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1 Introduction

After the longest expansion in history since the Great Recession, the U.S. economy is once

again trapped at the zero lower bound (ZLB) by the health and economic crisis from the

COVID-19 pandemic. With a sharp revenue decline and a series of legislation in response

to the pandemic, federal deficits are projected to rise to $3.7 trillion and $2.1 trillion in

fiscal years 2020 and 2021 (Congressional Budget Office (2020b)), roughly 17.2% and 9.5%

of 2020Q1 annualized GDP.1 The 2020 deficit will register the highest level for the federal

government since 1945, and the federal debt is projected to grow sharply to 108% by the

end of fiscal year 2021, up from 79% in 2019 (Congressional Budget Office (2020b); Office of

Management and Budget (2020)).2 Although the interest rates of U.S. Treasury securities

are extremely low at the ZLB, it is concerning whether the debt servicing cost will surge and

debt sustainability can be at risk when interest rates normalize as the economy recovers.

This paper focuses on the implications of interest rate normalization against a backdrop

of elevated government debt.3 A higher policy rate, propagating through financial markets,

raises interest rates on government bonds and therefore government interest payments. Fig-

ure 1 highlights that federal government’s interest payments are highly correlated with the

federal funds rate. It is notable that since the Great Recession, the federal funds rate plays

a more important role in determining government interest payments than government debt

levels. Despite a rapidly rising net debt from 35% of GDP in 2008 to 79% in 2019, the

federal government’s net interest payments as a share of GDP were largely unchanged: 1.7%

of GDP in 2008 versus 1.8% in 2019. Moving forward, Congressional Budget Office (2020a)

estimates that the average annual interest payments as a share of GDP in 2041-2050 would

1The legislation includes the Coronavirus Preparedness and Response Supplemental Appropriation Act ($8 billion), the
Families First Coronavirus Response Act ($192 billion), the Coronavirus Aid, Relief and Economic Security Act ($1,721 billion),
and the Paycheck Protection Program and Health Care Enhancement Act ($483 billion).

2Throughout the paper, we refer to the federal debt held by the public as the net federal debt.
3Interest normalization is part of monetary policy normalization. Another part involves reducing the Federal Reserve’s hold-

ing of longer term securities. An emerging literature focuses on fiscal implications of changing the size or portfolio composition
of a central bank’s balance sheet. In particular, several papers study remittance transfers from a central bank to the Treasury
from the income risk perspective, e.g., Carpenter et al. (2015), Christensen et al. (2015), Del Negro and Sims (2015) (reverse
transfers—or fiscal support—from fiscal authorities to a central bank), and Hall and Reis (2015). See Cavallo et al. (2019) for
a literature survey.
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be more than three times as much as the 2019 level.4

U.S. Treasury debt has been perceived as risk free, reflected in persistent low yields.

Bohn (2008) concludes that historically U.S. debt satisfies a sufficient sustainability con-

dition, as the primary surplus responds positively to government debt fluctuations. Even

combining expected rising interest rates with existing high debt and low growth, Blanchard

and Zettelmeyer (2017) argue that fiscal crises are unlikely, unless risky macroeconomic poli-

cies are pursued. Elmendorf and Sheiner (2017) recognize that the federal budget is on an

unsustainable path. In a low interest rate environment, however, they argue that policy

retrenchment aiming at reducing federal budget deficits is not necessary in the short run.

Blanchard (2019) also argues that with persistently low interest rates and negative interest-

growth differentials, the fiscal and welfare costs of debt issuance are low, and government

debt need not be urgently reduced. While the sharp rise of federal government debt in 2020-

2021 is likely to be one-off, alternative views highlight that increasing government liabilities

associated with Social Security, Medicare, and Medicaid are a systematic factor threatening

debt sustainability (Hagist and Kotlikoff (2008), Davig et al. (2010), Kotlikoff (2015), Cao

et al. (2018), and Government Accountability Office (2020)).

To study the fiscal implications of interest rate normalization amid mixed views on fed-

eral debt sustainability, we take a theoretical approach using a New Keynesian (NK) model

with sovereign default risk. Debt sustainability is assessed based on a government’s ability

to pay. We follow Bi’s (2012) approach to simulating fiscal limits (a collection of possible

values for the maximum sustainable debt) for the U.S. federal government.5 Fiscal limits,

which account for the underlying economic fundamentals and future fiscal policy paths, are

represented by a distribution that incorporates economic and policy uncertainty. Sovereign

default risk premia arise endogenously as government debt approaches its fiscal limits, be-

cause agents take into account rising default risk. In this framework, debt sustainability is

4This projection, published in January 2020, does not account for the additional debt from the pandemic related legislation
and is based the slowest growth path of the federal government debt among the scenarios simulated.

5The concept of debt sustainability we use here differs from the classic strategic sovereign default approach, which focuses
on a government’s willingness to pay (e.g., Eaton and Gersovitz (1981), Aguiar and Gopinath (2006), and Arellano (2008)).
Instead it is similar to the empirical approach based on primary balance (Ghosh et al. (2013), Tanner (2013), and Collard et al.
(2015)). In addition, we do not consider the possibility that debt can be stabilized through monetization.
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based on the probability that the current debt level exceeds a randomly drawn fiscal limit

from a simulated distribution: a higher debt level implies a higher default probability and

hence a higher risk premium of government debt.

The model specification captures the U.S. economy along several dimensions. It features

a regime-switching process for government transfers to capture the most important factor

underpinning the long-run federal debt sustainability: an upward trend in the transfers-to-

GDP ratio (the solid line in Figure 2) and uncertainty associated with transfers policy reform.

Our baseline fiscal limit simulation indicates that the sovereign default risk is virtually zero

for the federal government if the net federal debt is below 100% of GDP. The mean and the

distribution of the fiscal limits, however, are subject to great uncertainties from a range of

factors, including the maximum implementable tax rates and the future transfers policy.

We focus on the interest normalization process when the economy exits from the ZLB.

Following Smets and Wouters (2007), we introduce a sequence of financial shocks that in-

crease the return of a risk-free asset to generate a liquidity trap.6 The financial shocks induce

households to substitute away from investment, pushing the economy into the ZLB and gen-

erating a severe recession. The sharp decline in output lowers tax revenues and drives up the

debt-to-output ratio. In the baseline analysis, we consider a scenario with government debt

at 90-100% of GDP, roughly the current net federal debt level. As the large financial shocks

abate, the economy exits from the ZLB with inflation rebounding and the real interest rate

dropping. As a result, government’s payments on debt interest decline sharply relative to

the ZLB period. Despite the recovery in tax revenues and the real bond price, the debt level

remains elevated for a sustained period, as well as the default probability, albeit at a low

level. To account for economic uncertainty during normalization, the economy continues to

be hit by periodic financial shocks drawn from its distribution.

To check robustness of our results, we consider a range of alternative scenarios. First,

we show a more pessimistic case with a higher level of government debt around 150–160%

of GDP against an alternative fiscal limit distribution with a lower mean. This alternative

6The financial shock has been shown to be important in explaining the Great Recession (Christiano et al. (2015) and Gust
et al. (2017)). In the sensitivity analysis, we use the investment efficiency shock as the macroeconomic shock.
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distribution would arise if federal transfers as a share of GDP is expected to rise relentlessly

for several decades as projected by Congressional Budget Office (2020a) under current law.

In this situation, interest rate normalization raises the default probability by about 3-4

percentage points and increases the risk premium. A higher risk premium translates into a

higher real interest rate, leading to a slower recovery. Second, we find that the central bank’s

stronger commitment to raise the inflation expectations during normalization through a more

active monetary policy can lower the real interest rate and facilitate the economic rebound.

With a faster recovery in tax revenues, government debt increases less than the baseline

analysis with a less active monetary policy. Third, the longer the average debt maturity, the

higher the fiscal costs associated with the ZLB, because the real return of debt also depends

on its resale value, which is higher with longer-term debt.

Our paper is closely related to Battistini et al. (2019), which also studies monetary and

fiscal policy interactions in an NK model with sovereign default risk. Their paper relies on

the peak of the Laffer curve when simulating the fiscal limits following Bi (2012). Instead,

we use historical income tax rates to gauge a reasonable range of maximum implementable

tax rates for the U.S. federal government. Another important distinction is that their paper

investigates how monetary policy, joint with the ZLB, shapes the distribution of fiscal limits,

while ours focuses on the macroeconomic dynamics in an interest rate normalization process

conditional on a fiscal limit distribution. Finally, their model abstracts from capital, and we

show that capital can significantly amplify macroeconomic responses both at the ZLB and

during normalization.

2 The Model Setup

We lay out an NK model with a regime-switching process for government transfers. Our

model includes capital and, therefore, allows interest rates to affect saving decisions between

investment and government bonds. Capital is often absent in existing papers that model

sovereign default risk with fiscal limits (e.g., Corsetti et al. (2013), Bi et al. (2013), and

Battistini et al. (2019)). Our baseline model features a typical one-period bond as in most
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DSGE models. Later in sensitivity analysis, we modify the model to allow for a longer debt

maturity.

A representative household chooses consumption (ct), labor (nt), investment (it), and

one-period nominal bonds (Bt, B
f
t ) to maximize life-time discounted utility:

maxEt

∞
∑

t=0

βt

(

c1−σ
t

1 − σ
− χ

n
1+ϕ
t

1 + ϕ

)

. (1)

subject to the budget constraint:

Ptct+Ptit+
Bt

Rt

+
B

f
t

ηtR
f
t

= (1−∆t)Bt−1+Pt

[(

1 − τ l
t

)

wtnt +
(

1 − τ k
t

)

rk
t kt−1

]

+Ptzt+Υt+Ptω.

(2)

Pt is the price level of the final goods, wt is the real wage rate, rk
t is the real return to capital,

and Υt is the real profits of the monopolistic competitive intermediate goods firms. zt is real

government transfers, τ l
t and τ k

t are the tax rates on labor and capital income, and ω is a

real lump-sum tax to capture all other taxes and fees paid to the government.

Following Bi et al. (2018), we distinguish the nominal return of a risky government bond

(Rt) from the return of a risk-free bond (Rf
t ). At time t − 1, the government sells Bt−1

units of a risky nominal bond at a price of 1
Rt−1

. At time t, if the government does not

default (∆t = 0), it pays Bt−1 dollars; if the government defaults (∆t = ∆ > 0), it only pays

(1 − ∆)Bt−1 of liabilities. Households can also trade a risk-free bond, which, for simplicity,

is assumed to be in zero net supply.

To introduce a macroeconomic shock that can drive the economy to the ZLB, the baseline

model follows Smets and Wouters (2007) and includes a financial disturbance, ηt, that creates

a wedge between the return to risk-free bonds and the policy rate set by the central bank
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(Rf
t ).

7 The financial disturbance follows an exogenous process,

ln
ηt

η
= ρη ln

ηt−1

η
+ ε

η
t , (3)

where a variable without a time subscript indicates its steady-state value, and εη
t ∼ N(0, σ2

η)

is the financial shock.

When making decisions on purchasing risky government debt, households account for

default risk, and the optimality condition is

1

Rt

= βEt

λt+1

λt

(1 − ∆t+1)

πt+1
, (4)

compared to the optimality condition for risk-free debt:

1

ηtR
f
t

= βEt

λt+1

λt

1

πt+1
. (5)

Equation (4) implies that, when default probabilities rise, households demand a higher return

to hold government debt.

The law of motion for capital is

kt = (1 − δ)kt−1 + it −
κ

2

(

it

kt−1
− δ

)2

kt−1, (6)

where δ is the capital depreciation rate and κ is the capital adjustment cost parameter.

The representative competitive final goods producer produces yt, using yt(i) units of each

intermediate goods i with the technology:

yt =

[
∫ 1

0

yt(i)
θ−1

θ di

]
θ

θ−1

. (7)

The final goods producer’s profit maximization yields the demand function for each inter-

7In reality, business cycle fluctuations are caused by various structural and policy shocks. To minimize the number of state
variables in solving the nonlinear model, we rely on a single macroeconomic shock to generate a severe recession that constrains
the economy at the ZLB. We do not perform the analysis using other common macroeconomics shocks in the DSGE literature,
as we want to capture two data patterns observed during the recent two severe recessions: 1) a positive co-movement in output,
consumption, and investment, and 2) falling, rather than rising, inflation. A preference or discount factor shock produces
negative consumption but a positive investment response, and a negative technology shock reduces output but leads to prices
to increase, moving the economy away from the ZLB.
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mediate good i:

yt(i) =

[

Pt(i)

Pt

]

−θ

yt, (8)

where Pt(i) is the price for yt(i).

Intermediate goods are produced by monopolistically competitive firms. Following Rotem-

berg (1982), each intermediate goods-producing firm i (∈ [0, 1]) faces a quadratic cost to

change its nominal price. At each period, the intermediate goods firm i chooses nt(i), kt(i),

and Pt(i) to maximize its discounted total profit in units of current marginal utility for

consumption, λt:

max
nt(i),kt(i),Pt(i)

E

∞
∑

t=0

βtλt

[(

Pt(i)

Pt

)1−θ

yt −wtnt(i) − rk
t kt−1(i) −

ψ

2

(

Pt(i)

πPt−1(i)
− 1

)2

yt

]

, (9)

subject to the demand function, (8), and the production function

yt(i) = at [kt−1(i)]
α
nt(i)

1−α. (10)

The government collects taxes and sells bonds each period to pay for its purchase (gt),

transfers, and liabilities. The government’s flow budget constraint is

Bt

Rt

+ Pt

[

τ l
twtnt + τ k

t r
k
t kt−1 + ω

]

= (1 − ∆t)Bt−1 + Ptgt + Ptzt. (11)

Following Bi (2012), a realized effective fiscal limit, bmax
t , is drawn from a fiscal limit

distribution each period. If the government’s real debt liabilities at the end of t− 1 (bt−1 =

Bt−1

Pt−1
) are less than bmax

t , it fully repays its debt; otherwise, it defaults a fixed fraction of its

liabilities. Specifically,

∆t =















0 if bt−1 < bmax
t ;

∆ if bt−1 ≥ bmax
t .

(12)

The distribution of fiscal limits is derived under the assumption that the government faces

a limit in raising tax revenues for economic or political reasons (see Section 4 for details).

In this framework, the uncertainty associated with the debt threshold reflects factors influ-
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encing sovereign default decisions in reality, such as institutional and policy making quality,

which is omitted in the model.8 Although sovereign default in the model is stochastic, de-

fault probabilities are linked to economic fundamentals, which increase nonlinearly when

government debt burden escalates as observed in reality.

The model features a regime-switching process for government transfers between a stable

and an unstable regime, as in Davig et al. (2010):

zt(i
z
t ) =















(1 − ρz)z + ρzzt−1, if izt = 1, ρz < 1,

µzt−1, if izt = 2, µ > 1,

(13)

where the regime index izt evolves according to the transition matrix





pz
1 1 − pz

1

1 − pz
2 pz

2



 . (14)

pz
1 (pz

2) is the probability of continuing to stay in the stable (unstable) regime each period,

calibrated to be highly persistent. The solid line in Figure 2 plots the mandatory spending

of the federal government, which maps to government transfers in our model. Congressional

Budget Office’s projection (2019) shows that federal mandatory spending under the current

law will continue to rise as a share of GDP. This modeling approach intends to capture the

uncertainty in the timing of transfers policy reform.9

We keep the government consumption, gt, fixed at its steady state for simplicity. As

shown in Figure 2 (the dashed line), federal government purchases, which map to gt in our

model, have a downward trend since 1960 and is projected to stabilize at about 5.5% of

GDP. Thus, gt is less likely to be used as a main fiscal adjustment instrument for the federal

government. We assume gt = g ∀ t. The income tax rates, on the other hand, have room to

8Kraay and Nehru (2006) find that policy and institution quality is important for sovereign debt stress, aside from debt
burden and economic growth shocks.

9Social Security reform is an on-going policy agenda in the U.S. Without any reform, only 76% of the scheduled benefits can
be paid with the continuing tax contribution after 2034 (Federal OASDI Trust Funds (2020)).
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increase and are assumed to be the fiscal adjustment instruments to stabilize debt:

τ l
t = τ l + γl(bt−1 − b) + φl(yt − y); τ k

t = τ k + γk(bt−1 − b) + φk(yt − y), (15)

where φl, φk > 0 capture a progressive income tax system, fluctuating with macroeconomic

conditions to reflect the automatic stabilization role of the federal income tax policy.

The central bank adjusts its policy interest rate to stabilize inflation. Monetary policy

follows the Taylor-type rule:

R
f
t = max

[

Rf
(πt

π

)απ

, 1
]

, (16)

where πt = Pt

Pt−1
is the inflation rate of final goods, and απ > 1 signals an active monetary

policy to stabilize inflation, following Leeper (1991). As απ increases, the central bank puts

more weight on inflation stabilization and is more willing to adjust the policy rate when

inflation deviates from its target. Household optimization conditions, equations (4) and (5),

highlight that as the monetary authority raises the policy rate, the return to government

debt also increases through the no-arbitrage conditions, inducing households to hold risky

government debt.

Lastly, the aggregate resource constraint is

yt = ct + gt + it +
ψ

2

(

πt

π
− 1

)2

yt. (17)

3 Calibration and Solution

Table 1 summarizes the parameter calibration and the steady-state values of fiscal variables.

The model is calibrated at the quarterly frequency. The capital depreciation rate, δ, is 0.025,

and the capital income share, α, is 0.36. Taking the mean estimates in Smets and Wouters

(2007), we calibrate the inverse of the intertemporal substitution elasticity for consumption

σ at 1.38, and the inverse of the Frisch labor elasticity φ at 1.83. The capital adjustment

costs κ is set to 1.7, as in Gourio (2012). To calibrate the market power of intermediate goods
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producing firms, we set θ = 7.67, implying a markup of 15%, in line with the estimates for

U.S. firms of 5–15% in Basu and Fernald (1995). Following Smets and Wouters (2007), the

degree of price stickiness is assumed to be one year, implying ψ = 78.2.10 The steady-state

quarterly inflation rate π is set to 1.005, equivalent to an annualized net inflation rate of

2%. To determine the real interest rate, we use the average real long-term interest rate for

the U.S. between 1970 and 2007 as constructed by Jordá et al. (2017): Rf

π
= 1.008, which

implies the quarterly discount factor β = 0.992. Without default risk in the steady state

(∆t = 0) and the steady-state financial disturbance η = 1, the annualized net policy rate

is 5.2%, roughly matching average annual effective federal funds rate from 1970 to 2019.

For the financial shock process, we set ρη = 0.8 and ση = 0.001.11 For the Taylor rule, we

choose the response of the interest rate to inflation, απ, to be 1.8 in the baseline, following

the estimate in Smets and Wouters (2007).12 When studying the role of monetary policy,

we explore a more active rule with απ = 3 for comparison.

To calibrate the steady-state fiscal variables, we use the average values from 1970 to

2019 in the Historical Tables published by Office of Management and Budget (2020). The

discretionary outlay-to-output ratio (g

y
) and the mandatory outlay-to-output ratio (z

y
) are

0.083 and 0.12 respectively.13 Given the importance of debt servicing costs in the model, we

calibrate the government interest payments as a share of output to be 2%, which matches

the 1970–2017 average of net interest outlays to GDP. The steady-state debt-to-annual out-

put ratio is set to 0.55, matching the average of the net federal government debt-to-GDP

ratio between 2000 and 2019. The lump-sum tax ω, the residual in the government budget

constraint, equals 4% of output in the steady state.

We use NIPA data with Jones’s (2002) method for constructing the average income tax

rates. We set τ l = 0.203 and τ k = 0.212, the 1970–2019 average of the constructed series.14

10Ascari and Rossi (2012) illustrate the equivalence of the Rotemberg and the Calvo price specifications in terms of the NK
Phillips curve.

11We choose a relative small ση to ensure convergence when solving the model nonlinearly.
12Smets and Wouters (2007) fit an NK model to the U.S. data for 1966-2004 and obtain the 90-percent posterior range for

απ of 1.7–2.3.
13Federal discretionary outlays include national defense and non-defense outlays but exclude net interest payments. Federal

mandatory outlays mainly include spending on Social Security, Medicare, and Medicaid.
14Jones (2002) computes the average capital and labor income tax rates for all government levels in the U.S. We apply the

method to federal income taxes only. The main difference is that federal capital income taxes do not have property taxes. The
data of National Income and Product Account (NIPA) used for the calculation include: compensation of employees (NIPA Table
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For the response of the labor and capital income tax rates to output, we adopt the estimates

in Leeper et al. (2010), setting the elasticity of the labor (capital) income tax rate with respect

to output to be 0.36 (1.7).15 For the response of the tax rates to debt, we set γl = 0.012

and γk = 0.001. Since an increase in the capital income tax rate is more distorting than in

the labor income tax rate, we assume that the government chooses the labor income taxes

to bear most adjustments. The adjustment magnitudes are kept small, sufficient to satisfy

the transversality condition for government debt.

In calibrating the transfer process, we set ρz = 0.96, µ = 1.005, pz
1 = 0.9944, and

pz
2 = 0.9875, in line with those used in Bi et al. (2016). From a long-run perspective, federal

mandatory spending as a share of GDP has been largely on an upward trend since the early

1960s. The trend, however, has experienced different growth periods, from 1965 to 1985,

2000 to 2009, and 2018 to 2038 (the solid line in Figure 2). The calibration of pz
2 = 0.9875

gives an average length of an unstable regime of 20 years, and a sufficiently high pz
1 is required

to maintain the stationarity of the equilibrium system. Given the uncertainty of the average

length staying in an unstable regime—important in affecting expected future surplus, we

also simulate a fiscal limit distribution under a higher value of pz
2 = 0.9917, implying the

average length of 30 years in the unstable regime.

Our default scheme assumes a constant haircut rate ∆. Without default experience for

the U.S. federal government, we use the haircut rate estimated from the emerging mar-

ket economies. Sturzenegger and Zettelmeyer (2008) collect the estimated haircut rates of

sovereign debt restructures in emerging market economies. Relying on those data, Bi (2012)

calculates that 90% of the annual haircut rates (as a share of existing sovereign debt) fall

below 0.3 for the period between 1998 and 2005. Thus, we assume a constant annual haircut

rate of 0.28, implying a quarterly rate of haircut ∆ = 0.07.

Appendix A lists equations that characterize the equilibrium system. We use the mono-

1.12, line 2), wages and salaries (NIPA Table 1.12, line 3), proprietors’ income with inventory valuation adjustment and capital
consumption adjustment (NIPA 1.12, line 9), rental income of persons with capital consumption adjustment (NIPA Table 1.12,
line 13), net interest and miscellaneous payments (NIPA Table 1.12, line 18), federal personal current taxes (NIPA Table 3.2,
line 3), contributions for government social insurance (NIPA Table 3.2, line 10), and taxes on corporate income (NIPA Table
3.2, line 8).

15We convert Leeper at al.’s (2010) estimates to be consistent with our tax rule specification in level deviation so that
φl = 0.0235 and φk = 0.116.
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tone mapping method of Coleman (1990) and Davig (2004) to obtain a fully-nonlinear solu-

tion. Appendix B describes the numerical solution method.

4 Fiscal Limit Distributions

Fiscal limits are defined as the discounted expected sum of future maximum primary surplus

over an infinite horizon. By iterating (11) forward, imposing the tranversality conditions for

government debt, and assuming no default at t (∆t = 0), we obtain the equilibrium debt

valuation equation:

bt−1

πt

=
∞

∑

i=0

βiEt

[

λt+i

λt

(taxt+i − gt+i − zt+i)

]

, (18)

where bt−1

πt
= Bt−1

Pt
is the real value of government nominal liabilities at t. Fiscal limits

are simulated based on (18), but all the variables are computed under τ l
t+i = τ

l,max
t and

τ k
t+i = τ

k,max
t , the maximum labor and capital income tax rates that the government is

willing and able to impose in the future. We assume that τ l,max
t and τ

k,max
t are drawn from

two normal distributions to capture uncertainties surrounding the highest tax rates (see

Section 4.1 for details). Let the superscript “max” denote a variable’s value computed under

τ l,max
t and τ k,max

t . Specifically, conditional on an initial state, St = {ηt, kt−1, zt, i
z
t}, a fiscal

limit distribution is

b (St)

πmax
t (St)

∼
∞

∑

i=0

βiEt

{

λmax
t+i (St+i)

λmax
t (St)

[

taxmax
t+i (St+i) − gt+i (St+i) − zt+i (St+i)

]

}

. (19)

Equation (19) makes explicit the factors important for the fiscal limits at the beginning of

t, which include inflation, the stochastic discount factor (βiEt
λt+i

λt
), and expected primary

surplus at the maximum tax rates. Ceteris paribus, fiscal limits would be higher with 1)

higher inflation, which enhances the debt devaluation effect on existing nominal liabilities,

2) higher expected stochastic discount factors, which lower expected real interest rates, or

3) higher future primary surplus, which signals stronger debt repayment capacity.
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4.1 The Baseline Distribution

We rely on the historical income tax rates at the federal level to infer the maximum tax

rates, which are not observable for a country that has not defaulted. Specifically, the im-

plementable labor income tax rates, τ l,max
t , are drawn from an assumed normal distribution,

which is calibrated based on the data series of the average marginal federal income tax rate

on individuals from 1921 to 2006 constructed by Barro and Redlick (2011). The distribution

centers at 0.34, the 75th percentile of the data series on the average marginal income tax

rate, with a standard deviation of 0.05. It implies that 95% of maximum labor tax rates in

our simulation falls in the range of [0.24, 0.44], substantially higher than the average federal

labor income tax rate of around 0.2 since 2001.16

On the capital income tax rates, the historical rate has been on a clear downward trend,

gradually falling from the post-WWII peak of 0.38 in 1951 to the trough of 0.15 in 2019

(Figure 3). This trend can be partly explained by competition among countries to attract

investment and profit allocation of international firms. Therefore, it is less likely that the

federal capital income tax rates would return to the high levels observed before 1980. We set

the distribution of the maximum capital income tax rate to center at 0.24, the peak during

the post-1980 period, with the same standard deviation as the distribution for labor income

tax rates.

Instead of relying on historical tax rates, the original approach proposed in Bi (2012) is

to impose the peak of Laffer curve. Bi (2017) simulates fiscal limits for a group of advanced

economies and emerging market economies with the peak of model-implied Laffer curve

ranging from 0.5 to 0.7. Given the relatively low levels of federal income tax rates in the

U.S., 0.2 for labor income tax and 0.15 for capital tax in 2019, policymakers would encounter

a daunting task, should they attempt to double or triple the current tax rates. Our approach

has a similar idea as Collard et al. (2015), who use the maximum historical primary surplus

to compute a country’s maximum sustainable debt.

As Figure 2 (the dashed line) shows that future government purchases are expected to be

16See footnote 14 for the calculation of the average federal labor income tax rate.
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stable, we assume gt+i = g ∀ i. Transfers as a share of GDP, however, appear to be on an

unstable path. We capture the rising trend and the uncertain timing of a potential reform

by the regime switching process, (13) and (14), between stable and unstable regimes.

The solid line in Figure 4 plots the cumulative density function of the baseline fiscal limit

distribution (assuming the expected duration of an unstable regime is 20 years; pz
2 = 0.9875).

It shows that default probabilities are essentially zero for net federal debt below 100% of

annual output. Although the probability rises along with the debt level, it does not increase

significantly until the debt ratio exceeds about 200% of annual output. The net federal debt

level is projected to be around 100% of GDP in 2020 (Congressional Budget Office (2020b)).

Although this level of federal government debt is approaching the post-WWII peak of 106%

of GDP in 1946, the federal debt remains essentially risk free judged by the baseline fiscal

limit distribution as the default probability is close to zero. When the expected duration

is assumed to be 30 years (pz
2 = 0.9917), the red dotted-dashed line (Figure 4) shows that

the fiscal limit distribution is flattened somewhat relative to the baseline. An expected

longer duration of transfers policy staying in an unstable regime means that expected future

primary surplus is lower, implying a higher default probability for a given debt ratio.

The fiscal limit distributions simulated are conditional on an initial state, St, at the

steady state. After period t, the financial shock and transfers follow the stochastic processes

specified in (3), (13), and (14). The framework allows for the possibility to condition the

fiscal limit simulation on an initial major financial shock that drives the economy to the ZLB.

We conduct such a simulation but find that its impact on the fiscal limit distribution—in

terms of changes in the level and the shape of the distribution—is quite small. Thus, we

pursue the analysis with a distribution starting from the steady state.17

4.2 Alternative Distribution: Uncertain Future Fiscal Policies

The yardstick we use to assess a government’s debt sustainability emphasizes on a gov-

ernment’s debt repayment capacity. Given the significant uncertainties surrounding the

17Battistini et al. (2019) also find that the impact of a macroeconomic shock on the fiscal limit distribution is relatively small
at the ZLB.
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timing of Social Security and health spending reform in the U.S., we simulate an alternative

distribution assuming that federal transfers as a share of output follow the projection by

Congressional Budget Office (2019), in which federal mandatory spending rises from 12.8%

of GDP in 2020 to 17.5% in 2049, as shown by the solid line in Figure 2. After 2049, transfers

are assumed to revert to the regime-switching process as assumed in the baseline simulation.

The alternative distribution represents a more pessimistic view about the future fiscal policy

relative to the baseline, as the federal government can encounter resistance in reforming

social security or health care programs. In this case, the default probability is 5% with the

net debt ratio at 100% of annual output, and the default probability would rise quickly after

the debt ratio reaches 150% of annual output.

The comparison of the baseline and the alternative fiscal limit distributions leads to two

observations. First, sovereign default risk and government debt levels have a non-linear

relationship: once the risk starts rising, it tends to rise quickly. By then, it may be too

late to enact fiscal reforms to change expectations about future primary surplus and to shift

the fiscal limit distribution in a meaningful way. Second, conditional on a debt level, the

assessment about the debt sustainability can be different. At 200% of output, the risk of

sovereign default remains relatively low under the baseline distribution but can reach 40%

when the government’s debt repayment capacity is perceived to be lower, as shown in the

alternative distribution.

5 The Effects of Interest Rate Normalization

Prior to studying the fiscal implication of interest rate normalization, we first simulate a

scenario in which the economy has a high level of government debt and is constrained at

the ZLB. We proceed in two steps. Firstly, at t = −160 the economy starts at the steady

state with a debt-to-annual output ratio of 0.55. Between t = −160 and t = 0, the economy

is subject to the stochastic process of government transfers, as specified in (13) with 5,000

simulations being performed. This step generates government debt significantly higher than

the steady-state level. Secondly, the economy is injected with a series of major negative
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macroeconomic disturbances in the form of financial shocks from t = 1 to 5.18 Out of the

5,000 simulations, we retain 310 that satisfy two conditions: 1) government debt is in the

range of 90–100% of annual output at t = 5, and 2) the economy is constrained at the ZLB

from t = 1 to 5.

Next, we explore the dynamics during the interest rate normalization stage based on the

310 retained paths. Starting from t = 6, most simulation exit the ZLB, and all retained sim-

ulations are subject to periodic financial shocks drawn from its distribution. The continuous

macroeconomic disturbances allow us to characterize the stochastic nature of interest rate

normalization. At t = 6, 12% of retained simulations remain at the ZLB, and we characterize

the dynamics of the interest rate normalization with a median response and the 90-percent

confidence bands as shown in Figure 5.

5.1 The Economy at the ZLB

The black solid lines in Figure 5 are the median responses of 310 retained simulations and

the median value of government debt-to-annual output is 95% of annual output at t = 5.

The responses are the differences between the paths with and without the financial shocks.

The bands in dashed lines are the 90-percent confidence intervals.

Financial shocks that increase the return to risk-free assets push the economy into a deep

recession. The shocks raise ηt persistently starting from t = 1, which drive up households’

demand for risk-free assets and channel savings away from investment. Investment declines

by about 20% for the median response in the trough, shrinking the aggregate goods demand,

as well as firms’ labor demand. The median labor response declines by 4.6% in the trough.

Lower labor demand, joint with declined capital, reduces the marginal product of labor

and hence the real wage, despite a substantial decline in the price level. With reduced

wage income, households cut consumption, further reducing private demand. The median

reduction in output is 3.3% at the quarterly rate in the trough.

The deep contraction in demand significantly lowers inflation, driving the economy to the

18Ideally, the economy should also be subject to financial shocks before t = 1. Since the simulation before t=1 is solely aimed
at generating a high level of government debt, we simplify the simulation by shutting down the financial shocks before t = 1.
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ZLB. Inflation stays in the deflationary territory from t = 1 to 5 and reaches −5% at the

annualized rate in the trough.19 Monetary policy responds by cutting the policy rate, Rf
t ,

all the way to its ZLB. The inflation decline, joint with the bounded nominal interest rate,

raises the real interest rate and decreases the real government bond price.

Higher debt servicing costs increase government indebtedness. This channel is particularly

pronounced when the economy is trapped at the ZLB. With the ZLB binding from t = 1 to

5, the government’s real interest payments—computed as Bt−1

Pt
− Bt−1

Rt−1Pt−1
—increase by more

than 200 percent, compared to the case without the major financial shocks. Our baseline

model features a one-period government bond, and therefore the government has to roll over

all the existing debt in one quarter. In Section 6, we extend the maturity of government

debt to five years and find that a longer debt maturity can further amplify the impact.

In addition, income tax revenues contract as a result of a smaller tax base and lower

average income tax rates, the latter of which is due to a progressive tax system. A higher

real interest rate also decreases the real bond price, which is the inverse of the real interest

rate. The lower real bond price, together with declined tax revenues, increases the financing

needs and hence a rapid debt accumulation at the ZLB. The labor income tax rate falls

much less than the capital income tax rate, because it is assumed to bear most of the fiscal

adjustment burden.

5.2 The Process of Interest Rate Normalization

As the financial shocks die down, the financial disturbance, ηt, gradually returns to the

steady-state level. The economy exits the ZLB for most simulations, and only 12% of retained

simulations remain at the ZLB at t = 6. As private demand rebounds and the price level

rises, the central bank starts to normalize the policy rate toward its steady-state level. In

our simulation, the normalization process takes about 4 years, with the length crucially

depending on the persistence of the financial shock. Compared to output and investment,

19Deflation can be shallower and shorter in duration if we adopt a more general Taylor rule, in which the policy rate also
responds to output deviation from the steady state. The macroeconomic and fiscal dynamics under a more general Taylor rule
remain qualitatively the same as the baseline simulation. Hence, we maintain a simpler monetary policy rule in the baseline
specification.
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consumption recovers more slowly. This is because households expect most fiscal adjustment

to be borne by an increase in future labor income taxes. The negative wealth effect leads

households to cut current consumption, slowing the pace of consumption recovery from the

ZLB.

A rising policy rate (from the ZLB) increases the interest rate on government debt through

the no-arbitrage conditions of (4) and (5).20 Relative to the ZLB period, the real interest

payment falls substantially, mainly driven by the recovery in the price level. Although the

accumulation of government debt slows after exiting from the ZLB, the debt stock continues

to be elevated despite the recovery of income tax revenues. The median level of government

debt remains at 94% of annual output at t = 20, but the 90-percent upper bound reaches

103% of annual output. During normalization, the elevated debt level keeps the interest

payment-to-output ratio 0.5 percentage points higher than the path without the ZLB. This

is mainly driven by the legacy of a high level of government debt from the severe recession.

Overall, the result suggests that without aggressive fiscal adjustments, government debt

burden is difficult to retreat through economic growth alone during the interest normalization

stage.

In the baseline analysis, the sovereign default risk is trivial. The baseline fiscal limit

distribution (the solid line in Figure 4) shows that the default probability is negligible at the

level of government debt round 100% of annual output. During normalization, the increase

in the default probability—when comparing the path with and without experiencing the

ZLB—is only 0.4% for the median path, with the 90-percent interval of 0.2–0.6 percentage

points (the (4,3) panel of Figure 5). This level of default risk is empirically unimportant.

The assessment of debt sustainability, to a large extent, is based on the current debt level

and government’s ability in generating future primary surplus. Since fiscal limits are highly

uncertain and the federal government debt is likely to rise further, the next simulation

explores a high-debt scenario against a more pessimistic view on the fiscal limits of the

federal government.

20While the nominal interest rate (Rt) is not plotted in Figure 5, it follows closely the dynamics of the policy rate, R
f
t .
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5.3 Normalization with a High-Debt Level and Lower Fiscal Limits

In this high-debt simulation, we assume that the initial debt level is 150–160% of steady-

state annual output prior to the interest rate normalization, and the fiscal outlook is more

pessimistic relative to the baseline fiscal limit distribution. To this end, we consider the

alternative fiscal limit distribution—the dashed line in Figure 4. The distribution is de-

rived under the assumption that the federal government’s transfer spending will follow the

projection under current law from 2020 to 2049. Figure 6 plots the median responses of

the retained simulations—110 out of the total 5,000 simulations—that have the government

debt ratio in the range of 150–160% of output at t = 5, while the solid lines are the median

responses in the baseline simulation as in Figure 5.

In this alternative simulation, the government faces nontrivial default risk. The median

response indicates that the debt ratio would increase to 160% of GDP during normalization.

It corresponds to a default probability of around 11% (the dashed line in Figure 4), compared

to the default probability of only 2% in the baseline. The marginal increase in default

probability due to the financial shocks is also more visible, at about 3 percentage points

during normalization as shown in the bottom right panel of Figure 6.

The higher default probability raises government financing costs, leading to a slower

recovery. The default risk premium, defined as Rt − ηtR
f
t , increases by close to 100 basis

points during normalization in this alternative simulation, compared to only 9 basis points in

the baseline. The significant increase in risk premia, together with the higher existing debt

level, translates into much higher interest payments. In order to maintain debt sustainability,

the labor income tax rate has to increase more, about 0.8 percentage points more during

normalization, suppressing private consumption more. Compared to the baseline with lower

debt burden, output and consumption in the alternative high-debt scenario decline more

during the ZLB period and also recover more slowly afterwards. Although the channel of

sovereign default risk may seem irrelevant for the analysis at the current net federal debt level

as shown in the baseline analysis, it is increasingly important as the government becomes

more indebted.
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5.4 Normalization with a More Active Interest Rate Policy

During the normalization stage, one question concerning the central bank is how fast it should

allow the policy rate to rise. We approach this question by conducting a simulation with a

more aggressive response to inflation—απ = 3, compared to απ = 1.8 in the baseline. Since

our focus is on the normalization process, we compare the two cases from t = 5 onward.21

Figure 7 plots the impulse responses, which are the differences between the path with and

without financial shocks.

If the monetary authority makes a stronger commitment to its inflation target by in-

creasing απ, households expect inflation to return to its targeted level more quickly. Higher

expected inflation lowers the real interest rate more, prompting a stronger rebound in invest-

ment and consumption. An increase in private demand reinforces the increase in the price

level, leading to a higher policy rate in the case with a bigger απ. On the one hand, higher

interest rates increase government debt servicing costs and thus the financing needs. A faster

recovery in output, on the other hand, generates more income tax revenues. Government

debt as a share of output instead is lower during normalization under a more active interest

rate rule. The median debt ratio is about 0.8 percentage points lower with απ = 3 than in

the baseline analysis. As a result, real interest payments are about the same between the

two interest rate rules. The major discrepancy occurs at t = 6, driven by the unanticipated

pickup in inflation as the response to inflation switches, deflating the real value of interest

payments.

Our simulation result suggests that a more active monetary policy is preferred as it

leads to a faster recovery in the economy. The concern that a faster pace of interest rate

normalization could lead to a bigger debt accumulation is alleviated by a stronger rebound

in income tax revenues and hence a bigger decline in government debt burden.

21Starting from t = 6, the economy with a more active interest rate rule switches to απ = 3, compared to 1.8 in the baseline.
The switch is unanticipated, so the two simulations have the same economic conditions prior to t = 6.

21



6 Sensitivity Analysis

Given the challenge in solving a fully nonlinear model with rational expectations, the baseline

specification has been simplified in many aspects. In this section, we conduct sensitivity

analysis on the following aspects: 1) a different macroeconomic shock that drives the economy

to the ZLB, 2) a longer debt maturity, 3) a model without sovereign default risk, and 4) a

model without capital.

6.1 Investment Efficiency Shock

The two recent recessions that drove the U.S. economy to the ZLB—the Global Financial

Crisis and the Global Health Crisis—were triggered by very different causes. Our baseline

model relies on the frequently used financial shock in the literature to generate the ZLB. To

see whether the source of negative macroeconomic shocks matters for the fiscal implications,

we also simulate the model with an investment efficiency shock.

We follow the setup in Greenwood et al. (1988) and modify the law of motion for capital,

(6), to introduce an investment efficiency shock as follows.

kt = (1 − δ)kt−1 + νt

[

it −
κ

2

(

it

kt−1
− δ

)2

kt−1

]

, (20)

where νt is the investment efficiency shock that follows an AR(1) process:

ln
νt

ν
= ρν ln

νt−1

ν
+ εν

t , εν
t ∼ N(0, σ2

ν). (21)

This type of shock has been shown to be important for business cycle fluctuations (Green-

wood et al. (2000) and Justiniano et al. (2010)). We calibrate ρν = 0.8, following Justiniano’s

(2008) estimate. A relatively small σν = 0.001 is chosen to ensure determinacy.

Figure 8 compares responses under the investment efficiency shocks (solid lines) to those

in the baseline under the financial shocks (dashed lines). Both lines are the median responses

of the retained simulations with the government debt ratio in the range of 90–100% of annual
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output at t = 5. Like the financial shocks in the baseline analysis, the negative investment

efficiency shocks are injected from t = 1 to 5 to keep the economy at the ZLB, after which

the economy continues to experience investment efficiency shocks drawn from the assumed

distribution.

While the responses of the key macroeconomic variables are similar, the two types of

shocks have different impact on the real interest rate and government bond prices. Nega-

tive shocks on investment efficiency lower investment directly, reducing aggregate demand.

Output and inflation fall, driving the economy to the ZLB, similar to the baseline analysis.

The real interest rate and the bond price, however, move in the opposite directions for the

two macroeconomic shocks. Specifically, the financial shock can be seen as a risk premium

shock that also increases the interest rate of holding the risky asset (government debt) and,

therefore, lowers the real bond price. The investment efficiency shock, on the other hand,

discourages investment in physical assets. As a result, the demand for government bond

increases and therefore decreases the real interest rate, raising bond prices at the ZLB.

Although government debt builds up as well with the investment efficiency shock, the

pace is slower than with the financial shock, as the higher bond price eases the pressure

on government financing.22 When exiting from the ZLB, the higher bond price also helps

lower the debt ratio. A lower real interest rate, combined with a lower government debt level,

reduces interest payments and further ease debt sustainability concern during normalization.

Hence, our basic conclusion that the debt sustainability of the federal government at the

current debt level is unlikely to be threatened when the interest rates normalize continues

to hold with the investment efficiency shock.

6.2 A Longer Debt Maturity

The baseline model features a one-period government bond, which is at variance with the

reality. To see how government debt maturity can matter for our baseline result, we conduct

simulations under a longer average debt maturity of five years. Following Woodford (2001),

22Given the different natures of the shocks, it is difficult to construct a scenario with the exact same declines in output under
the two shocks during the ZLB period. Instead, we let investment efficiency shocks be sufficiently negative to keep the economy
at the ZLB from t = 1 to 5.
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the specification with long debt assumes that households have access to a government bond

portfolio, Bt, which sells at a price of Qt at t and pays Ωt dollars t+ 1 periods later for each

t ≥ 0. The average bond maturity is (1 − βΩ)−1 quarters. With the long-term debt, the

household’s budget constraint is revised as

Ptct + Ptit +
B

f
t

ηtR
f
t

+Qt [Bt − Ω(1 − ∆t)Bt−1]

= (1 − ∆t)Bt−1 + Pt

[(

1 − τ l
t

)

wtnt +
(

1 − τ k
t

)

rk
t kt−1

]

+ Ptzt + Υt + ω. (22)

With Ω = 0, it is collapsed to the baseline specification of a one-quarter bond. We set

Ω = 0.95, matching the average maturity of U.S. Treasury marketable debt from 2000 to

2018 to be five years (Office of Debt Management (2018)).

The responses with a long-term bond are very close to those with a short-term bond, as

shown in Figure 9.23 The main difference shows up in the ex-post real interest rate, which

can be derived as

r
ex−post
t =

1 + ΩQt

πtQt−1
. (23)

The initial spike in the ex-post real interest rate can be explained from the rising nominal

price at t. In the case of short-term debt, the ex-post real interest rate, or the real return

to government debt purchased at t − 1, is not affected by the current nominal bond price.

With a long-term bond, the real return at t also depends on the resale value of debt that

has not matured at t. The longer the average debt maturity is, the more important role the

resale price Qt plays in the ex-post real rate at t. Since the financial disturbance is expected

to last for a prolonged period in a deep recession, the expected low nominal interest rate

implies that the nominal bond price would rise, increasing the ex-post real rate as shown in

(23). With a higher real rate, interest payments and hence debt rise more with a long-term

bond. At an initial debt at 90-100% of annual output, the assessment on the federal debt

sustainability is, however, similar to that in the baseline analysis.

23In this analysis, we drop the regime-switching transfer process, as it is very challenging to solve the nonlinear model with
sovereign default risks, long-term debt, and a regime-switching transfer process. We assume the initial government debt starts
from a high level set exogenously, rather than simulating it by drawing from the regime-switching transfers. The condition of
the economy at time 0 is close to the baseline analysis.
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6.3 The Role of Sovereign Default Risk

One important feature of the model is that it uses fiscal limits to assess debt sustainability.

Sovereign default risk is highly nonlinear, as it is relatively invariant when debt increases

at low levels but can rise rapidly at high levels. The baseline analysis shows little sovereign

default risk associated with interest rate normalization but becomes more important with

high debt. To see the role of sovereign default risk, Figure 10 compares the median responses

with an initial high debt at 150-160% of annual output at t = 5 (solid lines) to those with

same level of debt but without facing sovereign default risk (dashed lines). In other words,

∆ = 0 ∀ t in (12) for the case without default risks.

The most conspicuous difference between the responses with and without sovereign default

risk is the risk premium, which is the difference between the risk free rate (ηtR
f
t ) and the

interest rate on government bonds (Rt). The model with sovereign default risk implies an

increase in the premium close to 100 basis points relative to the path without the financial

shocks, compared to no change in the risk premia for the model without default risk. When

there is no sovereign default risk, a smaller increase in interest payments leads to a more

rapid decline in debt, shrinking the increase in the income tax rate by 0.4 percentage points

and thus contributing to a slightly faster recovery in the economy. By construction, the

default probability in the model without sovereign default risk remains at zero throughout

the horizon regardless of the debt level. As government debt climbs higher, the analysis

using a model without sovereign default risk would overlook the warning from default risk

and its impact on risk premia when assessing debt sustainability, both at the ZLB and during

normalization.

6.4 The Role of Capital

Lastly, we contrast our baseline model, which captures the investment channel during the

interest rate normalization, to an alternative setup that abstracts from capital. On the

topic of fiscal limits, most NK models in the literature do not include capital, including Bi

(2012) and Battistini et al. (2019). In this section, we show how capital can amplify the
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macroeconomic responses during the normalization process.

To pursue, we modify the baseline model, so that the household’s budget constraint is24

Ptct +
Bt

Rt

+
B

f
t

ηtR
f
t

= (1 − ∆t)Bt−1 + Pt

[(

1 − τ l
t

)

wtnt + Ptzt

]

+ ω. (24)

The production of intermediate goods firms, (10), is revised as

yt(i) = atnt(i). (25)

Also, the goods market clearing condition is revised as

yt = ct + gt. (26)

As shown in Figure 11, capital can significantly amplify the recession. Financial shocks

that are required to push the economy to the ZLB are slightly bigger in the model without

capital. However, the contraction in the model with capital is much more severe than the

one without. This is due to the pronounced decline in investment in the model with capital,

significantly lowering labor demand and output. The severe contraction in demand has a

larger deflationary impact, leading to a higher ex-post real interest rate. As a result, lower

ex-post real bond prices induce higher interest payments and thus higher debt accumulation

both at the ZLB and during normalization. Conditional on given macroeconomic shocks,

the model without capital is likely to understate the fiscal and macroeconomic implications

at the ZLB and during normalization, especially when the government debt level is high.

7 Conclusion

We study the macroeconomic and fiscal implications of interest rate normalization from the

ZLB in the United States, using a fully nonlinear NK model. The analysis focuses on a policy

regime that the monetary authority is expected to resume its role in controlling inflation once

24In this section, we abstract from the regime-switching transfer process for both models with and without capital. The detail
of the model specification and simulation is available upon request.
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the economy recovers. At the ZLB, the decline of the price level implies that the real interest

rate increases, driving up the real interest payment of the government. Moreover, the sharp

decline in tax revenues from the negative macroeconomic shocks and a lower real bond price

contribute to the growing financing needs and hence the rapid accumulation of government

debt. As the economy recovers, the much higher stock of government debt implies higher debt

servicing costs. Although the real interest rate declines substantially relative to the level at

the ZLB, it remains higher than the path without the macroeconomic shocks. Also, a lower

real bond price increases the cost of rolling over existing debt. When fiscal adjustments are

insufficient, government debt is likely to remain elevated during the interest normalization

stage.

At the current federal government debt level of 90–100% of GDP, interest rate normal-

ization is unlikely to pose an immediate threat to debt sustainability of the U.S. federal

government, assessed by the government’s ability to pay. If, however, federal debt continues

to rise (such as to 150–160% of GDP) and federal transfers are not expected to revert to a

stable regime within a reasonable time frame, interest normalization can increase sovereign

default risk more noticeably. Also, a more active monetary policy has inflation return to the

steady-state level of 2% sooner. Expecting higher future prices helps facilitate investment

recovery and hence the output recovery. Despite higher nominal policy rates, a more active

monetary policy leads to a smaller increase in debt accumulation during normalization and

hence a smaller increase in sovereign default risk.

Given the simple structure of our baseline model, sensitivity analysis considers alternative

model specifications, including 1) a different macroeconomic shock—the investment efficiency

shock—in driving the economy to the ZLB, 2) a longer debt maturity, 3) a model without

sovereign default risk, and 4) a model without capital. The first two show that our assessment

on debt sustainability of the federal government remains valid in the baseline analysis, while

the last two demonstrate the importance of accounting for sovereign default risk and capital

in the model specification for studying the fiscal implications at the ZLB, as well as during

the interest rate normalization process.
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Appendix A The Equilibrium System

Equations (A.1)-(A.19) below plus (12) and (13) in Section 2 characterize the equilibrium

system. When simulating the fiscal limit distributions, the labor tax rate rule, (A.15), and

capital tax rate rule, (A.16), are replaced by τ l
t = τ l,max

t , τ k
t = τ k,max

t , and ∆t = 0.

λt = (ct)
−σ (A.1)

χn
ϕ
t = λt(1 − τ l

t)wt (A.2)

1
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where qt is the Tobin’s q.
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yt+1πt+1

ytπ

])

(A.7)

wt = (1 − α)mctat(kt−1)
αn−α

t = (1 − α)mct
yt

nt

(A.8)

rk
t = αmctat(kt−1)

α−1n1−α
t = αmct

yt

kt−1
(A.9)

yt = atk
α
t−1n

1−α
t (A.10)

kt = (1 − δ)kt−1 + it −
κ

2

(

it

kt−1
− δ

)2

kt−1 (A.11)

taxt = τ l
twtnt + τ k

t r
k
t kt−1 + ω (A.12)

bt

Rt

+ taxt =
(1 − ∆t)bt−1

πt

+ gt + zt(i
z
t ) (A.13)
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zt(i
z
t ) =















(1 − ρz)z + ρzzt−1, if izt = 1, ρz < 1

µzt−1, if izt = 2. µ > 1

(A.14)

τ l
t = τ l + γl(bt−1 − b) + φl(yt − y) (A.15)

τ k
t = τ k + γk(bt−1 − b) + φk(yt − y) (A.16)

R
f
t = max

(

Rf
(πt

π

)απ

, 1
)

(A.17)

yt = ct + gt + it +
ψ

2

(

πt

π
− 1

)2

yt (A.18)

ln
ηt

η
= ρη ln

ηt−1

η
+ εη

t (A.19)

Appendix B The Numerical Solution Method

The method discretizes the state space and finds a fixed point in decision rules for each point

in the state space. The solutions converge to functions that map the minimum set of state

variables into values for the endogenous variables.

Appendix B.1 Simulating Fiscal Limit Distributions

Since the fiscal limits are the maximum level of government debt that can be supported

without default, when simulating fiscal limits, we set ∆t = 0 ∀ t. For simulating fiscal

limit distributions, the minimum set of state variables is St =
{

ηt, kt−1, τ
l,max
t , τ

k,max
t , zt, i

z
t

}

.

Define the decision rules for hours as nt = fn(St), inflation as πt = fπ(St), and consumption

as ct = f c(St).

1. Define the grid points by discretizing the state space. Make initial guesses for fn
0 , fπ

0 ,

and f c
0 over the state space.

2. At each grid point, solve the nonlinear model using the given rules fn
j−1, f

π
j−1, and f c

j−1,

and obtain the updated rules fn
j , fπ

j , and f c
j . Specifically:

(a) Derive λt and wt in terms of ct, nt, and τ l,max
t using (A.1) and (A.2).
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(b) Derive yt in terms of at, kt−1, and nt using (A.10). Compute mct and rk
t from (A.8)

and (A.9).

(c) From (A.5), (A.11), and (A.18), derive it, qt, and kt.

(d) Given πt, obtain the policy rate, Rf
t , from equation (A.17). If Rf

t< 1, set Rf
t = 1.

(e) Use linear interpolation to obtain fn
i−1(St+1), f

π
i−1(St+1), and f c

i−1(St+1). Then

follow the above steps to solve λt+1, yt+1, r
k
t+1, qt+1, and it+1.

(f) Update the decision rules fn
i , fπ

i , and f c
i , using (A.4), (A.6), and (A.7). The integral

in expectation terms is evaluated using numerical quadrature.

3. Check convergence of the decision rules. If |fn
j −fn

j−1|, |f
π
j −fπ

j−1|, or |f c
j −f

c
j−1| is above

the desired tolerance (set to 1e − 6), go back to step 2. Otherwise, fn
j , fπ

j , and f c
j are

the decision rules. Use the converged rules—fn
j , fπ

j , and f c
j —to compute the decision

rules for fT
j and fλ

j , where fT
j is the rule for maximum tax revenue.

After we obtain the decisions rules, fT
j , fλ

j , and fπ
j , a fiscal limit distribution is simulated

using Markov Chain Monte Carlo methods, described below.

1. For each simulation l = {1, 2, ..., 10000}, we randomly draw a sequence of financial

shocks (εη
t+i), maximum labor tax rate (τ l,max

t+i ), maximum capital tax rate (τ k,max
t+i ),

and the transfer regime (izt+i) for 1000 periods (i = {1, 2, ..., 1000}), conditional on

the starting state St =
{

ηt, kt−1, τ
l,max
t , τ

k,max
t , zt, i

z
t

}

. As labor and capital income tax

rates are set to the maximum rates (τ l,max
t+i and τ

k,max
t+i ) and transfers follow the regime

switching process in (A.14), we obtain Tmax
t+i , λmax

t+i , and zmax
t+i , for i = {1, 2, ..., 1000}.

Then, the expected discounted maximum fiscal surplus for period t+ i is computed as

πmax
t (St)β

iEt

{

λmax
t+i (St+i)

λmax
t (St)

(

taxmax
t+i (St+i) − g − zt+i (St+i)

)

}

, (B.1)
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for i = {1, 2, ..., 1000}. The maximum sustainable debt is

bmax (St) = πmax
t (St)Et

1000
∑

i=0

βiEt

{

λmax
t+i (St+i)

λmax
t (St)

(

taxmax
t+i (St+i) − g − zt+i (St+i)

)

}

.

(B.2)

2. Repeat the simulation for 10000 times to generate
{

bmax,l
}10000

l=1
, which forms the dis-

tribution of b(St) in (19).

Appendix B.2 Solving the Nonlinear Model

When solving the nonlinear model, the minimum set of state variables is denoted by St =
{

ηt, b
d
t−1, kt−1, zt, i

z
t

}

. Define the decision rules for hours as nt = fn(St), inflation as πt =

fπ(St), consumption as ct = f c(St), and debt as bt = f b(St). The decision rules are solved

as follows.

1. Define the grid points by discretizing the state space. Make initial guesses for fn
0 , fπ

0 , f c
0 ,

and f b
0 over the state space.

2. At each grid point, solve the nonlinear model and obtain the updated rules fn
i , fπ

i , f c
i ,

and f b
i using the given rules fn

i−1, f
π
i−1, f

c
i−1, and f b

i−1. Specifically:

(a) Derive yt in terms of at, kt−1, and nt using (A.10).

(b) Derive τ l
t and τ k

t using (A.15) and (A.16).

(c) Derive λt and wt in terms of ct, nt, and τ l
t using (A.1) and (A.2).

(d) Compute mct and rk
t from (A.8) and (A.9).

(e) From (A.5), (A.11), and (A.18), we can derive it, qt, and kt.

(f) Given πt, obtain the risk free nominal interest rate, Rf
t , from equation (A.17). If

Rf
t< 1, set Rf

t = 1 as the nominal interest rate.

(g) Given bt, solve the risky rate Rt using (A.13).

(h) Use linear interpolation to obtain fn
i−1(St+1), f

π
i−1(St+1), and f c

i−1(St+1), where the

state vector is St+1 = {ηt+1, b
d
t , kt, zt+1, i

z
t+1}. Then follow the above steps to solve
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yt+1, λt+1, r
k
t+1, qt+1, and it+1.

(i) Update the decision rules fn
i , fπ

i , f c
i , and f b

i , using (A.3), (A.4), (A.6), and (A.7).

The integral in expectation terms is evaluated using numerical quadrature.

3. Check convergence of the decision rules. If |fn
i −fn

i−1|, |f
π
i −fπ

i−1|, |f
c
i −f

c
i−1|, or |f b

i −f
b
i−1|

is above the desired tolerance (set to 1e − 6), go back to step 2. Otherwise, fn
i , fπ

i , f c
i ,

and f b
i are the decision rules.
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parameters or steady-state variables values

β discount factor 0.992
σ inverse of intertemporal elasticity for consumption 1.38
φ inverse of Frisch labor elasticity 1.83
δ capital depreciation rate for capital 0.025
α capital income share 0.36
κ investment adjustment cost parameter 1.7
a normalized TFP in the steady state 1
n steady-state labor 1
θ price markup parameter 7.67
ψ price adjustment cost parameter 78.2
π steady-state inflation 1.005
R, Rf steady-state risky and risk-free nominal rate 1.013
r = R

π
steady-state real interest rate 1.013

∆ the haircut rate if defaulting 0.07
απ nominal rate response to inflation deviation 1.8
τ l labor income tax rate 0.203
τk capital income tax rate 0.212
b
4y

debt-to-annual output ratio 0.55

γl response of the labor tax rate to debt 0.012
γk response of the capital tax rate to debt 0.001
φl response of the labor tax rate to output 0.0235
φk response of the capital tax rate to output 0.116
g
y

government purchase-output ratio 0.083
z
y

government transfers-output ratio 0.12

pz
1

regime-switching parameter for the stable regime 0.9944
pz
2

regime-switching parameter for the unstable regime 0.9875
ρz AR(1) coefficient for zt in the stable regime 0.96
µ coefficient for zt in the unstable regime 1.005
η financial disturbance in the steady state 1
ρη AR(1) coefficient for ηt 0.8
ση standard deviation of εν 0.001

Table 1: Baseline calibration.
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Figure 1: Federal government debt, interest payments, and the federal funds rate. All three
series are plotted in the annual frequency. The federal funds rate is the average of the monthly effective rate
(Board of Governors of the Federal Reserve System (2020)). The data of federal debt held by the public
and interest payments are in fiscal years (Historical Tables 7.1 and 8.4 of Office of Management and Budget
(2020)).
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Figure 2: Mandatory and discretionary spending of the federal government. Mandatory spending
includes spending on Social Security, health care programs (such as Medicare and Medicaid), income security,
veterans’ programs, etc. Historical spending data are the taken from Table 8.4 of the Historical Tables in
Office of Management and Budget (2020). Projection from 2020 is the CBO’s projection (2019) under
the extended baseline scenario. Note that this projection does not account for the budgetary effect of the
pandemic related legislation.
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Figure 3: Federal average capital income tax rates. The annual average capital income tax rates are
calculated based on Jones’s (2002) method; see footnote 14.

35



0 0.5 1 1.5 2 2.5 3 3.5

debt/steady-state annual output

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

baseline (p
2

z
=0.9875)

a longer expected duration of the unstable regime  (p
2

z
=0.9917)

alternative (transfers following CBO's projections under current law)

Figure 4: Fiscal limit distributions (the cumulative density function) of the U.S. federal govern-
ment. The baseline distribution assumes that federal government transfers follow a regime-switching process
between a stable and an unstable regime, expected to last for 20 years (pz

2
= 0.9875); the red dotted-dashed

line also has the the regime-switching transfers process but the unstable stable regime is expected to last
for 30 years (pz

2
= 0.9917); and the alternative distribution assumes that federal government transfers follow

the projection of Congressional Budget Office (2019) for federal mandatory spending under current law.
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Figure 5: Dynamics of interest rate normalization from the ZLB: the baseline analysis. The
responses (for those without a parenthesis) are plotted as the differences in percent of stochastic steady-
state levels between the paths with and without financial shocks. The units of x-axes are in quarters. In
parentheses for y-axis units, “ann” standards for annualized, “diff” for difference, and “pps” for percent
points. The solid lines are the median responses of the 310 simulations that have government debt-to-annual
output ratio at 90-100% at t = 5. The dashed lines are the 90-percent confidence intervals.
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Figure 6: Dynamics of interest rate normalization from the zero lower bound: different initial
debt levels. The solid lines are the same as the baseline responses in Figure 5. The dashed lines are the
median responses of 110 simulations (among the 5000 simulations) that have government debt-to-annual
output ratio at 150-160% at t = 5. See Figure 5 for axis unit description.
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Figure 7: Dynamics of interest rate normalization from the ZLB: activeness of monetary policy
to inflation. See Figure 5 for axis unit description.
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Figure 8: Sensitivity analysis: the ZLB driven by the investment efficiency shock. The responses
are the median responses of simulations that have the debt ratio fall in 90-100% of annual output at t = 5.
See Figure 5 for axis unit description.
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Figure 9: Sensitivity analysis: a longer debt maturity. The solid lines are the responses in the
model with an average debt maturity of five years, and the dashed lines are responses to the model with a
one-quarter short debt. See Figure 5 for axis unit description.
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Figure 10: Sensitivity analysis: the role of sovereign default risk in the high-debt state. The
responses are the median responses of simulations that have debt ratio fall in 90-100% of annual output at
t = 5. See Figure 5 for axis unit description.
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Figure 11: Sensitivity analysis: a model without capitl. The solid lines are the responses to the model
without capital and the dashed lines are those to one with capital. See Figure 5 for axis unit description.
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