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Abstract

Expectations play a central role in macroeconomics. Expectations are empirically
measured from surveys or financial markets and are frequently analyzed in Vector au-
toregression (VAR) models alongside realized data of the same variable. However, this
leads to two different expectations for the same variable: the VAR-based forecast and
the external forecast. This paper proposes a Bayesian prior over the VAR parameters
which allows for varying degrees of consistency between these two forecasts. As we
demonstrate in two applications, our approach can sharpen structural VAR identifica-
tion of forward guidance shocks and enhances VAR forecasts of inflation tail risks.
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1 Introduction

The conduct of monetary policy has shifted from primarily managing reserves and overnight
interest rates to placing a greater emphasis on managing expectations, often through central
bank communication. Therefore, analyzing expectations is necessary to study monetary poli-
cies which, for instance, aim to steer interest rate expectations through forward guidance or
anchor inflation expectations. While vector autoregression (VAR) models remain one of the
most flexible time-series tools for conducting such empirical macroeconomic research, there
is no agreed upon way to integrate expectations into VAR models. At one extreme, includ-
ing survey or financial market-implied expectations in a VAR model in a “model consistent”
manner, in the sense that the survey or market forecast and the VAR-implied forecast align
at every horizon, seems to contradict mounting empirical evidence against full information
rational expectations (Coibion et al., 2018). Alternatively, at the other extreme, including
expectations without imposing any connection between the VAR forecast and the survey or
market forecast fails to fully leverage the rich information that expectations contain for VAR
estimation, identification, and forecasting (see, for example, Cogley, 2005).

In this paper, we propose a Bayesian approach to integrating expectations, as measured
by forecasts from surveys, into a VAR model that includes realized values of the same or
a closely related variable. We leverage the fact that VARs themselves have the ability to
generate a forecast for any variable included in the model. Then, using this VAR-implied
forecast together with the survey forecast, we argue for constructing a non-degenerate prior
over VAR coefficients that places greater mass on areas of the parameter space where the
two forecasts align. We call this the forecast consistent prior. Our prior allows for a dynamic
correlation between the realized data and its survey or market forecast, unlike the popular
Minnesota prior, without dogmatically restricting the discrepancy between the two forecasts.
From an implementation standpoint, our method relies on a computationally efficient impor-
tance sampling technique which simply re-weights the posterior draws. Intuitively, under the
forecast consistent prior, a draw which is closer to satisfying forecast consistency receives a
greater weight. These weights are informed by a hyperparameter which governs the precision
of our prior and can be varied to allow for varying degrees of forecast consistency.
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A novel aspect of our prior is its applicability to structural VAR models to aid in the
identification of structural shocks. For some intuition, note that impulse responses are simply
conditional VAR forecasts. When the forecast consistent prior is placed on unconditional
forecasts then our prior shapes the reduced-form VAR coefficients. However, when the
forecast consistent prior is placed on impulse responses — or forecasts that are conditional
on the realization of a structural shock — then our prior can also inform the structural VAR
coefficients. One natural application which we explore in this paper is the addition of our
prior to a structural VAR identified using sign-restrictions. Structural VAR (SVAR) models
identified by sign-restrictions on impulse responses only identify the model parameters up
to a set, as discussed by Moon and Schorfheide (2012) and Uhlig (2017). Within this set,
any two alternative SVAR models are equally probable. Forecast consistency restrictions on
impulse responses provide probabilistic restrictions motivated by economic theory that can
break this equality and distinguish alternative SVAR models.

We illustrate the usefulness of our approach in two applications to shed light on important
issues for monetary policy, including: the effects of forward guidance shocks on output and
the role that inflation expectations played in shaping inflation tail-risks after the Great
Recession. The forward guidance application is particularly illustrative. In this application
we add Blue Chip forecasts of one-year ahead short-term interest rates to the Uhlig (2005)
VAR model. We apply similar sign restrictions that Uhlig (2005) proposes and find that
forward guidance shocks which reduce survey expectations of future interest rates have an
ambiguous effect on output. However, we also show that these sign-restrictions admit a wide
range of VAR-implied forecasts of the federal funds rate, many of which deviate significantly
from the path of rates predicted by forecasters following the forward guidance shock. We then
layer the forecast consistent prior on top of the sign-restrictions to identify forward guidance
shocks which better align these two forecasts. We find that such shocks lead output to rise
and, moreover, the estimated output effects increase with the degree of forecast consistency.
Monte Carlo simulations from a New-Keynesian model in which survey forecasts exhibit
information rigidity suggest this result may arise from the ability of the forecast consistent
prior to better recover the true forward guidance shocks as opposed to masquerading shocks
(as in Wolf, 2020) which satisfy the sign restrictions but imply less forecast consistency.
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2 The Forecast Consistent Prior

In this section we introduce our VAR notation, next we use a simple example with a bivariate
VAR to introduce the forecast consistent prior, and then we show how to apply our prior in
a more general VAR setting.

2.1 VAR Preliminaries

A reduced-form VAR(l) is given by:

Yt = AD + A1Yt−1 + A2Yt−2 + . . .+ AlYt−l + ut, (1)

where Yt is an m × 1 vector of data at date t = 1 − l, . . . , T , Ai are coefficient matrices
of size m × m, and ut is the one-step ahead prediction error, or reduced-form residuals,
which are assumed to be distributed normally with mean 0 and covariance matrix Σ. AD

encapsulates constants and other deterministic components of the VAR model. We assume
that this reduced-form VAR is derived from an underlying structural VAR model:

BYt = BD +B1Yt−1 +B2Yt−2 + . . .+BlYt−l + εt, (2)

in which B is an m ×m non-singular coefficient matrix which governs the contempora-
neous interactions between the variables Yt, Bi are coefficient matrices of size m ×m, and
εt are the structural shocks which are independent of one another, mean zero, and have a
standard deviation of one.

Combining equations (1) and (2) reveals that the reduced-form residuals ut are related
to the structural shocks by the mapping ut = B−1εt. Therefore, knowledge of B allows one
to uncover the structural VAR model from the estimated reduced form VAR model. We
parameterize B as follows:

B−1 = CQ, (3)

where C is the lower-triangular Cholesky factor of Σ and Q is a square m ×m orthogonal
rotation matrix such that Q′Q = QQ′ = Im. This parameterization is able to encompass
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multiple identification strategies including sign-restrictions which consider a set of alternative
rotation matrices Q and recursive short-run restrictions which achieve point identification
by assuming that Q = Im.

We take a Bayesian approach to estimation and inference throughout the paper. We
describe the prior in terms of the stacked version of the reduced-form VAR in equation (1):

Y = XA+ U, (4)

where Xt = [Y ′t−1, Y
′
t−2, . . . , Y

′
t−l]′, Y = [Y1, . . . , YT ]′, X = [D,X1, . . . , XT ]′, U = [u1, . . . , uT ]′

and A = [AD, A1, . . . , Al]′. The OLS estimates of A and Σ are given by:

Â = (X ′X)−1X ′Y (5)

Σ̂ = 1
T − 1(Y −XÂ)′(Y −XÂ) (6)

We assume the following Normal and Inverse-Wishart conjugate priors for α = vec(A) and
Σ, denoted by p(α,Σ) = p(α|Σ)p(Σ), and parameterized by ν0, V0, α0 = vec(A0), and S0:

Σ ∼ IW (S0, ν0),

α|Σ ∼ N (α0,Σ⊗ V0).

Given these priors, the posterior distributions of α and Σ are:

Σ|Y ∼ IW (ST , νT ), (7)

α|Σ, Y ∼ N (αT ,Σ⊗ VT ), (8)

where:

νT = ν0 + T,

VT = [V −1
0 +X ′X]−1,

AT = VT [V −1
0 A0 +X ′XÂ], and

ST = (Y −XÂ)′(Y −XÂ) + S0 + Â′(X ′X)Â+ A′0V
−1

0 A0 − A′T (V −1
0 +X ′X)AT ,
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with αT = vec(AT ).1 We assume non-informative priors throughout the empirical applica-
tions in this paper by setting V0 to the zero matrix and ν0 = 0.

2.2 Introducing the Forecast Consistent Prior

We now introduce the forecast consistent prior. To generalize notation, let A(α) = A

denote the companion form of the VAR(l) lag coefficients, A1, ..., Al, where the notation A(α)
makes explicit the fact that A is comprised of the elements of α. However, for illustrative
purposes, assume for now that we are interested in a bi-variate VAR(1) with no deterministic
components, so that A1 = A = A:

 πt

ES
t (πt+1)

 = A

 πt−1

ES
t−1(πt)

+ ut =

a11 a12

a21 a22


 πt−1

ES
t−1(πt)

+

u1,t

u2,t

 , (9)

where πt is a variable of interest such as inflation and ES
t (πt+1) is the one-period ahead

forecast of πt obtained from survey data.2 When left unconstrained, this model implies two
forecasts for the same variable: the VAR-based forecast and the survey forecast. From the
first equation of the VAR, we can generate the time t VAR-based forecast for πt+1:

EVAR
t (πt+1) = a11πt + a12E

S
t (πt+1). (10)

The only way for the VAR and survey forecasts to always be consistent with one another,
so that EVAR

t (πt+1) = ES
t (πt+1) for all possible realizations of ut = [u1,t, u2,t]′, is to impose

the following restrictions on the VAR coefficients:

g(A) = v′1A− v′2Iml = [0, 0] ⇔ [a11, a12 − 1] = [0, 0], (11)

where vi is the companion-VAR variable selection vector defined as the i’th column of the
Iml identity matrix. However, imposing strict consistency at all times assumes that the two
forecasts are conceptually and practically identical, assumptions which may be difficult to
defend given issues ranging from the presence of information rigidities to measurement error.

1In principle, the forecast consistent prior can be paired with any prior over the VAR parameters.
2Throughout the paper we analyze survey-based expectations. However, the same methodology applies

to expectations obtained from financial markets or other sources.

6



While acknowledging these issues, completely ignoring the relevance of the survey forecasts
for the VAR forecasts neglects the potentially useful information the econometrician possesses
about the a-priori relationships between the variables in the VAR.

By adopting a Bayesian approach, we can vary the tightness of these cross-equation
restrictions to allow for the possibility that survey forecasts and VAR-based forecasts are
related to one another, albeit imperfectly. We can consider the following three cases which
vary based on the degree of forecast consistency imposed:

1. Strict Forecast Consistency: g(A) = [0, 0]. Therefore, a11 = 0 and a12 = 1 is
dogmatically imposed.

2. Forecast Consistent Prior: g(A) ∼ N (0, (λW )−1) . The forecast consistent prior
is centered at zero so that, on average, the VAR and survey forecasts are consistent
with one another. However, the two forecasts may deviate from each other from time
to time with the size of the potential forecast deviations governed by the weighting
matrix W and the tuning parameter λ.

3. No Forecast Consistency: g(A) is left unrestricted which is equivalent to a diffuse
prior over g(A).

Strict forecast consistency and no forecast consistency can be regarded as limiting cases when
λ approaches ∞ and 0, respectively. In terms of A, the prior density function of g(A) can
be treated as the likelihood function for A using observations satisfying these restrictions.3

We can calculate the posterior density of α under the forecast consistent prior at low
computational cost by importance sampling. First, define the posterior density of α obtained
without imposing forecasting consistency by p(α|Y,Σ) and define the forecast consistent prior
density kernel for α by h(α) = p(g(A)). Second, obtain the forecast consistent posterior
density of α:

p(α|Y,Σ, g(A)) = h(α)p(α|Y,Σ)∫
h(α)p(α|Y,Σ)dα. (12)

3We specify the forecast consistent prior as a normal distribution which is the maximum entropy prior
for g(A) under the constraint that the first moment of g(A) is zero and the second moment of g(A) is
(λW )−1 which, in the information-theoretic sense, minimizes the amount of prior information on non-targeted
moments of g(A) (Robert, 2007; Cover and Thomas, 2012).
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Using the above definition, we can simulate posterior draws of α from p(α|Y,Σ, g(A)) simply
by re-weighting the posterior draws from p(α|Y,Σ). For α(m), a random draw from p(α|Y,Σ),
we define the following importance weight:

w(α(m)) = h(α(m))∑M
j=1 h(α(j))

, α(j) ∼ p(α|Y,Σ). (13)

We then re-sample these draws according to the weights [w(α(1)), . . . , w(α(M))] to simulate
the posterior density p(α|Y,Σ, g(A)).

2.3 The Forecast Consistent Prior in a Structural VAR Model

The previous section motivates our forecast consistent prior in a reduced-form VAR. In this
setting, the forecast consistent prior offers a theoretically grounded approach to parameter
shrinkage. However, the full conceptual appeal of this prior is best illustrated in the context
of a structural VAR model. In a structural VAR, the forecast consistent prior informs the
structural VAR parameters for which, even with infinite observations, the data is indetermi-
nate. Therefore, the benefits of the forecast consistent prior can extend beyond shrinkage
when the econometrician is attempting to identify structural innovations.

As discussed above, the mapping between the reduced form and structural VAR models
is defined by the coefficient matrix B which we parameterize by B−1 = CQ where C is the
lower-triangular Cholesky factor of Σ and Q is a square m×m orthogonal rotation matrix.
For illustrative purposes, consider for a moment the VAR(1), which generalizes to a VAR(l)
by writing the VAR in companion form:

Yt = A1Yt−1 + ut = AYt−1 + CQεt, (14)

where C = [C; 0m(l−1)×m] is the companion form of C and εt are the structural innovations
of interest. Suppose that we are interested in the effects of one particular structural shock
which, without loss of generality, we label ε1,t. Then the initial or impact-effect of a 1 unit
realization of ε1,t can be recovered directly from the first column of CQ which is simply the
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forecast of Yt conditional on ε1,t = 1 in period t and 0 in all other periods:

EV AR
t (Yt|ε1,t = 1) = CQe1, (15)

where ei is a selection vector defined as the i’th column of the Im identity matrix. The
h−step ahead impulse response to this structural shock can be written as:

IRF (A,C, Q, h|ε1,t = 1) = EV AR
t (Yt+h|ε1,t = 1) = AhCQe1, (16)

for h = 0, . . . , H. The elements A and C of the h-step ahead impulse response can be
informed by the observed data contained in Y . However, the matrix Q must be identified
from prior economic reasoning since the likelihood function of the VAR is invariant to Q.

When the VAR contains both realized and survey data, forecast consistency provides
theoretically grounded restrictions on the matrix Q which, together with Σ, provides the
mapping between reduced form VAR residuals and structural shocks. For example, if we
suppose once again that yt = [πt, ES

t (πt+1)]′, where ES
t (πt+1) is the 1-step ahead forecast of

πt obtained from survey data, then forecast consistency suggests the restrictions:

[v′1A− v′2Iml]Ah−1CQe1 = 0, (17)

should hold for h = 1, . . . , H. More formally, the forecast consistent prior can be expressed
as g(A,C, Q|H) ∼ N (0H , (λW )−1) where W is a H ×H weighting matrix and λ calibrates
the overall tightness of the forecast consistency restrictions.

Equation (17) draws an important connection between unconditional and conditional
forecast consistency. In the limiting case of strict unconditional forecast consistency, v′1A =
v′2Iml, and the forecast consistent prior places no restrictions on Q. This extreme case
might arise if, for example, the underlying data-generating process is a full information
rational expectations model. However, in our forward guidance application, we find that
unconditional forecast consistency doesn’t hold and therefore the forecast consistent prior
does in fact shape the posterior distribution of Q. Monte Carlo simulations from a rational
expectations model therefore are not able to replicate our empirical findings suggesting that,
in reality, the existence of information frictions may make this extreme case unlikely.
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Structural VAR identification in the presence of survey data can benefit from the use of
the forecast consistent prior by weighting posterior draws of α, Σ, and Q by the degree to
which VAR-based and survey forecasts align. While this is true regardless of the identifica-
tion strategy pursued, a growing VAR literature aims to identify structural shocks of interest
by restricting the shape of the impulse responses to identify parameters in Q. VAR models
identified by sign restrictions typically find a large set of Q matrices that are compatible with
these restrictions (Moon and Schorfheide, 2012; Uhlig, 2005, 2017). In this setting, forecast
consistent priors may be especially of interest. In particular, the sign-restricted VAR litera-
ture has been criticized on the grounds that sign-restrictions alone do not rule out structural
VAR models which are inconsistent with narrative evidence or plausible empirical specifi-
cations of equilibrium models (Arias et al., 2018; Antoĺın-Dı́az and Rubio-Ramı́rez, 2018;
Wolf, 2020). While addressing the same shortcoming, our approach instead provides further
restrictions to narrow the set of potential structural VAR models based on the dynamic
linkages between two different forecasts of the same variable, which may be preferred in
applications of sign-restrictions beyond identifying conventional monetary policy shocks.

We briefly illustrate the potential for our conditional forecast consistent prior to sharpen
the identification of structural VAR parameters in the context of sign restrictions. First,
define Q to be the identified set of rotation matrices Q that satisfy the sign restrictions:

Q = {Q|B−1 = CQ, v′i · IRF (Â, Ĉ, Q, h|ε1,t = 1)r ≥ (≤)0 , ∀ r = 1, · · · , R}, (18)

where, we assume for a moment that, A and C are fixed at their OLS estimates, and
v′i · IRF (Â, Ĉ, Q, h|ε1,t = 1)r ≥ (≤)0 denotes the r-th restriction on the impulse response
of VAR variables with R representing the total number of restrictions on impulse responses.
Since the data do not provide additional information to distinguish different Q matrices in the
set of Q, and since all matrices in the set Q satisfy the sign restrictions, there is no basis for
preferring one element of Q over another. In contrast, our forecast consistent prior explicitly
breaks this symmetry by penalizing structural coefficients that generate greater divergence
between the survey and VAR-based forecasts. Hence, our forecast consistent prior induces
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a conceptually meaningful prior over the set Q and hence over alternative structural VAR
models.4

To make matters concrete, consider the simple VAR(1) model:

 πt

ES
t (πt+1)

 =

1 0
0 1


 πt−1

Es
t−1(πt)

+

 1 0
0.5 1


q11 q12

q21 q22


ε1,t

ε2,t

 , (19)

where ES
t (πt+1) is the 1-step ahead forecast of πt obtained from survey data. Suppose that

we aim to identify a “news” shock for which survey forecasts increase. In addition to this
sign normalization, we impose the sign restriction that the impact effect of this news shock
on the realized data in πt is positive. Identifying this shock requires requires identifying a
column of Q. Without loss of generality, we label the news shock ε1,t and therefore aim to
identify the elements of the first column of Q, [q11, q21]′. Without identifying restrictions,
the identified set of q11 and q21 is the entire unit circle. We impose the following restrictions
to further narrow the identified set of q11 and q21.

1. Normalization Restriction: The “news” shock increases survey forecasts in

period t.

R1(q11, q21) =
{

(q11, q21)
∣∣∣∣∣∂ES

t (πt+1)
∂ε1,t

= 0.5q11 + q21 > 0
}
.

2. Sign Restriction: Realized data increases alongside survey forecasts in pe-

riod t.

R2(q11, q21) =
{

(q11, q21)
∣∣∣∣∣ ∂πt∂ε1,t

= q11 > 0
}
.

3. Forecast Consistency Restriction: The VAR forecast in period t+ 1 is con-

sistent with the increase in survey forecasts in period t.

R3(q11, q21) =
{

(q11, q21)
∣∣∣∣∣∂ES

t (πt+1)
∂ε1,t

− ∂EV AR
t (πt+1)
∂ε1,t

= q21 − 0.5q11 = 0
}
.

Under the forecast consistent prior, the forecast consistency restriction in R3 is loosely
imposed by assuming that q21− 0.5q11 follows a Normal distribution centered around 0. We
denote this prior by g(Q|A,C, h = 1) = q21 − 0.5q11 ∼ N (0, λ−1).

4In practice, the Haar prior implicitly induces an informative, but arbitrary distribution over Q (Baumeis-
ter and Hamilton, 2015; Wolf, 2020).
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We can graphically illustrate how the forecast consistent prior shapes the posterior set of
the structural VAR parameters. Panel (a) of Figure 1 highlights the identified set of (q11, q21)
when we impose only the normalization and sign restrictions (R1 and R2). The blue line on
the unit circle outlines the identified set under these two restrictions. We cannot discrimi-
nate different locations in the blue line without additional identifying restrictions. When we
augment R1 and R2 with g(Q|A,C, h = 1), the forecast consistent prior, we can discriminate
different points on the blue line in panel (a) in a probabilistic way. Panel (b) of Figure 1
illustrates the forecast consistent prior’s impact on the posterior distribution of (q11, q21) by
shading with darker colors the region of the parameter space that has a higher probability
mass under our forecast consistent prior. The forecast consistent prior adds curvature to the
posterior distribution of structural parameters which enables the econometrician to discrim-
inate between alternative structural VAR models that are otherwise equally likely according
to the sign-restrictions. To sharpen this argument further, in the online appendix, we show
that it is possible to go beyond set identification and instead achieve point identification by
selecting the elements of the appropriate column of Q to maximize the degree of forecast
consistency within the set of rotation matrices which satisfy the sign restrictions.

2.4 Selecting The Degree of Forecast Consistency

Before turning to our applications, we discuss a critical issue in implementing the forecast
consistent prior: selecting the value of the hyperparameter λ. The choice between alternative
values of λ amounts to selecting among alternative VAR models. Therefore, in keeping with
our Bayesian perspective, we can compare competing models indexed by alternative values
of λ by way of the marginal likelihood. In the context of unconditional forecast consistency,
using the marginal likelihood to select λ follows much of the existing Bayesian VAR literature
which selects hyperparameters on priors over the reduced-form VAR parameters (α and Σ)
by maximizing the marginal likelihood.

However, we can also use the marginal likelihood to select λ in structural VAR applica-
tions since the degree of conditional forecast consistency is jointly determined by both the
reduced-form VAR parameters and Q. Therefore, although the Q matrix does not directly
appear in the likelihood function, borrowing the insight of Poirier (1998), the marginal pos-
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terior of Q is updated from the marginal prior indirectly through its correlation with the
posterior distribution of the reduced-form parameters — α and Σ — which are directly
incorporated into the likelihood function. Intuitively, the degree of conditional forecast
consistency embedded in impulse responses depends not only on Q but also on the reduced-
form VAR parameters, α and Σ. Selecting λ to maximize the marginal likelihood provides a
generally applicable criterion which we implement to select λ in the following applications.
However, we also show how information outside of the VAR model can be incorporated to
select λ in one variant of our forward guidance application, to which we now turn.

3 Identifying Forward Guidance Shocks

The textbook view in macroeconomics is that what matters for consumption and investment
decisions is the entire path of expected future interest rates, not just interest rates today
(Woodford, 2003). This notion underpins the Federal Reserve’s regular use of communication
to manage expectations of future interest rates through forward guidance. However, there is
little agreement regarding the effectiveness of this increasingly used policy tool, with recent
research identifying a number of frictions that could dampen or even reverse the intended
effects of forward guidance on real activity (e.g. Nakamura and Steinsson, 2018).

We contribute to the forward guidance literature by empirically estimating the output
effects of forward guidance using a combination of sign and forecast consistency restrictions.
Forward guidance shocks are inherently shocks to expectations of future short-term interest
rates; therefore we augment a standard monetary VAR model with Blue Chip survey forecasts
of future interest rates. While, as Ramey (2016) stresses, it is crucial to include forward-
looking variables in the VAR to identify policy news shocks, embedding survey forecasts of
future interest rates alongside the federal funds rate results in two simultaneous forecasts for
future interest rates: the VAR forecast and the survey forecast.

Our results indicate that the estimated output effects of forward guidance depend impor-
tantly on the degree of forecast consistency restrictions. A pure sign restrictions approach
which leaves the consistency between the two interest rate forecasts unconstrained suggests
that forward guidance has an ambiguous effect on output. However, when we add the fore-
cast consistent prior to the sign restrictions, we find expansionary effects on output for large
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enough values of λ which governs the discrepancy across interest rate forecasts. Using the
marginal likelihood criterion to calibrate λ, we estimate that output has modestly increased
following FOMC communication which signaled a lower path of future interest rates.

Monte Carlo simulations from a New-Keyensian style DSGE model reveal that our em-
pirical results may arise from a problem of misidentification, similar to the issue Wolf (2020)
identifies in the original Uhlig (2005) model. Estimating structural VAR models on DSGE-
generated data reveals that sign restrictions alone are generally insufficient to recover the
true forward guidance shocks. However, when sign restrictions are combined with forecast
consistency restrictions, the SVAR model does a much better job of recovering the true
forward guidance shocks as opposed to masquerading forward guidance shocks which sign
restrictions alone can not rule out.

3.1 Data and VAR Model

To estimate the effects of forward guidance shocks on output, we augment the monetary
VAR model specified in Uhlig (2005). In particular, we use monthly real GDP as produced
by Macroeconomic Advisers, the consumer price index, an index of commodity prices, the
effective federal funds rate, non-borrowed reserves, total reserves, and 1 year ahead Blue
Chip consensus economic forecasts for the 3-month Treasury bill rate. We take 100 times
the natural log of all variables except for the federal funds rate and Blue Chip forecast for
the 3-month Treasury bill rate. We model these time series as a VAR(3) based on the Akaike
information criteria over the sample January 1994 to December 2007.5

3.2 Sign Restrictions & The Forecast Consistent Prior

We identify a forward guidance shock by restricting the sign of the impulse response of
commodity prices, the consumer price index, and forecasts of future interest rates for the
first 6 months after a forward guidance shock.6 In particular, we restrict prices and future

5We find similar results in VAR models with longer lag lengths.
6Baumeister and Hamilton (2015) propose an alternative approach of restricting the signs of the pa-

rameters in the matrix B which governs the contemporaneous relationships between variables in the VAR,
including the monetary policy rule. However, Kilian and Lütkepohl (2017) caution that this approach as
it can induce unintentionally informative priors on B−1. Uhlig (2017) suggests that whether one imposes
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interest rates to move persistently in opposing directions following a forward guidance shock.
These restrictions follow Uhlig (2005) who uses similar restrictions, though without expected
interest rates, to distinguish conventional monetary policy shocks from other demand and
supply disturbances. The notion that forward guidance shocks cause expected nominal
interest rates and prices to move in opposite directions is supported by standard sticky-price
models (Eggertsson and Woodford, 2003), models which attribute a large role to a “Fed
information effect” (Nakamura and Steinsson, 2018), and models which dampen the output
effects of forward guidance through limited information or other frictions (e.g., Del Negro
et al., 2015; Kiley, 2016; McKay et al., 2016; Angeletos and Lian, 2018; Farhi and Werning,
2019; Garćıa-Schmidt and Woodford, 2019; Gabaix, 2020).

In addition to sign restrictions, we also employ the forecast consistent prior to identify
forward guidance shocks. The forecast consistent prior imposes probabilistic restrictions over
the impulse responses of the consensus Blue Chip survey forecast of the 3-month Treasury
bill rate and the VAR forecast for short-term interest rates implied by the impulse responses
of the federal funds rate. Consistency between these two forecasts requires:

g(Q,A,C|h) = ∂

∂εfg,t
EBC
t+hR

T−Bill
t+h+12 −

1
3

2∑
j=0

[
∂

∂εfg,t
FFt+h+12−1+j

]
, (20)

where ∂yt+h

∂εfg,t
denotes the period h impulse response of variable yt to a forward guidance shock

that occurred in period t, FFt denotes the period t federal funds rate, and EBC
t RT−Bill

t+12

denotes the Blue Chip consensus economic forecast for the 3-month Treasury bill 4-quarters
from time t. In the monthly Blue Chip survey, forecasters report what they expect the
3-month T-bill to average over the three months ending 4 quarters ahead. So, in November,
forecasters report what they expect the yield on the 3-month Treasury bill to average in the
three months of October, November, and December of the following year.7 Historically, the
yield on the 3-month Treasury bill rate has closely tracked the federal funds rate, therefore
this forecast should be linked with the average federal funds rate over the three months
ending in December of the following year. According to the VAR forecast, the response of

restrictions on B or B−1 likely depends on the application at hand. Given the difficulty in specifying a policy
rule for forward guidance shocks, we directly impose restrictions on B−1.

7Depending on whether the month is at the end or beginning of the quarter, the horizon of the forecast
varies between 10-12 and 12-14 months. However, we must fix the horizon when implementing forecast
consistency. This suggest that even under full information rational expectations, forecast consistency might
only weakly hold due to measurement error.
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the average federal funds rate over the three months ending 4-quarters from now, conditional
on a forward guidance shock in period t, is given by 1

3
∑2
j=0

[
∂

∂εfg,t
FFt+12−1+j

]
. We can stack

the forecast consistency restriction in equation (20) for h = 0, 1, . . . , H − 13 to form the
forecast consistent prior g(Q|A,C, H) ∼ N (0H−12, IH−12λ

−1) where λ tunes the precision
over the forecast consistent prior.8

3.3 Implementation of Sign Restrictions & The Forecast Consis-

tent Prior

We specify our reduced form VAR as:

yt = AD + A1yt−1 + A2yt−2 + A3yt−3 + ut, ut ∼ N (0,Σ), A = [AD, A1, A2, A3]′, (21)

where AD includes a constant term but no time trend. Using our earlier parameterization of
Σ from Section 2.1, Σ = CQQ′C ′, where where C is the lower-triangular Cholesky factor of
Σ and Q is a square m×m orthogonal rotation matrix. The mapping between the reduced
form VAR residuals ut and structural VAR shocks εt, is governed by the linear mapping
ut = CQεt.

To focus on the issue of identification, rather than inference, we initially keep α = vec(Â)
and Σ = (Y −XÂ)′(Y −XÂ)/(T − 1) and consider only random draws of Q. However, in
a robustness check, we jointly draw from the posterior of α and Σ as well as Q. We draw
random orthogonal rotation matrices Q by drawing a 6 × 6 random square matrix denoted
by χ, with each element of χ independently drawn from a standard normal distribution, and
then we take the QR decomposition of χ using MATLAB’s [Q,R]=qr(χ) function. Each
draw of Q represents a candidate structural VAR model. Structural VAR models are kept if
they satisfy the sign restrictions and are otherwise discarded.

After accumulating M = 5, 000 orthogonal rotation matrices Q which satisfy the sign
restrictions we then calculate the posterior weight of any given draw m under the forecast

8In practice, we set H = 60 to encompass the 48 period impulse responses we plot.
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consistent prior according to:

w(Q(m)) = exp(−0.5λg(Q(m)|A,C, H)′g(Q(m)|A,C, H))∑M
k=1 exp(−0.5λg(Q(k)|A,C, H)′g(Q(k)|A,C, H))

. (22)

These weights form the importance sampling weights we use to simulate the posterior dis-
tribution of the SVAR. 9

3.4 Impulse Response Functions

Figure 2 shows the median and 68 percent error bands of impulse response functions across
the draws that satisfy the forward guidance sign restrictions. In this figure we set λ = 0.
Therefore, we caution that the distribution of impulse responses is purely an artifact of the
Haar prior (Baumeister and Hamilton, 2015). Nevertheless, this specification provides a close
analogue to Uhlig (2005). Per the imposed restrictions, forecasted interest rates decline and
commodity prices along with the overall price level rise for the first 6 months. In the months
that follow the restricted periods, survey forecasts of interest rates remain low and commodity
prices remain elevated. The price level continues to gradually climb throughout the impulse
response horizon. Recall that our sign restrictions leave non-borrowed reserves, total reserves,
and the path of the actual federal funds rate unconstrained. However, 12 months after the
forward guidance shock, measures of bank reserves increase which precipitates a decline in
the federal funds rate. After reaching a trough around the 12-month horizon, the federal
funds rate begins rising and eventually overshoots its pre-shock path.

How does the VAR-implied path of the federal funds rate compare to forecasters’ ex-
pectations of short-term interest rates? The red-dashed line in the bottom-left panel shows
the VAR-implied forecast for the one-year ahead short-term interest rate based on the im-
pulse response of the federal funds rate. One year after the forward guidance shock, the
VAR-forecast of short-term rates falls by an amount similar to what forecasters anticipated.
However, in subsequent months, the VAR path of short-term interest rates exceeds the path
anticipated by forecasters and remains above the survey forecast for interest rate for several
years. The estimated response of output using only sign restrictions suggests that forward

9We scale the size of each draw to have the same effect on interest rate forecasts before calculating the
importance sampling weights. This prevents larger shocks from being penalized simply due to the size of the
forward guidance shock. This is similar to the approach taken in Uhlig (2005, pg. 413).
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guidance may not be effective in stimulating economic activity as output initially declines
after the forward guidance shock and then gradually increases towards its pre-shock path.

We next add forecast consistency restrictions to these sign restrictions. That is to say
that we now consider λ > 0 whereas in Figure 2 we set λ = 0. We first build some
intuition for how alternative values of λ will influence the posterior distribution of the impulse
responses. In particular, consider two particular candidate SVAR models among the 5000
draws that satisfy the sign restriction: the SVAR draw that comes the closest to satisfying
the forecast consistency restriction in equation (20) and the SVAR draw that is the furthest
from satisfying the forecast consistency restriction in equation (20). In other words, these
are the two SVAR draws that register the highest and lowest values in our forecast consistent
prior density. We respectively refer to these as the “best” and “worst” draws.

Figure 3 plots the impulse responses for the SVAR models associated with these best
and worst draws. The green-dashed-dotted line represents the best draw and the red-dashed
line represents the worst draw. To visually understand what is behind these rankings, the
top-right panel of Figure 3 shows the cumulative forecast deviation. By construction, the
period 48 cumulative deviation is closer to zero for the best draw than for the worst draw. In
other words, the best draw results in a VAR-implied forecast of the federal funds rate which
more closely mirrors the path of rates that professional forecasters expected. For the worst
draw, the VAR-implied forecast of the federal funds rate meaningfully diverges from the path
expected by forecasters. Although the response of output played no role in our selection,
the best draw implies a persistent expansion in output while the worst draw suggests that
output persistently declines following a reduction in expectations of future interest rates.

The impulse response of output is heavily influenced by the choice of λ. A tighter forecast
consistent prior, achieved by selecting higher values of λ, will place greater weight on draws
like the “best” one under which output expands and lower weight on draws like the “worst”
one under which output contracts. Figure 4 specifically focuses on the effect λ has on the
response of output 18 months following the forward guidance shock. For smaller values of λ
output fails to meaningfully rise — and may actually decline — following what ought to be
an expansionary forward guidance shock. However, as λ increases so too does the response
of output at 18 months. Figure 4 therefore illustrates that the degree of forecast consistency
plays a significant role in shaping the estimated output effects from forward guidance.
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Which of these responses best characterizes the U.S. experience with forward guidance?
To answer this, we select a particular value of λ by maximizing the marginal likelihood
function, pλ(Y ):

pλ(Y ) ∝
∫
p(Y |α,Σ)psign restriction(α,Σ, Q)p(g(A(α),C(Σ), Q)|λ)d(α,Σ, Q), (23)

where psign restriction(α,Σ, Q) is the probability of the triplet (α,Σ, Q) satisfying the sign re-
strictions. The dependency of pλ(Y ) on λ is made clear by the fact that by varying λ, the
forecast consistent prior will alter the weights given to various draws of α, Σ, and Q. By
reweighting posterior draws of (α,Σ, Q) based on the forecast consistent prior conditional on
a particular value of λ, we generate posterior draws of (α,Σ, Q) from the posterior kernel of
pλ(Y ) given λ. We approximate the marginal likelihood by computing the harmonic mean
from these posterior draws across a grid of values for λ and select the λ which maximizes
the marginal likelihood on this grid. 10

Figure 5 shows the median and 68 percent error bands of impulse response functions
across the draws that satisfy the sign restrictions when reweighted with λ > 0. The top-
left panel of Figure 5 shows that output rises in a gradual but persistent manner following
an expansionary forward guidance shock for the value of λ which maximizes the marginal
likelihood. The bottom left panel of Figure 5 illustrates that this setting of the forecast
consistent prior reduces the deviation between the VAR-implied path of the federal funds
rate and the path of rates anticipated by professional forecasters following a forward guidance
shock. More precisely, the cumulative deviation between the VAR-based forecast and the
Blue Chip forecast falls from 119 basis points when λ = 0 to 76 basis points under our
calibration of λ, a 43 basis point reduction.

3.5 Impulse Response Functions for Alternative Specifications

The finding that identified forward guidance shocks which better align interest rate expecta-
tions, as calibrated through larger values of λ, lead to more expansionary estimated output
effects is shared by several alternative VAR specifications. Figure 6 shows impulse responses
from three variants of our baseline VAR model: one which extends the estimation sample

10This procedure, detailed in the online appendix, selects λ = 6.36× 108.
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to include the 2008-2015 zero lower bound period, one which calibrates λ with the use of a
high-frequency measure of forward guidance shocks, and one which sequentially draws from
the posterior of α and Σ as well as Q. We briefly discuss each in turn.11

The first column of Figure 6 shows that over an extended sample that runs through 2015,
we continue to find expansionary effects for the value of λ which maximizes the marginal
likelihood and contractionary effects when λ = 0. The second column of Figure 6 shows
that we continue to find evidence that output expands following a downward revision to
interest rate forecasts if, instead of using the marginal likelihood criterion, we calibrate λ
to maximize the correlation between our SVAR forward guidance shocks and high-frequency
financial market measures of forward guidance shocks constructed by Swanson (2021). Fi-
nally, the third column of Figure 6 shows impulse responses when we extend our forecast
consistent prior to shape the posterior of the full set of VAR parameters, including the VAR
lag coefficients α and the covariance matrix Σ. The range of impulse responses drawn from
the posterior of the full set of VAR parameters is understandably wider than in our baseline
results. However, the ranking of responses remains with larger values of λ implying more
expansionary effects from forward guidance.

3.6 Interpreting Forecast-Consistent Forward Guidance Shocks

Our principal empirical finding is that the estimated output effects of forward guidance
shocks are largely shaped by the extent to which interest rate forecasts align. We now offer
an interpretation for this result based on Monte Carlo evidence from a New-Keynesian DSGE
model in which survey forecasts exhibit information rigidity. We show that in this setting
better aligned interest rate forecasts across “survey” data and the estimated VAR model —
implemented by a tighter prior over forecast consistency — improves the ability of the SVAR
to recover the true underlying forward guidance shocks.

11We include the full impulse responses for these alternative specifications in the online appendix.
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The core of our model can be defined by three familiar equations:

xt = Etxt+1 − (it − Etπt+1 − (at − Et(at+1))) , (24)

πt = κxt + βEtπt+1 + µt, (25)

it = φiit−1 + (1− φi) (φxxt + φ∆x (xt − xt−1) + φππt) + σfgε
fg
τ,t−τ +

τ−1∑
j=0

σjε
j
j,t−j, (26)

where Et is the rational expectations operator, xt is output, πt is the per-period inflation
rate, and it is the one period nominal interest rate, each expressed as log-deviations from
their non-stochastic steady state. The model follows the textbook treatment in Woodford
(2003) and Gaĺı (2008), in which one can find detailed derivations of these equations. In
short, equation (24) is the dynamic IS curve, equation (25) is the New-Keynesian Phillips
curve, and equation (26) is the monetary policy rule. Four underlying structural shocks drive
the model: a serially correlated aggregate demand disturbance at = ρaat−1 + σaε

a
t , a serially

correlated aggregate supply disturbance µt = ρµµt−1 +σµε
µ
t , a forward guidance shock εfgτ,t−τ ,

and a noise shock to measured survey forecasts which will be discussed momentarily. The
details of the model calibration are provided in the online appendix.

The innovation εfgτ,t−τ is a monetary policy news shock which agents learn about in pe-
riod t − τ but isn’t realized until period t. Therefore, this represents a forward guidance
shock. The additional policy innovations ∑τ−1

j=0 σjε
j
j,t−j are included so that an expansionary

forward guidance announcement does not incite an immediate interest rate increase due to
the endogenous policy response to higher inflation and output. Instead, we assume that
a τ -period ahead forward guidance shock announced in period t is accompanied by an an-
nouncement that the policy rate will be held fixed at its pre-shock level until period t + τ ,
similar to Campbell et al. (2017, pg. 329). For our baseline specification we set τ = 1 and
we choose σ0ε

0
0,t so that the current policy rate is unchanged following a forward guidance

announcement.12

12In the online appendix, we show results when we relax both the assumption that τ = 1 and the assump-
tion that forward guidance does not provoke an immediate policy response (i.e. we set set

∑τ−1
j=0 σjε

j
j,t−j = 0).

The results from these robustness exercises reassuringly remain consistent with improved identification of
forward guidance shocks from the use of the forecast consistent prior, though the magnitude of improvement
is somewhat diminished.
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We assume the 1-period ahead survey forecast for the policy rate, qt = ESt it+1, evolves
according to:

qt = (1− ρ)Et(it+1) + ρqt−1 + σnε
n
t , (27)

where Et(it+1) is the full-information rational expectation for 1-period ahead interest rates
and εnt is a mean zero iid noise shock. The parameter ρ governs the weight forecasters give to
old information in forming their forecast. Therefore, when ρ > 0, measured survey forecasts
feature information rigidities along the lines documented by Coibion and Gorodnichenko
(2012) in that they only gradually adopt new information and are noisy measures of the true
rational expectations. Most relevant for our purpose, when ρ > 0 and σn > 0, unconditional
forecast consistency between survey and VAR forecasts will not hold, leaving room for the
forecast consistent prior to shape structural shock identification. In our calibration, we set
ρ = 0.86, so that equation (27) aligns with the information rigidities present in professional
forecasts documented by Coibion and Gorodnichenko (2012, pg. 143).

We simulate a sample of 50,000 observations from the DSGE model and estimate a four
variable VAR model with Yt = [xt, πt, it,ESt it+1]′. We identify forward guidance shocks using
sign restrictions that call for ESt it+1 and πt to move in opposite directions for the first 6
periods following a forward guidance shock. Just as in our empirical application, we then
layer forecast consistency restrictions on top of these sign restrictions. For each value of λ,
which governs the tightness of the forecast-consistent prior, we report pseudo shock weights
by calculating the pairwise correlations between the SVAR-identified forward guidance shock
and each of the four DSGE model shocks, scaled by the norm of these four correlations.13

Figure 7 shows results from these Monte Carlo simulations. The solid blue line shows
that as λ increases —and therefore the tightness of the forecast consistency restrictions
increases —the SVAR-identified forward guidance shock places more weight on the true
forward guidance shock. Moreover, as λ increases, the weight that the SVAR-identified
shocks places on the DSGE noise and supply shocks is diminished. Intuitively, forecast
consistency restrictions can deliver better alignment between the SVAR-identified and true
forward guidance shocks because forward guidance shocks in the DSGE model imply a greater

13While not the same as the shock weights in Wolf (2020), these correlation-based weights are closely related
to the coefficients from regressing the SVAR-identified forward guidance shock on the four (standardized)
DSGE model shocks and therefore can be compared to give a sense of the relative relationship between our
SVAR-identified forward guidance shock and each of the DSGE model shocks.
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degree of forecast consistency than does the linear combination of noise and other shocks that
could masquerade as forward guidance shocks based on sign-restrictions alone. For example,
we can construct a linear combination of the four DSGE shocks which places a relatively low
weight on the true forward guidance shocks but nevertheless satisfies the sign restrictions.14

This masquerading shock produces a cumulative forecast discrepancy of about 19 basis points
whereas the cumulative forecast discrepancy following the true forward guidance shock is just
3 basis points. Therefore, imposing forecast consistency in the SVAR helps to distinguish
forward guidance shocks from linear combinations of other shocks that could masquerade as
a forward guidance shock based on sign-restrictions alone.

4 Inflation Tail Risks

According to former Federal Reserve Chairman, Alan Greenspan, “the conduct of monetary
policy in the United States has come to involve, at its core, crucial elements of risk man-
agement.” One element of this policy strategy involves managing risks around the Federal
Reserve’s price stability mandate. While during much of the 1980’s and 1990’s the FOMC
was primarily concerned with defending its inflation mandate from above, in more recent
decades it has confronted the risk of too low inflation. Deflation concerns were especially
elevated following the Global Financial Crisis, sparking broad interests in analyzing inflation
tail risks over this period.

Several recent papers have measured inflation tail risks using financial market data and
identify an elevated risk of deflation in the aftermath of the Global Financial Crisis. Fleck-
enstein et al. (2017) estimate a model of time-varying deflation risks identified from inflation
swaps and options. Similarly, Anene and D’Amico (2017) and Hattori et al. (2016) use
inflation derivatives to study the impact of the FOMC’s unconventional policy actions on
stemming the risk of deflation. We contribute to the literature by studying inflation tail
risks implied by a time-varying parameter (TVP-)VAR model of inflation that includes both
near-term and longer-term survey forecasts of inflation. Relative to this previous literature,

14This is the “median” identified SVAR forward guidance shock using solely sign restrictions with respective
weights on the DSGE forward guidance, demand, supply, and noise shocks of (0.32, -0.50, -0.50, 0.63).
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our approach has the appeal that, unlike financial market data, survey forecasts are not
contaminated by time-varying risk premiums.15

This application illustrates some novel features of our forecast consistent prior that we
have yet to demonstrate. First, in this application, the forecast consistent prior is applied in
a setting with multiple survey measures at multiple horizons. Second, by simulating tails of
the predictive density of inflation from a VAR model with survey forecasts, we demonstrate
the appeal of augmenting VAR models with survey data to elicit moments of the forecast
density that may not be provided by surveys.

Our results suggest that inflation expectations as measured from survey forecasts play
an important role in shaping inflation tail risks. In particular, estimates from our forecast
consistent TVP-VAR suggest that the risk of deflation during the Global Financial Crisis
and its aftermath was generally lower than unconstrained VAR models and financial mar-
ket estimates might suggest. The role of inflation expectations in influencing tail risks is
especially vivid when survey forecasts for near-term inflation expectations hit all-time lows
in 2009:Q1, which led deflation risks from the TVP-VAR model to sharply rise. However,
as survey forecasts rebounded in subsequent quarters deflation probabilities quickly fell. In
contrast, deflation risks from the TVP-VAR model without forecast consistency remain per-
sistently elevated after 2009. The marginal likelihood criterion favors the TVP-VAR model
with some degree of forecast consistency imposed, implying that the data prefers a model
which more tightly links deflation risks to variation in survey forecasts for inflation.

4.1 Data and TVP-VAR Model

The specification of our VAR follows Clark and Davig (2011) closely by including near- and
long-term survey forecasts of inflation alongside realized inflation, a measure of real economic
activity, and a measure of the policy rate. We use both 1 year and 10-year ahead forecasts
for Consumer Price Index (CPI) inflation from the Survey of Professional Forecasters (SPF)

15Our approach is comparable to Kozicki and Tinsley (2012) who estimate a time-varying parameter
TVP-AR(p) model for inflation together with survey forecasts. However, they allow only constant terms
to drift over time while lag coefficients in the AR(p) model remain time-invariant. Keeping lag coefficients
time-invariant has some limitations in modeling changes in the relationship between inflation and inflation
expectations, particularly if the persistence of inflation has varied over time.
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as well as realized CPI inflation.16 We include the Chicago Fed National Activity Index
to broadly measure real activity and the federal funds rate to account for the stance of
monetary policy. Our formal estimation sample is 1982-2015 which includes the zero lower
bound period. Therefore, to better account for the full spectrum of the FOMC’s policy
actions from 2009-2015 we splice the effective federal funds rate together with Wu and Xia
(2016) shadow federal funds rate.

We model these five variables as a TVP-VAR(4) with stochastic volatility:

yt = AD,t +
4∑
j=1

Aj,tyt−j + ut , ut ∼ N (0, B−1Σu,tB
−1′), (28)

where Σu,t is a diagonal matrix with positive, time-varying entries and B is a constant-
parameter lower-diagonal matrix. We detail the construction of our priors and the algorithm
used to estimate and simulate the TVP-VAR model in the online appendix.

4.2 The Forecast Consistent Prior

The TVP-VAR model contains both near-term and long-term survey forecasts of inflation as
well as realized inflation. Therefore, we impose our forecast consistent prior over the survey
and VAR-based forecasts at both forecast horizons. To define these forecast consistency
restrictions, we express the TVP-VAR model in equation (28) in companion form:

ỹt = AD,t + Atỹt−1 + ũt. (29)

Let πt denote realized CPI quarterly annualized inflation and let πe,Lt and πe,St denote
the respective long-term forward and short-term weighted averages of expected inflation over
different horizons under the expectation operator Ee:

πe,Lt =
∑40
j=5E

e
t (πt+j)

36 and πe,St =
∑4
j=1E

e
t (πt+j)

4 ,

16The 10-year ahead forecasts for CPI inflation from SPF are available beginning in 1991. Prior to 1991, we
use long-run inflation forecasts obtained from the public release of the Federal Reserve Board of Governors’s
FRB/US econometric model which is constructed using alternative surveys and econometric estimates. We
use realized inflation and inflation nowcasts to construct our inflation expectations measures to prevent
overlap between long-term survey forecasts, near-term survey forecasts, and realized inflation.
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where Ee
t is the survey expectation when e = S and the VAR expectation when e = VAR.17

Forecast consistency at both the long- and short-forecast horizons, denoted respectfully
by g(At) = [g(At)L, g(At)S]′, requires the following restrictions on AD,t and At:

g(At)L =
v′π [∑40

h=5
∑h−1
j=0 Aj

tAD,t])
36 , v′π,L − v′π

[∑40
h=5 Ah

t ]
36

′

g(At)S =
v′π [∑4

h=1
∑h−1
j=0 Aj

tAD,t]
4 , v′π,S − v′π

[∑4
h=1 Ah

t ]
4

′
(30)

In the above calculations of the VAR-implied forecasts, we assume no future parameter drift
so that the VAR coefficients are fixed at their time t estimates.

As before, we calibrate the hyperparamter λ that controls the tightness of forecast con-
sistency prior restrictions by selecting λ to maximize the marginal data density:

p(y
T |λ) =

∫
p(yT |AT ,ΣT

u , B)p(AT ,ΣT
u , B)p(g(AT )|λ)d(AT ,ΣT

u , B). (31)

The log marginal likelihood is maximized at λ = 1.42.18 Therefore, imposing a modest
degree of forecast consistency improves the time series fit of the TVP-VAR model.

4.3 Time-Varying Inflation Tail Risks

While survey forecasts are available for mean inflation outcomes, our interest in this appli-
cation lies in assessing potential tail outcomes for inflation for which survey forecasts are not
consistently available. Therefore, the forecast consistent prior is particularly useful as it tilts
the mean of the predictive distribution of inflation in the TVP-VAR towards the available
survey forecasts and then relies on the VAR model to generate other moments of the predic-
tive distribution of inflation. We simulate the predictive distribution of inflation outcomes
using posterior draws of parameters and shocks up to time t from the TVP-VAR model. In
practice, we achieve this by generating a full trajectory of inflation for the m-th posterior

17Since the end-point of the SPF 10-year inflation forecasts changes only in the first quarter of each year,
the notation in the text is illustrative and applies only to the first quarter of the year.

18We calculate the marginal likelihood using the harmonic mean of the likelihood implied by posterior
draws. Further details are provided in the online appendix.
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draw of parameters and shocks, denoted by πt+h|t(m), for each draw m = 1, · · · ,M from
the posterior. We then compute the probability that inflation will be less than 0 percent on
average over the next H-periods according to:

P

(
H∑
h=1

πt+h|t < 0
)

=
∑M
m=1 I(

∑H
h=1 πt+h|t(m) < 0)
M

. (32)

We can perform a similar calculation to assess the likelihood of high inflation which, following
Fleckenstein et al. (2017), we define as inflation above 4 percent.

Table 1 compares estimated deflation probabilities from the TVP-VAR with those from
Fleckenstein et al. (2017) and the cross-sectional distribution of individual expectations from
the University of Michigan consumer survey over the period of 2009:Q4-2015:Q4.19 Although
the underlying source data are completely different, the mean and median probabilities of
deflation are quite comparable given the magnitude of the standard deviation of each mea-
sure. However, the TVP-VAR model with forecast consistency restrictions implies uniformly
lower deflation probabilities across all three quantile estimates (minimum, median, maxi-
mum) at both the 1- and 2-year horizons. This is also true for the estimated probability of
high inflation (inflation greater than 4 percent) in Table 2.

The lower levels of inflation tail risks from our forecast consistent TVP-VAR model
suggests that both financial market measures as well as unconstrained VAR models tend to
overstate tail risks to inflation. Moreover, simply including mean survey forecasts of inflation
in the VAR fails to fully capture the potential role of survey expectations in driving inflation
tail risks. In contrast, the forecast consistency restrictions more tightly link inflation tail
risks to survey forecasts of inflation. For example in 2009, shortly after oil prices fell by more
than $100 per barrel, one-year ahead survey forecasts for inflation hit all-time lows. The
bottom row of Figure 8 shows that the risk of deflation sharply increased at this time.Then,
as near-term inflation expectations rebounded, the risk of deflation subsided according to
the forecast consistent TVP-VAR but remained elevated in the unrestricted TVP-VAR.

19For the University of Michigan survey, we calculate the percentage of respondents who anticipated prices
would go down among all the respondents who provided answers on expected prices.
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5 Conclusion

A growing literature has incorporated survey measures of expectations into VAR models to
capture the importance of forward-looking behavior. In this paper, we have proposed the
forecast consistent prior as a computationally efficient Bayesian approach for the estimation
and inference of VAR models with survey forecasts and realized data of the same variable.
We highlight possible applications of our framework in the context of both structural VAR
shock identification as well as VAR forecasting. The applications shed light on the benefits of
imposing forecast consistency to identify forward guidance shocks and the role that inflation
expectations play in shaping inflation tail risks. However, many applications remain given
the growing interest in identifying news shocks as well as the increased interest in macroe-
conomics of understanding the formation and evolution of expectations. Therefore, as these
literatures advance, there appears to be a growing need for frameworks which can flexibly
and efficiently incorporate expectations into VAR models.
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Table 1: Summary Statistics for Deflation Probabilities: 2009:Q4 - 2015:Q4

Horizon Source Mean Standard Deviation Minimum Median Maximum
1 year Fleckenstein et al. (2017) 18.76 10.16 2.00 15.74 47.76
1 year University of Michigan Survey 15.91 6.12 6.06 14.14 32.65
1 year TVP-VAR(λ = 0) 13.74 9.62 2.72 10.54 45.98
1 year TVP-VAR(λ = 1.4) 9.03 8.22 1.66 7.32 42.78
2 years Fleckenstein et al. (2017) 13.80 7.26 1.80 11.62 35.42
2 years TVP-VAR (λ = 0) 16.34 6.27 8.38 15.14 32.06
2 years TVP-VAR (λ = 1.4) 9.54 4.59 4.10 7.98 23.96

Notes: Deflation probabilities from Fleckenstein et al. (2017) are based on daily observations of inflation swaps and options from
October 5, 2009 to October 28, 2015 while those from the University of Michigan survey are quarterly average values of monthly
observations from October, 2009 to October, 2015.
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Table 2: Summary Stastistics for High Inflation (>4 percent) Probabilities: 2009:Q4 - 2015:Q4

Horizon Source Mean Standard Deviation Minimum Median Maximum
1 year Fleckenstein et al. (2017) 2.62 2.46 0.14 2.09 16.27
1 year TVP-VAR (λ = 0) 1.34 2.30 0.04 0.40 10.92
1 year TVP-VAR (λ = 1.4) 0.64 1.29 0.00 0.16 6.06
2 years Fleckenstein et al. (2017) 3.09 2.39 0.30 2.70 15.32
2 years TVP-VAR (λ = 0) 4.10 2.86 0.88 3.14 14.02
2 years TVP-VAR (λ = 1.4) 2.30 2.17 0.32 1.32 9.64

Notes: High Inflation probabilities from Fleckenstein et al. (2017) are based on daily observations of inflation swaps and
options from October 5, 2009 to October 28, 2015.
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Figure 1: Refining Sign Restrictions with the Forecast Consistent Prior
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Notes: This figure illustrates how the forecast consistent prior, represented by R3 in panel b, can shape the
identified set from a sign-restricted structural VAR model. Darker shading around the black dot on the unit
circle in panel b corresponds to higher values of the forecast consistent prior density.
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Figure 2: Forward Guidance Shock: Sign Restrictions Only
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Notes: This figure shows the impulse responses to an identified forward guidance shock using only sign
restrictions. The solid blue line is the median response and the shaded region is the 68% interval among
structural VAR models. The red-dashed line shows the VAR-implied response of future short-term interest
rates. The estimation sample period is 1994-2007.

35



Figure 3: Forward Guidance Shocks: “Best” and “Worst” Fitting Draws
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Notes: This figure shows the impulse responses to an identified forward guidance shock for the “best” and
“worst” fitting models. The “best” fitting model is the draw that comes the closest to satisfying the forecast
consistency restrictions and the “worst” fitting model is the draw that is the furthest from satisfying the
forecast consistency restrictions. The estimation sample period is 1994-2007.

36



Figure 4: Output Effects of Forward Guidance: The Role of the Forecast
Consistent Prior
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Notes: This figure shows the median output response and the corresponding 68% intervals after 18 months
for alternative values of λ, which governs the tightness of the forecast consistent prior. The vertical red line
denotes the value of λ selected to maximize the marginal likelihood criterion. The estimation sample period
is 1994-2007.
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Figure 5: Forward Guidance Shock: Sign Restrictions and the Forecast
Consistent Prior
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Notes: This figure shows the impulse responses to an identified forward guidance shock using sign restrictions
as well as our forecast consistent prior. The solid blue line is the median response and the shaded region is
the 68% error band. The red line shows the VAR-implied response of future short-term interest rates. The
estimation sample period is 1994-2007.
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Figure 6: Forward Guidance Shock: Alternative Specifications
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Notes: This figure shows the impulse responses to an identified forward guidance shock using sign restrictions
as well as our forecast consistent prior. The solid blue line is the median response and the shaded region
is the 68% error band. The green-dashed line shows the median impulse response to an identified forward
guidance shock using only sign restrictions. Each column shows impulse responses from an alternative VAR
model. For details, see Section 3.5.
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Figure 7: Monte Carlo Simulation Results: Recovering Forward Guidance
Shocks with Sign Restrictions and the Forecast Consistent Prior
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Notes: This figure shows the correlation-based weights that forward guidance shocks identified from SVAR
models place on various structural shocks from a New-Keynesian DSGE model with noisy survey forecasts
which serves as the data-generating process. These weights are shown for alternative values of λ, which
governs the tightness of the forecast consistent prior. When λ = 0, only sign restrictions are used to identify
forward guidance shocks. The VAR is a 5-lag VAR estimated on one sample consisting of 50,000 DSGE
model-generated observations with the number of selected lags based on the AIC.
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Figure 8: Inflation Tail Risks

Prob(Inflation 1yr Averages>4%)

1980 1985 1990 1995 2000 2005 2010 2015 2020
0

0.2

0.4

0.6

0.8

1
Prob(Inflation 2yr Averages>4%)

1980 1985 1990 1995 2000 2005 2010 2015 2020
0

0.2

0.4

0.6

0.8

1

No Resampling ( =0)
Resampling ( >0)

Prob(Inflation 1yr Averages<0%)

1980 1985 1990 1995 2000 2005 2010 2015 2020
0

0.1

0.2

0.3

0.4

0.5
Prob(Inflation 2yr Averages<0%)

1980 1985 1990 1995 2000 2005 2010 2015 2020
0

0.1

0.2

0.3

0.4

0.5

Notes: This figure shows the time-varying probabilities of high inflation (inflation > 4 percent) in the top row and the time-varying probability of
deflation (inflation < 0 percent) from our TVP-VAR model. The left column shows these probabilities over the 1 year horizon and the right column
shows these probabilities over the 2 year horizon. The black solid lines show these probabilities from the TVP-VAR without the forecast consistent
prior, labeled “No Resampling (λ = 0)” and the blue dashed lines show these probabilities from the TVP-VAR with the forecast consistent prior,
labeled “Resampling (λ > 0)”, which corresponds to λ = 1.42 as calibrated by the marginal likelihood criterion.
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