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Abstract

We demonstrate the use of a Näıve Bayes model as a recession forecasting tool.

The approach has a close connection to Markov-switching models and logis-

tic regression but also important differences. In contrast to Markov-switching

models, Näıve Bayes treats National Bureau of Economic Research business

cycle turning points as data rather than hidden states to be inferred by the

model. Although Näıve Bayes and logistic regression are asymptotically equiv-

alent under certain distributional assumptions, the assumptions do not hold

for business cycle data. As a result, Näıve Bayes has a larger asymptotic error

rate, but converges to the error rate faster than logistic regression, resulting

in more accurate recession forecasts with limited data. We show Näıve Bayes

consistently outperforms logistic regression and the Survey of Professional Fore-

casters for real-time recession forecasting up to 12 months in advance. These

results hold under standard error measures, and also under a novel measure

that varies the penalty on false signals depending on when they occur within

a cycle. A false signal in the middle of an expansion, for example, is penalized

more heavily than one occurring close to a turning point.
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1 Introduction

The onset of a recession is one of the most significant macroeconomic events, as

unemployment often rises sharply and output declines, yet forecasting their occur-

rence remains a challenge. A common approach is to treat the turning point dates

set by the National Bureau of Economic Research’s (NBER) Business Cycle Dat-

ing Committee as data, then use various explanatory variables in a binary response

framework. For example, Rudebusch and Williams (2009) show that the slope of the

US Treasury yield curve in a probit model can outperform the recession predictions

from the Survey of Professional Forecasters. The tradition of this line of literature is

clearly one of turning point prediction. Another approach is to use a framework that

can capture important shifts in the data, allowing the framework to identify turning

points rather than be told when they occur. Markov-switching models following the

approach of Hamilton (1989) are the leading examples, as they have been shown to

identify turning points similar to NBER dates.

In this paper, we take elements from both approaches by using a Näıve Bayes

(NB) framework as a recession prediction tool. The approach has precedent in Netci

(1982) and Diebold and Rudebusch (1989), which also have close connections to both

Markov-switching and logistic regression (LR) models. We use Bayes Theorem in a

manner similar to these papers, except incorporate a richer data set, lag structure and

capture the persistence of business cycle phases by using Markov-switching transition

probabilities. In this respect, our approach also closely connects to Markov-switching

time-series models, except we treat NBER turning points as data when identifying

past recessions and expansions rather than something to be inferred. The logistic

approach also treats the NBER business cycle dates as data and under certain as-

sumptions, is equivalent to the NB approach. For business cycle data, however, the

assumptions generating equivalence do not hold and as a result, recession forecast-

ing accuracy diverges across the two approaches, with NB being considerably better

under a range of criteria.

At first, the more accurate forecast from NB relative to LR may be surprising,

as LR has a lower asymptotic classification error. Of particular relevance to business

cycle forecasting, however, is that NB reaches its asymptotic error rate much faster

than LR. As a result, the potential exists that NB can outperform LR when limited

data is available. Given the relatively small number of recession observations, we find

this difference is important when forecasting business cycle turning points and results

in NB outperforming LR using either revised or real-time data.
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The NB framework can also easily incorporate a large amount of data with a rich

lag structure. While we use a large amount of data, we find a relatively narrow set

performs quite well when incorporating a relatively long lag structure. Consequently,

most of results focus on nonfarm payroll growth, the Institute of Supply Managements

(ISM) Manufacturing Index, the change in the S&P 500 and the term spread (i.e. the

difference between yields on the 10-year and 2-year Treasury securities). For payrolls,

we look separately at both real-time and revised data.1

To evaluate forecasting performance, we use the F -measure under a zero-one loss.

This approaches penalizes trivial classifiers, such as one that might predict the econ-

omy never enters a recession. Given the relatively infrequency of recessions, such an

approach would be correct most of the time, but lacks true predictive ability. For

comparison to other work, we also evaluate outcomes under mean absolute error. In

addition to weighting each observation uniformly under these criteria, we also con-

struct a novel weighting criteria that varies the weight of a forecast error depending

on when it occurs within a business cycle. For example, indications of recession that

occur in the middle of an expansion are penalized more heavily than if a signal is

given closer to the time when a recession occurs.

2 Background

The Näıve Bayes approach connects two strands of literature on business cycle turning

points.2 The first focuses on using a set of data to predict whether the economy will

be in a recession at some point in the future using a binary response framework. The

second focuses on nowcasting and classification of business cycle states. Success of a

model in this context is often how well it can identify past periods the NBER defined

as recessions without using the NBER turning points in the estimation.

2.1 Turning Point Prediction

Diebold and Rudebusch (1989) use an approach closely connected to the one in this

paper. Using a composite index of leading indicators within a Näıve Bayes framework,

the authors produce probabilistic forecasts of future business cycle turning points and

1The ISM index and financial variables are not subject to revision.
2Näıve Bayes has also been applied in other areas, such as to infer monetary policy regimes. For

example, see Jefferson (1998)
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evaluate how much lead time the index can provide in terms of signalling a peak or

trough. The approach works well at near-term horizons and for comparison, we also

use a version of the model with only a leading economic index. However, as will be

discussed in subsequent sections, our approach differs in a few dimensions, such as the

construction of prior probabilities, data and lag structure, that improves forecasting

performance.

In addition to using data on macroeconomic activity, several studies such as Es-

trella and Hardouvelis (1991), Hamilton and Kim (2002), Ang, Piazzesi and Wei

(2006), Rudebusch and Williams (2009) and Liu and Moench (2016) show the spread

between yields on longer- (e.g. 10-year) and shorter-term (e.g. 3-month) US Treasury

securities provides valuable information for predicting future real GDP growth and

recessions. In terms of the binary response approach, Estrella and Mishkin (1998) use

a probit framework including financial variables to predict whether the economy will

be in recession at some point in the future. Chauvet and Potter (2002) and Chauvet

and Potter (2005) also us a probit framework including term spread and highlight

that breakpoints are likely to have occurred, which alters the mapping between the

term spread and likelihood of entering a recession.

Wright (2006) adds the term premium and level of the federal funds rate to a

probit model and modifies the dependent variable. Instead of predicting whether the

economy will be in a recession at a particular point in time, say at t + h, Wright

evaluates whether a recession is likely to begin at any point between time t + 1 and

t+h. Other approaches include Kauppi and Saikkonen (2002) that develop a dynamic

binary probit model and Chen, Iqbal and Lai (2011) that incorporates a broad set

of data by using principal component analysis within a probit-dynamic factor model.

More recently, Ng (2014) and Berge (2015), use machine-learning algorithms and

model averaging using relatively large data sets to predict recessions.

2.2 Business Cycle Classification

For nowcasting and classification, Markov-switching frameworks are the leading ex-

amples. Starting with Hamilton (1989), then including Hamilton (2011) and many

others, these approaches use macroeconomic data to estimate models that will assign

a probability that the economy is in any number of predefined states. The number

of states is at the researcher’s discretion, although is often set to two in the busi-

ness cycle context to correspond to expansions and recessions. At a given point in
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time, probabilities reflect either all the information up until that time (i.e. filtered)

or the entire sample (i.e. smoothed). One issue is that estimates of the underlying

parameters governing the time-series process in each regime are based on the entire

sample, so even filtered probabilities use information that is not available at the time

an estimate is made.

As a classification tool, the early success of Markov-switching models was based

on how well the different regimes corresponded to NBER-defined recessions and ex-

pansions. As a business cycle forecasting tool, they face a few shortcomings. First,

all probabilistic estimates are contemporaneous, so only provide an indicator as to

the state of the business cycle as of the last available data point. Still, these models

can supply signals useful from a nowcasting perspective. Second, many papers may

use a limited set of data, such as only GDP.

The Markov-switching literature has addressed some of these issues. For example,

Chauvet and Hamilton (2006) recursively estimate a state-space Markov-switching

model using real-time data, so provide an assessment of how well this class of models

perform as a nowcasting tool. In general, filtered probabilities often send a signal

in real-time when the economy may be slipping into a recession. As a business

cycle classification tool, however, waiting at least a few quarters using smoothed

probabilities produce estimates more in line with the NBER chronology. In a related

approach Nalewaik (2011a) shows Gross Domestic Income (GDI), rather than GDP,

improves the signal sent by Markov-switching models near the onset of a recession.

Nalewaik (2011b) also highlights the importance of using real-time data within a

Markov-switching model by showing it improved the ability to detect the onset of

the 2001 recession. In terms of the ability to predict recessions further in the future,

Nalewaik (2012) uses a three-state model with a “stall” state that is specified to

precede recessions. When the economy enters the stall phase, the economy is then

more likely to enter a recession in the subsequent periods. From this standpoint,

the framework is a useful tool for forecasting recessions. One aspect, however, is

that the model is at a quarterly frequency and the most promising specification uses

GDI, which is not released until about two months after the end of a quarter. As a

result, the lag between the possible onset of a recession and a signal from the model

is likely to be several months. In terms of incorporating a larger set of data at a

higher-frequency, Davig (2008) uses the first principal component of a large set of

monthly macroeconomic data maintained by the Federal Reserve Bank of Chicago

within a Markov-switching framework. Another example includes Giusto and Piger

(2014) who use a machine-learning algorithm (i.e. Learning Vector Quantization)
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to classify recession and expansions in real-time using mixed-frequency data. The

approach allows updating with each incoming data point, so can fully incorporate

information even from the ragged edge of the data. As a result, the framework is

useful as a nowcasting tool, but is limited if the interest is in forecasting a recession

several periods into the future.

3 Methods

This section provides an overview of the NB algorithm and connection to Markov-

switching and binary response models, along with a discussion of asymptotic prop-

erties of NB that provides some intuition why it outperforms LR in a business cycle

forecasting context.

3.1 The Näıve Bayes Model

Näıve Bayes is a straightforward supervised model that can be surprisingly effective.3

NB uses Bayes theorem to learn the conditional probability that observed data is

drawn from a certain class of observations. Bayes theorem for k classes is given as

P (Ck|x) =
P (Ck)P (x|Ck)

P (x)
, (1)

where Ck is the kth class and x = (x1, ..., xm) is a unit of observed data with m vari-

ables. The P (Ck)P (x|Ck) term in the numerator of the right-hand side is equivalent

to the joint probability P (Ck, x1, ..., xm) and so, assuming conditional independence

of the variables, is decomposed as

P (Ck, x1, ..., xm) = P (Ck)P (x1|Ck)...P (xm|Ck) = P (Ck)
m∏
i=1

P (xi|Ck). (2)

Variable independence is a strong assumption, which is often violated, and would

seem to undermine the utility of NB. In practice though, violating this assumption

3In the machine learning literature, “supervised” refers to the labeling of specific classes of
outcomes, such as periods that correspond to recessions and expansions. Alternatively, Markov-
switching time series models would be “unsupervised,” since the algorithm assigns each set of ob-
servations to different regimes without the investigator a priori assigning observations to a regime
or defining the characteristics of the regimes.
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has surprisingly little impact on predictive ability. A number of theoretical results,

discussed briefly in the next subsection, show cases in which conditional independence

can be violated while preserving forecasting accuracy.4

Given the equations above, the decision rule for the NB model which assigns an

outcome class ŷ to observation x is written as

ŷ = argmax
k∈{1,...,k}

P (Ck)
m∏
i=1

P (xi|Ck). (3)

3.2 Näıve Bayes’ Connection to Markov Switching

In a business cycle context, we can affix time subscripts and rewrite (1) to reflect the

probability the economy is currently in a recession at time t as

P (Rt|xt) =
P (Rt)f(xt|Rt)

P (Rt)f(xt|Rt) + P (Et)f(xt|Et)
, (4)

where we replace the arbitrary class label Ck with two state symbols C ∈ {R,E} and

subscript them by time to denote that either a recession or expansion is in place at

t. xt is the vector of observed data x at time t.

Chauvet and Hamilton (2006) illustrate how using the unconditional probability

that the economy is in recession is the first step toward making the NB algorithm

useful as a business cycle classification tool. For example, from January 1959 to

until June 2016, the economy has been in recession 13.5% of the time, implying

P (Rt) = .135 and P (Et) = .865. The second step is to parameterize the conditional

density as

f(xi,t|Rt) =
1√

2πσ2
i

exp

(
− (xi,t − µi,R)

2σ2
i

)
, (5)

where σi is the standard-deviation of xi, which is specified to be independent of the

business cycle, and µi,R is the mean of xi conditional on being in a recession. The

conditional density for expansions is defined analogously. The conditional density in

(5) can incorporate a variety of dynamics, such as lagged endogenous and exogenous

variables.

Chauvet and Hamilton (2006) also highlight that accounting for the persistence

of recessions and expansions can improve the inference from (4). For example, of the

4For example, see Domingos and Pazzani (1997) and Zhang (2004).
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597 months the economy has been in an expansion starting in 1959 until June 2016,

98.5% of the time the NBER has declared the economy to also be in an expansion

the following month. When in recession, 91.4% of the time the economy is also in a

recession the following month. Combining an estimate regarding the current business

cycle state with the Markov transition probabilities provides an estimate that the

economy will still be in recession the following period. For example,

P (Rt+1|xt) = P (Rt+1|Rt,xt)P (Rt|xt) + P (Rt+1|Et,xt)P (Et|xt), (6)

where the Markov-switching model sets P (Rt+1|Rt,xt) = P (Rt+1|Rt) and P (Rt+1|Et,xt) =

P (Rt+1|Et). If the NBER dates are taken as data, then P (Rt+1|Rt) = .913 and

P (Et+1|Et) = .985. When the next period arrives, combining the new data with (6)

as follows

P (Rt+1|xt+1) =
P (Rt+1|xt)f(xt+1|Rt+1)

P (Rt+1|xt)f(xt+1|Rt+1) + P (Et+1|xt)f(xt+1|Et+1)
, (7)

provides an update to the conditional probability that the economy is in a recession.

In practice, Markov-switching models do not take NBER-defined business cycle

states as data and instead, identify when shifts occur from the data and treat the tran-

sition probabilities as parameters to estimate. Hamilton (1989) shows how to combine

the various elements above to construct the likelihood function and then estimates

a model using real GNP, which produces states that align well with NBER-defined

dates. From this standpoint, the Markov-switching framework is an unsupervised

model that is effective at modeling historical data and finding points at which the

economy moves from expansion to recession and back again. It naturally accounts

for the persistence of recession/expansion periods and temporal nature of the data.

For our approach, the key point of departure from the Markov-switching frame-

work is that we treat NBER-defined business cycles as data. As a result, we can use

Bayes Theorem to not only classify current data as belonging to a recession or ex-

pansion, but whether current data is informative about the occurrence of a recession

at some point in the future. For example, assume we want to make an inference on

the state of business cycle six months ahead using current data, so want to calculate

P (Rt+6|xt) =
P (Rt+6)f(xt|Rt+6)

P (Rt+6)f(xt|Rt+6) + P (Et+6)f(xt|Et+6)
, (8)
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which requires

f(xi,t|Rt+6) =
1√

2πσ2
i

exp

(
− (xi,t − µi,R)

2σ2
i

)
. (9)

Treating the NBER data as observed makes these calculations possible. In the

Markov-switching setting, (9) cannot be computed because future regimes at time

t are inherently unknown. Of course, Markov-switching frameworks can easily gen-

erate P (Rt+6|xt) by iterating on the transition probabilities, as in (6). Instead, NB

directly incorporates the conditional density (9) over the data six periods ahead into

(8), rather than the conditional density over the current data combined with transi-

tion probabilities.

An important difference of this approach with the work of Netci (1982), Palash

and Radecki (1985), Diebold and Rudebusch (1989) and Diebold and Rudebusch

(1991) that use a Näıve Bayes approach is this lag structure. These papers report

results that use a formulation similar to (4), but instead of utilizing a lag structure as

in (8), use a composite index of leading indicators. When these frameworks signal a

turning point, it is a sign on an imminent recession and evaluation of the model is in

terms of how long before a recession actually transpired. To connect and compare to

these earlier results, we will also use a composite of leading indicators, as well as other

data, within the lag structure illustrated in (8). Another difference in our approach

to these papers is the Markov transition probability we incorporate into the model,

as we illustrate next.

3.3 Incorporating State Persistence into Näıve Bayes

Markov-switching models have the capability of enforcing persistence for recession/expansion

states, which is an important part of forecasting turning points because we know that

business cycle phases tend to persist over time. This aspect is not present in the

standard NB model, since forecasts for all periods are treated as independent from

each other. We therefore modify the NB model by replacing the unconditional prior

with the empirical Markov transition probabilities. Again, this is possible because we

treat the NBER-defined turning points as data, whereas they are objects to estimate

in the Markov-switching setting.
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In the recession forecasting context, the decision function then becomes

ŷt+j = argmax
C∈{E,R}

(P (Ct+j|Rt+j−1)P (Rt+j−1) + ... (10)

P (Ct+j|Et+j−1)P (Et+j−1))
m∏
i=1

P (xi,t|Ct+j),

where j is the recession forecasting horizon. We refer to this model as the Markov-

Switching Näıve Bayes (MS-NB) model. This approach captures persistence, but in

terms of future forecasts. For example with j = 6, the model provides a prediction of

the business cycle state six months ahead conditional on data at time t. If the model

forecasts a high probability the economy is in a recession at t + 5, the prediction

for t + 6 will incorporate this information rather than treat it as an independent

observation.

3.4 Näıve Bayes’ Connection to Probit and Logit Models

Another approach to forecasting business cycle turning points is to directly estimate

(8). Estrella and Mishkin (1998) take this approach using a probit model, so estimate

P (Rt+h|xt) = Φ (α0 + α1xt) ,

where h corresponds to the forecast horizon.

Probit and logit models are quite similar, as both fit sigmoid-style functions to

the observed data. For LR, the conditional probability of a recession is written as

P (Rt|xt) =
1

1 + exp(w0 +
∑m

i=1wixi,t)
. (11)

and has a direct connection to the NB model under three assumptions: 1) the class

variable C takes on a binary value - in the current setting, either R or E, 2) the

continuous random variables x1, ..., xm, xi and xj are conditionally independent for

all i and j in {1, ...,m} for i 6= j, 3) xi,t is drawn from N(µi,C , σi), so that the mean

depends on the class, but not the variance. Given these assumptions, the parametric

form of the conditional distribution, P (R|xt) as in (4) or P (R|xt+6) as in (8), learned

indirectly by NB corresponds exactly to the conditional distributions given for LR in

equation (11) as shown in Ng and Jordan (2002).
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The assumptions that establish equivalence between NB and LR, however, do not

always hold. First, the explanatory variables may not be drawn from a Gaussian

distribution, which destroys equivalence between the two. Second, violating the as-

sumption of equal class variance leads to different decision boundaries. A decision

boundary is the threshold in the variable space that separates observations of one

class from another. The boundary is used to make predictions as to the class corre-

sponding to a new set of observations. For example, in the business cycle context,

the model will label a set of observations corresponding to a recession or expansion

depending on which side of the boundary the observations fall. For NB, the boundary

has quadratic curvature in the presence of heteroscedasticity, whereas the boundary

remains linear for the LR model. As we will illustrate in the case of business cycle

data, equal class variance does not hold and the curvature in the decision boundary

for NB produces more accurate predictions. Finally, as a further note, the LR model

does not require specifying a distribution over the explanatory variables, while NB

does. While this may appear to disadvantage NB, it can actually be a benefit when

using smaller samples as explored in the next section.

3.5 Asymptotic Properties of Näıve Bayes and Logistic Re-

gression

By estimating the conditional distribution directly, LR has a lower asymptotic classi-

fication error than NB. NB can, however, reach the asymptotic error rate faster with

respect to the number of training observations.5 NB converges to the asymptotic

error in O(log m) observations, compared to O(m) for LR, where m is the number

of variables. This point is relevant for forecasting recessions, as the economy has

experienced only eight recession since 1959, providing relatively few observations for

model estimation. Further, when performing forecasting using a rolling sample win-

dow, forecasts which occur earlier in the timeline have even fewer past observations

with which to estimate a model. This creates a challenging situation for the LR model

as it struggles to find a robust decision boundary with relatively few observations,

while the NB model can leverage a specification of the variable distributions to more

efficiently estimate the decision boundary.

Appendix 1 gives an overview and discussion of the proof of asymptotic properties

for these two models. This asymptotic analysis and the corresponding proof assumes

5For example, see Ng and Jordan (2002)
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certain distributional conditions of the data which may not always hold. While we

point out that the data set we use empirically violates these assumptions, we also show

that in practice the asymptotic convergence of NB is superior to LR, as expected

from the theoretical results. This result is consistent with Domingos and Pazzani

(1997) and Zhang (2004) that show violating the distributional assumptions may not

adversely impact the performance of NB.

4 Data and Real-Time Recession Forecasts

In producing recession forecasts, we assess the value of using a broad set of data

compared to a narrower set, while also evaluating the benefit of using a rich lag

structure. We also compare forecasting performance using real-time and revised data.

4.1 Data

We begin with 135 macroeconomic variables, at monthly intervals, recorded in the

FRED-MD data set.6 The observation period is from January 1959 through June

2016. An overview of variables are give in McCracken and Ng (2015). In most

versions of the model, however, we use the following “core” set of four variables from

these 135 variables (FRED series identifier is in parentheses):

1. ISM Manufacturing: Production Index (NAPMPI)

2. Total non-farm payroll growth (PAYEMS)

3. 10-year treasury rate minus Fed funds rate (T10YFFM)

4. S&P’s Common Stock Price Index: Composite (SP500)

The raw values of all the variables are transformed according to the FRED-MD

methods described in McCracken and Ng (2015). For the core set, the transforma-

tions are as follows: 1) NAPMPI: no transformation, 2) PAYEMS: first difference of

consecutive values, 3) T10YFFM: no transformation, 4) S&P500: first difference of

natural log of consecutive values.

6See McCracken and Ng (2015) for details of the data.
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The FRED-MD data set is a useful resource for of macroeconomic data, but only

provides revised data. As a result, evaluating the forecasting performance of various

models using only this data does not accurately reflect the real-time information set

at the time a prediction is made. To supplement this data, we use the Federal Reserve

Bank of Philadelphia’s Real-time Data Set for Macroeconomists for real-time values

of total non-farm payrolls in the core set of four variables. The other three variables in

this core set are not revised. Using the unrevised data allows us to produce forecasts

using the information set available at the time a forecast would have been originally

made.

To identify business cycle turning points, we use the recession dates identified

by the National Bureau of Economic Research’s Business Cycle Dating Committee

(BCDC). Although business cycle classification is not entirely straightforward, as

Berge and Jordá (2011) discuss, the NBER chronology is still commonly viewed as

the gold standard. The intention of the BCDC, however, is not to be timely in calling

the onset of a recession, but instead to compile an accurate historical time series of

business cycle durations and turning points. Additionally, we construct forecasts to

indicate if a recession will begin within some number of months, and not simply if

the economy will be in a recession at some number of months in the future. This

detail is subtle but important, as historically there have been a few NBER recession

periods shorter than the longest horizon we will attempt to forecast (i.e. 12 months).

Consequently, we follow Wright (2006) and define Rt+h to equal unity if a recession

exists at any time from t until t+ h, inclusively.

4.2 Incorporating Lags into Näıve Bayes

To incorporate a broad set of variables and their lags, we rewrite the conditional

density from the right hand side in (1) as

f (xt|Rt+j) =
1√

(2π)m |Σ|
exp

(
−1

2
(xt−µ) Σ−1 (xt−µ)′

)
, (12)

where all off-diagonal elements of the m×m matrix Σ are zero. When using all 135

variables with no lags, xt = (x1,t, x2,t, ..., xm,t) where m = 135. Incorporating lags

when using the full set of 135 variables is an option, though poses practical difficulties

as the number of parameters grows exponentially and quickly exceeds the number of

total observations in the data set. For this reason, we do not incorporate lags when
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using all 135 observations.

When using the four-variable core set of variables, however, incorporating lags

is straightforward. Define the core set as x̃t, then use xt = (x̃t, x̃t−1, ..., x̃t−k) in

(12), where k denotes lag length. Throughout the remainder of the paper, we will set

k = 10 and be clear when using either real-time or revised data when reporting results

using the core set of variables. We use 10 lags, as a posteriori analysis of variable lags

reveals that using 10 lags captures much of the potential predictive power across the

core set of variables. The predictive value of NAPMPI and PAYEMS variables peaks

at k = 0, then descends smoothly to near zero at k = 10. For the other two variables,

the k = 0 data actually have limited predictive value, though rises and peaks at

k = 4 for T10YFFM and at k = 6 for SP500, while retaining some predictive value

out to k = 10. Extending beyond 10 lags would provide more predictive value from

the T10YFFM and SP500 variables, but introduce extraneous variables and noise for

NAPMPI and PAYEMS.

4.3 Real-Time Recession Forecasts

To evaluate forecasting performance, we replicate as closely as possible the informa-

tion set of a forecaster in real time at each point in the sample. We use an expanding

window starting in January 1973, which allows the initial set of parameter estimates

to be based on the first two recessions after 1959. After the initial forecast in Jan-

uary 1973, we advance one month to generate forecasts for February and again use

observations beginning in 1959. This process continues sequentially through the set

of monthly observations. Forecast horizons, h, are set to {0, 3, 6, 9, 12} months ahead.

When estimating the models, we do not include all observations up to the month

prior to when the forecast is made. The reason is because NBER recessions are

retroactively determined, so information about the business cycle state at time t

would not have been available to update the parameter estimates at t. For example,

the 2001 recession is identified to have started in March 2001, though the NBER

did not make the announcement of a business cycle peak until November 26, 2001.

Consequently, we would be unable to update the model between these dates under

an assumption on the business cycle state, since that state was unknown during

this period. As a result, using this data to update parameter estimates amounts to

using information from the future, and so contaminates the real-time nature of the

forecasting exercise. To address this issue, we introduce a “blind” of 18 months, so
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that we do not use data from the most recent 18 months to update the parameter

estimates. Of course, we use real-time macroeconomic and financial data to update

the recession probabilities for each month and over the various horizons, it is only the

parameter estimates that do not incorporate data from the previous 18 months.

The recession probability estimates from the MS-NB model for forecasts over

horizons h = {0, 3, 6, 9, 12} months ahead are shown in Figure 1. The model uses

real-time values of the core variables with 10 lags, including contemporaneous values,

for a total of 44 variables. Note that forecasts at the different horizons for the same

time period were made at different points in time. For example, the h = 1 horizon

forecast for time period t was made in time period t − 1, while the h = 6 horizon

forecast for t was made in period t− 6.

Figure 2 displays results for the MS-NB, standard NB, and LR models in a more

consolidated format, where recession probabilities are not represented using a separate

axis, but rather as a color coding. The heatmap figures can be read similarly to the

separated line plots: the x-axis corresponds to date, and the y-axis consists of several

forecast “bands” each corresponding to a different horizon. The bottom band is

the current quarter forecast, ranging to the twelve-month ahead forecast at the top.

Vertical dotted lines demarcate the NBER-defined recession periods. Color intensity

in the forecast bands corresponds to recession probability, ranging from white (zero

probability) to yellow (low probability) to orange (elevated probability) to red (highest

probability). For each model and forecast horizon, we again use real-time values of

the core variable set with 10 lags.

The forecast probability figures reveal several qualitative differences in the predic-

tive performance of NB over LR. First, at all forecast horizons, the MS-NB forecasts

exhibit the characteristic persistence in recession/expansion periods, whereas the LR

forecasts do not. This persistence is due in part to the modified priors introduced

exactly for this purpose, however the results for the standard NB show a tendency

toward state persistence as well. In contrast, the results for LR, particularly at longer

forecast horizons, fluctuate between high and low probability forecasts during even

short periods of time.

For MS-NB and NB, forecasts of a recession are sometimes too early, other times

too late, but a recession is never forecasted to start in the middle of a long expansion

period, and in only a handful of cases is an expansion forecasted in the middle of a

recession period. In contrast, LR does make these errors.
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When comparing the MS-NB and standard NB forecasts, the effect of the modi-

fied priors is evident. The weaker signals at the leading and lagging edges of several

recession periods are sharpened and several low probability predictions during ex-

pansion periods are flattened toward zero. Also, while some MS-NB forecasts show

elevated probabilities for non-recession periods, these probabilities usually stay below

0.5. The exception is that sometimes a recession is forecast a few periods too early

or too late, which is more likely to occur for longer horizon forecasts.

Finally, the forecast quality of LR begins to break down substantially at longer

forecast horizons, providing much weaker signals, or missing recession periods entirely

by failing to render a forecast probability above 0.5 at any time during the recession

period.

5 Evaluating Recession Forecasting Performance

This section presents the results of an empirical evaluation of the asymptotic prop-

erties of NB compared to LR. This includes the variation in prediction errors as a

function of the data used in model estimation, as well as a visualization and analysis

of variation in the decision boundaries with respect to random samplings of data.

We also present the results on rolling forecast experiments which aim to replicate the

process of real world recession forecasting at multiple horizons as closely as possible.

5.1 Evaluation Criteria

Evaluating binary predictions is distinct in important ways from evaluating predic-

tions from regression models for continuous variables. For binary outcomes a predic-

tion is either correct or incorrect, and therefore evaluating those predictions using a

zero-one loss is often more informative than a real-valued loss. For example, a model

attaching a 0.3 probability of entering a recession will be wrong if one materializes.

However, a real-valued error criteria, such as mean-absolute error, will view this as a

better prediction than a model giving a probability of 0.1. In either case, however,

the prediction was objectively wrong. As a result, we view a zero-one loss as a more

appropriate criteria when evaluating recession prediction models.

If ŷ = f̂(x) is the binary prediction of classifier f̂ for observation x, with y as the

true binary class for x, the zero-one loss L for a set of observations {xi : i = 1...n},
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is defined as

L =
1

n

n∑
i=1

I[ŷi 6= yi], (13)

where I is the indicator function that returns unity when the condition is true and

zero otherwise. While MS-NB, NB and LR models all yield probabilities for their

outcome predictions, these probabilities are designed to map into a binary space. For

LR, the mapping is as follows

ŷLRi =

1, P (R|xi) >= 0.5

0, P (R|xi) < 0.5
. (14)

and zero-one the mapping for NB (and MS-NB) is

ŷNB
i =

1, P (R|xi) >= P (E|xi)

0, P (E|xi) > P (R|xi)
. (15)

In general, the best classifier is one that minimizes the zero-one loss, or alterna-

tively, maximizes the accuracy defined as

Accuracy = 1− L =
1

n

n∑
i=1

I[ŷi = yi]. (16)

For many classification problems, however, this criteria is misleading. Consider a

classification problem where where the number of observations belonging to each class

k ∈ {0, 1} are unbalanced, so
∑n

i=1 I[yi = 0] >
∑n

i=1 I[yi = 1]. Assume an extreme

case where 1
n

∑n
i=1 I[yi = 0] = 0.9 and 1

n

∑n
i=1 I[yi = 1] = 0.1. In this example, a

trivial classifier f̂(x) = 0 would yield L = 0.1 and Accuracy = 0.9. On the surface, a

90% prediction accuracy seems favorable, but we know that this trivial classifier has

no predictive value as it gives all observations the same classification no matter what.

To address this issue and better assess the performance of a classifier, we also evaluate

precision and recall. Precision tells us the fraction of positive predictions which are

truly positive, and recall tells us the fraction of truly positive observations that were

predicted positive. Let true positives (TP ), false positives (FP ), true negatives (TN),

and false negatives (FN) be defined as

TP =
n∑

i=1

I[ŷi = 1] ∗ I[yi = 1], (17)
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FP =
n∑

i=1

I[ŷi = 1] ∗ I[yi = 0], (18)

TN =
n∑

i=1

I[ŷi = 0] ∗ I[yi = 0], (19)

FN =
n∑

i=1

I[ŷi = 0] ∗ I[yi = 1]. (20)

Precision and recall are then given by

Precision =
TP

TP + FP
, (21)

Recall =
TP

TP + FN
. (22)

Taking the harmonic mean of precision and recall yields the F -measure, also referred

to as the F -score or F1-measure, as follows

F = 2 ∗ Precision ∗Recall
Precision+Recall

. (23)

Thus, F = 1 when FP = 0 and FN = 0, and F = 0 when TP = 0. In the illustrative

example of the unbalanced panel and trivial classifier, there are no true positives

because every prediction was for 0, so F = 0 which better reflects the trivial classifier

as having no predictive ability.7

For completeness and to connect to prior literature, we also evaluate forecast

probabilities using mean absolute error

MAE =
1

n

n∑
i=1

|P (R|xi)− yi|. (25)
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5.2 Timing-dependent Error Weights

Both F -measure and MAE treat each prediction separately and as uniformly impor-

tant. In a real-time forecasting context, however, errors may not be viewed equally.

For example, predicting a recession to begin in what turns out to be the middle of

an expansion may be viewed as considerably worse than predicting a recession a few

months prior to when a recession actually begins. A uniform weighting metric makes

no distinction between these types of errors. To address this issue, we construct

timing-dependent error weights. This weighting scheme penalizes prediction errors

differently depending on where they occur in the business cycle, where errors in the

middle of cycles are penalized more than errors near the edge of cycle transitions.

Let tstart be the first period in any expansion/recession cycle, tend be the last

period in that same cycle, and tmid be the cycle midpoint. We fit a monotonically

non-decreasing function to the range {tstart, ..., tmid}, and a symmetric, monotonically

non-increasing function to {tmid, ..., tend}. The choice of functions can be made in a

wide variety of ways, but we have chosen to use a truncated Gaussian curve with

several modifications.

We first fit a Gaussian function with µ equal to tmid and σ equal to the number

of periods in {tstart, ..., tend}. Let s =
∑tend

tstart
1 be the number of periods in the cycle

delimited by tstart and tend. Let wi be the weight at ti, tstart ≤ ti ≤ tend, then

wi =
1√

2s2π
e−

(ti−tmid)
2

2s2 . (26)

Next, we apply an initial scaling to wi such that that the error weights at cycle

transitions are zero and error weights at cycle midpoints are one. Let minw =

min({wstart, ..., wend}) and maxw = max({wstart, ..., wend}), then

wscaled
i =

wi −minw

maxw −minw

. (27)

For the terminal cycles at the beginning and ending of the sample, we do not have

complete information about starting/ending periods of these cycles. So in the final

7The F -measure can be generalized to other weightings of precision and recall as follows

Fβ = (1 + β2)
Precision ∗Recall

β2 ∗ Precision+Recall
, (24)

though we found β = 1 is adequate in the case of evaluating business cycle data.
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cycle, we replace all weights after the midpoint with the weight at the midpoint, and

likewise for the first cycle, we replace all weights prior to the midpoint with the weight

at the midpoint. Finally, we apply another normalization to ensure that across the

entire range of a cycle, the total mass of error weights are the same as in the uniformly

weighted case, and therefore total error penalization during a cycle does not change

based on cycle length. These final weights are given as

wnorm
i =

s ∗ wscaled
i∑end

j=startw
scaled
j

, (28)

where
∑end

i=startw
norm
i = s. Figure 3 shows a plot of the timing-dependent weights

across the sample period. When computing timing-dependent errors for F -measure

and MAE, the forecast errors in each period are multiplied by the corresponding error

weight.

5.3 Recession Classification Performance

Tables 1-4 show quantitative results for various forecasting methods, horizons, and

evaluation measures. Tables 1 and 2 show the F -measure and mean absolute error

using a timing-dependent error penalty as discussed in the previous section. Tables 3

and 4 show the same results when using a uniform error penalty. Each table compares

forecast of NB and LR, as well as those from the Survey of Professional Forecasters,

using the average of all reported estimates. All three methods are evaluated at 5

forecast horizons (current, 3-, 6-, 9- and 12-month ahead). Results are further divided

by the variable set used in the estimation, with four options: 1) the core four-variable

set only, 2) term-spread only, 3) and all 135 variables, and 4) the Conference Board’s

Leading Economic Indicator (LEI) variable. Comparisons are also performed across

revised and real-time data for the core variable set. In each of the tables, the best

result for each forecast horizon and variable set/real time combination is highlighted

in bold.

Across all forecast horizons, the primary result is that MS-NB always outper-

forms LR when using the four variable set with real-time data and timing-dependent

weights. Using timing-dependent error weighting and the real-time core set of vari-

ables, MS-NB leads LR in F -measure by 0.019 for current quarter forecasts, a gap

which widens to 0.321 for the 12-month ahead forecast. When these results are av-

eraged over all horizons, MS-NB leads LR by 0.229. Similarly, MS-NB leads LR in
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MAE by 0.005 for current quarter forecasts, and 0.076 at 12-months ahead, averaging

to a lead of 0.045 over all horizons. The results using a uniform error rate with real-

time data are similar, with LR leading slightly for current month forecasts, but the

gaps in performance narrow overall because the uniform penalty does not distinguish

between errors made in the middle of recession/expansion periods and those made

near the transition edges. The cases where LR performs better than MS-NB are: 1)

current month forecasts using real-time values of the core variable set with uniform

error weights, and 2) short-term forecasts using only the LEI variable with uniform

error weights. With only a few exceptions MS-NB also generally outperforms NB,

though the improvements are generally more modest.

Both MS-NB and LR consistently outperform the SPF forecasts. The current

quarter forecasts for SPF are competitive, but rapidly degrade as the forecast horizon

increases. In fact, at the 9 and 12-month ahead horizons, there are no SPF recession

forecasts which exceed the 0.5 probability threshold for recession prediction, leading

to an F -measure of zero.

Tables 5 and 6 present F-measure and MAE results, with timing-dependent weight-

ings, for MS-NB with different numbers of variable lags. We report results for lag

numbers in the set {1, 3, 6, 10}. These results indicate that a larger number of lags is

preferable for near and mid-term forecasts, but performance can improve at 9- and 12-

month horizons with fewer variable lags. It is possible that as the horizon increases,

the extra variable lags lose much of their predictive ability and turn into noise which

obscures the predictive ability of the remaining variables.

5.4 Empirical Evaluation of Asymptotic Properties

Despite the theoretical equivalence of NB and LR under certain distributional assump-

tions about the data, our results illustrate that they do not perform equivalently in

practice, as the underlying assumptions are often violated.8 Despite the violation of

these assumptions, our results demonstrate the advantage of NB for business cycle

data. In particular, the NB model converges to its asymptotic error rate more quickly

than LR, a feature most apparent when forecasting recessions at longer forecast hori-

zons. This is an important aspect of the comparison in a recession forecasting context,

as there are relatively few past recessions with which to estimate a decision boundary.

8In this section, we focus on NB, rather than MS-NB, since the theoretical equivalence to LR is
with respect to the NB classifier.
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To illustrate, Figure 4 plots the predictive ability in F -measure for the NB and

LR model as a function of the fraction of the data used in estimation. Each row

shows a different forecast horizon, with the top two charts showing contemporaneous

predictions and the bottom showing 12-month ahead predictions. To generate the

subsamples, data is sampled at equidistant intervals so that the entire sample space

is evenly covered. The subsample includes current observations and the relevant

lags. The x-axis of each plot shows the amount of data used to estimate each model,

starting at 5% and increasing in 1 percentage point increments. On the y-axis, the F -

measures are based on predictions for the entire data set, so include both in-sample

and out-of-sample predictions. A larger value for the F -measure indicates greater

predictive ability. When using 100% of the data, all predictions become in-sample

predictions. Plots in the left column show raw results, while plots in the right column

are smoothed for easier interpretation. Real time data is used for these experiments,

and the plots are smoothed using a centered 5-period moving average window.

In the top row showing F -measures for current period estimates, the asymptotic

differences between models are clearly evident. The predictive performance of NB

plateaus before LR, while LR performs better using larger subsamples. However,

as an illustration of how quickly NB converges to its asymptotic limit, note that it

reaches an F -measure of 0.6 using only 5% of the data and converges to its maximal

F -measure of nearly 0.8 with less than 10% of the data. By 20% of data, LR has

caught up and begins to surpass NB. This advantage, however, diminishes for forecasts

at longer horizons. For the 3-month ahead forecasts, the LR model requires over 65%

of the data to reach the performance of NB and at the 6-month ahead horizon,

it requires nearly all of the data to perform at parity. Further ahead, the 9- and

12-month ahead forecasts from the LR model are unable to consistently reach the

predictive performance of NB regardless of the amount of data used in estimation.

5.5 Visualizing Data and Decision Boundaries

While the results above provide an empirical summary of NB forecasting performance

relative to the LR model, they do not provide a reason why NB performs so much

better at longer forecast horizons. To provide some intuition, Figure 5 highlights

differences in the decision boundaries for the two models. Each chart shows a scatter

plot of the entire data set after compressing the original 44 variables (i.e. 4 con-
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temporaneous values, plus 10 lags) into two dimensions using principal component

analysis.

In Figure 5, the chart on the left shows the NB decision boundary using the

entire data sample (i.e. the red curved line), along with contours of the conditional

distributions of recession/expansion periods. The decision boundary is the set of

points where P (R|x) = P (E|x). For NB, the the class distributions do not have

equal variance, which creates curvature in the boundary. The chart on the right

shows the decision boundary for the LR model using the entire data set (i.e. thick

blue line).

For both models, a point lying above the decision boundary is predicted as an

expansion period, and any point (i.e. “+”) lying below the decision boundary is

predicted as a recession period. Next, we randomly sample a 50% subset of data points

20 times, and construct decision boundaries using these subsamples and plot the

decision boundaries (i.e. the thin black lines). This procedure generates a distribution

of decision boundaries. An important aspect of the boundaries is that the region

where the data density is the highest, near the sample centroid, the deviation of the

NB boundaries is smaller compared to the LR model. Away from the centroid, the

boundaries for the NB model show more variation, but this is where the data density

is much lower, so has little impact on overall classification accuracy. The next section

examines these properties quantitatively.

5.6 Analysis of Decision Boundaries

To give a quantitative assessment of decision boundary properties, Figure 6 shows a

plot of the mean deviation in decision boundaries using random 50% samples of the

data, along with the local data densities along the boundaries. The x-axis in Figure 6

denotes the position along the decision boundary, with 0 corresponding to the lowest

point on the boundary in Figure 5. The left y-axis is the mean deviation in decision

boundaries at each position, while the right y-axis reflects the local data density along

the boundaries.

More precisely, let B = {b1, ...,bg} be a set of g points spaced at regular inter-

val along a decision boundary. Let BNB and BLR be the sets of points along the

decision boundaries for NB and LR using 100% of the data. Let B̂NB
1 , ..., B̂NB

20 and

B̂LR
1 , ..., B̂LR

20 be the decision boundaries estimated for the 20 different 50% random

samples. Let B̂NB
j = {b̂

NB

1,j , ..., b̂
NB

g,j } be the set of g points along boundary B̂NB
j , and
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likewise let B̂LR
j = {b̂

LR

1,j , ..., b̂
LR

g,j } be the set of points along B̂LR
j . Let DB(B̂1, ..., B̂20)

be the set of mean distances between a boundary B that uses 100% of the data and

the boundaries B̂1, ..., B̂20 that use 50% of the data, given by

DB(B̂1, ..., B̂20) = { 1

20

20∑
j=1

||bi − b̂i,j|| : i = 1, ..., g}. (29)

Figure 6 shows the set of mean deviations for the g points along the decision bound-

aries. For NB, the setDNB
B (B̂NB

1 , ..., B̂NB
20 ) is the thick red line and for LR,DLR

B (B̂LR
1 , ...B̂LR

20 )

is the thick blue line. This figure shows that as we move along the decision bound-

aries, the decision boundary of the NB model is more stable around the center of the

data distribution, but is less stable near the tails.

This feature could be advantageous or not, depending on the data distribution.

To illustrate that indeed the density of the data is greater near the region of the

boundary that is most stable, let S(B, r) be the set of g local data densities along

boundary B, where the local density is the fraction of data points within a radius r

of boundary point bi

S(B, r) = { 1

n

n∑
j=1

I[||xj − bi|| < r] : i = 1, ..., g} (30)

The sets of data densities along the NB and LR decision boundaries are from the full

set of data. Figure 6 then shows the densities S(BNB, 20) and S(BLR, 20), normalized

to unit interval, as a thin red line for NB and a thin blue line for LR.

The key observation in Figure 6 is that the boundaries are more stable where the

data density is the highest, particularly for NB. The implication is that new data

points are much less likely to be misclassified by NB compared to LR, an advantage

confirmed by the empirical results in the previous section.

6 Conclusions

The NB model for business cycle turning point forecasting outperforms LR in almost

every situation and has provided relatively clear recessionary signals up to 12 months

in advance. One reason, as we highlight, is that NB converges to its asymptotic

error rate faster than LR and given the limited sample for business cycles, is advan-
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tageous for forecasting recessions. While NB can easily incorporate a large amount

of data, the results in this paper suggest a more limited set of variables with a rich

lag structure performs best. We chose the four variables to align with previous work,

though future work can develop methods to select variables and the number of lags

under an optimality criteria. In addition, we provide a time-varying weight to fore-

casting errors, such as penalizing recessionary signals that occur in the middle of an

expansion.
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A Asymptotic Comparison of NB and LR

Here we give an overview of the proof for the asymptotic properties of NB and LR

which appears in Ng and Jordan (2002). The asymptotic comparison makes two key

points:

1. The asymptotic error of LR is less than or equal to the asymptotic error of NB.

2. The error rate of NB converges to the asymptotic error rate in order logm

samples, where m is the number of variables, while LR converges linearly (order

m).

The first point is straightforward to show, relying on the result that the error

of LR converges to that of the best linear model, and therefore must be no worse

than NB. Said another way, as the amount of observations approach infinity, LR will

learn a linear decision boundary that gives the best possible error rate. NB is not

guaranteed to so, and so the error rate of LR can never be asymptotically worse than

NB.

To show this first point, Ng and Jordan (2002) prove two propositions: 1) the

asymptotic error of the LR model is less than or equal to that of the NB model,

because the error rate of LR converges to the error of the best linear model (assuming

finite VC dimension)Vapnik (2000), then it must be asymptotically no worse than that

of NB; and 2) the result of applying Vapnik’s uniform convergence bounds to LR is

that the number of examples needed to approach the asymptotic error is O(m).

The second point is more complex and contains statements about the rate of

asymptotic convergence for both NB and LR, which are independently proved. The

convergence rate of LR can be analyzed by applying Vapnik’s uniform convergence

bounds along with the concept of VC dimension.9 VC dimension characterizes the

complexity or discriminative power of a model. The VC dimension for a model f

parameterized with θ is the maximum number of observations (x1, ...,xn) in some

variable space with dimensionality m such that the points can be arranged and θ

selected so that f can correctly classify all (x1, ..., xn) for every possible binary label

set (yi, ..., yn). The VC dimension of a linear model is m + 1. The VC dimension is

9From Vapnik-Chervonenkis theory described in detail in Vapnik, Vladimir N (2000). The
Nature of Statistical Learning Theory. Information Science and Statistics. Springer-Verlag. ISBN
978-0-387-98780-4.
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used to provide a probabilistic upper bound on the out-of-sample classification error

of f . For linear models (including LR) with VC dimension m+1, the number of data

observations required to approach the asymptotic error rate is at most order m.

The proof that NB has logarithmic asymptotic convergence is given in two steps:

1) the distribution parameters of an estimated NB model are shown to converge

logarithmically in m (in probability) to the asymptotic parameters for the true data

distribution, where m is the number of variables; and 2) when the distribution param-

eters of an estimated NB model are close to the true parameters of the distribution,

the error of the estimated model is close to the error obtained when using the true

parameters. The first step is proven by applying Chernoff bounds to the difference

between estimated parameters and true parameters, which gives a bound on the prob-

ability that a random variable (the difference between estimated and true parameters,

in our case) exceeds some value.

The second step, that convergence in parameters implies convergence in the pre-

dictions and therefore error, can be shown as follows. First, observe that that the

decision boundary corresponding to the estimated parameters will give the same pre-

diction for any sample x as a decision boundary using the true parameters as long

as the x is on the same side of both boundaries. Given that the difference between

the estimated decision boundary and the true decision boundary is proportional to

the difference between estimated and true parameters, when the deviation of the es-

timated boundary is small compared to the expected shortest distance between any

x and the true decision boundary, it is unlikely that the estimated model will render

a prediction different from when using the asymptotic parameters.

Establishing bounds on the error rate as a function of the deviation in estimated

decision boundary is key, and can be done loosely with the Chebyshev inequality,

or more strongly (assuming variable independence) using the Chernoff bound again.

This concludes our overview of the asymptotic comparison between NB and LR.
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Figure 1: Recession probability forecasts by MS-NB at various horizons. Vertical
dotted black lines indicate start/end of NBER recession periods. Models use real-
time values of the four-variable core set.
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Figure 2: Recession probabilities forecasts of MS-NB (top), NB (middle), and LR
(bottom) for different horizons. Vertical dotted black lines indicate start/end of
NBER recession periods. Models use real-time values of the four-variable core set.
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Figure 3: Timing-dependent error weights for predictions showing higher penalties
for errors in the middle of expansion/recession cycles versus at the beginning/end of
cycles. Vertical dashed lines indicate start/end of NBER-defined recessions.
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Figure 4: F -measure comparisons of NB and LR performance across different fore-
cast horizons using real-time values of the core set of variables. Each model uses
contemporaneous values, plus 10 lags, as explanatory variables.
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Figure 5: Comparison of decision boundaries from NB and LR.

Figure 6: Comparison of data density and decision boundaries from NB and LR.
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Table 1: Forecasting Results in F-measure for SPF, MS-NB, and LR under various
conditions.

F-measure, timing-dependent error weights
Method Variables Real Time? Cur. Mo. 3 Mo. 6 Mo. 9 Mo. 12 Mo. Avg. All

SPF N/A Yes 0.757 0.454 0.149 0.000 0.000 0.272
MS-NB Core Yes 0.893 0.848 0.812 0.786 0.697 0.807

LR Core Yes 0.874 0.720 0.534 0.386 0.376 0.578
MS-NB Core No 0.889 0.869 0.813 0.787 0.634 0.798

LR Core No 0.882 0.741 0.606 0.473 0.402 0.621
MS-NB Spread No 0.622 0.715 0.750 0.791 0.732 0.722

LR Spread No 0.413 0.471 0.492 0.487 0.373 0.447
MS-NB LEI No 0.816 0.826 0.843 0.728 0.495 0.742

LR LEI No 0.894 0.861 0.775 0.638 0.361 0.706
MS-NB All 135 No 0.711 0.556 0.381 0.302 0.297 0.449

LR All 135 No 0.286 0.265 0.223 0.243 0.208 0.245

Table 2: Forecasting Results in mean absolute error for SPF, MS-NB, and LR under
various conditions.

MAE, timing-dependent error weights
Method Variables Real Time? Cur. Mo. 3 Mo. 6 Mo. 9 Mo. 12 Mo. Avg. All

SPF N/A Yes 0.135 0.190 0.223 0.244 0.247 0.208
MS-NB Core Yes 0.034 0.047 0.054 0.057 0.070 0.052

LR Core Yes 0.039 0.081 0.104 0.115 0.146 0.097
MS-NB Core No 0.035 0.044 0.053 0.057 0.082 0.054

LR Core No 0.034 0.073 0.098 0.120 0.138 0.092
MS-NB Spread No 0.103 0.082 0.070 0.060 0.066 0.076

LR Spread No 0.128 0.129 0.120 0.113 0.129 0.124
MS-NB LEI No 0.062 0.059 0.053 0.088 0.150 0.082

LR LEI No 0.064 0.077 0.107 0.157 0.197 0.120
MS-NB All 135 No 0.088 0.119 0.147 0.148 0.154 0.131

LR All 135 No 0.373 0.382 0.393 0.376 0.359 0.377
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Table 3: Forecasting Results in F-measure for SPF, MS-NB, and LR under various
conditions.

F-measure, uniform weights
Method Variables Real Time? Cur. Mo. 3 Mo. 6 Mo. 9 Mo. 12 Mo. Avg. All

SPF N/A Yes 0.672 0.440 0.145 0.000 0.000 0.251
MS-NB Core Yes 0.754 0.713 0.658 0.634 0.574 0.667

LR Core Yes 0.764 0.632 0.460 0.360 0.325 0.508
MS-NB Core No 0.746 0.720 0.671 0.630 0.533 0.660

LR Core No 0.759 0.653 0.496 0.442 0.339 0.538
MS-NB Spread No 0.519 0.609 0.650 0.684 0.617 0.616

LR Spread No 0.427 0.430 0.422 0.431 0.333 0.409
MS-NB LEI No 0.676 0.670 0.663 0.537 0.398 0.589

LR LEI No 0.775 0.738 0.635 0.496 0.291 0.587
MS-NB All 135 No 0.598 0.464 0.356 0.279 0.303 0.400

LR All 135 No 0.273 0.234 0.233 0.220 0.196 0.231

Table 4: Forecasting Results in mean absolute error for SPF, MS-NB, and LR under
various conditions.

MAE, uniform weights
Method Variables Real Time? Cur. Mo. 3 Mo. 6 Mo. 9 Mo. 12 Mo. Avg. All

SPF N/A Yes 0.160 0.211 0.239 0.253 0.254 0.224
MS-NB Core Yes 0.087 0.099 0.107 0.103 0.115 0.102

LR Core Yes 0.079 0.119 0.140 0.138 0.176 0.130
MS-NB Core No 0.092 0.105 0.107 0.107 0.127 0.107

LR Core No 0.076 0.103 0.129 0.138 0.168 0.123
MS-NB Spread No 0.150 0.126 0.110 0.099 0.104 0.118

LR Spread No 0.144 0.150 0.147 0.134 0.155 0.146
MS-NB LEI No 0.132 0.137 0.137 0.186 0.237 0.166

LR LEI No 0.113 0.125 0.154 0.202 0.236 0.166
MS-NB All 135 No 0.140 0.160 0.173 0.175 0.168 0.163

LR All 135 No 0.386 0.399 0.390 0.382 0.363 0.384
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Table 5: Forecasting Results in F-measure for MS-NB with different number of vari-
able lags.

F-Measure, time-dependent weights
Number of Lags Cur. Mo. 3 Mo. Ahead 6 Mo. Ahead 9 Mo. Ahead 12 Mo. Ahead

10 0.890 0.843 0.817 0.809 0.672
6 0.849 0.800 0.805 0.848 0.768
3 0.817 0.792 0.760 0.835 0.813
1 0.793 0.789 0.749 0.827 0.811

Table 6: Forecasting Results in MAE for MS-NB with different number of variable
lags.

MAE, time-dependent weights
Number of Lags Cur. Mo. 3 Mo. Ahead 6 Mo. Ahead 9 Mo. Ahead 12 Mo. Ahead

10 0.038 0.050 0.055 0.053 0.077
6 0.051 0.062 0.060 0.048 0.062
3 0.059 0.064 0.067 0.052 0.058
1 0.072 0.064 0.071 0.052 0.062
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