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A Derivation & Calibration of Theoretical Model

This section provides further details on the derivation and calibration of our theoretical

model in Section 3 of the main text. Our model combines features from the previous works

of Ireland (2007) and Leduc and Liu (2016). The key agents in our model are a representative

household, a retail goods sector which produces differentiated products subject to nominal

rigidities, an aggregation sector which aggregates the differentiated products into the final

output, intermediate goods producers which hire labor in a frictional labor market, and

a government which sets the short-term nominal interest rate and sets lump-sum taxes to

finance unemployment benefits.

A.1 Households

The model features a representative household populated by a continuum of worker members

which maximize utility from consumption and leisure:

max Et

∞∑
s=0

at+s β
s

{
log (Ct+s)− χNt+s

}
where Ct denotes consumption, Nt is the fraction of employed household members, χ de-

notes the disutility from working, β is the household’s discount factor, and at is an exogenous

preference shock which triggers unexpected fluctuations in household demand. The represen-

tative household chooses its consumption and bond holdings to maximize its utility subject

to its budget constraint each period:

Ct +
Bt

PtRt

=
Bt−1

Pt

+WtNt + ϕu(1−Nt) +Dt − Tt, ∀t ≥ 0,

where Pt denotes the aggregate price level, Bt denotes holdings of a nominal risk-free bond,

Rt denotes the nominal interest rate, Wt denotes the real wage rate, ϕu denotes an un-

employment benefit (the replacement ratio), Dt denotes profit income from ownership of

intermediate goods producers and of retailers, and Tt denotes a lump-sum tax paid to the

government. The household’s optimal choices of consumption and bond holdings satisfy the

following first-order conditions:

λt =
at
Ct

, (1)

1 = Et

{(
β
λt+1

λt

)(
Rt

Πt+1

)}
, (2)

where Πt = Pt/Pt−1 denotes the gross rate of inflation and λt denotes the nonnegative La-

grange multiplier on the household’s budget constraint.

2



The discount factor of the household β is subject to shocks via the stochastic process at.

We interpret these fluctuations as demand shocks since an increase in at induces households to

consume more today for no technological reason. The stochastic process for these fluctuations

is as follows:

log (at) = ρa log (at−1) + σaεat , (3)

where εat is an independent and standard normal random variable.

A.2 Aggregation Sector

The aggregation sector uses Yt(i) units of each retail good produced by the retail goods-

producing firm i ∈ [0, 1] to create the final output Yt using the following constant returns to

scale technology: [∫ 1

0

Yt(i)
η−1
η di

] η
η−1

≥ Yt,

where η > 1 is the elasticity of substitution between differentiated products. Each interme-

diate good Yt(i) sells at nominal price Pt(i) and each final good sells at nominal price Pt.

The representative producer in the aggregation sector chooses Yt and Yt(i) for all i ∈ [0, 1]

to maximize the following expression of firm profits:

PtYt −
∫ 1

0

Pt(i)Yt(i)di,

subject to the constant returns to scale production function. Optimization results in the

following first-order condition:

Yt(i) =

[
Pt(i)

Pt

]−η

Yt. (4)

The market for final output is perfectly competitive, and thus the aggregation earns zero

profits in equilibrium. Using the zero-profit condition, the first-order condition for profit

maximization, and the objective function, the aggregate price index Pt can be written as

follows:

Pt =

[∫ 1

0

Pt(i)
1−ηdi

] 1
1−η

. (5)

A.3 Retail Goods-Producing Firms

There exists a continuum of retail firms, each producing a differentiated product using a

homogeneous intermediate good as input. The production function of a retail good of type

i ∈ [0, 1] is given by

Yt(j) = Xt(i), (6)
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where Xt(i) is the input of intermediate goods used by retailer j and Yt(j) is the output. The

retail goods producers are price takers in the input market and monopolistic competitors in

the product markets, where they set prices for their products, taking as given the demand

schedule in Equation (4) and the price index in Equation (5).

Firm i faces a quadratic cost to adjusting its nominal price Pt(i):

ϕP

2

[
Pt(i)

ΠLT
t Pt−1(i)

− 1

]2
Yt

where ϕP governs the magnitude of the adjustment costs. ΠLT
t = exp(πLT

t ) is the gross rate

of long-term inflation expectations which are determined by the following equation:

πLT
t = (1− ρπ) π∗ + ρππLT

t−1 + δπ
(
πt − πLT

t−1

)
, (7)

where πt = log(Πt) and π∗ = log(Π∗), which is the central bank’s, potentially implicit,

inflation target. The coefficient δπ determines the degree to which long-term inflation ex-

pectations are anchored. If δπ = 0, then long-term inflation expectations are fully anchored

in the sense that they are invariant to realized inflation. On the other extreme, if δπ > 0,

then inflation expectations are unanchored and drift with realized inflation.

Each retail firm producing good i chooses Pt(i) to maximize its discounted present-value

of profits:

Et

∞∑
s=0

(
βsλt+s

λt

)[(
Pt+s(j)

Pt+s

− qt+s

)
Yt+i(i)−

ϕP

2

(
Pt+s(i)

ΠLT
t+sPt+s−1(i)− 1

)2

Yt+s

]
, (8)

where qt denotes the relative price of the intermediate good. In a symmetric equilibrium

with Pt(i) = Pt for all i, the optimal price-setting decision implies:

qt =
η − 1

η
+

ϕP

η

{(
Πt

ΠLT
t

)(
Πt

ΠLT
t

− 1

)
− Et

[(
βλt+1

λt

)(
Πt+1

ΠLT
t+1

)(
Πt+1

ΠLT
t+1

− 1

)(
Yt+1

Yt

)]}
.

(9)

A.4 The Labor Market

Our formulation of the labor market in our model closely follows Leduc and Liu (2016). At

the beginning of each period, there exist Nt−1 employed workers, ut unemployed workers

searching for jobs, and vt vacancies posted by firms. Matches between unemployed workers

and vacancies are created using a Cobb-Douglas matching function:

mt = µuα
t v

1−α
t , (10)
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where mt is the number of successful matches, the parameter α ∈ (0, 1) denotes the elasticity

of job matches with respect to the number of searching workers, and the parameter µ scales

the matching efficiency. We define the job filling rate, the probability that an open vacancy

is matched with a searching worker, as follows:

qut =
mt

vt
. (11)

We define the job finding rate, the probability that an unemployed and searching worker is

matched with an open vacancy, as follows:

qvt =
mt

ut

. (12)

There exist Nt−1 workers in the beginning of period t. Each period, a fraction ρ of

these workers lose their jobs. Thus, the number of workers who survive the job separation is

(1−ρ)Nt−1. At the same time, mt new matches are formed. Following the timing assumption

in Blanchard and Gaĺı (2010), we assume that new hires start working in the period they

are hired. Thus, aggregate employment in period t evolves according to

Nt = (1− ρ)Nt−1 +mt. (13)

With a fraction ρ of employed workers separated from their jobs, the number of unem-

ployed workers searching for jobs in period t is given by

ut = 1− (1− ρ)Nt−1. (14)

We assume full participation and define the unemployment rate as the fraction of the popula-

tion who are left without a job after hiring takes place. Thus, we can write the unemployment

rate as follows:

Ut = ut −mt = 1−Nt. (15)

A.5 Intermediate Goods Producers

Each intermediate goods firm produces a homogeneous intermediate good and hires at most

one worker subject to search and matching frictions in the labor market. Since our model

abstracts from changes in productivity, each firm employs a single worker who produces one

unit of the intermediate good each period. If a firm finds a match, the firm obtains a flow

profit in the current period after paying the worker. In the next period, the match may

survive with probability 1− ρ or dissolve with probability ρ. If the match dissolves, the firm
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posts a new job vacancy at a fixed cost κ units of the final good with the value Vt+1. Thus,

the following Bellman equation captures the value of the firm:

JF
t = qt −Wt + Et

{(
β
λt+1

λt

)(
(1− ρ)JF

t+1 + ρVt+1

)}
, (16)

where qt denotes the relative price of the intermediate good, Wt denotes the real wage, and

λt is the representative household’s marginal utility from consumption.

κ denotes the cost of posting a new vacancy in terms of final goods. The vacancy is filled

with probability qvt , in which case the firm obtains the value of the match. Otherwise, the

vacancy remains unfilled and the firm goes into the next period with the value Vt+1. Thus,

the value of an open vacancy is given by

Vt = −κ+ qvt J
F
t + Et

[
βλt+1

λt

(1− qvt )Vt+1

]
. (17)

Free entry implies that Vt = 0 which implies:

κ

qvt
= JF

t , (18)

which describes the optimal job creation decisions. The benefit of creating a new job is the

match value JF
t while the expected cost of creating a new job is the flow cost of posting a

vacancy κ multiplied by the expected duration of an unfilled vacancy 1/qvt .

If a worker is employed, he obtains wage income but pays a utility cost of working. In

period t + 1, the match is separated with probability ρ and the separated worker can find

a new match with probability qut+1. Thus, a separated worker fails to find a new job in

period t+1 and enters the unemployment pool with probability ρ(1− qut+1). Otherwise, the

worker continues to be employed. The marginal value of an employed worker (denoted by

JW
t ) therefore satisfies the Bellman equation

JW
t = Wt −

χ

λt

+ Et

{
βλt+1

λt

[(
1− ρ(1− qut+1)

)
JW
t+1 + ρ(1− qyt+1)J

u
t+1

]}
, (19)

where JU
t denotes the value of an unemployed worker. An unemployed worker obtains the

flow unemployment benefit ϕu and can find a new job in period t+ 1 with probability qut+1.

Thus, the value of an unemployed worker satisfies the Bellman equation

JU
t = ϕu + Et

{
βλt+1

λt

[
qut+1J

W
t+1 + (1− qut+1)J

U
t+1

]}
. (20)
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Firms and workers bargain over wages in which the parameter b determines the bargaining

weight. Leduc and Liu (2016) derive the following expression for the Nash bargaining wage.

WN
t = (1− b)

[
χ

λt

+ ϕu

]
+ b

{
qtZt + β(1− ρ)Et

[
βλt+1

λt

κvt+1

ut+1

]}
. (21)

The Nash bargaining wage is a weighted average of the worker’s reservation value and the

firm’s productive value of a job match. By forming a match, the worker incurs a utility cost

of working and forgoes unemployment benefits. By employing a worker, the firm receives

the marginal product from labor in the current period and saves the vacancy cost from the

next period.

Following Hall (2005) and Blanchard and Gaĺı (2010), we assume actual wages adjust

slowly to changing economic conditions:

Wt = W γ
t−1

(
WN

t

)1−γ
(22)

where WN
t is the wage under Nash bargaining and γ ∈ (0, 1) represents the degree of real

wage rigidity.

A.6 Monetary Policy

The central bank in the model sets its short-term nominal policy rate Rt to minimize devi-

ations of inflation from long-term expectations:

log
(
Rt

)
= log

(
Rt−1

)
+ ϕπ log

(
Πt/Π

LT
t

)
, (23)

where ϕπ denotes the central bank’s response to inflation deviations.

A.7 Government Policy

The government finances transfer payments for unemployment benefits through lump-sum

taxes. We assume that the government balances the budget in each period so that

ϕu(1−Nt) = Tt. (24)

A.8 Equilibrium

In equilibrium, the markets for final consumption goods, intermediate goods, and the zero

net-supply bonds (Bt = 0) all clear. Therefore, we can write the aggregate resource con-

straint:

Ct + κVt +
ϕP

2

(
Πt

ΠLT
t+1

− 1

)2

Yt = Yt. (25)
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A.9 Complete Model

We can write down the complete model as follows:

λt =
at
Ct

, (26)

1 = Et

{(
β
λt+1

λt

)(
Rt

Πt+1

)}
, (27)

qt =
η − 1

η
+

ϕP

η

{(
Πt

ΠLT
t

)(
Πt

ΠLT
t

− 1

)
− Et

[(
βλt+1

λt

)(
Πt+1

ΠLT
t+1

)(
Πt+1

ΠLT
t+1

− 1

)(
Yt+1

Yt

)]}
,

(28)

mt = µuα
t v

1−α
t , (29)

qut =
mt

vt
, (30)

qvt =
mt

ut

, (31)

Nt = (1− ρ)Nt−1 +mt, (32)

ut = 1− (1− ρ)Nt−1, (33)

Ut = 1−Nt, (34)

Yt = Nt, (35)

log
(
Rt

)
= log

(
Rt−1

)
+ ϕπ log

(
Πt/Π

LT
t

)
+ ϕy log

(
Yt/Yt−1

)
, (36)

Ct + κVt +
ϕP

2

(
Πt

ΠLT
t+1

− 1

)2

Yt = Yt, (37)

JF
t = qt −Wt + Et

{(
β
λt+1

λt

)(
(1− ρ)JF

t+1 + ρVt+1

)}
, (38)
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κ

qvt
= JF

t , (39)

WN
t = (1− b)

[
χ

λt

+ ϕu

]
+ b

{
qtZt + β(1− ρ)Et

[
βλt+1

λt

κvt+1

ut+1

]}
, (40)

Wt = W γ
t−1

(
WN

t

)1−γ
, (41)

log (at) = ρa log (at−1) + σaεat , (42)

log
(
ΠLT

t

)
= (1− ρπ) log

(
Π∗
)
+ ρπlog

(
ΠLT

t−1

)
+ δπ

(
log
(
Πt

)
− log

(
ΠLT

t−1

))
. (43)

To keep track of the model’s predictions for inflation and the nominal interest rate, we

also include the growth rates of inflation and the nominal interest rate as equations in our

model:

gπt = Πt/Πt−1, (44)

grt = Rt/Rt−1. (45)

A.10 Calibration and Solution Method

After writing the model in stationary form, we calibrate the parameters of the model and

solve the model using a first-order approximation around the deterministic steady state.

Table A.1 contains the calibrated parameters of our model. Since our model combines the

frictional market specification of Leduc and Liu (2016) with the estimated macroeconomic

model of Ireland (2007), we almost exclusively use the parameters from those papers in cal-

ibrating our model. Following Blanchard and Gaĺı (2010), we set the matching elasticity

parameter α and the wage bargaining parameter b = 0.5. Our calibration of job separations

ρ = 0.1 implies a monthly job separation rate of roughly 3.5%. Consistent with calibration

of Hall and Milgrom (2008), the replacement ratio of unemployment is set such that ϕ =

0.25. The remaining labor market parameters are calibrated using the strategy in Section

4.1 of Leduc and Liu (2016) which implies a steady-state unemployment rate of U = 0.064

and a total cost of posting vacancies at roughly 2 percent of gross output. We set the real

9



wage rigidity parameter γ = 0.8, which is in line with Gertler and Trigari (2009).

With a couple of exceptions, the remaining parameters are calibrated to match the val-

ues in Ireland (2007). We set the household discount factor β = 0.9995 and the elasticity

of substitution across intermediate goods η = 6. For the persistence of the preference shock

process, we calibrate ρa = 0.9097 to the estimated value of Ireland (2007). We set the volatil-

ity of the preference shock process σa = 0.01 such that a one standard deviation shock moves

the demand shock process by one percent. For the monetary policy rule, we follow Ireland’s

assumption of full interest rate smoothing (a coefficient of one on lagged interest rates in

the policy rule). We calibrate the policy response of inflation deviations ϕπ = 0.8594, the

estimated value of Ireland (2007). With respect to the policy response to changes in the real

economy, Ireland (2007) includes a nontrivial response of policymakers to changes in output

growth. However, we find that including a response to output growth generates much larger

(and likely counterfactual) fluctuations in inflation when we incorporate frictions in the labor

market, so we remove this feature to generate more sensible inflation dynamics.

We calibrate the remaining parameters of the model (ρπ, δπ, Π∗, and ϕP ), based on our

empirical evidence from the main text. In particular, we calibrate δπ = 0.27, the point esti-

mate from our baseline inflation compensation regression model over the 1999–2011 sample

period. We calibrate π∗ such that the model-implied constant in the reduced-form Phillips

curve under drifting inflation expectations matches the average level of inflation (3.18%) over

the 1999–2011 period. We then select values for ρπ and ϕP to match two moments from our

Phillips curve regressions over the 1999–2011 sample: the slope of the reduced-form Phillips

curve as well as the slope of the expectations-augmented Phillips curve. We match these re-

gression coefficients by running the same Phillips curve regressions on model-simulated data,

then comparing the estimated coefficients based on model-simulated data with the sum of

their squared deviations from their empirical counterparts. Importantly, we do not target

any of the Phillips curve regression moments from the post-2012 sample as these serve as

important tests of the model’s predictions from anchoring.

Finally, we enter the non-linear model into Dynare and generate impulse response func-

tions and model simulations based on a first-order perturbation to the non-linear model

approximated around the deterministic steady-state.
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B Additional Theoretical Model Results

In this section, we explore the sensitivity of the model’s predictions for the anchoring of

inflation expectations to plausible alternative parameter values.

B.1 No Real Wage Rigidity: γ

In our baseline model, we calibrated our labor market parameters to standard values from

the literature (see Leduc and Liu (2016)). Beginning with early work by Blanchard and Gaĺı

(2010), papers often assume sticky real wages in models that combine search frictions and

nominal rigidities. However, for our work, real wage rigidity is not necessary to generate

reasonable impulse responses and the results with flexible wages generate very similar break

test results for the reduced-form Phillips curve. Table B.1 below recalculates our baseline

reduced-form Phillips curve regressions without sticky wages γ = 0, leaving all other param-

eters unchanged. Under this alternative calibration, the quantitative results are quite close

to our baseline, suggesting that an econometrican would still detect a break even if we were

to remove real wage rigidity from our model. The green dashed-dotted line in Figure B.1

shows that in our model, the impulse responses to a demand shock under drifting inflation

expectations are similar under both rigid and flexible wages, which helps explain why our

Phillips curve break tests are robust to this alternative calibration.

B.2 More Persistent Inflation Expectations: ρπ

Our baseline model specification assumes that longer-term inflation expectations drift around

a stationary longer-term inflation target. We calibrate the persistence of longer-term inflation

expectations ρπ, the degree of price rigidity ΦP , and the central bank’s inflation objective π∗

such that the model matches the constant and slope of the reduced-form Phillips curve and

the slope of the expectations-augmented Phillips curve prior to the anchoring of expectations.

As shown in Table A.1, this calibration procedure results in a persistence parameter of ρπ =

0.93, suggesting that the data prefers a persistent but stationary processes. However, prior

work has modeled long-term inflation expectations as following a random walk (Gürkaynak,

Sack and Swanson, 2005; Ireland, 2007). We can emulate this previous research by assuming

a much more persistent process for inflation expectations, setting ρπ = 0.999 (similar to

the value estimated in Rudebusch and Swanson, 2012). Without adjusting other parameter

values, the black dotted line in Figure B.1 shows even larger differences between inflation

dynamics in the anchored and drifting regimes. Because of the amplification of inflation

and inflation expectations in the drifting regime with ρπ = 0.99, we find an even steeper
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pre-anchoring reduced-form Phillips curve slope and, hence, continue to detect a structural

break in the Phillips curve post-anchoring in model-simulated data under this alternative

calibration.

B.3 Smaller Pass-Through from Inflation Surprises to Long-Term

Inflation Expectations: δπ

We base our analysis of the model predictions that results from anchoring inflation ex-

pectations on the assumption that, prior to anchoring, inflation surprises pass-through to

long-term inflation expectations according to δπ = 0.27. This value is based on our baseline

inflation compensation regression model from 1999–2011 (Table 2 in the main text). How-

ever, there is some uncertainty on how to map this parameter into our theoretical model.

For example, in the data, the inflation surprise is constructed from the month-over-month

inflation rate. Moreover, in the monthly data there is one inflation surprise per period

whereas, in the quarterly model, there would be three such surprises. In light of these is-

sues, we demonstrate the robustness of the model’s predictions to a conservatively much

smaller value of δπ = 0.27 − 1.65 × 0.10, which is the 5% left tail assuming a Normal dis-

tribution. We then recalibrate ρπ and ϕP to again match the slope of the reduced-form

Phillips curve as well as the slope of the expectations-augmented Phillips curve empirical

estimates over the 1999–2011 sample. Table B.2 shows both reduced-form (left columns)

as well as expectations-augmented (right columns) Phillips curve regressions estimated on

model-simulated data under this alternative calibration of δπ. The results in Table B.2 show

that, even with a much smaller degree of drift with current inflation in the inflation expec-

tations process, an econometrician confronted with small samples would still detect a break

in the reduced-form Phillips curve but find stability in the expectations-augmented Phillips

curve regressions.

C Additional Phillips Curve Empirical Results

In this section, we explore the robustness of the empirical results relating to the apparent

instability in the reduced-form Phillips curve amid stability in the expectations-augmented

Phillips curve post-2011.
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C.1 HAR Inference of Phillips Curve Regression Model

For our Phillips curve regressions, we regress the inflation rate on the unemployment rate

in levels. Since macroeconomic data tend to display significant persistence across months,

Newey-West standard errors are used to address concerns of both heteroskedasticity and

serial correlation in the regression residuals. Likewise, this follows other popular papers es-

timating similar Phillips curve regressions (such as Coibion and Gorodnichenko, 2015).

While we use the typical rule-of-thumb of 12 lags (for monthly data) when constructing

our Newey-West standard errors, advancements in HAR inference underscore the tendency

for these conventional Newey-West standard errors to over-reject the null hypothesis. There-

fore, as a robustness check, we compute HAR standard errors using the quadratic spectral

(QS) kernel to estimate the long-run variance together with Kiefer and Vogelsang (2005)

fixed-b critical values in our Phillips curve regressions. We set the truncation parameter of

the QS window to v = 0.4T 2/3 which follows Lazarus et al. (2018) who report reduced size

distortions from this choice of long-run variance calculation. Table C.1 below reports these

results. Our conclusions regarding the presence of a break in the reduced-form Phillips curve

remain unchanged under these more conservative standard errors and critical values.

C.2 Stability of Expectations-Augmented Phillips Curve

The model’s predictions for the effects of anchoring are for breaks in the reduced-form Phillips

curve that are not present in the structural/expectations-augmented Phillips curve. In con-

trast, breaks in the expectations-augmented Phillips curve could reflect changes in structural

parameters that govern the price setting process such as the frequency of price-adjustment,

input shares, and labor markets (see Coibion and Gorodnichenko, 2015, for example). Given

the evolution of market structures and labor markets, many of these deep structural pa-

rameters may well have shifted during our sample of study. In fact, what is perhaps most

noteworthy about our break test results is that the post-2012 flattening in the reduced-form

Phillips curve does not appear to be due to any of these potential changes to the price setting

process and, instead, the recent flattening in the reduced-form Phillips curve can be largely

explained by better anchored inflation expectations.

While we are conceptually interested in structural breaks in the reduced-form Phillips

curve, it would be reassuring if there isn’t a break in the expectations-augmented Phillips

curve circa 2012. We therefore provide additional evidence that the post-2011 break we

find in the reduced-form Phillips curve doesn’t coincide with a break near 2012 in the
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expectations-augmented Phillips curve. To confirm this, we performed two robustness exer-

cises. First, we conducted our Chow test ± 6-months January-2012. Second, we subjected

both the reduced-form and expectations-augmented Phillips curve regressions to a breaktest

at an unknown date (i.e. Andrews, 1993). The results are shown in Figure C.1. Panel A

shows no evidence of a change in the slope of the expectations-augmented Phillips curve circa

2012. Panel B reinforces this finding by showing that the large and significant break in the

reduced-form Phillips curve (black solid line) post-2011 does not coincide with any significant

breaks in the expectations-augmented Phillips curve (blue solid line). Both of these findings

underscore our conclusion that, post-2011, there is evidence of a break in the reduced-form

Phillips curve despite evidence of relative stability in the expectations-augmented (or struc-

tural) Phillips curve.

D Additional High-Frequency Empirical Results

This section details additional results and sensitivity analysis of the high-frequency regres-

sions presented in Section 4.1 of the main text.

D.1 Break in δπ, Not Change in Nature of CPI Surprises

We now show that the break in the estimate of δπ we document appears to reflect a change

in the reaction of inflation expectations to CPI surprises rather than a change in the nature

of CPI surprises. Table D.1 shows the summary statistics for CPI surprises both before and

after 2012. The standard deviation of the Bloomberg core inflation surprises is equal to

0.07 prior to 2012 and 0.06 thereafter. Furthermore, the surprises in both samples are not

significantly skewed nor do we find evidence that they are non-normal as the Jarque-Bera

statistic falls below its critical value. The most notable difference between the two samples

is the presence of an average downside inflation surprise after 2012. From the viewpoint of

our regression model, this change in the distribution of inflation surprises has the potential

to impact the intercept δ0, but not the slope coefficient δπ. However, Table 2 of the main

text shows that we find no statistically significant evidence of a change in the regression

intercept across the two sample periods.

D.2 Robustness to Alternative Data, Samples, & Specifications

Our baseline model shows that market-based measures of inflation expectations became less

sensitive to news about inflation after the FOMC began to communicate a numerical in-

flation objective. We now examine the robustness of this finding to using: (i) alternative
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measures of nominal compensation and food and energy price controls, (ii) data samples

that exclude the global financial crisis, and (iii) specifications that allow for more gradual

parametric change. Under all of these alternative specifications, we continue to find evidence

that nominal compensation became unresponsive to inflation news after the FOMC commu-

nicated an explicit inflation objective.

In our baseline inflation compensation model, we proxy forward inflation expectations

by using inflation compensation measured from inflation-indexed bonds. However, TIPS

yields may contain a non-trivial, time-varying liquidity premium, which could distort our

measure of inflation expectations.1 Our baseline model also uses the weight of core goods and

services in the overall CPI basket, along with the headline and core CPI surprises, to infer

the information content emanating from food and energy components. While this weight

varies little month to month, its value is not exactly known in real time. To address both of

these concerns, we estimate the following alternative regression model around CPI releases:

∆yLTt = δ0 + δππcore
t + δfπfood

t + δeπenergy
t + εt, (46)

where ∆yLTt is the one-day change in the 1-year, 9-year forward nominal rate and πfood
t and

πenergy
t are the one-day percent changes in the Goldman Sachs agricultural and energy price

indexes, respectively.2 We refer to this as the forward rate model.

Rather than using inflation compensation measured from inflation-indexed bonds, this

alternative model uses far-forward measures of nominal interest rates as a proxy for long-

term inflation expectations. Although real factors could influence this measure of forward

compensation, Gürkaynak, Sack and Swanson (2005) argue that most macroeconomic mod-

els predict that, following a disturbance, real variables would return to their steady state

values before nine years. In addition, this specification uses the change in spot prices for food

and energy inputs instead of the implied surprise from the CPI measure of food and energy

prices. Given that timely information on the previous month’s food and energy prices is

already available to bond investors at the time of the CPI release, the change in spot prices

for food and energy inputs might be a more appropriate control for these non-core items on

the day of the CPI release.

Using this alternative forward rate model, the regression results in Table D.2 show a

1As long as this premium is uncorrelated with core inflation surprises, our baseline results remain unbiased.
2We calculate nominal forward rates from the yield on constant maturity zero coupon bond yields as

described in Gürkaynak, Levin and Swanson (2010).
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decline in the response of inflation compensation to inflation news following the adoption

of the inflation target.3 Before 2012, nominal compensation significantly comoved with in-

flation surprises. However, after 2012, nominal compensation became unresponsive.4 The

general robustness of our findings using the forward rate model is important as we move to

our analysis of the BOJ’s adoption of a numerical inflation target. For Japan, we lack data

on real (inflation-indexed) bonds and the knowledge about the weight of core components

in the CPI basket. Thus, we cannot estimate our preferred inflation compensation model.

However, we can estimate the forward rate model for Japan.

Using this alternative model, tests for a structural break at an unknown date also suggest

a break in the coefficient on the core inflation surprise around 2010. The solid black line in

Panel B of Figure D.1 plots the Chow test sequence for δπ using the forward rate regression

model over time. As in the baseline inflation compensation regression model, shown in Panel

A, we see a clear peak in the time series of the test statistic in the first half of 2010. However,

there is also a sharp spike in the sequence of Chow tests in late 2008. Both the 2008 and 2010

breaks fail to exceed the 10% critical value of the Andrews-Quandt test in the second panel

of Figure D.1. The presence of two local maxima could signal either two breaks or, based on

the timing, instability during the financial crisis. This latter possibility of instability in the

regression model due to the global financial crisis leads us to further examine the robustness

of our candidate break dates.

If we drop the precipice of the global financial crisis, we find evidence indicating the

presence of a single structural break in early 2010. We first show that the break test results

for our baseline inflation compensation regression model are robust to dropping the financial

crisis from our sample. For our baseline inflation compensation model, Table D.3 shows that

we estimate the exact same break date of May 2010 for the core inflation coefficient when

we drop the fourth quarter of 2008 and first quarter of 2009 from the estimation. Table

D.4 similarly shows that the estimated break date for the forward rate model is February

of 2010 and that break is statistically significant using the Andrews-Quandt test and the

Andrews-Ploberger test. Robustness of the estimated break dates to dropping the financial

crisis is further apparent in the blue dotted lines in Panels A and B of Figure D.1, which plot

the time series of the Chow test statistics for samples that exclude the financial crisis. For

3We no longer scale the core CPI surprises by the weight of core components in the CPI basket in the

forward rate specification.
4While the Chow test statistic for a break after 2012 is slightly below the critical value, the p-value of

the Chow test for δπ is 0.1003, indicating that our findings are generally robust.
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both the inflation compensation (Panel A) and forward rate (Panel B) models, the presence

of a peak in the time series of the break statistics in 2010 is insensitive to the inclusion or

exclusion of the financial crisis. This finding suggests that the source of instability in the

response of forward bond yields to inflation surprises occurring around 2010 is not simply a

reflection of financial market volatility but, instead, is likely due to deeper structural change.

Finally, rolling-window regressions of our forward rate model also indicate a similar de-

cline in δπ that we observe in our baseline inflation compensation model. Panel C of Figure

D.1 reproduces the rolling-window regression estimates of δπ using 10-year rolling samples

for our baseline regression model, as shown in the main text, for comparability. Panel D of

Figure D.1 then illustrates the time variation in δπ from the forward rate regression model in

Equation (46). We observe the same pattern of structural change as in our baseline inflation

compensation regression model. Early in the sample, prior to 2012, δπ is estimated to be

statistically significant and positive. However, the point estimate of δπ begins to decline in

2010 and falls to values not different from zero by 2012. The results of these alternative spec-

ifications provide further evidence that the FOMC’s decision to communicate a numerical

inflation objective helped better anchor US inflation expectations.

D.3 Alternative Horizon for Breakeven Inflation Compensation

In our baseline high-frequency event-study regression, we use the daily change in the 1-year,

9-year forward breakeven inflation compensation around CPI announcements. However, we

can also analyze the change in other horizons of forward inflation breakevens around these

announcements. Figure D.2 below plots the breaktest coefficient on the core CPI inflation

surprise along with 90% confidence intervals across many horizons. These tests show that

the sensitivity of forward inflation compensation declined across all horizons after 2012 and

significantly so for horizons beyond 9 years, showing that our results are robust to using

alternative horizons of far-forward inflation compensation.

E SVAR Model of Household Inflation Expectations

In this section, we provide further details and results from our VAR model of household’s

inflation expectations that is presented in Section 4.2 of the main text.
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E.1 Data and VAR Model

We analyze impulse responses from a four variable structural VARmodel to detect a potential

change in the degree to which household’s longer-term inflation expectations are anchored

since 2012. We include m/m annualized CPI energy inflation and m/m annualized CPI food

inflation in addition to m/m annualized overall CPI inflation to account for the documented

fact that some consumer prices, such as gasoline and grocery prices, are more important than

others in shaping household inflation expectations (Coibion and Gorodnichenko, 2015; Cav-

allo, Cruces and Perez-Truglia, 2017). We add to these CPI inflation measures the median

5- to 10-year inflation expectation from the University of Michigan’s Survey of Consumers.

We model these series as a VAR(3) over two distinct samples: January 1999 - December

2011 and January 2012 - December 2019 on the basis of lag-selection criteria which recom-

mend 1 or 2 lags depending on the sample and the criteria. The start date of the recent

sample period, January 2012 - December 2019, is dictated by the Federal Reserve’s January

2012 adoption of an inflation target. It is precisely this change in FOMC communication

that we wish to analyze. The start date of the early sample period, January 1999 - December

2011, is selected to align with the regression samples used for other specifications in the main

text. Finally, to make the results comparable across samples, we scale the shocks to have

the same impact effect on the driving variable (i.e. energy inflation, food inflation, or overall

inflation) in both samples.

We conduct inference on the estimated VAR models from a Bayesian perspective. In

particular, error bands are calculated by assuming a non-informative conjugate (Normal-

Inverse Wishart) prior over the VAR lag coefficients and covariance matrix. Our exact

implementation follows Koop and Korobilis (2010) closely. 68% error bands are calculated

based on 10,000 draws from the posterior distribution of the identified impulse responses.

E.2 Shock Identification

The timing of CPI data releases relative to when the household survey data are collected

naturally lends itself to identification by zero short-run restrictions. In particular, we use a

recursive identification strategy with the following ordering: CPI energy inflation, CPI food

inflation, the median of households’ expectations for inflation over the next 5 to 10 years,

and CPI inflation. This ordering allows us to identify 3 inflation shocks: an energy inflation

shock, a food inflation shock, and a core inflation shock. Our recursive identification strat-

egy aims to identify these shocks based on the following sequence of surveys and data releases.
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We assume that households are aware of energy and food inflation in the current month

when they respond to the University of Michigan survey. After all, the typical household

frequents gasoline stations, grocery stores, and restaurants at least once a week. Therefore,

our shock identification allows for inflation in salient goods, namely gasoline and food, to

influence their inflation expectations within the current month. This argues for ordering

energy and food inflation ahead of households’ expectations for inflation over the next 5 to

10 years in our recursively identified VAR model. We distinguish energy from food inflation

shocks by ordering energy inflation ahead of food inflation. Our assumption is that an exoge-

nous increase in energy prices can spillover to food prices within the month, perhaps through

transportation and delivery costs. Conversely, we assume that an exogenous increase in food

inflation can’t spillover to energy inflation within the month.

Finally, we identify a core inflation shock on the basis of the timing of the consumer

interviews conducted by the University of Michigan. Every month, the University of Michi-

gan calls more than 500 households to conduct interviews. These interviews are conducted

beginning either late in the previous month or early in the current month. Importantly, the

final interviews are always completed before the end of the current month. So, in March for

example, the first interview is conducted on February 26 and the last interview is completed

by March 24. Importantly for our identification strategy, the CPI report for the reference

month is always released the following month. For example, the March CPI report is released

sometime in early April. Therefore, the assumption we make is that households’ long-term

inflation expectations can’t respond within the month to the CPI release. After all, even

a consumer that is eagerly awaiting the latest BLS report on price inflation in the current

month won’t be able to acquire this information until the following month. This argues for

ordering CPI inflation after households’ expectations for inflation over the next 5 to 10 years

in a recursively identified VAR model.5 Since we order energy and food inflation ahead of

inflation expectations and CPI inflation, we interpret the orthogonalized innovation to CPI

inflation as a core inflation shock.

E.3 Additional SVAR Results

Figure 6 in the main text shows a meaningful change in the impulse responses of longer-term

inflation expectations in response to each of the three shocks we identify. In particular, these

5Leduc, Sill and Stark (2007), Clark and Davig (2011), Leduc and Sill (2013) use a similar justification

for their recursive identification schemes.
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impulse responses suggest that energy inflation, food inflation, and core inflation surprises

no longer feed through to households’ longer-term inflation expectations after 2012.

In this section, we show that, in contrast to longer-term inflation expectations, house-

holds’ near-term inflation expectations continued to respond to these inflation surprises after

2012. In particular, we now repeat the above analysis but replace households’ expectations

for inflation over the next 5 to 10 years with households’ expectations for inflation over the

next 1 year. In Figure E.1, we observe statistically significant revisions of households’ 1-year

inflation expectations in response to both energy and food inflation shocks.

These results serve two purposes. First, they show that anchoring longer-term inflation

expectations need not eliminate fluctuations in near-term inflation expectations. Recall that,

in response to energy inflation shocks, which Coibion and Gorodnichenko (2015) demonstrate

are a primary driver of household near-term inflation expectations, longer-term inflation ex-

pectations show little response after 2012. Therefore, these results help to further reconcile

our conclusions with those in Coibion and Gorodnichenko (2015) since they illustrate the dis-

parate behavior of households’ near-term and longer-term inflation expectations in response

to salient price changes in the post-2012 sample. Second, these results demonstrate that the

nature of inflation shocks didn’t fundamentally change over the two samples. In particular,

households continued to revise their near-term inflation expectations after 2012 in much the

same way they did prior to 2012. Instead, what changed in the latter sample period is the

degree to which these revisions in near-term inflation expectations lead to corresponding

revisions in their longer-term inflation expectations.
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Table A.1: Calibrated Model Parameters

Parameter Description Value Source

β Household Discount Factor 0.9995 Ireland (2007)

χ Disutility of Working Scalar 0.476 Leduc and Liu (2016)

θ Elasticity of Substitution Intermediates 6.0 Ireland (2003)

α Share Parameter in Matching Function 0.5 Blanchard and Gaĺı (2010)

µ Matching Efficiency 0.645 Leduc and Liu (2016)

ρ Job Separation Rate 0.1 Monthly Separation Rate of 3.5%

ϕu Flow Benefit of Unemployment 0.25 Hall and Milgrom (2008)

κ Vacancy Cost 0.14 Leduc and Liu (2016)

b Nash Bargaining Parameter 0.5 Blanchard and Gaĺı (2010)

γ Real Wage Rigidity 0.8 Gertler and Trigari (2009)

ϕP Cost of Adjusting Nominal Prices 270 Calibrated to Match Phillips Curve

ρπ Persistence of Inflation Expectations 0.93 Calibrated to Match Phillips Curve

Π∗ Central Bank Inflation Target 1.008 Calibrated to Match Phillips Curve

ϕπ Central Bank Response to Inflation 0.8594 Ireland (2007)

ρa Preference Shock Persistence 0.9097 Ireland (2007)

σa Preference Shock Volatility 0.01 Implies 1% Demand Shock
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Table B.1: Reduced-Form Phillips Curve Regressions Under Alternative Wage Setting

Model Simulations Model Simulations

With Real Wage Rigidity γ = 0.8 No Real Wage Rigidity γ = 0.0

1999–2011 2012–2019 1999–2019 1999–2011 2012–2019 1999–2019

Constant 3.18∗∗∗ 3.18∗∗∗ 3.18∗∗∗ 3.18∗∗∗ 3.18∗∗∗ 3.18∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Unemployment Rate −0.19∗∗∗ −0.09∗∗∗ −0.19∗∗∗ −0.20∗∗∗ −0.10∗∗∗ −0.20∗∗∗

(0.04) (0.02) (0.04) (0.03) (0.02) (0.03)

Constant × It≥2012 0.00 0.00

(0.03) (0.03)

Unemployment Rate × It≥2012 0.10∗∗ 0.11∗∗∗

(0.04) (0.04)

Observations 156 96 252 156 96 252

R2 0.34 0.37 0.35 0.48 0.45 0.48

Bootstrapped standard errors are shown in parenthesis. ∗p < 0.10,∗∗p < 0.05,∗∗∗p < 0.01

See Section B for details.
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Table B.2: Reduced-Form Phillips Curve Regressions Under Alternative Degree of Pass-

Through from Inflation Surprises to Long-Term Inflation Expectations

Model Simulations Model Simulations

Reduced-Form Phillips Curve Expectations-Augmented Phillips Curve

1999–2011 2012–2019 1999–2019 1999–2011 2012–2019 1999–2019

Constant 3.18∗∗∗ 3.18∗∗∗ 3.18∗∗∗ −0.00 0.00 −0.00

(0.02) (0.04) (0.02) (0.03) (0.02) (0.02)

Unemployment Rate −0.19∗∗∗ −0.12∗∗∗ −0.19∗∗∗ −0.18∗∗∗ −0.17∗∗∗ −0.18∗∗∗

(0.02) (0.03) (0.02) (0.02) (0.02) (0.02)

Constant × It≥2012 0.00 0.00

(0.04) (0.03)

Unemployment Rate × It≥2012 0.07∗∗ 0.01

(0.04) (0.03)

Observations 156 96 252 156 96 252

R2 0.56 0.37 0.53 0.55 0.53 0.56

Bootstrapped standard errors are shown in parenthesis. ∗p < 0.10,∗∗p < 0.05,∗∗∗p < 0.01

See Section B for details.
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Figure B.1: Impulse Responses to a Demand Shock Under Drifting & Anchored Expectations
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Note: The figure shows the impulse responses in the theoretical model to a one standard deviation aggregate

demand (preference) shock under anchored and drifting inflation expectations, with the latter shown for

various alternative model calibrations. See Section B for details.
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Table C.1: Robustness: US Reduced-Form Phillips Curve Regressions with HAR Standard

Errors

Newey-West Standard Errors HAR Standard Errors

Core Inflation Core Inflation

1999-2011 2012-2019 1999-2019 1999-2011 2012-2019 1999-2019

Constant 3.18∗∗∗ 2.22∗∗∗ 3.18∗∗∗ 3.18∗∗∗ 2.22∗∗∗ 3.18∗∗∗

(0.22) (0.22) (0.22) (0.24) (0.22) (0.22)

Unemployment Rate −0.19∗∗∗ −0.04 −0.19∗∗∗ −0.19∗∗∗ −0.04 −0.19∗∗∗

(0.03) (0.04) (0.03) (0.04) (0.04) (0.03)

Constant × It≥2012 −0.96∗∗∗ −0.96∗∗

(0.28) (0.28)

Unemployment Rate × It≥2012 0.15∗∗∗ 0.15∗∗

(0.04) (0.05)

Observations 156 96 252 156 96 252

R2 0.49 0.09 0.45 0.49 0.09 0.45

Note: Core Inflation is measured as the year/year percent change in the CPI excluding food and energy. Standard errors

are shown in parenthesis. For the regressions on the left panel, we use Newey-West standard errors with 12 lags. For the

regressions on right panel, we use HAR robust standard errors (a QS kernel with v = 0.4T 2/3 cosine terms) and fixed-b

asymptotic critical values from Kiefer and Vogelsang (2005). ∗p < 0.10,∗∗p < 0.05,∗∗∗p < 0.01
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Figure C.1: Robustness of Phillips Curve Structural Break Evidence Post-2011

Both panels use monthly data from January 1999 through December 2019. For Panel B, 15% of the obser-

vations on the ends of the sample are not examined as break points. 10% critical values are obtained from

Andrews (1993) for π0 = 0.15 and p = 1.
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Table D.1: Summary Statistics of US Core CPI Inflation Surprises

1997–2011 2012–2019

Mean −0.00 −0.02

[0.63] [0.01]

Standard Deviation 0.07 0.06

Skewness 0.13 −0.23

[0.48] [0.37]

Kurtosis −0.35 0.21

[0.35] [0.69]

Jarque-Bera 1.40 1.00

[0.50] [0.61]

Observations 179 96

Note: p-values in brackets.
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Table D.2: Chow Test: US Forward Rate Model

Estimation Sample

∆ 1-Year, 9-Year Fwd Nominal Rate 1997–2011 2012–2019 1997–2019

Constant −0.00 −0.00 −0.00

(0.01) (0.01) (0.01)

Core CPI surprise 0.10∗ −0.04 0.10∗

(0.06) (0.06) (0.06)

GS Agriculture Price Index 0.00 0.02∗∗ 0.00

(0.01) (0.01) (0.01)

GS Energy Price Index 0.00 0.01∗∗∗ 0.00

(0.00) (0.00) (0.00)

Constant ×It≥2012 −0.00

(0.01)

Core CPI surprise ×It≥2012 −0.14

(0.09)

GS Agriculture Price Index ×It≥2012 0.01

(0.01)

GS Energy Price Index ×It≥2012 0.00

(0.00)

Observations 179 95 274

R2 0.04 0.12 0.06

Note: Eicker-White standard errors in parenthesis. ∗p < 0.10,∗∗p < 0.05,∗∗∗p < 0.01
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Table D.3: Structural Break Tests at an Unknown Date: US Inflation Compensation Model

Excluding Financial Crisis

Structural Break Test

∆ 1-Year, 9-Year Fwd Breakeven Inflation Andrews-Quandt Andrews-Ploberger

Break Date Test Statistic Test Statistic

Constant 2003:05 1.33 0.11

[0.95] [1.00]

Core CPI surprise 2010:05 9.61∗∗ 2.40∗∗

[0.03] [0.03]

Food & Energy CPI surprise 2011:08 3.39 0.45

[0.48] [0.48]

All Coefficients 2010:05 12.46∗ 3.61∗

[0.09] [0.09]

Residual Variance 2003:04 3.28 1.06

[0.50] [0.18]

Note: Approximate asymptotic p-values from Hansen (1997) in brackets.

Observations: 245. ∗p < 0.10,∗∗p < 0.05,∗∗∗p < 0.01
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Table D.4: Structural Break Tests at an Unknown Date: US Forward Rate Model Excluding

Financial Crisis

Structural Break Test

∆ 1-Year, 9-Year Fwd Nominal Rate Andrews-Quandt Andrews-Ploberger

Break Date Test Statistic Test Statistic

Constant 2013:11 2.83 0.54

[0.59] [0.41]

Core CPI surprise 2010:02 8.22∗ 1.85∗

[0.06] [0.06]

GS Agriculture Price Index 2003:09 5.23 1.27

[0.22] [0.13]

GS Energy Price Index 2011:05 4.18 0.63

[0.35] [0.35]

All Coefficients 2010:02 12.74 3.87

[0.17] [0.15]

Residual Variance 2013:11 2.66 0.68

[0.63] [0.32]

Note: Approximate asymptotic p-values from Hansen (1997) in brackets.

Observations: 268. ∗p < 0.10,∗∗p < 0.05,∗∗∗p < 0.01
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Figure D.1: Robustness of High-Frequency Regressions
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Panel D: US Forward Rate Model - Rolling Window Regression Estimates
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Panels A and B Note: Each panel shows the sequence of Chow test statistics as a function of candidate

break dates. For each model, 15% of the observations on the ends of the sample are not examined as break

points. 10% critical values are obtained from Andrews (1993).

Panels C and D Note: Each panel shows the sequence of estimates of δπ as a function of time. The date on

the x-axis denotes the end of the 10-year rolling sample. The 90% confidence intervals are computed as the

point estimate plus or minus 1.645 times the Eicker-White standard error.
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Figure D.2: Robustness of Structural Break in Baseline Regression Across Various Horizons

of Breakeven Inflation

Note: This chart shows the chow test coefficeint for a break in Janaury 2012 in the baseline regression

model for various horizons of breakeven inflation rates. Each horizon of forward inflation rates is a separate

regression using monthly data from January 1999 through December 2019.
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Figure E.1: VAR Impulse Responses of Household’s Near-Term Inflation Expectations

Expected Inflation 1 Year Ahead
Sample: 1999-2011
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Sample: 2012-2019
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Core Inflation Shock
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Note: The figure shows VAR-estimated impulse responses of household’s near-term inflation expectations

in response to various inflationary impulses. The impulse responses in the left column are estimated from

1999–2011. The impulse responses in the right column are estimated from 2012–2019. Each VAR model

is estimated on monthly data comprised of CPI energy inflation, CPI food inflation, near-term inflation

expectations collected from the University of Michigan Survey of Consumers, and CPI inflation. The CPI

inflation series enter the VAR in month-over-month inflation rates, annualized.
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