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Abstract

The number of U.S. coal-fired power plants declined by nearly 250 between 2001 and

2018. Given that burning coal generates large amounts of particulate matter is known

to have adverse health effects, closure of coal-fired power plants should improve local

air quality. Using spatial panel data from air quality monitor stations and coal-fired

power plants, we estimate the relationship between plant closure and local air quality.

We find that on average, the levels of particulate matter within 25 and 50 mile buffers

around air quality monitors declined between 7 and 14 percent with each closure. We

estimate that the event of closure is associated with a 0.6 percent decline in local

mortality probabilities. On a value of statistical life basis, the median local benefit of

coal power plant closure ranged between $1 and $4 billion or 5 to 15 percent of local

GDP since the early 2000s.
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1 Introduction

The confluence of abundant natural gas, rising concerns over reducing greenhouse gas emis-

sions, and a mix of state and federal policies are leading to shifts in the energy composition

of the United States. Nowhere is this confluence more on display than in the power-utility

sector. Coal was approximately 50 percent of the fuel source used in power generation for

many decades. However, in the mid-2000s coal’s share began to decline and by 2018 repre-

sented only 27 percent of fuel used in electricity generation. Natural gas is already displacing

coal in power generation because of the shale revolution in the United States. Between 2007

and 2012 it is estimated that abundant natural gas displaced 28 percent of coal-generated

electricity (Johnsen et al., 2019). In 2018 over 60 percent of electric generating capacity

installed was fueled by natural gas, while nearly 70 percent of retired capacity was fueled by

coal (Energy Information Administration, 2019b). With coals steady decline and renewable

energy steady increase, total U.S. consumption of coal and renewable energy have reached

parity (Figure 1).

Due to these shifts in power generation, the number of coal-fired power plants has de-

clined across the country. Coal-fired units have shut down because of sluggish growth in

electricity demand and increased competition from natural gas and renewable sources (En-

ergy Information Administration, 2019a). Over 250 coal power plants closed between 2001

and 2018 (Figure 2). Previous research has shown higher levels of local air pollution near

coal power plants (Kahn, 2009). As a result, there could be improvements in local air quality

following closures. Burning of coal is known to emit substantially more particulate matter

relative to natural gas (Energy Information Administration, 1999). As a result, the decline

in coal-fired power plants is expected to reduce emissions in the local area where closures

occur.

A general air pollutant of concern is particulate matter (PM2.5), where 2.5 references the

size of air particles measured in micrometers. Researchers have focused on PM2.5 because of

its diffuse and harmful nature, especially due to its association with higher risks of respiratory
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and cardiovascular issues (Jha and Muller, 2018; Giaccherini et al., 2019). For example, prior

research has found higher mortality risk from exposure to PM2.5 (National Research Council,

2010; Muller et al., 2011; Muller, 2014). While others have investigated effects of the rise of

natural gas via hydraulic fracturing (Johnsen et al., 2019) and stockpiles of coal (Jha and

Muller, 2018) on local particulate matter, no research that we are aware of, has directly

estimated the effect of coal power plant closure.

We help fill this gap in the literature by estimating the effect of coal power plant closure

on local air quality and mortality. To do so, we combine spatial data on air quality monitor

stations, power plant emissions and closures, as well as local economic conditions. Using

monthly data from air monitor stations and power plants from the Environmental Protection

Agency, we estimate the effect of coal power plant closure on local air quality within 25 and 50

mile buffers of each monitoring station between 1995 and 2018 using a difference-in-difference

identification strategy. Controlling for total power production, power plant emissions, wind

direction, local economic conditions, location-by-year and monthly fixed effects, we find that

the average effect is a 7 to 14 percent reduction in the level of particulate matter (PM2.5).

As a result, an improvement in local air quality from coal-fired power plant closures may also

provide additional health benefits in these areas. We estimate that the event of closure is

associated with a 0.6 percent decline in local mortality probabilities. On a value of statistical

life basis, the median local benefit of coal power plant closure ranged between $1 and $4

billion or 5 to 15 percent of local GDP since the early 2000s. Thus, one positive local

externality from the closure of coal-fired power plants is less emissions and consequently

lower risk of adverse health effects for nearby residents.

2 Previous Literature

Previous research has shown that the utility sector is the largest polluter in the U.S. economy,

accounting for one-third of air pollution damages (Muller et al., 2011). More specifically,
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Muller et al. find that coal-fired electric generation is the single largest industrial contributor

with gross external damages of $53 billion annually, which exceed the estimated value added

of the sector by a factor of two. The majority of these external costs are related to higher

mortality on a value of statistical life basis. Although not explicitly looking at coal power

plants, Deryugina et al. (2019) investigate the relationship between daily changes in pollution

exposure and population health among Medicare recipients. They use Medicare claims data

to look at how spikes in PM2.5 affect life expectancy and mortality. They find a reduction

in concentrations of 4 µg/m3 led to a gain of a little over a month of life per elderly person.

Our paper builds on a growing literature that uses quasi-experimental research designs

to estimate how regulations, production, and transportation affect air quality (Currie and

Neidell, 2005; Currie et al., 2015; Schlenker and Walker, 2015; Isen et al., 2017). With respect

to regulation, Currie et al. (2019) summarizes a large body of work that has evaluated the

impact of the Clean Air Act over the past 50 years. One of their distilled conclusions is that

there has been a reduction in concentrations of regulated pollutions, even though not all of

the reduction can be directly attributed to the Clean Air Act. Other outcomes of interest

have been how changes in air quality affect housing values (Chay and Greenstone, 2005;

Davis, 2011) and infant or childhood mortality (Chay and Greenstone, 2003; Almond et al.,

2018). Graff Zivin and Neidell (2013) summarize another strand of the literature that has

evaluated links between pollution effects on labor productivity, educational attainment, and

crime.

Our research follows more closely to recent papers by Jha and Muller (2018) and Johnsen

et al. (2019). Jha and Muller consider the local air pollution cost of coal storage and handling

by U.S. power plants. They find that a 10 percent increase in coal stock piles held by power

plants was linked to a 0.09 percent increase in average PM2.5 levels within 25 miles of the

power plants. Jha and Muller estimate that the 10 percent increase in coal stock piles causes

a 1.1 percent increase in adult mortality rates. Using a value of statistical life approach,

they find that a one ton increase in coal stock piles results in about $200 more in local
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pollution costs. Johnsen et al. (2019) estimate the indirect benefits of improved air quality

caused by fuel switching of power plants from coal to natural gas due to the rise of U.S.

natural gas production from hydraulic fracturing. They identify a 4 percent decline in

average PM2.5 levels due to decreased coal-fired generation. Also using a value of statistical

life approach, they estimate accumulated health benefits of reduced air pollution from coal

electricity generation at approximately $17 billion annually.

Our contribution differs from Jha and Muller (2018) and Johnsen et al. (2019) in some

important ways. First, we are considering the actual event of coal-fired power plant closure.

Implicit in operating and closure is coal storage. Our purpose is not to separate out the effect

of coal storage versus the burning of coal. We consider both to the extent that the coal is

stored at the power plant or within the same buffers we consider. Second, our goal is not to

use a dispatch model as Johnsen et al. to predict local differences in coal-fired generation.

We take the closures as exogenous locally because of the structural forces pushing down on

coal-fired generation. Rather than going through the effect of fuel switching via abundant

natural gas on coal-fired generation at the margin, we use discrete changes in coal-fired power

plants shutting down. Coal-fired power plant closures effect on local air quality has not been

studied extensively. We are only aware of one previous study. Russell et al. (2017) investigate

the impact of three coal-fired power plant closures in Pittsburgh, PA and find a nine percent

reduction in average PM2.5 levels. Relative to Russel et al., we consider coal-fired closures

over a much wider geographical area and over a longer time frame.

3 Empirical Framework & Data

3.1 Empirical Model

Previous research most often utilizes local variation in air quality over space and time along-

side high dimensional fixed effects or discrete changes in policies alongside differences-in-

differences to estimate subsequent changes in local air quality. We utilize a differences-
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in-differences strategy and fixed effects panel model in order to estimate local air quality

response to power plant closure. Specifically, we estimate the following:

PMi,t = αi,y+δt+β0Prei,t+β1CPCi,t+β2MSCi,t+λHIi,t−1+φkX
k
i,t−1+ψWDi,t−1+γUERi,t−1+εi,t,

(1)

where i indexes air quality monitor in month t. Controls included in the equation are

monitor-by-year (αi,y) fixed effects, monthly fixed effects (δt), the total level of heat input

used in generation from all plants intersecting the 25 or 50 mile buffer around the monitor

station (HIi,t−1), total pollutant output (Xk
i,t−1) from all coal power plants in the buffer

including carbon dioxide, nitrous oxide, and sulfur dioxide, wind direction (WDi,t−1), the

local unemployment rate of the county that the air monitor is located in (γUERi,t−1) and

an error term εi,t clustered at the monitor-by-year level. The fixed effects are used to control

for unobserved factors which may influence particulate matter in each location over time

and seasonal factors which can temporarily influence air quality. The total heat input used

to generate electricity within an area and pollutants control for electricity generation in

the area, which would increase particulate matter as generation increases. Measures of air

pollution can be impacted by wind, especially wind direction relative to the point source

and monitor station (Hanna and Oliva, 2015; Sullivan, 2017; Deryugina et al., 2019). For

example, if monitors are downwind of power plant they are much more likely to capture air

pollution from the plant. To account for this we construct a measure similar to (Schlenker and

Walker, 2015) using the cosine of the difference between the wind direction and the direction

of the air monitors. The local unemployment rate captures labor market conditions, with

higher unemployment rates expected to be negatively associated with emissions. Emissions

of particulate matter are expected to increase with greater economic activity holding other

factors constant.

The key variables of interest are Pre, CPC and MSC, which measure the average

differences in PM2.5 in the pre-closure period, month of closure, and months since closure.
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The post-closure period is the reference category, but including months since closure allows

us to capture the trend in particulate matter after closure. The coefficients β0 and β1 measure

the average differences in particulate matter at air quality monitor stations that had a coal

power plant closure relative to the monitor stations that did not have a closure and the

post-closure period for those that had a closure.

We apply a restriction for locations that had multiple closures over time. Instead of

throwing out the entire monitor-site, we keep those observations in the sample until the

month before the subsequent closure. This restriction helps reduce measurement error in

estimating the average pre-closure and closure effects from additional closures at the same

location that occur later in the sample period.

3.2 Data Sources

Emissions data from power plants were collected from the Air Markets Program Data

(AMPD) provided by the U.S. Environmental Protection Agency (EPA). AMPD include

monthly emissions and generation data on generators at power plants that are subject to

certain regulatory programs. The regulatory programs do not cover the full universe of

power plants, however, they are our only source of emissions data coming directly from

power plants. These data include the emissions of CO2, SO2, and NOx in addition to the

gross load (generation) and heat input for each generator. We select all generators that use

coal as its fuel source then aggregate this generator-level data to the plant-level by taking

the total amount of CO2, SO2, and NOx emissions, the total generation, and the total heat

input for each plant in each month over the sample period 1995-2018. We proxy closures of

coal plants by identifying the first month in which the plant is no longer in the sample. This

closure proxy can be the result of an actual closure of the whole plant, or a switch of fuel

sources in which coal is no longer used.

Local air quality data comes from the Air Quality System (AQS) provided by the EPA,

which has daily average readings of ambient PM2.5 concentration levels measured in micro-
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grams per cubic meter (µg/m3), at monitor stations across the U.S. The data capture each

type of PM2.5 measured, i.e., lead PM2.5, mercury PM2.5, etc. To measure the total ambient

PM2.5 levels, we first sum the individual particulate matters to get the total daily value for

each air monitor station. We then calculate the monthly average PM2.5 level at each monitor

over the period 1995-2018.

Additionally, both the AMPD and the AQS provide latitude and longitude coordinates

for each power plant and monitor site, respectively. We use this location information in

order to match power plants to monitor sites by capturing power plants within a certain ra-

dius of monitor sites. Our wind data comes the National Oceanic Atmospheric Administra-

tion/National Centers for Environmental Information s (NOAA/NCEI) Local Climatological

Data (LCD), which provides hourly weather-related data for stations across the world. We

aggregate this hourly wind data to get the median wind direction for a station from 1995

to 2018. Each weather stations includes latitude and longitude coordinates, which we use to

find the nearest weather to station to each air quality monitor.

Finally, our unemployment data comes from the Local Area Unemployment Statistics

produced by the Bureau of Labor Statistics, which provide monthly estimates of unemploy-

ment rates for each county in the U.S.1

3.3 Data Merge

For each air quality monitor site we merge the emissions from coal fired-plants in the sur-

rounding area as follows:

1. We create two sets of buffers, one of 25 miles and one of 50 miles, around all 2,096

PM2.5 monitor sites from our sample period and match all 331 coal power plants from

the AMPD that fall within each of the buffers. This results in some plants being

accounted for more than once, when they fall into more than one buffer. However, it

is impossible to know just how diffuse emissions of each plant would be.

1https://www.bls.gov/lau/.
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2. The plant-monitor match is then merged against the panel of plant-month emissions

data.

3. We then merge in the median wind direction by monitor and calculate the bearing

direction from each monitor to each plant within its buffer.

4. The potential issue with the above merge is if there are monitors that were not mea-

suring at the same time that there were emissions from power plants. To correct for

this, we merge the above data set against the ambient PM2.5 panel by monitor-month

and drop anywhere there was emissions data with no corresponding air quality data.

5. Following this, we aggregate the emissions data to the monitor-level by month, includ-

ing the median bearing direction of plants for a monitor.

6. The cosine difference between the median wind direction and the average bearing

direction is calculated, which tells us how downwind the monitor is from the average

plant.

7. Finally, using the county location of each monitor, we merge in county-level unemploy-

ment rates to control for local economic activity occurring near a monitor.

8. The final dataset contains 442 PM2.5 monitor sites with at least one coal plant within

25 miles of the monitor and 539 PM2.5 monitor sites with at least one coal plant within

50 miles of the monitor.

Our constructed data set is a panel by monitor-month that includes information on the

ambient PM2.5 level, and the total emissions from coal power plants that are within either 25

or 50 miles of the monitor, and the unemployment rate of the county of the monitor. Table

1 reports the summary statics from the two samples. Comparing 25- versus 50-mile buffers,

the number of observations increases with the 50-mile buffer because with the larger distance

more air monitor buffers have at least one power plant. The average number of observed

plant closures is similar between the two buffers. In general, the larger buffer has more power
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plants that intersect it, which explains the higher levels of heat input and other emissions

produced by the plants. However, there is no significant difference in average unemployment

rates between the two at 6.5 percent. Average concentration levels of particulate matter

are higher in the 25-mile buffer. This is consistent with concentration levels being lower the

further away from potential sources of pollution. Over the period 2001-2018, we identify 296

coal plant closures. Figure 3 shows the locations of air monitor stations with at least one

coal-fired power plant closures in 25 and 50 mile buffers. A majority of the closures have

occurred in the eastern half of the country.

4 Local Air Quality Findings

We estimate our empirical model at the monthly frequency between 1995 and 2018 for 142

and 248 monitor stations at 25 and 50 mile buffers, respectively.2 In order to help put our

estimates of the reduction in PM2.5 into context, Figure 4 shows the distribution of monthly

average PM2.5 levels six months prior to power plant closures. The dashed vertical line

represents the concentration level most often monitored by the World Health Organization at

10 µg/m3. The solid vertical line at 15 µg/m3 represents the federal standard for compliance

with the Clean Air Act. A large portion of the histogram indicates that particulate matter

concentrations were outside of compliance prior to power plant closure. Table 2 reports

the average of particulate matter concentrations six months before each closure. Average

readings prior to closure were between 14 an 15 µg/m3.

Table 3 reports results from the local air quality response to coal power plant closures

within 25 and 50 mile buffers of air quality monitors. The key coefficients of interest are

shown in Figure 6. At the month of a coal power plant closure, we find a 1.1 to 1.4 µg/m3

reduction in PM2.5, which corresponds to a 7.3 and 10 percent reduction at pre-closure sam-

ple averages for the 25 and 50 mile buffers. The coefficients on the pre-closure period where

2The number of monitor stations increases with the larger distance because more buffers have at least one
power plant.
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not significant in either sample, indicating the pre-closure PM2.5 levels were not significantly

different compared to post-closure. Although not significant, the positive coefficients on

months since closure correspond to gradual increases in PM2.5 levels following closure.

As expected, we find that power plant heat input is positively and significantly correlated

with higher PM2.5 emissions. Higher unemployment rates are negatively correlated with

particulate matter emissions, indicating that less economic output is associated with less

local air pollution. Monitors more downwind of coal power plants have higher levels of

particulate matter.

As a robustness check, we restrict our sample to only include air monitor stations that

are downwind of the power plants. Our definition of downwind is if the cosine of the differ-

ence between wind direction and location is greater than zero. Full and key results of the

subsamples are reported in Table 4 and Figure 7. In general, the estimated effect of closure

is slightly stronger in the downwind sample. At the month of a coal power plant closure,

we find a 1.5 to 2.0 µg/m3 reduction in PM2.5, which corresponds to a 9.5 and 13.9 percent

reduction at pre-closure, downwind sample averages for the 25 and 50 mile buffers. Similar

to the full sample, the post-closure trend in PM2.5 is positive but not statistically significant.

As an additional robustness check, we consider the potential endogeneity of which areas

experience closure. Prior research on shutdown decisions at the plant level by Davis et al.

(2018) indicates the age of power plants is likely a stronger predictor. We report IV-2SLS

results in Tables A1 and A2. While we find a larger post-closure reduction in particulate

matter when we instrument for closure with plant age and its quadratic, the instruments are

not sufficiently strong. As a result, we prefer to focus on our initial difference-in-difference

estimates, but we recognize that our findings on the magnitude of PM2.5 reduction may not

extend to future closures.

Overall, our results suggest a 7 to 14 percent reduction in local PM2.5 levels following a

coal plant closure. Our findings are consistent with previous estimates. Johnsen et al. (2019)

estimate shutting down all US coal-fired power plants would on average decrease PM2.5 by
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16 percent. There estimates were derived from estimating natural gas displacement of coal-

fired power plants and thus more or less estimates of a switching effect of the fuel source on

local PM2.5 levels. In our framework, we are only concerned about isolating the effect of the

actual coal-fired power plant closure and not the potential switching of fuels between coal

to natural gas, which could occur at the same plant.

It is important to note that our model does not directly capture the long-term response

of air quality to coal power plant closure. The biggest empirical challenge is not being able to

observe other changes in industrial activity around the monitor station after closure which

may be related or unrelated to the power plant closure. Despite this limitation, we can

approximate when the affect of the closure is no longer detectable using the simple test:

β1 + β2 ·MSCi,t · t = 0, (2)

where MSC increases with each month t. If β2 is positive/negative, it indicates that the

particulate matter is increasing/decreasing over time following closure. When β2 is positive

and β1 is negative, one can solve for t to determine the number of months after closure when

the effect of closure is zeroed out. Moreover, a t-test of equation 2 over time can also show

when the effect is no longer statistically significant. Using the downwind sample, Figure

8 shows a 40 month time horizon post-closure. Because our estimates of β2 were positive

the estimated level of PM2.5 gradually increases over time. However, the farther in time

away from closure the 95 percent confidence interval, shown by the grey shading gets, much

larger. For the 25 mile buffer sample (Figure 8a), the implied time to zero out the initial

reduction in PM2.5 is 39 months. However, the reduction is no longer statistically significant

after 8 months. In the 50 mile buffer sample, the reduction remains significant out to 20

months (Figure 8b). Because of this limitation, we focus on the month of closure effects

when considering potential health implications.
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5 Health Implications of Power Plant Closures

Previous research has established a clear link between air pollution and mortality in a variety

of settings. For example, Knittel et al. (2016) show that particulate matter has large marginal

effects on infant mortality rates. Luechinger (2014) uses changes in desulfurization of power

plants to estimate the effect of sulfur dioxide pollution on infant mortality. Deryugina

et al. (2019) find that mortality effects from changes in local air pollution are concentrated

in about 25 percent of the elderly population. Schlenker and Walker (2015) show that

hospitalization rates increase from higher local exposure to carbon monoxide from airplane

idling and taxiing.

In our analysis, at least two primary channels exist by which power plant closures may

have local health implications via changes in air quality. First, the actual closure of the power

plant by definition eliminates the air pollution emitted by the plant. Second, additional

pollution from coal storage, rail car and truck traffic would also likely be reduced, if not

eliminated, once closure occurs. Compared to the previous literature, we do not attempt to

disentangle the health implications from changes in air quality from reduced output from

coal power plants or coal storage (Jha and Muller, 2018; Johnsen et al., 2019). Instead, we

investigate how the overall closure effects local mortality rates.

Previous estimates of particulate matter exposure and mortality rates may shed light

on potential health and economic implications of the reduction in local air pollution from

coal-fired power plant closures. Looking at particulate matter exposure across metropolitan

areas, Krewski et al. (2009) estimate hazard ratios of various causes of death from a 10

µg/m3 exposure. They find that at that level of exposure, the overall mortality probability

increases by 5.6 percent (Column 1 of Table 5). The probability of heart-related deaths

or lung cancer increases between 13 and 24 percent. Using an average of our estimates, a

1.5 µg/m3 reduction in PM2.5 from coal power plant closure is around 15 percent of the

exposure threshold in Krewski et al. (2009). The second and third columns of Table 5 report

an approximation of the decline in mortality from coal-fired power plant closures by re-
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scaling the previous estimates. A back of the envelope calculation suggests a 0.8 reduction

in the probability of death from a coal power plant closure.

The Centers for Disease Control and Prevention (CDC) tracks the underlying causes of

death for crude mortality and age-adjusted mortality rates in their Wide-Ranging Online

Data for Epidemiologic Research (WONDER)3 for each year since 1999. We use the age-

adjusted rate, which is weighted by the population of all age groups the CDC covers, because

this controls for differences in the age distribution of the population over time. Previous

research has shown there are regional differences in mortality rates (Case and Deaton, 2017).

Similarly, Figure 9 shows that there has been large geographic disparity in the change in

mortality rates from 2000 to 2018. However, there is no consistent pattern of the mortality

rate dropping more in counties with coal power plant closures.

In order to test the link between coal power plant closures and mortality, we use an

approach similar to Jha and Muller (2018). We estimate the relationship between mortality

and coal power plant closure by:

ln(MRi,t) = αi,y + δt + βCPCi,t + λHIi,t + φkX
k
i,t + γUERi,t + εi,t, (3)

where the log of age-adjusted mortality in county i in month t is a function of coal power

plant closures (CPCi,t), total pollutant output in logs (Xk
i,t) from all coal power plants in

the county including carbon dioxide, nitrous oxide, and sulfur dioxide, total heat input used

in generation from all power plants in the county (HIi,t−1), the local unemployment rate

(UERi,t−1) and an error term εi,t clustered at the county-by-year level. County-by-year

fixed effects (αi,y) help control for unobservables specific to each county that might change

over time that impact mortality. Month fixed effects (δt) control for any seasonality in

mortality.

We consider three measures of closure: single event closure, multiple closures in the same

month, and the cumulative number of coal power plant closures over time. Table 6 reports

3https://wonder.cdc.gov
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the results from these three specifications. Overall, these models can explain approximately

88 percent of the variation in local mortality rates. The first column reports results from

the specification using a closure dummy variable. A single closure is associated with a 1.1

percent reduction in the mortality rate. Measuring closure with the number closures in a

county in a given month resulted in a slightly smaller coefficient with each closure associated

with a reduction in the mortality rate by 0.6 percent. Similarly, in the third column of the

table, the coefficient on the running total of closures also suggests a 0.06 percent reduction

in the mortality rate per coal power plant closure. Across the specifications, higher nitrous

oxide emissions were correlated with higher mortality, while higher unemployment rates were

negatively correlated with mortality; consistent with previous work on deaths and despair

(Case and Deaton, 2017, 2020).

Recognizing the possibility of a lag between coal plant closure and mortality, we re-

estimate equation 3 at the annual frequency. We include county and year fixed effects in the

regression and cluster standard errors at the county-level. The remaining control variables

are the same. Table 7 reports the results across three specifications with the same three

measures of closure. At the annual frequency, a coal power plant closure is associated with

a 0.2 to 0.8 percent reduction in county mortality rates. Because the annual frequency

cannot control for time varying factors across counties, the monthly results are the preferred

specification.

5.1 Value of Statistical Life Estimates

We next use our county-monthly estimates of changes in mortality from change in particulate

matter from coal power plant closure as well as the actual plant closure to calculate the

potential economic impact from a value of statistical life perspective. Starting with the air

quality results, we must estimate the population at risk within the 25 and 50 mile buffers.

We dissolve the 25 and 50 mile buffers into larger “buffer regions,” thereby creating distinct

areas with no overlapping population. Within each of these buffer regions we capture all
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Census tracts that are completely contained within the border of the region. This restriction

does mean that we may underestimate the true population at risk. However, we find that the

smaller tracts that are contained within the buffer regions represent the larger population

cores of these areas and thus the majority of population. Figure 5 shows the buffer regions

and tracts that are contained within each region. The western portion of the country has

more sparsely populated areas, which do not fit within a buffer region, but the tracts that

do fall into these regions are densely populated.

The Environmental Protection Agency suggests using an estimate of $7.4 million (in 2006

dollars) to quantify mortality risk reduction benefits, which is approximately the middle of

the range of available estimates summarized by Viscusi and Aldy (2003). We calculate the

potential health benefit (PHB) for a single closure for each buffer region as follows:

PHBi,t = populationi ∗ rmi,t ∗ 0.004 ∗ $7.4 million,

where populationi is the total population of the buffer region, calculated as the sum of tract

populations that are within the region and rmi is the population-weighted age-adjusted mor-

tality rate in region i. We calculate the population-weighted, age-adjusted rate by weighting

the county-level age-adjusted mortality rate from the CDC by the share of buffer region pop-

ulation that is made up by Census tracts that fall within a given county and buffer region.

We use the adjusted hazard ratio for all mortalities using the longer-term estimate, 0.004, in

Table 5 to capture the reduction in mortality from reduced particulate matter via coal power

plant closure. Figure 10 presents the mean and median value of potential health benefits

across all buffer regions in each year. Between 2002 and 2018, the average estimated poten-

tial health benefit from coal power plant closure ranged from $0.9 to $4.3 billion. Similarly,

the estimated median benefit ranged from between $0.4 and $2.0 billion.

While these potential health benefits were based on previous research linking reductions

in particulate matter and mortality, we also estimate the potential health benefits from coal
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plant closure and mortality. To do this, we our estimate of each closure associated with a

0.6 percent reduction in county mortality rates. We calculated the PHB for each county as:

PHBi,t = populationi,t ∗ rmi,t ∗ 0.006 ∗ CPCi,t ∗ $7.4 million,

where populationi,t is the total population, rmi,t is the population-weighted, age-adjusted

mortality rate, and CPCi,t is the number of coal power plant closures in county i in month t.

Using those county-month observations with closures, Figure 11 shows the estimated county

mean and median benefit. Between 2002 and 2018, the average potential health benefit

ranged from $1-7 billion, while the median benefit ranged from $1-4 billion. Using county-

level data from Bureau of Economic Analysis, Figure 12 reports the potential health benefit

as a share of real gross domestic product. We fine that average (median) local benefit ranged

from 4 to 14 (2.5 to 11) percent of GDP.

To give a sense of the aggregate benefit, we sum up the potential health benefit across

all counties with closures. Figure 13 shows the estimated annual benefit. The year to year

differences are driven by the number coal power plant closures. The estimated aggregate

annual benefit ranged from a low of $3.9 billion in 2003 to a high of $156 billion in 2013. At

peak years in 2008 and 2013, the annual estimated benefit was equivalent to 1 percent of U.S.

GDP. Thus, the positive externality of coal-fired power plant closures is quite substantial

and economically meaningful.

6 Conclusion

The on-going transition in the power-utility sector is not only changing the fuel sources from

coal to natural gas and renewables, but it is also changing local air quality along the way.

While prior research has analyzed the air quality response of fuel-switching and coal storage,

we focus on the event of coal power plant closure. Our contribution is estimating the effect of

coal-fired power plant closures on local air quality, especially in concentrations of particulate
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matter PM2.5, and on mortality.

Using monthly panel data of air monitor stations between 1995 and 2018, we find re-

ductions in local particulate matter of 7 to 14 percent. The reduction in the level of PM2.5

concentrations is about 15 percent of previously estimated mortality hazard ratios. The

reductions we estimate represent approximate reductions of 0.8 percentage points in the

probability of total deaths. When we estimate the effect of coal power plant closure on

local mortality we find a 0.6 percent reduction in the mortality rate with each closure. We

estimate that on a value of statistical life basis, the median local benefit of coal plant closure

ranged between $1 and $4 billion or 5 to 15 percent of local GDP since the early 2000s. In

aggregate, we estimate that the annual benefit ranged from a low of $3.9 billion in 2003 to a

high of $156 billion in 2013. At peak years in 2008 and 2013, the annual estimated benefit

was equivalent to 1 percent of U.S. GDP. Thus, the positive externality of coal-fired power

plant closures is quite substantial and economically meaningful.

It is important to note that our estimates do not capture the net effect of coal power

plant closure and the opening of natural gas-fired power plants. Previous research has shown

that hydraulic fracturing, which led to cheap, abundant natural gas, is a main contributor

to the decline in coal-fired generating electricity. However, it is unknown how new natural

gas-fired power plants or the extraction of natural gas might effect local air quality. Both

represent possible future areas of research.
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Figure 1: U.S. Coal and Renewable Energy Consumption (Quad BTU)
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Source: EPA

Figure 3: Coal Power Plant Closures, 2001 to 2018
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Figure 6: Air Quality Response to Coal Plant Closure
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Figure 10: Potential Local Health Benefit of Reduced PM2.5 from Coal Plant Closure

32



0
2

4
6

8

0
2

4
6

8
Bi

llio
n 

20
06

 $

2002 2004 2006 2008 2010 2012 2014 2016 2018

Mean Median

Source: Census, CDC, EPA

Figure 11: Potential Local Health Benefit of Coal Plant Closure
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Table 1: Descriptive Statistics

(a) 25 Mile Buffer

Mean SD Min Max

PM2.5 15.91 8.42 0.02 289.72

Coal Plant Closure 0.01 0.09 0.00 1.00

Heat Input (QBTU) 0.90 0.88 0.00 5.77

CO2 (Thous. Tons) 751.70 761.92 0.00 4,329.42

SO2 (Thous. Tons) 2.41 3.67 0.00 29.60

NO (Thous. Tons) 0.92 1.20 0.00 10.44

Unemployment Rate (%) 6.45 2.48 1.60 19.70

Wind Direction 0.33 0.64 -1.00 1.00

N 15788

Notes: The unit of observation is the air quality monitor-month level.

(b) 50 Mile Buffer

Mean SD Min Max

PM2.5 14.16 8.74 0.02 289.72

Coal Plant Closure 0.01 0.10 0.00 1.00

Heat Input (QBTU) 1.68 1.69 0.00 11.13

CO2 (Thous. Tons) 1,495.15 1,638.12 0.00 10,891.02

SO2 (Thous. Tons) 5.33 9.60 0.00 91.65

NO (Thous. Tons) 1.85 2.68 0.00 22.57

Unemployment Rate (%) 6.51 2.73 1.50 20.60

Wind Direction 0.36 0.65 -1.00 1.00

N 25082

Notes: The unit of observation is the air quality monitor-month level.
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Table 2: Descriptive Statistics of Air Quality Pre-Closure

Mean SD Min Max

PM2.5 25 Miles 15.55 7.21 0.02 108.97

PM2.5 50 Miles 14.01 7.77 0.02 108.97

Notes: The statistics include only air quality monitors

with a closure.

Table 3: Estimated Air Quality Response to Coal Power Plant Closure

25 mile 50 mile

Pre-Closuret 0.161 -0.104

(0.351) (0.308)

Coal Plant Closuret -1.129∗∗ -1.401∗∗∗

(0.466) (0.398)

Months Since Closuret 0.051 0.016

(0.043) (0.032)

Heat Inputt−1 0.664 1.033∗∗∗

(0.547) (0.355)

Unemployment Ratet−1 -0.016 -0.020

(0.104) (0.060)

Wind Directiont−1 0.583 0.884∗∗

(0.478) (0.438)

Carbon Dioxidet−1 -0.001 -0.000

(0.001) (0.000)

Nitrous Oxidet−1 -0.985∗∗∗ -0.620∗∗∗

(0.122) (0.046)

Sulfur Dioxidet−1 0.293∗∗∗ 0.143∗∗∗

(0.066) (0.028)

Adj. R-squared 0.621 0.615

N 15,569 24,757

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust

standard errors clustered by air monitor site-year

are in parentheses. All regressions include air mon-

itor site by year and month fixed effects.
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Table 4: Estimated Air Quality Response to Coal Power Plant Closure - Downwind Sample

25 mile 50 mile

Pre-Closuret 0.671 -0.293

(0.461) (0.332)

Coal Plant Closuret -1.461∗∗ -1.976∗∗∗

(0.599) (0.450)

Months Since Closuret 0.037 0.011

(0.064) (0.041)

Heat Inputt−1 0.132 1.049∗∗∗

(0.573) (0.371)

Unemployment Ratet−1 -0.006 -0.055

(0.132) (0.068)

Wind Directiont−1 1.454∗∗ 1.121∗∗

(0.624) (0.543)

Carbon Dioxidet−1 0.001 -0.000

(0.001) (0.000)

Nitrous Oxidet−1 -1.133∗∗∗ -0.697∗∗∗

(0.145) (0.061)

Sulfur Dioxidet−1 0.115 0.142∗∗∗

(0.079) (0.032)

Adj. R-squared 0.577 0.585

N 10,717 17,956

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust stan-

dard errors clustered by air monitor site-year are in

parentheses. All regressions include air monitor site by

year and month fixed effects.
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Table 5: Mortality Hazard Ratios of PM2.5 Exposure

Cause of Death Hazard Ratio (10 µg/m3) Adjusted Hazard Ratio (1.5 µg/m3)

All Causes 1.056 1.008

Cardiopulmonary 1.129 1.019

Ischemic Heart Disease 1.240 1.024

Lung Cancer 1.137 1.021

Source: Estimated hazard ratios of a 10 µg/m3 exposure by Krewski et al. (2009) reported in the first

column were adjusted to 15 percent of that exposure to approximate magnitude of exposure reduction from

coal closure.

Table 6: Estimated Mortality Rate Response to Coal Power Plant Closure

Mortality Rate Mortality Rate Mortality Rate

(All Deaths) (Circulatory Deaths) (Respiratory Deaths)

Coal Plant Closure(s) -0.006∗∗ -0.010∗∗ -0.009

(0.003) (0.005) (0.009)

Heat Input -0.005 -0.005 -0.012

(0.004) (0.005) (0.009)

Carbon Dioxide 0.001 -0.000 0.006

(0.003) (0.005) (0.008)

Nitrous Oxide 0.005∗∗∗ 0.005∗∗ 0.003

(0.002) (0.003) (0.004)

Sulfur Dioxide 0.000 0.001 -0.000

(0.001) (0.001) (0.002)

Unemployment Rate -0.002∗ -0.001 0.005

(0.001) (0.002) (0.004)

Adj. R-squared 0.876 0.830 0.753

N 33,697 32,052 26,305

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at county-year are in

parentheses. All regressions include year, county by year and month fixed effects.

39



Table 7: Estimated Mortality Rate Response to Coal Power Plant Closure - Yearly

Mortality Rate Mortality Rate Mortality Rate

Coal Plant Closure -0.004

(0.003)

Coal Plant Closure(s) -0.002∗

(0.001)

Cum. Coal Plant Closures -0.008∗∗∗

(0.002)

Heat Input 0.005 0.006 0.007

(0.006) (0.006) (0.006)

Carbon Dioxide -0.011∗∗ -0.011∗∗ -0.010∗∗

(0.005) (0.005) (0.005)

Nitrous Oxide 0.002 0.002 0.000

(0.003) (0.003) (0.003)

Sulfur Dioxide 0.001 0.001 0.001

(0.002) (0.002) (0.001)

Unemployment Rate -0.002 -0.002 -0.002

(0.002) (0.002) (0.002)

Adj. R-squared 0.921 0.921 0.923

N 3,105 3,105 3,105

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered by county are in

parentheses. All regressions include year and county fixed effects.
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Appendix: Additional Empirical Results

Endogeneity of Closure

As an additional robustness check, we consider the potential endogeneity of which areas

experience closure. Prior research on shutdown decisions at the plant level by Davis et al.

(2018) indicates the age of power plants is likely a stronger predictor. To address this we

use a 2SLS-IV approach where in the first stage we estimate:

CPCi,t = αi,y+δt+σAgei,t+βAge
2
i,t+λHIi,t−1+φkX

k
i,t−1+ψWDi,t−1+γUERi,t−1+µi,t, (4)

where Agei,t−1 is average power plant age of all the plants that intersect each 25 and 50 mile

buffer. The second stage is estimated using:

PMi,t = αi,y + δt + βCPCi,t + λHIi,t−1 + φkX
k
i,t−1 + ψWDi,t−1 + γUERi,t−1 + εi,t. (5)

First stage results are reported in Table A1. Age is negatively and significantly correlated

with closure, while the quadratic term was near zero and insignificant. The F -statistic

for the instruments is 7 and 16 in the 25 and 50 mile buffer samples, respectively. The

instrumental variables are not sufficiently strong in either buffer sample. The endogeneity

test was only significant in the 25 mile buffer sample. Overidentifaction tests indicated that

the instruments were uncorrelated with second stage residuals. The second stage results

suggest that coal power plant closure in the 25 mile buffer sample reduced longer-term

PM2.5 by 13.3 µg/m3 or 85 percent (13.3/15.5) of the average pre-closure level (Table A2).
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Table A1: First Stage Results of Coal Power Plant Closure

25 mile 50 mile
Plant Aget -0.011∗ -0.018∗∗

(0.006) (0.008)
Plant Age2t 0.000 0.000

(0.000) (0.000)
Heat Inputt−1 0.005 0.021

(0.027) (0.017)
Unemployment Ratet−1 0.008∗∗ 0.004∗∗

(0.003) (0.002)
Wind Directiont−1 0.002 0.034∗∗

(0.011) (0.013)
Carbon Dioxidet−1 -0.000 -0.000

(0.000) (0.000)
Nitrous Oxidet−1 0.001 0.002∗∗∗

(0.002) (0.001)
Sulfur Dioxidet−1 -0.005∗∗ -0.003∗∗∗

(0.002) (0.001)
IV-F 7.01∗∗∗ 16.13∗∗∗

Adj. R-squared 0.951 0.951
N 15,565 24,754

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust stan-
dard errors clustered by air monitor site-year are in
parentheses. All regressions include air monitor site by
year and month fixed effects.
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Table A2: IV-2SLS Estimates of Local Air Quality Response Post Closure

25 mile 50 mile
Post Plant Closuret -13.319∗∗ -4.288

(5.707) (3.227)
Heat Inputt−1 0.499 1.095∗∗∗

(0.616) (0.362)
Unemployment Ratet−1 0.088 -0.002

(0.121) (0.063)
Wind Directiont−1 0.525 0.958∗∗

(0.488) (0.441)
Carbon Dioxidet−1 -0.000 -0.000

(0.001) (0.000)
Nitrous Oxidet−1 -0.901∗∗∗ -0.608∗∗∗

(0.127) (0.045)
Sulfur Dioxidet−1 0.211∗∗∗ 0.129∗∗∗

(0.076) (0.029)
Endogeneity test 7.96∗∗∗ 1.34
Overidentification test 0.117 0.414
Adj. R-squared 0.593 0.612
N 15,565 24,754

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust stan-
dard errors clustered by air monitor site-year are in
parentheses. All regressions include air monitor site by
year and month fixed effects.
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Mortality Response: Alternative Closure Measures

Table A3: Estimated Mortality Rate Response to Coal Power Plant Closure - Single Closure

Mortality Rate Mortality Rate Mortality Rate
(All Deaths) (Circulatory Deaths) (Respiratory Deaths)

Coal Plant Closure -0.011∗∗ -0.017∗∗ -0.018
(0.005) (0.009) (0.013)

Heat Input -0.005 -0.005 -0.012
(0.004) (0.005) (0.009)

Carbon Dioxide 0.001 -0.000 0.006
(0.003) (0.005) (0.008)

Nitrous Oxide 0.005∗∗∗ 0.005∗∗ 0.003
(0.002) (0.003) (0.004)

Sulfur Dioxide 0.000 0.001 -0.000
(0.001) (0.001) (0.002)

Unemployment Rate -0.002∗ -0.001 0.005
(0.001) (0.002) (0.004)

Adj. R-squared 0.876 0.830 0.753
N 33,697 32,052 26,305

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at county-year are in
parentheses. All regressions include year, county by year and month fixed effects.
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Table A4: Estimated Mortality Rate Response to Coal Power Plant Closure - Cumulative
Closures

Mortality Rate Mortality Rate Mortality Rate
(All Deaths) (Circulatory Deaths) (Respiratory Deaths)

Cum. Coal Plant Closures -0.008∗∗∗ -0.010∗∗∗ -0.017∗∗

(0.003) (0.004) (0.008)
Heat Input -0.005 -0.005 -0.012

(0.004) (0.005) (0.009)
Carbon Dioxide 0.001 -0.000 0.006

(0.003) (0.005) (0.008)
Nitrous Oxide 0.005∗∗∗ 0.005∗∗ 0.003

(0.002) (0.003) (0.004)
Sulfur Dioxide 0.000 0.001 -0.000

(0.001) (0.001) (0.002)
Unemployment Rate -0.002∗ -0.001 0.005

(0.001) (0.002) (0.004)
Adj. R-squared 0.876 0.830 0.753
N 33,697 32,052 26,305

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at county-year are in parentheses.
All regressions include year, county by year and month fixed effects.
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