PU. This is why the red lines are hump-shaped and peak in the middle.
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4.4 Welfare Cost of Ignorance

Comparing with the full information case, the investor with incomplete information about income

growth makes consumption and portfolio decisions deviating from the first-best path. In other

words, in this model, having more precise information about income growth can improve the

investor’s welfare. The following proposition provides the result on the investor’s lifetime welfare

under full information and model uncertainty:

Proposition 3 Under full information and model uncertainty, the value function is given by

Ṽ (wt, yt;Zt) = −
βψ

r
exp

{
−
r

ψ

[
wt + g(yt) + φ(Zt) +

(β − r)ψ

r2
+

π2

2γ̃r2σ2e

]}
, (35)

where φ(Zt) is the certainty equivalent human wealth of regime switching. Denote φ1 = φ(H) and

φ2 = φ(L), then (φ1, φ2) jointly solve

rφ1 =
δ

r + ρ
−
λ1ψ

r

(
exp

[
r

ψ
(φ1 − φ2)

]
− 1

)
, (36)

rφ2 = −
λ2ψ

r

(
exp

[
−
r

ψ
(φ1 − φ2)

]
− 1

)
. (37)

Proof. See Online Appendix for the derivation.

Since more precise information on income growth leads to higher welfare, at t = 0 the investor

would prefer a completely observable economy to a partially observable economy with the same

initial conditions:

Ṽ (w0, y0;Z0) ≥ V (w0, y0, p0),

where V (w0, y0, p0) and Ṽ (wt, yt;Zt) are provided in (34) and (35), respectively. To convert

the welfare loss due to incomplete information about income growth into an equivalent wealth

measure, we define the value of information, Π, as the additional amount of wealth needed in

order for an investor with partial information to have the same life-time utility level as that with

complete information. That is,

V (w0 +Π, y0, p0) = Ṽ (w0, y0;Z0). (38)

Solving Equation (38) gives the following expression for Π:

Π = φ(Z0)− f(p0). (39)

Since Z0 is a Markov chain, we use the mathematical expectations of Π with respect to Z0

to measure the value of information in our model. Specifically, using the distribution of Z0 in
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the partial information setting, P (Z0 = H) = p0 and P (Z0 = L) = 1 − p0, the mathematical

expectation of Π can be written as

ε = EZ [Π] = [p0φ1 + (1− p0)φ2]− f(p0). (40)

The upper panel of Figure 9 illustrates how ε varies with the initial belief for different degrees

of intertemporal substitution (ψ) and robustness (ϑ). It is clear from this figure that ε is concave

in initial belief p0, i.e., when the agent is more uncertain about the current regime, the value of

information is higher. When p0 = 0 or p0 = 1, ε is also positive, which means that information is

valuable even if the agent has no uncertainty about the current regime. In addition, we can see

from the figure that the information value is skewed and more left skewed with the larger degrees

of intertemporal substitution and robustness. For given values of p0, it is clear that ε increases

with the EIS. The intuition behind this result is that the lower the value of EIS, the larger its

impact on model uncertainty, and the less the value of f(p0). However, the values of φ1 and φ2

also increase with EIS.31 The net effect of these two mechanisms is that ε increases with the EIS.

To evaluate the relative importance of incomplete information and robustness in determining

the welfare loss due to ignorance, we need to decompose the value of information into two compo-

nents: one is purely from incomplete information and the other is due to robustness. Specifically,

denote ε0 as the information value for the uncertainty-neutral agent and εL as the welfare loss

due to robustness in the incomplete information case. We can then decompose ε as:

ε = ε0 + εL, (41)

where ε0 is obtained from the information value ε by setting ϑ = 0, and εL is the difference

between ε and ε0 and measures the welfare loss due to robustness. The lower panel of Figure 9

shows that the ratio of the information-value loss εL to the information value ε, εL/ε, is convex

in initial belief p0 for different values of ψ and ϑ. The more uncertain about the current regime

the agent is, the larger the amount of parameter uncertainty is, and the lower the ratio εL/ε is.

The ratio εL/ε appears to be convex in the initial belief, p0; it is lower when the agent’s belief

is near 0.5 and higher when his belief is close to 0 or 1. Furthermore, the figure also shows that

the ratio decreases with the EIS and increases with the degree of robustness. The reason for this

result is that εL = n(p0)− f(p0), where n(p0) is defined in (23), decreases with the degree of EIS

because n(p0) is independent of the degrees of EIS and RB. The impact of EIS on εL dominates

the impact of EIS on ε; consequently, the ratio decreases with the degree of EIS.

31We can verify that φ1 and φ2 are increasing functions of ψ by solving the equation system, (36) and (37),

numerically. The detailed derivations are available from the corresponding author.
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5 Unknown Gaussian Income Growth

5.1 Model Specification and Theoretical Implications

In this section, we consider an extension in which the unobservable income growth rate follows

a continuous-state stochastic process. Specifically, we assume that the growth rate µt follows a

mean-reverting Ornstein-Uhlenbeck process:

dµt = λ (µ− µt) dt+ σµdBµ,t, (42)

where Bµ,t is a standard Brownian motions defined over the complete probability space, λ and µ

are positive constants, and the correlation between dBy,t and dBµ,t is ρyµ. Hence, in this setting

both the income growth rate and the actual income are stochastic and risky.

As in the benchmark model, here µt is also unknown to investors. In this case, the investors

need to estimate it using their observations of the realized labor income. Specifically, the typical

investor estimates the conditional distribution of the true income growth rate and then represents

the investor’s original optimizing problem as a Markovian one. If we assume that the loss function

in our model is the mean square error (MSE) due to incomplete information, then given a Gaussian

prior, finding the posterior distribution of the income growth rate becomes a standard Kalman-

Bucy filtering problem. However, if we assume that model uncertainty due to robustness not

only affects the optimal control problem but also affects the optimal filtering problem, we have

to consider a robust filtering problem. Following Kasa (2006) and Hansen and Sargent (Chapter

17, 2007), we now consider a situation in which the investor pursues a robust Kalman gain. To

obtain robust Kalman filter gain, the investor considers the following distorted model:

dµt = [λ (µ− µt) + σµv1,t] dt+ σµdB̃µ,t, (43)

dyt = (µt − ρyt + σyv2,t) dt+ σydB̃y,t, (44)

where B̃µ,t and B̃y,t are Wiener processes that are related to the approximating processes as

follows

B̃µ,t = Bµ,t −

∫ t

0
v1,sds and B̃y,t = By,t −

∫ t

0
v2,sds

and ν1,t and ν2,t are distortions to the conditional means of the two shocks, B̃µ,t and B̃y,t, re-

spectively. As shown in Basar and Bernhard (1995) and Kasa (2006), a robust filter can be

characterized by the following dynamic zero-sum game:

Jt = inf
{mj}

sup
{v1,j ,v2,j}

{
lim sup
T→∞

1

T
EQ

∫ T

0
(µj −mj)

2 dj − ϑ−1H (Q|P ) ,

}
, (45)
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subject to (43) and (44), where Q and P denote the distorted and approximating models, respec-

tively. The relative entropy constraint is defined as:

H (Q|P ) = lim sup
T→∞

1

2T
EQ

[∫ T

0

(
v21,t + v22,t

)
dj

]
≤ η0, (46)

where η0 defines the set of models that the consumer is considering, and ϑ−1 is the Lagrange mul-

tiplier on the relative entropy constraint, (46). As shown in Dai Pra, Meneghini, and Runggaldier

(1996), the entropy constrained robust filtering problem, (45), is equivalent with the following

risk-sensitive filtering problem:

1

ϑ
log

(∫
exp (ϑF (µ,m)) dP

)
= sup

Q

{∫
F (µ,m) dQ− ϑ−1H (Q|P )

}
, (47)

where F ≡ (µ−m)2 /ϑ is the loss function. The following proposition summarizes the results for

this robust filtering problem:

Proposition 4 When ϑ ≥ σ2µ/(σ
2
µ+λ

2), there is a unique solution for the robust filtering problem,

(47):

dmt = λ (µ−mt) dt+Kt [dyt − (mt − ρyt) dt] , (48)

dΣt

dt
= −2λΣt −

(
1

σ2y
− ϑ

)
(η +Σt)

2 + σ2µ, (49)

where Σt = Et

[
(µt −mt)

2
]
is the conditional variance of µt, Kt = (η +Σt) /σ

2
y , is the Kalman

gain, and η = ρyµσyσµ. In the steady state, the conditional variance converges to

Σ∗ = −η +
−λσ2y + σy

√
λ2σ2y +

(
1− ϑσ2y

) (
2λη + σ2µ

)

1− ϑσ2y
, (50)

which is non-negative.

Proof. From (47), it is clear that the right-hand side is an entropy constrained filtering problem

in terms of the scaled quadratic objective function F , while the left-hand side is a risk-sensitive

filtering problem in terms of the same function F , with risk-sensitivity parameter, ϑ. The solution

of this risk-sensitive filtering problem is just a special case of Theorem 3 of Pan and Basar (1996).

Using the expected mean mt, we can now rewrite the income process as:

dyt = (mt − ρyt) dt+ σydBm,t, (51)
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where dBm,t = dBy,t+
(
µt−mt

σy

)
is the normalized unanticipated innovation of the income growth

process and it is a standard Brownian motion with respect to the investor’s filtration. Substituting

it into the estimated state updating equation yields:

dmt = λ (µ−mt) dt+ σmdBm,t, (52)

where

σm ≡
η +Σ∗

σy
=

−λσy +
√
λ2σ2y +

(
1− ϑσ2y

) (
2λη + σ2µ

)

1− ϑσ2y
(53)

is the diffusion coefficient and Σ∗ is given in (50). From (50), it is straightforward to show that

∂σm
∂ϑ

> 0 and
∂ (σm/σy)

∂ϑ
> 0.

That is, the robust Kalman gain, σm/σy, is increasing with the preference for pursuing robust

Kalman filter. In the next subsection, we will quantitatively examine the relative importance of

robust control and filtering in determining precautionary savings and strategic asset allocation

after using the US data to estimate the joint y and µ process.

Following the standard procedure, we can then solve for robust consumption-portfolio rules for

this unknown Gaussian income growth case. The following proposition summarizes the solution:

Proposition 5 With unknown income growth, the robust consumption and portfolio rules are

c∗t = r (wt + ht + lt) + Ψ + Π− Γ, (54)

α∗
t = αs + αy + αp, (55)

where ht =
1

r+ρ

(
yt +

µ
r
−

πρyeσy

rσe

)
is the risk-adjusted human wealth, lt =

1
(r+ρ)(λ+r)

(
mt − µ−

πρyeσm

rσe

)
,

Ψ =
(
β−r
r

)
ψ, Π = π2

2rγ̃σ2
e
,

Γ ≡
1

2
rγ̃
(
1− ρ2ye

) [ σy
r + ρ

+
σm

(r + ρ) (λ+ r)

]2
(56)

is the investor’s precautionary saving demand, and γ̃ ≡ γ + ϑ/ψ is the effective coefficient of

absolute risk aversion,

αs =
π

rγ̃σ2e
(57)

is the standard speculation demand for the risky asset,

αy = −
ρyeσy

σe (r + ρ)
(58)

is the labor income-hedging demand,

αp ≡ −
ρyeσm

σe (r + ρ) (r + λ)
(59)

is the learning-induced hedging demand, and σm = −λσy +
√
λ2σ2y + 2λη + σ2µ.
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Proof. See Online Appendix B for the derivation.

It is clear from (56) that the preference for robustness (ϑ) affects the precautionary saving

demand via two channels: (i) the direct channel (the robust control channel) and (ii) the indirect

channel (the robust filtering channel) via the robust Kalman gain (σm/σy).
32 In addition, both the

correlation between the equity return and labor income (ρye) and the correlation between labor

income and the mean growth rate of labor income (ρyµ) interact with fundamental uncertainty

(σy) and parameter uncertainty (σm), and then affect the precautionary saving demand. To fully

explore how parameter uncertainty due to unknown income growth affects the precautionary

saving demand, we first shut down the parameter uncertainty channel. In this case, the investor

has complete information about the parameter, and the precautionary saving demand, Γ0, can be

written as follows:33

Γ0 =
1

2
rγ̃
(
1− ρ2ye

) [ σy
r + ρ

+
ρyµσµ

(r + ρ) (λ+ r)

]2
. (60)

We then define Γp ≡ Γ−Γ0 the additional demand for precautionary saving due to the ignorance

of the unknown parameter µ. Using (56) and (60), it is straightforward to show that

Γp =
1

2
rγ̃
(
1− ρ2ye

) [ 2σy
r + ρ

+
σm + ρyµσµ

(r + ρ) (λ+ r)

]
σm − ρyµσµ

(r + ρ) (λ+ r)
. (61)

It is clear from (56), (60), and (61) that the precautionary saving demand is always decreasing

with ρye because hedging with the risky asset reduces the investor’s precautionary saving demand.

Furthermore, we can also see from (60) and (61) that Γ0 and Γp increases and decreases with ρyµ

for given ρye, respectively. In the next subsection, we will evaluate the relative importance of this

additional demand due to parameter uncertainty after estimating the yt and µt process.

Expressions (57) and from (58) are the same as that obtained in our benchmark model in which

the unknown parameter takes discrete values. (59) clearly shows how the importance of parameter

uncertainty (σm) affects the learning-induced hedging demand for the risky asset (αp). It is worth

noting that RB also affects asset allocation via two channels: the direct channel (the robust

control part) and the indirect channel (the robust filtering part). Specifically, model uncertainty

due to robustness (γ̃) does not enter both the income hedging demand and the learning-induced

hedging demand. Using (58) and (59), the relative importance of these two types of asset demand

can be written as:

Ξ ≡
αp

αy
=

σm
σy (r + λ)

, (62)

which does not depend on the degree of RB. It is worth noting that this result is different from

that obtained in our benchmark model with Markov switching in which model uncertainty affects

32In the next subsection, we will quantitatively show that the indirect channel only has minor impact on precau-

tionary saving and asset allocation and is dominated by the direct channel.
33Note that here when ρyµ = 0, the precautionary saving demand is the same as that obtained in Model I and III

of Wang (2009). When ρye = ρyµ = 0, the model reduces to that obtained in the standard Caballero (1990) model.
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the relative importance of these two types of asset demand because the preference for robustness

affects the belief updating equation.

5.2 Quantitative Implications

In order to estimate the persistence coefficients (ρ and λ) and the correlation coefficient (ρyµ) in

household income process, we estimate a discrete-time state-space system using the US households’

disposable income from 1947 − 2006: 34

yt+1 = µt + ρyyt + εt+1,

µt+1 = ρµµt + ǫt+1,

where εt+1 and ǫt+1 are the iid normal innovations to the y and µ processes, respectively. The

estimated values of the persistence coefficients, ρy and ρµ, are 0.9058 and 0.9675, respectively. The

standard deviations of εt+1 and ǫt+1 are 0.0157 and 0.0056, respectively.35 Using the estimates, we

can recover the corresponding parameter values used in our continuous-time model: ρ = 0.0989,

λ = 0.0330, σy = 0.0165, σµ = 0.0057, and ρyµ = 0.8655.

Using these estimated parameter values, we can examine how RB affects the robust Kalman

gain in the filtering problem. Figure 10 shows how RB affects the robust Kalman gain (σm/σy)

for different values of ρyµ. It clearly shows that RB only has minor impact on the Kalman gain

in the filtering problem.36 The reason behind this result is that RB affects the Kalman gain

via the ϑσ2y term in (53) and the value of this term is very small given the estimated value

of σy. Furthermore, we can also explore how induced uncertainty due to ignorance affects the

different components of the precautionary saving demand and asset holdings. Figure 11 clearly

illustrates that both the total and learning-induced precautionary saving components, Γ and Γp,

increase with ϑ for various values of ρye, whereas the relative importance of the learning-induced

component does not change significantly when ϑ changes. The reason is that the effects of RB on

Γ and Γp are similar and thus only have minor impact on the ratio of Γp to Γ. Furthermore, we

can see from the figure that the learning-induced component is decreasing with the correlation

between the equity return and labor income. This pattern is similar to that obtained in our

benchmark model when the unknown mean of income growth follows a discrete distribution.

Figure 12 illustrates how RB affects the total demand for the risky asset (α) and the learning-

induced hedging demand (αp). It is clear from the figure that the total demand for the risky

34We exclude the period during and after the Great Recession (2007-2009) because the volatility was significantly

larger than other years. But including that period does not change our key results.
35Following the literature, we also normalize household income measures as ratios of the mean for that year.
36This result is consistent with that obtained in Luo and Young (2016). They also find that RB does not

play a significant role in affecting the robust Kalman gain within the linear-quadratic-Gaussian permanent income

framework.
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asset is decreasing with ϑ. In addition, we can also see that α is increasing with the correlation

between the equity return and labor income. More importantly, we can see that the learning-

induced hedging demand plays an important role in determining the strategic asset allocation.

For example, when ϑ = 4, the share of the learning-induced hedging demand accounts for more

than 40 percent in the total asset holdings. From (62), it is straightforward to show that the

learning-induced hedging demand (αp) is much more important than the labor income-hedging

demand (αy). For example, when ρye = 0.6, Ξ = 9.4, which means αp is more than 9 times greater

than αy.

5.3 General Equilibrium Implications

In this extended model, we can fully explore the general equilibrium implications of ignorance.

Following Huggett (1993), Calvet (2001), and Wang (2003), we assume that the economy is

populated by a continuum of ex ante identical, but ex post heterogeneous agents, of total mass

normalized to one, with each agent solving the optimal consumption and savings problem with

parameter and model uncertainty proposed in the previous subsection. Similar to Calvet (2001),

we also make the following assumption:37

Assumption 1 Both the risk-free asset and the risky asset in our model are in zero net sup-

ply. The initial cross-sectional distribution of disposable labor income is a stationary distribution

Φ (·).

By the law of large numbers in Sun (2006), provided that the spaces of agents and the proba-

bility space are constructed appropriately, aggregate income and the cross-sectional distribution

of permanent income Φ (·) are constant over time. To fully explore the general equilibrium impli-

cations in this two-asset case, we first consider the equilibrium in the market for the risky asset.

Assuming that the net supply of the risky asset is 0, the equilibrium condition in the market for

the risky asset can be written as:

π

rγ̃σ2e
−

ρyeσy
σe (r + ρ)

−
ρyeσm

σe (r + ρ) (r + λ)
= 0 (63)

for a given risk free rate, r. From this equilibrium condition, we can express the equilibrium risky

premium (π∗) in terms of the risk free rate:

π∗ =
r

r + ρ
γ̃ρyeσeσy (1 + x) , (64)

where x = σm

(λ+r)σy
> 0.

We next discuss how the equilibrium risk free rate, r, is determined in the market for the risk

free asset. Using the individual consumption function (54) and the budget constraint, we can

37Huggett (1993) and Wang (2003) do not model the risky asset in their heterogenous-agent model economies.
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obtain the expression for the individual saving function as follows:

d∗t = ft (r) + fm,t (r)−Ψ+ Γ0, (65)

where ft (r) ≡
ρ(yt−y)
r+ρ

, fm,t (r) ≡ − r(mt−µ)
(r+ρ)(λ+r) ,

Ψ ≡ ψ

(
β

r
− 1

)
(66)

captures the saving demand of relative patience,

Γ0 ≡
1

2
rγ̃

(
σy
r + ρ

)2

(1 + x)2 (67)

is the precautionary saving demand when ρye = 0. Following the aggregation procedure used in

Huggett (1993) and Wang (2003), we have the following result on the total saving demand:

Proposition 6 Both the total demand of savings “for a rainy day” and the total demand for

the estimation-risk-induced savings equal zero for any positive interest rate. That is, Ft (r) =
∫
yt
ft (r) dΦ (yt) = 0 and Fm,t (r) =

∫
mt
fm,t (r) dΦ (mt) = 0, for r > 0.

Proof. The proof uses the LLN and is the same as that in Wang (2003).

Using this result, from (65), after aggregating across all investors, the expression for total

savings can be written as

D (ϑ, r) ≡ Γ0 (ϑ, r)−Ψ(r) , (68)

where Γ0 (ϑ, r) and Π (ϑ, r) are given in (67) and (66), respectively. An equilibrium interest rate

r∗ satisfies D (ϑ, r∗) = 0. The following proposition proves that an equilibrium exists:

Proposition 7 There exists one equilibrium with an interest rate r∗ ∈ (0, β) such that D (ϑ, r∗) =

0, and

π∗ =
r∗

r∗ + ρ
γ̃ρyeσe

(
σy +

σm
r∗ + λ

)
, (69)

In any such equilibrium, each consumer’s optimal consumption-portfolio rules are described by:

c∗t = r∗ (wt + ht + lt) , (70)

and

α∗ = 0, (71)

respectively, where

h∗t =
1

r∗ + ρ

(
yt +

µ

r∗

)
, (72)

l∗t =
1

(r∗ + ρ) (λ+ r∗)
(mt − µ) , (73)

and γ̃ ≡ (1 + ϑ) γ is the effective coefficient of absolute risk aversion.
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Proof. If r > β, Γ0 (ϑ, r) and −Ψ(r) in the expression for total savings D (ϑ, r∗) are positive,

which contradicts the equilibrium condition: D (ϑ, r∗) = 0. Since Γ0 (ϑ, r)−Ψ(r) < 0 (> 0) when

r = 0 (r = β), the continuity of the expression for total savings implies that there exists at least

one interest rate r∗ ∈ (0, β) such that D (ϑ, r∗) = 0. To prove this equilibrium is unique, note

that
∂D (ϑ, r)

∂r
=
ψ

r2

[
(β − r)

(
1−

2r

r + ρ
−

2r

r + λ

x

1 + x

)
+ β

]

where we use the equilibrium condition: 0.5rγ̃ (1 + x)2 σ2y/ (r + ρ)2 = ψ (β − r) /r, is positive in

general equilibrium when

(β − r)

(
1−

2r

r + ρ
−

2r

r + λ

x

1 + x

)
+ β > 0 or β >

r

2

(
ρ−r
r+ρ

− 2r
r+λ

x
1+x

ρ
r+ρ

− r
r+λ

x
1+x

)
,

which holds for plausibly estimated parameter values. Note that when σm = 0,

∂D (ϑ, r)

∂r
> 0

always holds. Therefore, if r < β, there is only one equilibrium in (0, β). From Expression

(24), we can obtain the individual’s optimal consumption rule in general equilibrium as c∗t =

r∗ (wt + h∗t + l∗t ).

From the equilibrium condition,

1

2
r∗
(
γ +

ϑ

ψ

)
σ2y

(r∗ + ρ)2

[
1 +

σm
(λ+ r∗) σy

]2
− ψ

(
β

r∗
− 1

)
= 0, (74)

it is straightforward to show that

dr∗

dϑ
= −

β − r∗

r∗γ̃

{
ψ

r∗2

[
(β − r∗)

(
1−

2r∗

r∗ + ρ
−

2r∗

r∗ + λ

x

1 + x

)
+ β

]}−1

< 0 (75)

for plausibly estimated parameter values. It is clear from this expression that r∗ is decreasing

in the degree of RB, ϑ. Furthermore, it is clear from (64) that RB can affect the risk premium

via two distinct channels. The first channel is direct: It can increase the equity premium by

increasing the effective coefficient of risk aversion, γ̃. The second channel is indirect: It affects

the risk premium via the general equilibrium risk-free rate, r∗. Holding r∗ fixed, it is clear from

that the equity premium is a linear function of γ̃. The upper panel of Figure 13 shows that RB

reduces the equilibrium interest rate and increases the equilibrium equity premium, respectively,

for the estimated and calibrated parameter values reported in the last subsection.38 In addition,

we can also see that the EIS can amplify the effects of RB on the equilibrium asset returns. Given

38Here we assume that ρye = 0.4, ψ = 0.2, and γ = 3. The main results do not change for different values of

these parameters.
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the plausibly estimated parameter values, we find that the direct channel dominate the indirect

channel. Furthermore, the lower panel of Figure 13 illustrates how the degree of parameter

uncertainty measured by σm/σy affects the equilibrium asset returns. It is clear from Figure 13

that both model uncertainty and parameter uncertainty have significant effects on the equilibrium

asset returns. For example, when γ = 3 and ψ = 0.2, the risk-free rate reduces from 2.13% to

1.63%, and the equity premium increases from 2.76% to 4.26% when ϑ increases from 2 to 4.39

For the case when γ = 3, ψ = 0.2, and ϑ = 2, the risk-free rate reduces from 2.56% to 1.70%,

and the equity premium increases from 2.32% to 3.14% when σm/σy increases from 0.25 to 0.45.

It is worth noting that here we assume zero net supply of the risky aset only for theoretical

and illustrative purposes. Allowing for a positive supply of the risky asset can drive up the risk

premium and drive down the risk free rate in general equilibrium. (Using (64) and (68), it is

straightforward to obtain these results.)

6 Conclusion

In this paper we have studied how the interaction of two types of ignorance-induced uncertainty

affects strategic consumption-portfolio rules and precautionary savings in a continuous-time re-

cursive utility model with uninsurable labor income. Specifically, we have explicitly solved the

model to explore how the two types of ignorance-induced uncertainty interact with intertemporal

substitution, risk aversion, and the correlation between the risky asset and labor income. We show

they have distinct impacts on strategic asset allocation and precautionary savings as well as the

equilibrium asset returns. Furthermore, for plausibly estimated and calibrated model parameters,

we find that the welfare cost of ignorance for ordinary investors can be very large.

39Note that in the FI-RE case, r∗ = 3. 11 percent and π∗ = 0.272.
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7 Appendix

7.1 Solving the FI-RE Model with Recursive Utility and Unknown Income

Growth

Guess that Jt = −α0 − α1wt −α2yt −α1f (pt), the J function at time t+∆t can thus be written

as:40

Jt+∆t = J (wt+∆t, yt+∆t, pt+∆t) = −α0 − α1wt+∆t − α2yt+∆t − α1f (pt+∆t)

≈ −α0 − [α1wt + α1 (rwt + yt − ct + αtπ)∆t+ α1σeαt∆Be,t]

−
[
α2yt + α2 (µ2 + δpt − ρyt)∆t+ α2ρyeσy∆Be,t + α2

√
1− ρ2yeσy∆B̂i,t

]

−


 α1f (pt) + α1f

′ (pt)
(
[λ2 − (λ1 + λ2) pt]∆t+ σ−1

y δpt (1− pt)
(
ρye∆Be,t +

√
1− ρ2ye∆B̂i,t

))

+1
2α1f

′′ (pt)
(
σ−1
y δpt (1− pt)

)2
∆t


 .

Using the above expression for Jt+∆t and assume that the time interval ∆t goes to infinitesimal

dt, we can compute the certainty equivalent of Jt+dt as follows:

exp (−γCEt) = Et [exp (−γJ (st+dt))]

= exp

(
−γEt [−α1wt+dt − α2yt+dt − α1f (pt+dt)] +

1

2
γ2 var t [−α1wt+dt − α2yt+dt − α1f (pt+dt)] + γα0

)

= exp

(
γα0 − γ (∂J)T · (st + E [dst]) +

γ2

2

[
(∂J)T · Σ · ∂J

]
dt

)

= exp (−γJt) exp

(
−γ (∂J)T · E [dst] +

γ2

2

[
(∂J)T · Σ · ∂J

]
dt

)
,

where st =
[
wt yt f (pt)

]T
, dst =

[
dwt dyt df (pt)

]T
, ∂J =

[
Jw Jy Jf

]T
, and Σ is

defined by (12). The above equation implies that

CEt [Jt+dt] = Jt +
(
(∂J)T · E [dst]−

γ

2

[
(∂J)T · Σ · ∂J

]
dt
)
, (76)

where we use the fact that

f (pt+dt) = f (pt) + f ′ (pt) dpt +
1

2
f ′′ (pt) (dpt)

2

= f (pt) + f ′ (pt)
(
[λ2 − (λ1 + λ2) pt] dt+ σ−1

y δpt (1− pt)
(
ρyedBe,t +

√
1− ρ2yedB̂i,t

))

+
1

2
f ′′ (pt)

(
σ−1
y δpt (1− pt)

)2
dt.

Substituting the expression of CEt into the HJB yields:

βV (Jt) = sup
{ct,αt}

{βV (ct) +DV (Jt)} , (77)

40Here ∆Bt =
√
∆tǫ and ǫ is a standard normal distributed variable.
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where

DV (Jt) = V ′ (Jt)
(
(∂J)T ·E [dst]−

γ

2

[
(∂J)T · Σ · ∂J

])

= V ′ (Jt)




[
−α1 (rwt + yt − ct + αtπ)− α2 (µ2 + δpt − ρyt)

−α1 [λ2 − (λ1 + λ2) pt] f
′ (pt)−

1
2α1f

′′ (pt)
(
σ−1
y δpt (1− pt)

)2

]

−γ
2




α2
1α

2
tσ

2
e + α2

2σ
2
y + α2

1σ
−2
y [f ′ (pt) δpt (1− pt)]

2

+2α1σeαtα2ρyeσy + 2α1σeαtα1f
′ (pt)σ

−1
y δpt (1− pt) ρye

+2α1α2f
′ (pt) δpt (1− pt)







. (78)

The FOC for ct is then

ct = −ψ ln

(
−
α1

β

)
+ (−α0 − α1wt − α2yt − α1f (pt)) , (79)

where we use the facts that V (ct) = (−ψ) exp (−ct/ψ) and V (Jt) = (−ψ) exp (−Jt/ψ). The FOC

for αt is

αt = −
π

γα1σ2e
−
α2ρyeσy
α1σe

−
ρyeδpt (1− pt) f

′ (pt)

σeσy
. (80)

Substituting these FOCs back into the HJB and matching the wt, yt, and constant terms on both

sides of the above equation yields

α1 = −r, α2 = −
r

r + ρ
, and α0 =

(
1−

β

r

)
ψ−ψ ln

(
r

β

)
−

µ2
r + ρ

+
πρyeσy
σe (r + ρ)

−
π2

2rγσ2e
+
rγ

2

(
1− ρ2ye

)
σ2s .

Substituting these coefficients back to the FOCs, (79) and (80), yields the following optimal

consumption and portfolio rules under FI-RE:

ct = r

[
wt +

1

r + ρ

(
yt +

µ2
r

−
πρyeσy
rσe

)
+ rf (pt)

]
+Ψ+Π− Γ,

αt = −
π

γα1σ2e
−
α2ρyeσy
α1σe

−
ρyeδpt (1− pt) f

′ (pt)

σeσy
,

where Ψ =
(
β
r
− 1
)
ψ, Π = π2

2rγσ2
e
, and Γ = rγ

2

(
1− ρ2ye

)
σ2s . Putting the terms including pt

together, we have

rf (pt) =
δ

r + ρ
pt −

[
ρyeπ

σeσy
+

rγ

r + ρ

(
1− ρ2ye

)]
f ′ (pt) δpt (1− pt) + [λ2 − (λ1 + λ2) pt] f

′ (pt)

−
rγ

2σ2y

(
1− ρ2ye

) [
f ′ (pt) δpt (1− pt)

]2
+

1

2σ2y
f ′′ (pt) (δpt (1− pt))

2 ,

which is just (13) in the main text.
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7.2 Solving the Human Wealth under Incomplete Information

Under the risk-neutral probability measure Q, we rewrite the dynamics of labor income (6) and

belief updating process (7) as follows

dyt =

(
µ− ρyt −

ρyeσyπ

σe

)
dt+ ρyeσydB

Q
e,t +

√
1− ρ2yeσydB̂

Q
i,t, (81)

dpt =

[
λ2 − (λ1 + λ2) pt −

ρyeπ

σyσe
δpt (1− pt)

]
dt+ σ−1

y δpt (1− pt)
(
ρyedB

Q
e,t +

√
1− ρ2yedB̂

Q
i,t

)
,

(82)

where BQ
e,t and B̂Q

i,t are standard Brownian motions and mutually independent under the risk-

neutral probability measure Q satisfying

dBQ
e,t = dBe,t +

π

σe
dt and dB̂Q

i,t = dB̂i,t.

From the definition (20) of human wealth, h(y, p) satisfies the following equation

rh(y, p) = y +
(
µ− ρy −

ρyeσyπ
σe

)
hy +

[
λ2 − (λ1 + λ2) p−

ρyeπ
σyσe

δp (1− p)
]
hp

+1
2σ

2
yhyy + δp(1− p)hyp +

1
2σ2

y
δ2p2(1− p)2hpp,

(83)

where hy, hp, hyy , hpp, and hyp are the first and second partial derivatives of h(y, p) with respect

to y and p. Conjecture h(y, p) is additive in income y and belief p, in that

h(y, p) = m(y) + n(p).

Conjecture m(y) is affine in labor income y, we can derive the expression of m(y) in (22). Sub-

stituting (22) into (83) we can obtain the differential equation (23) for n(p). Substituting p = 0

and p = 1 into (23) gives the boundary conditions in Proposition 2.

Similar to Appendix 7.3, when δ is small, the approximation solution of n (pt) is

n (pt) ≈ n1 (pt) δ + n2 (pt) δ
2. (84)

where

n1 (pt) =
1

(r + ρ) (r + λ1 + λ2)

(
pt +

λ2
r

)
, n2 (pt) = b0 + b1pt +

1

2
b2p

2
t .

and

b0 =
λ2
r
b1, b1 = −

b2
2

r + 2λ1
r + λ1 + λ2

, b2 =
ρyeπ

σeσy

2

(r + ρ) (r + λ1 + λ2) (r + 2 (λ1 + λ2))
.

When λ1 = λ2 = 0 (the constant and unknown income growth case), we have

n(pt) ≈
1

r(r + ρ)
ptδ −

ρyeπ

σeσy

1

(r + ρ)r2
(
pt − p2t

)
δ2.
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7.3 Solving the RB-RU Model with Unknown Income Growth

Under RB, the HJB can be written as:

βV (Jt) = sup
{ct,αt}

inf
υt

{
βV (ct) +DV (Jt) +

1

2ϑt

(
υTt · Σ · υt

)}
, (85)

where

DV (Jt) = V ′ (Jt)
(
(∂J)T ·E [dst] + υTt · Σ · ∂J −

γ

2

[
(∂J)T · Σ · ∂J

])
.

where υt =
[
υ1,t υ2,t υ3,t

]T
, υTt ·Σ · ∂J is the adjustment to the expected continuation value

when the state dynamics is governed by the distorted model with the mean distortion υt, and the

final term,
(
υTt · Σ · υt

)
/2ϑt, quantifies the penalty due to RB.

Solving first for the infimization part of the robust HJB equation (85) yields:

υt = −ϑtV
′ (Jt) ∂J (86)

Substituting this optimal distortion into (85) yields:

βV (Jt) = sup
{ct,αt}

{
βV (ct) + V ′ (Jt)

(
∂J · E [dst]−

γ

2

[
∂J · Σ · (∂J)T

]
−
ϑt
2
V ′ (Jt)

[
(∂J)T · Σ · ∂J

])}
.

Following Uppal and Wang (2003) and Maenhout (2004), we adopt the normalization method

and assume that

ϑt = −
ϑ

V (Jt)
.

Given that V (Jt) = (−ψ) exp (−Jt/ψ) and V
′ (Jt) = exp (−Jt/ψ), the HJB equation reduces to

βV (Jt) = sup
{ct,αt}

{
βV (ct) + V ′ (Jt)

(
∂J · E [dst]−

1

2
γ̃
[
∂J · Σ · (∂J)T

])}
,

where γ̃ = γ + ϑ/ψ.

The FOC for ct is then

ct = −ψ ln

(
−
α1

β

)
+ (−α0 − α1wt − α2yt − α1f (pt)) , (87)

where we use the facts that V (ct) = (−ψ) exp (−ct/ψ) and V (Jt) = (−ψ) exp (−Jt/ψ). The FOC

for αt is

αt = −
π

γ̃α1σ2e
−
α2ρyeσy
α1σe

−
ρyeδpt (1− pt) f

′ (pt)

σeσy
. (88)

Substituting these FOCs back into the HJB and matching the wt, yt, and constant terms on both

sides of the above equation yields

α1 = −r, α2 = −
r

r + ρ
, and α0 =

(
1−

β

r

)
ψ−ψ ln

(
r

β

)
−

µ2
r + ρ

+
ρyeσsπ

σe
−

π2

2rγ̃σ2e
+
rγ̃

2

(
1− ρ2ye

)
σ2s .
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Substituting these coefficients back to the FOCs, (79) and (80), yields the optimal consumption

and portfolio rules under FI-RE. Putting the terms including pt together, we have

rf (pt) =
δ

r + ρ
pt −

[
ρyeπ

σeσy
+

rγ̃

r + ρ

(
1− ρ2ye

)]
f ′ (pt) δpt (1− pt) + [λ2 − (λ1 + λ2) pt] f

′ (pt)

−
rγ̃

2σ2y

(
1− ρ2ye

) [
f ′ (pt) δpt (1− pt)

]2
+

1

2σ2y
f ′′ (pt) (δpt (1− pt))

2 , (89)

which is just (13) in the main text.

Following Wang (2009), when δ is small, we can expand f (pt) in terms of the power series of

δ:

f (pt) ≈ f1 (pt) δ + f2 (pt) δ
2. (90)

Plugging this approximation into (89) and keeping the terms up to δ2 yield:

r
(
f1 (pt) δ + f2 (pt) δ

2
)
=

δ

r + ρ
pt −

[
ρyeπ

σeσy
+
rγ̃
(
1− ρ2ye

)

r + ρ

]
δ2pt (1− pt) f

′
1 (pt) (91)

+ [λ2 − (λ1 + λ2) pt]
(
f ′1 (pt) δ + f ′2 (pt) δ

2
)

Matching the coefficients for the δ and δ2 terms yields:

rf1 (pt) =
1

r + ρ
pt + [λ2 − (λ1 + λ2) pt] f

′
1 (pt) ,

rf2 (pt) = −

[
ρyeπ

σeσy
+
rγ̃
(
1− ρ2ye

)

r + ρ

]
pt (1− pt) f

′
1 (pt) + [λ2 − (λ1 + λ2) pt] f

′
2 (pt) ,

respectively. It is straightforward to show that

f1 (pt) =
1

(r + ρ) (r + λ1 + λ2)

(
pt +

λ2
r

)
.

We now conjecture that f2 (p) takes the following quadratic form: f2 (p) = b0 + b1pt +
1
2b2p

2
t .

Plugging this expression into the ODE for f2 (pt) yields:

r

(
b0 + b1pt +

1

2
b2p

2
t

)
= −

[
ρyeπ

σeσy
+
rγ̃
(
1− ρ2ye

)

r + ρ

]
pt (1− pt)

(r + ρ) (r + λ1 + λ2)

+ [λ2 − (λ1 + λ2) pt] (b1 + b2pt) .

Matching the constant, pt, and p
2
t terms yields:

b0 =
λ2
r
b1,

b1 = −
b2
2

r + 2λ1
r + λ1 + λ2

,

b2 =

[
ρyeπ

σeσy
+
rγ̃
(
1− ρ2ye

)

r + ρ

]
2

(r + ρ) (r + λ1 + λ2) (r + 2 (λ1 + λ2))
.
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Note that when λ1 = λ2 = 0 (i.e., the constant and unknown income growth case), we have

b0 = 0, b1 = −
b2
2
, and b2 =

[
ρyeπ

σeσy
+
rγ̃
(
1− ρ2ye

)

r + ρ

]
2

(r + ρ)r2
,

which means that f2 (pt) = − b2
2

(
pt − p2t

)
= −

(
pt − p2t

) [ ρyeπ
σeσy

+
rγ̃(1−ρ2ye)

r+ρ

]
1

(r+ρ)r2
.

Using the expressions for n (pt) and f (pt), we can obtain that

Γp ≡ r [n(pt)− f (pt)] = r
[(
n1 (pt) δ + n2 (pt) δ

2
)
−
(
f1 (pt) δ + f2 (pt) δ

2
)]

= −
r2γ̃

(
1− ρ2ye

)

(r + ρ)2 (r + λ1 + λ2) (r + 2 (λ1 + λ2))

(
p2t −

r + 2λ1
r + λ1 + λ2

pt −
r + 2λ1

r + λ1 + λ2

λ2
r

)
,

which is just (29) in the main text. Note that this expression reduces to Γp = −
γ̃(1−ρ2ye)
(r+ρ)2

(
p2t − pt

)

when λ1 = λ2 = 0.

7.4 Data Description

To construct our sample from the PSID, we include data only from the years in which the PSID has

wealth information available: 1983, 1993, and biennially from 2000 − 2010. We also exclude any

households in the PSID poverty or Latino subsamples. Additional excluded households include

female headed households and households experiencing a change in the head or family composition.

If households are missing information on education, region, or income, they are also excluded.

Age outliers are excluded by removing households with a husband or wife less than 30 or over

65. A household is also removed if they report a negative value for income. We also exclude

some outliers in the sample. Our final sample contains 5, 938 unique households with 18, 481

observations.

In the PSID, wealth is defined as the sum of six asset types, net of debt value, plus the value of

home equity for a given household. Home equity is calculated by subtracting the mortgage from

the value of the home. The six asset types included are the value of a household’s farm/business,

the sum of all checking/savings accounts of all household members, the value of real estate owned

by the household (besides their primary home), the value of any stocks owned by household

members (which includes stock in publicly held corporations, mutual funds, or investment trusts

such as IRAs), the value of all vehicles owned by the household, and any other assets the household

owns. We also examine a measure of wealth that is constructed with the same method, but

excludes home equity.
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Table 1: Number of households by education and income percentiles

Income Percentile Less Than High School High School and Some College College and Above

0− 25 1, 616 2, 525 479

25− 50 728 2, 999 893

50− 75 366 2, 809 1, 445

75− 100 163 1, 940 2, 518

Full Sample 2, 873 10, 273 5, 335
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Table 2: Mean stock values (in dollars) by education and income percentiles

Income Percentile Less Than High School High School and Some College College and Above

0− 25 2, 601.05 4, 923.80 30, 479.56

25− 50 6, 108.24 12, 235.73 27, 215.71

50− 75 7, 268.03 10, 428.84 42, 343.12

75− 100 16, 550.95 31, 222.16 183, 824.90

Full Sample 4, 875.31 13, 529.19 105, 522.10

Table 3: Mean stock values as a proportion of wealth (with and without home equity) by education

and income percentiles

Income Percentile Less Than High School High School and Some College College and Above

with h.e. without h.e with h.e. without h.e with h.e. without h.e

0− 25 0.89% 1.63% 2.07% 5.87% 6.29% 11.21%

25− 50 2.03% 3.35% 4.06% 7.12% 8.60% 14.36%

50− 75 2.03% 6.40% 4.06% 6.77% 9.41% 14.74%

75− 100 1.59% 5.75% 5.43% 8.57% 12.06% 18.36%

Full Sample 1.42% 2.97% 3.69% 7.00% 10.25% 16.07%

Table 4: Risky-asset Holding (α): The Model’ Predictions and Data

Less Than High School High School and Some College College and Above

MU Parameter (ϑ) 3.92 3.30 1.00

PU Parameter (p) 0.50 0.50 1.00

Model’s Prediction on α 1 (normalized) 2.8 21.4

Data 1 (normalized) 2.8 21.4
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