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Abstract

The decline in the real interest rate during the recent few decades coupled
with the Great Recession of 2007-2009 raised a concern that the U.S. econ-
omy might face stagnation like the Japanese economy since the late 1990s.
The increased likelihood of the zero lower bound (ZLB) on the nominal in-
terest rate that constrains the effectiveness of monetary policy at the low
equilibrium real interest rate is often cited as a cause of stagnation. However,
the central bank’s unconventional policies such as large scale asset purchases
and forward guidance can mitigate stagnation risk arising from the ZLB con-
straint. To empirically assess the impact of these opposing forces on the risk
of stagnation, this paper uses long-horizon predictive distributions of macro
variables from a time-varying parameter vectorautoregression (TVP-VAR)
model. While the concern for long-term (five-year ahead) stagnation risk
due to the ZLB constraint on monetary policy appears to be justified from
the purely model-based predictive distributions for macro variables, the risk
substantially declines when these predictive distributions are tilted to match
both cross-sectional means and variances from survey forecasts of inflation
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and the nominal interest rate. And the probability score ranking based on
the prediction accuracy of downside tail events favors the predictive dis-
tribution with tilting. This finding affirms the view that unconventional
monetary policies as conducted by the Federal Reserve were effective in re-
ducing stagnation risk by influencing the private sector’s expectations.
Key Words: Trend real interest rate; Stagnation risk; Time-varying pa-
rameter vectorautoregression; Bayesian estimation.
JEL Classification: C11, E43
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1 Introduction

Many empirical studies document that the trend component of the real interest

rate declined over the last few decades in the U.S. (Christensen and Rudebusch

(2019); Council of Economic Advisers (2015); Del Negro et al. (2017); Hamilton

et al. (2016); Holston et al. (2017); Johannsen and Mertens (2016); Kiley and

Roberts (2017); Lewis and Vazquez-Grande (2018); Lunsford and West (2018);

Rachel and Smith (2015), etc.). While the precise estimate of the decline in the

trend real interest rate varies across different studies, many researchers agree that

the current level of the equilibrium real interest rate that would prevail over the

long-run is most likely to be closer to 1 percent after falling by about 2 percentage

points since the mid 1980s.(Christensen and Rudebusch (2019); Hamilton et al.

(2016), for example).1 In addition, the median projection of the longer-run real

federal funds rate by the FOMC participants also has declined to 0.8 percent

from 2.3 percent over the last seven years assuming that inflation expectations are

anchored at 2 percent target (Clarida (2019)).

The decline in the trend real interest rate raised a concern that it might be a

signal that the economy entered a “new normal” or the “secular stagnation” that

would be characterized by low growth and low inflation with the increased likeli-

hood of being stuck at the zero lower bound (ZLB) on the nominal interest rate

(Eggertsson et al. (2019); Fischer (2016); Gagnon et al. (2016); Rachel and Sum-

mers (2019); Summers (2016)). The secular stagnation hypothesis was originally

proposed by Hansen (1939) during the inter-war period to explain the persistent

underemployment and the low level of investment activities in spite of the low

interest rate level. Hansen (1939) attributed slow growth to the lack of aggregate

demand due to declining population growth. Similarly, current research on the sec-

ular stagnation links the downward shift in the real interest rate with the decline

in growth and inflation through demographic changes as shown in the Japanese

1The trend real interest rate estimated from statistical models can be an empirical proxy for
the equilibrium real interest rate in more structural models because temporary shocks creating
the wedge between the equilibrium real interest rate and the actual real interest rate would
dissipate over the long-run. For a similar reason, the trend long-term real interest rate and the
trend short-term real interest rate are assumed to move closely in this paper because long-horizon
expectations of the short-term real interest rate would be a major determinant of both measures.
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experience since the late 1990s. For example, Gagnon et al. (2016) argue that a

substantial portion of the decline in both real GDP growth and the equilibrium

real interest rate since 1980 could be fairly predictable because these declines were

driven by the aging of the post-WWII baby-boom generation. Similarly, Eggerts-

son et al. (2019) show that the decline in the equilibrium real interest rate due

to slowly-moving demographic and technological factors can exacerbate negative

tail risks for growth and inflation when combined with the ZLB constraint on the

nominal interest rate and the central bank targeting low inflation. Rachel and

Summers (2019) argue that the risk of stagnation was masked only by expansion-

ary fiscal policies such as a higher government debt relative to GDP. However, this

type of analysis is mostly based on the exercise using calibrated models and focuses

on point estimates, and thus, may underestimate the uncertainty of assessing the

probability of tail events.2

This paper considers a time-varying parameter vectorautoregression (TVP-

VAR) model that can take into account multiple sources of uncertainties residing

in the long-run projection of macroeconomic variables. In particular, the model

considers the uncertainty from low-frequency variations in the relationship among

consumption growth, inflation, and asset prices as well as the uncertainty from

temporary shocks in making long-run projections for macro variables and assessing

tail risks. In addition, I adopt the Bayesian framework to estimate the TVP-VAR

model as in Cogley and Sargent (2005) and Cogley, Morozov, and Sargent (2005)

and include parameter uncertainty in the evaluation of risks. I use simulated pre-

dictive distributions of observed variables from the TVP-VAR model to estimate

the trend real interest rate and evaluate stagnation risk.

Using simulated predictive distributions has three main advantages in estimat-

ing the trend components of VAR variables and tail risks. First, long-horizon pre-

dictive distributions from the TVP-VAR model can exhibit non-normal properties

such as time-varying non-zero skewnesses and fat tails even if all the underlying

2Kiley and Roberts (2017) calculate the likelihood of hitting the ZLB at different values of
the equilibrium real interest rate using a large-scale macro model (FRBUS) used by the staff of
the Federal Reserve Board and show that chances become higher as the equilibrium interest rate
gets lower. However, they do not assess the probability that the equilibrium real interest rate
itself takes a particular value and does not provide empirical estimates of tail risks.
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shocks are following symmetric normal distributions. This property is present be-

cause shocks to VAR coefficients have multiplicative effects on observed variables

and, therefore, generate nonlinear impacts. Second, predictive distributions from

the model can be tilted to match information outside the model. Such a tilting is

found to improve the accuracy of the model-based prediction (Cogley, Morozov,

and Sargent (2005); Krüger et al. (2017); Robertson, Tallman, and Whiteman

(2005); Tallman and Zaman (2018)). Third, simulated predictive distributions

can include uncertainty about future shocks to VAR coefficients which can have

nonlinear effects on VAR variables. In contrast, approximating the trend as the

model-implied unconditional mean in the absence of future shocks to VAR coeffi-

cients as done in Cogley and Sargent (2005) underestimates the uncertainty about

the trend component.

As pointed out by Lewis and Vazquez-Grande (2018), different priors for the

time variation in latent variables can generate substantially different posterior

distributions in Bayesian methods, and I consider both tight and loose priors for

parameters determining the magnitude of the time variation in VAR coefficients.

I take the one with loose priors as the baseline specification and treat the one

with tight priors as an alternative specification. Then, I rank different predictive

distributions using the probability scoring metric in terms of their accuracy of

predicting downside tail events (Gneiting and Ranjan (2011)).

The main findings from the empirical analysis using the long-run historical data

in the U.S. can be summarized as follows. First, the decline in the median estimate

of the trend real interest rate since the mid 1980s from the TVP-VAR model is

about 2.6 percent, in line with findings from the existing literature. However,

the uncertainty band is at least twice as big as the one in Holston et al. (2017).

The higher uncertainty in the TVP-VAR model appears to be driven by future

shock uncertainty because the unconditional mean measure ignoring future shock

uncertainty shows an uncertainty band comparable to the one in Holston et al.

(2017). According to estimates from the TVP-VAR model, the trend real interest

rate did not show a sudden drop during the Great Recession and its decline since

the mid 1980s was very gradual. Despite this difference, the median estimate of

the trend real interest rate is highly correlated with various measures from the
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existing literature. Second, the risk of stagnation increased suddenly during the

Great Recession compared to the post-WWII average level though it declined

subsequently. However, the long-term (five-year ahead) risk of stagnation declined

more sluggishly than the near-term (one-year ahead) risk of stagnation. Third,

when predictive distributions are tilted to match both cross-sectional means and

variances of survey forecasts for inflation and the nominal interest rate, the risk

of stagnation became generally lower and declined more rapidly even for the long-

term. Interestingly, tilting only cross-sectional means of survey forecasts does

not generate a comparable reduction in stagnation risk. The probability scoring

rule generally favors the predictive distribution with tilting and loose priors for

the time-variation in VAR coefficients. The result supports the view that the

Federal Reserve’s unconventional policies were effective in reducing stagnation risk

by influencing the private sector’s expectations.

These findings on stagnation risk are less pessimistic about the constraint on

monetary policy than Eggertsson et al. (2019) and Rachel and Summers (2019),

who emphasize the role of fiscal policies and doubt the effectiveness of monetary

policy at the ZLB in reducing stagnation risk. Stagnation risk abated during 2013-

2014 when fiscal policy stance was mostly contractionary while monetary policy

remained accommodative. However, the conclusion in this paper is in line with

Aruoba et al. (2018) who suggest that the aggressive policy responses of the Fed-

eral Reserve might have succeeded in coordinating inflation expectations near its

target and reducing the tail risk based on an estimated New Keynesian model

subject to the ZLB. They contrast this result with the Japanese experience dur-

ing the late 1990s, for which they find the actual transition to a deflation regime.

Similarly, Debortoli et al. (2018) argue that the Federal Reserve’s unconventional

policies were largely successful in getting around the constraint on conventional

monetary policy due to the ZLB. Their analysis is based on a time-varying param-

eter structural vectorautoregression (TVP-SVAR) model showing that inflation,

labor productivity and hours worked respond similarly to a measure of monetary

policy shock (an innovation to long-term nominal bond yields) before and after the

ZLB period. Hattori et al. (2016) also find that the announcements of unconven-

tional monetary policies substantially reduced option-implied equity market tail
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risks. In sum, although the decline in the equilibrium real interest rate and the

ZLB constraint on monetary policy increased stagnation risk in the aftermath of

the Great Recession, the Federal Reserve’s aggressive use of unconventional mon-

etary policies played a significant role in reducing stagnation risk based on both

macro and financial market data.

This paper proceeds as follows. Section 2 introduces the TVP-VAR model

estimated in this paper and describes the data used. Section 3 describes how

to construct a predictive density for trend using long-horizon forecasts from the

TVP-VAR model with tilting. Section 4 describes empirical analysis of the trend

real interest rate and stagnation risk using the U.S. data. Section 5 concludes.

2 A Time-varying Parameter Vectorautoregres-

sion Model

The TVP-VAR model used in this paper includes five observed variables: real

per-capita consumption growth (∆ct), real per-capita dividend growth (∆dt), CPI

inflation (πt), the 10 year nominal interest rate (y10,t), and the log of the aggregate

price-dividend ratio (ln zd,t). Not only are VAR coefficients in the model time

varying, but each variable in the model is also subject to a shock with time-

varying volatility. I describe the details on the construction of the data and the

structure of the TVP-VAR model below.

2.1 Data

The estimation uses long-run annual observations for the U.S. from 1891 and 2016.

Observations from 1891 to 1918 are used only to construct prior distributions. For

consumption growth from 1930 to 2016, I use the year-over-year growth rate of

per-capita real consumption expenditures available from Haver Analytics while

the earlier data draw on Kendrick’s measures based on real consumption of non-
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durable goods and services.3 The 2016 observation for consumption growth is

the growth rate of consumption from year 2014 to year 2015. This is done to

match the information set contained in interest rates and stock prices that are

based on the January values of the corresponding year. For dividend growth, I use

the December-to-December growth rate in the previous year. For instance, 1992

dividend growth is calculated as the growth from December 1990 to December

1991. Inflation is defined by the change in the price level from the January of the

previous year to the January of the current year while price-dividend ratio and the

10-year Treasury yield are the January level of the corresponding year. Given the

low frequency of data, I estimate a first-order VAR model.

I include ∆dt and ln zd,t because stock market data provide information about

the expected future real discount rate that moves with the long-term real interest

rate.4 Under the Gordon growth model in which investors expect dividend growth

and discount rate in the future to be unchanged (Et(∆dt+j) = ∆dt, Et(rs,t+j) =

rs,t), the real discount rate for stocks (rs,t) can be backed out from the price-

dividend ratio and dividend growth rate using the following formula:

zd,t =
Pt
Dt

=
∞∑
j=1

(Dt+sDt
)

(1 + rs,t)j
→ zd,t =

1 + ∆dt
rs,t −∆dt

→ rs,t = ∆dt +
1 + ∆dt
zd,t

. (1)

If we plug the price-dividend ratio and dividend growth rate at each period, we

can back out the time-series of the implied real discount rate for stocks.

Figure 1 shows variables used in the VAR model along with the implied real

discount rate for stocks. Consumption growth and inflation became more stabilized

during the post-WWII period relative to the pre-WWII period while asset prices

such as the 10 year nominal interest rate showed more persistent and volatile

3Except for consumption growth after 1930, all the other observations are obtained from
Robert Shiller’s website (www.econ.yale.edu/ shiller/data.htm).

4Under Campbell-Shiller (1988) log-linear approximation, ln zd,t ≈ κ
1−ρ +∑∞

j=0 ρ
jEt(∆dt+1+j − rs,t+1+j) where rs,t+1+j is the real discount rate at t+ 1 + j, which is the

sum of the real interest rate and the risk premium, where ρ and κ are constants determined by
the steady-state log price-dividend ratio.
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movements during the post-WWII period. The Great recession of 2007-09 is often

compared to the Great Depression of 1929-33, but the magnitude of the decline in

growth and inflation was far severe during the Depression although the decline in

the long-term bond yield and real discount rate for stocks was comparable. Given

the fact that the Federal Reserve targeted the long-term bond yield at the ZLB

on the short-term nominal interest rate between December 2008 and December

2015, this observation suggests that monetary policy responses relative to the size

of negative shocks hitting the economy might have been more aggressive during

the Great Recession period than the Great Depression period.
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Forecasts for CPI inflation and the 10-year Treasury yield from the Survey

of Professional Forecasters (SPF) and 1-year forward CPI inflation 1 year from

now (1yr1yr forward) from Blue Chip economic indicators are used to tilt the

distribution of model-implied forecasts toward observed proxies for expectations.5

Survey data of average inflation expectations over ten years are available from

1992 while the expectations of the 10-year Treasury yield averaged over ten years

are available from 1994. Blue Chip forecasts for 1-year ahead 1-year forward CPI

inflation are available from 1985. Figure 2 describes cross-sectional means and

variances of available survey forecasts. Mean forecasts for inflation and the nominal

interest rate gradually declined but cross-sectional variances fluctuated over the

period. While the cross-sectional dispersion of short-term inflation expectations

rose during the Great Recession but fell quickly when the recession ended, the

cross-sectional dispersion of long-term inflation expectations and the long-term

bond yield continued to rise even after the recession ended and started to decline

later.

2.2 A TVP-VAR model with stochastic volatility

I denote the vector of five observed variables by Yt = [∆ct,∆dt, πt, y10,t, ln zd,t]
′.

The dynamics of Yt in the TVP-VAR model can be described as follows:

Yt = θ0,t + θ1,tYt−1 + ut , ut = B−1εt ∼ N (0,Σt),

θ0,i,t = θ0,i,t−1 + εθ0,i,t , (i = 1, · · · , 5),

θ1,i,j,t = θ1,i,j,t−1 + εθ1,i,j ,t , (i, j = 1, · · · , 5),

Σt = (B−1)′Dt(B
−1) , lnDii,t = lnDii,t−1 + σξ,iξi,t , ξi,t ∼ N (0, 1) , (i = 1, · · · , 5),

θt = vec([θ0,t, θ1,t]) , εθ,t = vec([εθ0,t, εθ1,t]) , Σθ = E(εθ,tε
′
θ,t) , εθ,t ∼ N (0,Σθ).

(2)

where Dt is a diagonal matrix. The model estimates consist of two parts: the

first part is the collection of constant parameters (ϑ = [B,Σθ, σξ,i]) and the second

part is the collection of latent variables including time-varying coefficients and

5For SPF, observations are taken from the survey during the first quarter of the year. For
Blue Chip economic indicators, the January survey is used.
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Figure 2: Survey Data
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time-varying volatilities (St = [θt, Dt]).

The Bayesian estimation approach adopted in this paper first constructs the

prior distribution for ϑ and the initial estimates of latent variables S0 (p(ϑ, S0)).

I use the pre-sample data from 1891 to 1914 to estimate a constant parameter

VAR with constant volatility. The prior distributions for S0 are obtained using

the estimates of VAR coefficients and residuals from these pre-sample estimation

results. The prior for Σθ that determines the amount of variation in time-varying

coefficients is important for controlling the variation of trend estimates. Following

Primiceri (2005) and Del Negro et al. (2017), I set up the prior mean of Σθ so that

the implied expected change in trend estimates during the pre-sample period is

reasonable. I consider two priors for Σθ in which the prior mean of Σθ in the loose

prior is four times bigger than that in the tight prior. The tight prior constrains

the amount of time-variation in trend to make the implied expected change in the

trend component less than or equal to the one-standard-deviation of each variable

in Yt while the loose prior relaxes this restrictions.6

Under the Bayesian approach, prior information is combined with the sample

data to obtain the posterior distribution. In the constant parameter VAR model

with constant volatility, we can compute the likelihood p(Y T |ϑ) analytically and

combine this information with conjugate priors to derive the posterior distribution

of p(ϑ|Y T ) under the normality assumption of shocks.7 Due to the fact that time-

varying coefficients in the VAR make variables in the VAR nonlinear functions

of the past shocks, it is not feasible to easily compute the likelihood function for

observed variables in the TVP-VAR, which integrates out unobserved latent state

variables. In addition, time-varying volatilities generate another type of nonlin-

earities. Following Cogley and Sargent (2005), I rely on the posterior simulation

of ϑ and ST using the property that the distribution of each subset in (ϑ, θt, Dt)

conditional on the rest of the model is easy to simulate. To exclude parameters

implying the explosive dynamics, I remove ϑ and ST implying that Yt does not

follow a stationary process at any point of time. Out of 100,000 posterior draws

of (ϑ, ST ), the first 50,000 draws are burned in and the remaining 50,000 draws

6The other details of prior elicitation and posterior simulation are explained in the appendix.
7Y T stands for [Y1, · · · , YT ].
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are used for analysis.8

3 Predictive Density for Trend

This section consists of four parts. First, I describe different definitions of trend

estimates of Yt and examine sources of uncertainties surrounding their predictive

distributions. Second, nonlinear and non-normal properties of predictive distribu-

tions are explained. Third, I explain how to tilt predictive densities to match first

and second moments from the survey data. Finally, the method to score predictive

distributions based on their accuracy to forecast negative tail events is explained.

3.1 Sources of uncertainty in predictive distributions of Yt

As illustrated by Cogley, Morozov, and Sargent (2005), the TVP-VAR model with

time-varying volatility exhibits multiple uncertainties for long-horizon forecasts.

Denote forecasts for [Yt+1, · · · , Yt+h] by Y t+h
t+1 . There are three different types of

uncertainty behind the predictive density p(Y t+h
t+1 |Y t).

p(Y t+h
t+1 |Y

t) = p(ϑ, St|Y t)︸ ︷︷ ︸ × p(St+ht+1 |ϑ, S
t)︸ ︷︷ ︸ × p(Y t+h

t+1 |ϑ, Y
t, St+ht+1 )︸ ︷︷ ︸,

= (parameter)(VAR coefficients and volatility)(VAR residual shocks).

(3)

Following Amir-Ahmadi, Matthes, and Wang (2016), we can define the trend com-

ponent as a long-horizon (h-step ahead) forecast. To better isolate low frequency

movements in long horizon forecasts, I adopt the following average of long-horizon

forecasts as a measure of the trend:9

Ȳt,t+h+1:t+2h =

∑h
j=1(Yt+h+j)

h
. (4)

8For actual inference, I only save every 10th draw. Therefore, 5,000 draws are used for
posterior inference discussed below.

9Müller and Watson (2017) measure uncertainty about long-run predictions using the similar
long-horizon average of forecasts. I again impose the stationarity restriction on parameter draws
and consider long-term forecasts from posterior draws satisfying the stationarity condition.
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The predictive density of Yt,t+h+1:t+2h (p(Yt,t+h+1:t+2h|Y t)) can incorporate future

shock uncertainty as well as parameter uncertainty. For h large enough, such as

10 years, this measure can be a good proxy for the long-term trend. I compute the

ex-ante real interest rate (r10,t) by subtracting the next 10-year average inflation

forecast from the forecast for the 10-year nominal interest rate. One can calculate

the predictive density by simulating Yt+h+j from each posterior draw of ϑ and St.

This predictive density can consider future shock uncertainty as well as parameter

uncertainty.

One popular alternative concept of the trend in the literature is to take the

model-implied long-run mean of Yt conditional on no future shocks to time-varying

coefficients.

Ȳt = lim
h→∞

Et(Yt+h|εθ,t+j = 0 , j = 1, . . . , h) = lim
h→∞

h∑
j=0

θj1,tθ0,t = (I−θ1,t)−1θ0,t. (5)

Since this measure of trend depends only on the current estimates of θ0,t and θ1,t, it

does not require any simulation for future shocks and we can obtain draws from the

predictive density fast. However, it takes into account only parameter uncertainty

and may underestimate uncertainty about trend due to future shocks to time-

varying coefficients. For this reason, this notion of the trend may not be aligned

well with near-term and medium-term risk analysis, in which shock uncertainty

can play a sizeable role.

3.2 Properties of predictive distributions from the TVP-

VAR model

All the shocks in the TVP-VAR model follow symmetric normal distributions.

Since a normal distribution has a zero skewness and a low kurtosis, it may be ar-

gued that the predictive density of the TVP-VAR model inherits these properties

of the normal distribution. For example, Cogley, Morozov, and Sargent (2005)

mention that the normality assumption would build in a lot of symmetry in fore-

casts, ignoring the skewness that can arise from asymmetric risks. While this can
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be a valid point for one-step ahead forecasts, I will show that the concern is not

so critical for trend estimates that are constructed from long-horizon forecasts.

The main reason is that the nonlinear dependence of Yt+h on θt in the TVP-VAR

model generates the departure of a long-horizon predictive density from normal-

ity.10 Under the random-walk hypothesis for θt, the h-step ahead forecast error

for Yt contains the h-th order polynomial for εθ,t+1 because it involves
∏h

j=1 θ1,t+j.

Hence, for h ≥ 2, higher order moments of Yt+h − Et(Yt+h) must include higher

order moments such as εhθ,t+1. Hence, although εθ,t+1 itself is normally distributed,

Yt+h − Et(Yt+h) is not normally distributed for h ≥ 2, generating non-zero skew-

ness.11 For example, for h = 2, Yt+2 − Et(Yt+2) is characterized by the mixture of

normal distributions and non-normal distributions such as chi-square distributions.

Having a non-normal distribution as a component allows the predictive density to

generate a time-varying non-zero skewness.

To illustrate the idea, let’s consider the following simple TVP-AR(1) example.

A scalar variable Yt follows the process below:

Yt = θtYt−1 + ut , ut ∼ N (0, σ2
u), (6)

θt = θt−1 + εt , εt ∼ N (0, σ2
ε ). (7)

The one-step ahead forecast and its’ predictive density are given by

Et(Yt+1) = θtYt , Yt+1 − Et(Yt+1) = Ytεt+1 + ut+1 ∼ N (0, Y 2
t σ

2
ε + σ2

u). (8)

The one-step ahead forecast error follows a mixture of normal distribution. So it

can generate the time-varying volatility and kurtosis but cannot account for a non-

zero skewness. However, once we extend the forecast horizon beyond one-step, the

predictive density from the TVP-AR(1) model becomes more complicated and can

generate a time-varying non-zero skewness. Let’s see the two-step ahead forecast

10Canova (2007) makes the same observation by contrasting the predictive density of a one-step
ahead forecast with that of a two-step ahead forecast from a TVP-VAR model.

11This mechanism can be related to the crucial role of the multiplicative stochastic return on
capital that generates the non-zero skewness in wealth distribution as mentioned by Benhabib
et al. (2011). They show that even if the stochastic return on capital income follows a sym-
metric distribution, its’ cumulative impact on wealth can create the non-zero skewness in wealth
distribution.
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error for Yt as an example.

Yt+2−Et(Yt+2) = Yt(ε
2
t+1−σ2ε )+(Ytεt+2+ut+1)εt+1+ut+1εt+2+θtYt(εt+2+2εt+1)+ut+2+θtut+1.

(9)

Hence, the distribution of the forecast error for Yt+2 conditional on the informa-

tion set at time t is the sum of the mixture of normal distributions and non-normal

distributions including products of normal random variables. These non-normal

distributions allow Yt+2 to have a non-zero skewness. After some algebraic manip-

ulations with σ2
u = 1, σε = k, one can calculate higher-order moments explicitly.

Et(Yt+2 − Et(Yt+2))
2 =5Y 2

t θ
2
t k + 3Y 2

t k
2 + θ2t + 2k + 1

Et(Yt+2 − Et(Yt+2))
3 =6Y 3

t θ
4
t k + 9Y 3

t θ
3
t k

2 + 9Y 3
t θ

2
t k

2

+ 18Ytθ
2
t k + 14Y 3

t k
3 + 12Ytk

2.

(10)

As seen from the above expression, the time-varying skewness of long-horizon

forecasts crucially depends on the initial coefficient (θ0). If θ0 is close to zero,

even long-horizon forecasts are unlikely to generate a significant skewness because

σε is typically much smaller than σu. However, if θ0 is close to one, long-horizon

forecasts can generate a substantial degree of non-zero skewness. Figure 3 shows

the time-varying skewness for both one-step ahead and two-step ahead forecasts

from the simulated TVP-AR(1) model based on four different combinations of θ0

and σε. As the initial value of the AR coefficient (θ0) implies more persistence

in the process and the time-variation in the coefficients (σε) is bigger, two-step

ahead forecasts from the TVP-AR(1) model tend to imply a much greater degree

of non-zero skewness than one-step ahead forecasts.12

To sum it up, the predictive distributions of long-horizon forecasts in the TVP-

VAR model can depart substantially from symmetric and normal distributions

12The nonlinear and non-normal properties of the predictive density for trend are preserved
even in the case that I use Ȳt as a proxy for trend. Since Ȳt is the sum of products between θ0,t
and θ1,t, it is not normally distributed although θ0,t and θ1,t are normally distributed. In the

TVP-AR(1) example, Ȳt can be defined by
θ0,t

1−θ1,t . Conditional on data (Y t), θ0,t and 1 − θ1,t
are normally distributed because they are unobserved states in the linear and Gaussian state
space model. However, Ȳt is the ratio of two correlated normal random variables. Hinkley
(1969) provides the exact distribution of this ratio, which is clearly non-normal. In fact, if
the numerator and the denominator are independent normal random variables, the ratio follow
Cauchy distribution which is heavily fat tailed and does not have finite moments.
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Figure 3: Time-varying Skewness: TVP-AR(1) Example
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Notes: Skewness moments are calculated using 10,000 simulated trajectories from
the TVP-AR(1) model described in the main text.

unlike those of one-step ahead forecasts. For this reason, the TVP-VAR model

can be a suitable framework to study tail risks of macroeconomic variables, which

have received much attention since the Great recession and the prolonged period

of the zero lower bound in the United States.

3.3 Exponential tilting using survey forecasts

One downside of VAR-based forecasts is that the information set included in the

VAR may be limited. Expanding the information set by adopting a longer lag

structure or more variables can be quite demanding in practice because it can

increase the number of parameters to be estimated dramatically. A more effi-

cient way to introduce additional information into VAR-based forecasts is to tilt

a predictive density from the model to match information outside the model. For

example, Krüger et al. (2017) combine medium-term Bayesian VAR forecasts with

external nowcasts using exponential tilting which modifies the baseline predictive

density from the VAR to match certain moment conditions from external nowcasts.
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They show that exponential tilting improves the forecast accuracy. In addition,

Cogley, Morozov, and Sargent (2005) argue that tilting the model-based predic-

tive density to match forecasts from monetary policymakers can generate a more

policy-relevant assessment of tail risks.

In this paper, I exponentially tilt the original predictive density of Ȳt,t+h+1:t+2h

to minimize the distance between the predictive moments computed from model

estimates of [ϑ, ST ] and empirical moments from survey data observations. Sur-

vey data do not directly provide observations for Yt,t+h+1:t+2h but may provide

observations for Yt,t+1 and Yt,t+1:t+h. Since I simulate the predictive density of

Ȳt,t+h+1:t+2h through multiple trajectories of Yt,t+1:t+2h, I can tilt the predictive

density of Ȳt,t+h+1:t+2h by matching moments from the model-based forecasts of

Yt,t+1 and Yt,t+1:t+h with those from survey forecasts. The practical implementation

of the exponential tilting relies on the following method developed by Robertson,

Tallman, and Whitemann (2005).

Suppose that the original predictive density is represented by N equally likely

long-term forecasts Ȳ i
t,t+h+1:t+2h for i = 1, · · · , N . Let’s assume that survey data

evidence for
∑h
j=1 Et,i(Yt+j)

h
= Y S

t,t+h,i is available for each forecaster i. One can

find out the new predictive density p?(Ȳt,t+h+1:t+2h) by minimizing the distance

between the two predictive densities based on the Kullback-Leibler information

criterion (KLIC) subject to the restriction that cross-sectional means and variances

of forecasts from the survey data are matched under the new predictive density.

The problem can be formalized as follows:

p?(Ȳt,t+h+1:t+2h) = argminK(p, p?) =

∫
ln[
p?(Ȳt,t+h+1:t+2h|Y t)

p(Ȳt,t+h+1:t+2h|Y t)
]p?(Ȳt,t+h+1:t+2h|Y t)dY t+2h

t+h+1,

subject to

∫ ∑h
j=1 Yt+j

h
p?(

∑h
j=1 Yt+j

h
|Y t)dYt+j = Et(Y

S
t,t+h),∫

(

∑h
j=1 Yt+j

h
− EtY S

t,t+h)2p?(

∑h
j=1 Yt+j

h
|Y t)dYt+j = Vt(Y

S
t,t+h),

(11)

where Et(Y
S
t,t+h) and Vt(Y

S
t,t+h) are cross-sectional means and variances of survey

participants’ forecasts. The solution to this problem is characterized by probability
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weights p?i for (i = 1, · · · , N), where p?i is defined by13

p?i =
eγ

′Y it+h∑N
i=1 e

γ′Y it+h
,

γ = argmin
N∑
i=1

eγ
′
1(

∑h
j=1 Y

i
t+j

h
−Et(Y St,t+h))+γ

′
2((

∑h
j=1 Y

i
t+j

h
−Et(Y St,t+h))

2−Vt(Yt,t+h)),

γ = [γ1, γ2].

(12)

The new predictive density can be represented by resampling the existing forecasts

using (p?1, · · · , p?N) as new probability weights. The h-step ahead stagnation risk

such as the probability that inflation and consumption growth both fall below

0 can be evaluated using two different densities, p(πt,t+h < 0,∆ct,t+h < 0), and

p?(πt,t+h < 0,∆ct,t+h < 0).

3.4 Density evaluation

The use of tilting and different priors for the time-variation in coefficients generate

four different predictive distributions for Yt,t+h. Since the focus in this paper is

stagnation risk, I compare density forecasts using quantile-weighted scoring rules

suggested by Gneiting and Ranjan (2011). Given the fact that the survey data

are available only for the recent few decades, evaluating the accuracy of out-of-

sample density forecasts for trend whose forecast horizon spans to 20 years is not

so reliable. Therefore, I focus on in-sample performance of density forecasts to

discriminate different specifications. The following quantile weighted loss function

that penalizes more heavily the inaccuracy in predicting negative tail events is

particularly relevant for assessing stagnation risk.

QSα(F−1(α), y) = 2(I{y 5 F−1(α)} − α)(F−1(α)− y), (13)

S(p, y) =

∫ 1

0

QSα(F−1(α), y)(1− α)2dα. (14)

13The appendix provides the derivation of this solution.
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where F is the cumulative distribution function for y based on the predictive

density p and F−1(α) is the α-th quantile of y. The above quantile-weighted loss

function is a variation of the continuous ranked probability score (CRPS) function

that is often used to measure the overall accuracy of the density forecast.

CRPS(p, y) =

∫ ∞
−∞

(F (z)− I{y 5 z})2dz,

= 2(I{y 5 F−1(α)} − α)(F−1(α)− y),

(15)

where I is an indicator function that takes the value of 1 if the condition inside

the parenthesis is true.

If we have forecasts from multiple predictive distributions, we can test the equal

accuracy of two predictive distributions using the Diebold-Mariano (1995) test

statistic using estimates of the loss function from different predictive distributions.

DM(p1, p2) =
√
n
S̄(p1, y)− S̄(p2, y)

σ̄n
∼ N (0, 1)

S̄(p, y) =

∑n−h
t=1 S(p(yt,t+h), yt+h)

n− h
,

σ̄n = V (
√
n(S̄(p1, y)− S̄(p2, y))).

(16)

The null hypothesis is the equal accuracy of two density forecasts. If p2 generate

more (less) accurate forecasts, the DM test statistic will be positive (negative).

4 Empirical Analysis of the U.S. Data

4.1 Trend real interest rate

Long-run historical data for the real interest rate are lacking in the U.S. because

inflation-indexed government bonds were created only from the late 1990s. How-

ever, we can obtain an ex-post measure of the real interest rate using the ten-year

nominal interest rate and inflation used in the TVP-VAR model. For example,

CEA (2015) constructs the real interest rate defined by the nominal ten-year bond
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yield minus the five-year moving average of current and past consumer price in-

flation going back to the late 19th century. As shown in Figure 4, this ex-post

measure exhibits large swings during the period of 1890-2016. The volatility of the

real interest rate was much higher during the pre-WWII period. In particular, the

real interest rate fluctuated between -8 percent and 9 percent during the interwar

period (1919-1939). To obtain the trend component that isolates low-frequency

variations of the real interest rate, I use the method suggested in Müller and Wat-

son (2017, MW hereafter). The trend component of the real interest rate obtained

by MW (2017) extracts fluctuations with cycles of 16 years and longer.
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Table 1: Correlation among Various Measures of the Trend Real
Interest Rate

Variables Sample Period Correlation Coefficient

MW (2017) trend, TVP-VAR with tight prior 1919-2016 0.194
MW (2017) trend, TVP-VAR with loose prior 1919-2016 0.409
MW (2017) trend, TVP-VAR with tight prior 1960-2016 0.626
MW (2017) trend, TVP-VAR with loose prior 1960-2016 0.6064

Notes: MW (2017) denotes the trend estimate of the ex-post measure of the real interest

rate that isolates movements of cycles longer than 16 years based on Müller and Watson

(2017). The trend from the TVP-VAR model is the posterior median estimate.

Figure 4 shows the MW (2017) trend with the raw data on the ex-post measure

as well as median estimates of two versions of the TVP-VAR model with different

priors. Like the ex-post measure, the MW (2017) trend was also more volatile dur-

ing the pre-WWII period but became less volatile during the post-WWII period.

In line with the recent literature, the MW (2017) trend shows the gradual decline

since the mid-1980s, which is also observed in the two measures of the trend real

interest rate from the TVP-VAR model. However, unlike the MW (2017) trend,

the trend real interest rate from the TVP-VAR model was not more volatile dur-

ing the pre-WWII period, suggesting that the TVP-VAR model absorbs the large

fluctuations of the nominal interest rate and inflation during the pre-WWII period

largely by the time-varying volatility of temporary shocks.14 Table 1 reports the

correlation between the MW (2017) trend and median estimated of the trend from

the TVP-VAR model. While the estimated trend from the model with the tight

prior is only weakly correlated with the MW (2017) trend, the one from the model

with the loose prior is moderately correlated. For both measures, the correlation

increases significantly if I include only the period since 1960.

For a more recent period since the mid-1980s, median estimates from the TVP-

VAR model are significantly correlated with empirical measures of the short-term

14Although one may argue that the assumption of the constant volatility of innovations to
VAR coefficients in the TVP-VAR model forces this result, the robustness of this result to the
use of different priors for the volatility of innovations to VAR coefficients suggests that it cannot
be entirely attributed to the assumption about the volatility of innovations to VAR coefficients.
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Table 2: Correlation between the Trend Long-term Real Interest
Rate and the Short-term Natural Real Interest Rate

Variables Correlation Coefficient

HLW (2016), DGGT (2017) 0.834
HLW (2016), TVP-VAR with tight prior 0.7419
HLW (2016), TVP-VAR with loose prior 0.8126

HLW (2016), TVP-VAR with tight prior and tilting 0.7433
HLW (2016), TVP-VAR with loose prior and tilting 0.7533

DGGT (2017), TVP-VAR with tight prior 0.5306
DGGT (2017), TVP-VAR with loose prior 0.6355

DGGT (2017), TVP-VAR with tight prior and tilting 0.6707
DGGT (2017), TVP-VAR with loose prior and tilting 0.6828

Notes: HLW (2017) refers the natural real interest rate estimates from Holston et al.

(2017). DGGT (2017) refers the natural real interest rate estimates from Del Negro et

al. (2017). The trend from the TVP-VAR model is the posterior median estimate.

natural real interest rate from Holston et al. (2017) and Del Negro et al. (2017) as

shown in Table 2. The high correlation between the trend long-term real interest

rate measure from the TVP-VAR model and the short-term natural real interest

rate indicates that the term premium is unlikely to be a major driver of the trend

long-term real interest rate. Since Del Negro et al. (2017) also use the survey data

in the estimation, the estimated trend from the TVP-VAR model with tilting is

more highly correlated with the measure in Del Negro et al. (2017) than the one

without tilting.

In spite of similarities of point estimates, the estimated density for the trend

real interest rate from the TVP-VAR model is quite different from Holston et al.

(2017) and Del Negro et al. (2017) in terms of higher order moments. As Figure

5 shows, the uncertainty band of the trend real interest rate from the TVP-VAR

model is much wider than the one from Del Negro et al. (2017). While tilting

affects the location of the median estimate of the trend, it does not reduce the

uncertainty band significantly. Average uncertainty bands in Table 3 for various

trend estimates illustrate this point. The limited role of tilting in reducing the

uncertainty band of the predictive distribution can be explained by the fact that

trend estimates consider longer horizon forecasts that are not included in survey
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forecasts. In fact, at forecast horizons that correspond to the survey data, I find

that tilting tends to reduce the uncertainty range by more than 20%. In addition,

the uncertainty range is monotonically increasing at longer horizons as the depar-

ture from the normality becomes larger due to the accumulative impact of past

shocks to time-varying coefficients. In fact, if we define the trend as the long-run

unconditional mean Ȳt that ignores the uncertainty due to future shocks, the un-

certainty range substantially shrinks to the level comparable to the one reported

in Holston et al. (2017) as noted in Table 3.
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Table 3: Average Range of 68% Confidence (Credible) Interval: 1985-
2016

Variables Range

HLW (2017) 2.3292
DGGT (2017) 0.5361

TVP-VAR with tight prior 7.477
TVP-VAR with loose prior 12.8507

TVP-VAR with tight prior and tilting 7.4477
TVP-VAR with loose prior and tilting 12.0577

Unconditional Mean in TVP-VAR with tight prior 0.92
Unconditional Mean in TVP-VAR with loose prior 2.96

Notes: HLW (2017) refers the natural real interest rate estimates from Holston et al.

(2017). DGGT (2017) refers the natural real interest rate estimates from Del Negro et

al. (2017). The trend from the TVP-VAR model is the posterior median estimate. The

unconditional mean measure represents the trend estimate from Ȳt that considers only

parameter uncertainty and ignores future shock uncertainty.

A wider uncertainty range of the trend real interest rate from the TVP-VAR

model is not a shortcoming by itself. Since the main reason that we are concerned

about the decline in the trend real interest rate is the increased risk of stagnation,

we would prefer the estimate of the trend real interest rate that can provide a more

accurate density forecast of negative tail outcomes for consumption growth and

inflation. For example, the TVP-VAR model with the loose prior may generate

more accurate density forecasts for negative tail outcomes for consumption growth

and inflation than the counterpart with the tight prior although it has a much

wider uncertainty range of the estimated trend real interest rate.

4.2 Stagnation risk

Recent interests in the trend real interest rate were originated from the concern

for secular stagnation in which both the trend growth and interest rate decrease

permanently due to structural factors like demographic changes (Eggertsson et

al. (2019); Fischer (2016); Gagnon et al. (2016); Rachel and Summers (2019);

Summers (2016)). Gagnon et al. (2016) argue that the population aging alone
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can explain almost all of the permanent declines in real GDP growth and the

equilibrium real interest rate since 1980, using a life-cycle model calibrated to

match demographic changes. Summers (2016) argues that such a decline in the

equilibrium interest rate is likely to raise downside risks because monetary policy

is less suited to addressing negative shocks when the economy is close to the zero

lower bound. Fischer (2016) expresses a similar concern. Eggertsson et al. (2019)

and Rachel and Summers (2019) recommend expansionary fiscal policies (e.g.,

debt-financed government spending on investment) to reduce stagnation risk by

increasing the equilibrium real interest rate. However, these papers do not provide

empirical estimates of stagnation risk because they rely on the calibrated model

that ignores the uncertainty related to the simulated outcomes from their models.

This paper tries to provide empirical estimates of stagnation risk that can

incorporate multiple sources of uncertainties of future macroeconomic outcomes. I

first define stagnation by the probability that deflation and negative consumption

growth are realized at the same time. I consider both near-term (one-year ahead)

and long-term (five-year ahead) stagnation risk.15 Table 4 reports the correlation

between median estimates of the trend real interest rate and stagnation risks at

different horizons. The decline in the trend real interest rate is correlated with

the increased risk of stagnation but the precise magnitude varies somewhat by

specifications and horizons. Hence, the finding is at least qualitatively consistent

with the concern raised by the secular stagnation hypothesis.16 Tilting predictive

distribution to match moments in the survey data has mixed results, strengthening

the correlation for the tight prior but weakening it for the loose prior.

To evaluate how serious stagnation risk has been during the recent period, we

need quantitative assessments. Figure 6 shows both the near-term and the long-

term stagnation risk during the recent period.17 Both near-term and long-term

15In the appendix, I consider a more moderate version of stagnation that growth and inflation
fall below 1 percent.

16Using the low-pass filter by Müller and Watson (2017), Lunsford and West (2018) find
the long-run correlation between consumption growth and the trend real interest is positive at
the 68% confidence interval for the post-WWII period of 1950-2016. But they report that the
correlation is much weaker for GDP growth in line with the finding from Hamilton et al. (2016).
The correlation with inflation is also somewhat weaker than the one with consumption growth.

17For the longer period of 1919-2016, I provide estimates of stagnation risk in the appendix.
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stagnation risk increased during the Great Recession for all the specifications.

However, the near-term risk has declined subsequently although the long-term

risk has declined more gradually. Tilting tends to reduce stagnation risk but as

Figure 7 suggests, that effect is present only if we try to match both cross-sectional

means and variances of survey forecasts. If we tilt predictive distributions to match

only cross-sectional means of survey forecasts, stagnation risk does not change at

all. This finding highlights the relevance of incorporating information from higher

order moments of survey forecasts not just the first moment.
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Table 4: Correlation between the Median Estimates of the Trend
Real Interest Rate and Stagnation Risk: 1985-2016

Specification Near-term Risk Long-term Risk

TVP-VAR with tight prior 0.0002 -0.5999
TVP-VAR with loose prior -0.488 -0.5169

TVP-VAR with tight prior and tilting -0.4113 -0.7062
TVP-VAR with loose prior and tilting -0.3963 -0.3678

Which estimates of risk are more plausible? To answer this question, I calculate

the quantile-weighted probability scores of different predictive distributions. I can

score the predictive distribution for one variable at each time. Table 5 reports

the ranking of predictive distributions based on the quantile-weighted probability

score of the one-year ahead forecasts of consumption growth and inflation. Using

the TVP-VAR with the loose prior and no tilting as the baseline specification,

I compute the Diebold and Mariano (1995) statistic to test the equal accuracy

of two predictive distributions. For consumption growth, no other specifications

generate better density forecasts than the baseline specification at a statistically

significant level. However, tilting the predictive distribution from the TVP-VAR

model with the loose prior generates more accurate density forecasts for inflation

than the baseline specification at the 5% significance level. In the case of five-

year ahead forecasts shown in Table 6, the quantile-weighted scoring rule implies

that the TVP-VAR model with the loose prior and tilting generates more accurate

density forecasts than the baseline specification at the 10% significance level for

both consumption growth and inflation.18

Overall, the quantile-weighted probability scoring rule favors the predictive

distributions from the TVP-VAR model with loose prior and tilting both cross-

sectional means and variances. According to this specification, the estimated stag-

nation risk elevated in the aftermath of the Great Recession but subsequently de-

clined significantly. In the beginning of 2016, the near term risk of stagnation

was about 0.6% while the long-term risk was 2.2%. Although both numbers were

18For inflation, the TVP-VAR model with the tight prior and tilting generates more accurate
density forecasts that the baseline specification at the 1% significance level.
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Table 5: Quantile-weighted Probability Scoring of One-year Ahead
Forecasts: 1985-2016

Specification Consumption Growth Inflation

TVP-VAR with tight prior 0.9299 (-8.2238) 0.535 (-0.2162)
TVP-VAR with loose prior 0.5334 0.5888

TVP-VAR with tight prior and tilting (mean only) 0.8879 (-8.6429) 0.5326 (0.2708)
TVP-VAR with loose prior and tilting (mean only) 0.5332 ( 0.2255 ) 0.5846 (2.2663)

TVP-VAR with tight prior and tilting (mean+variances) 0.8826 (-8.423) 0.5317 (0.5008)
TVP-VAR with loose prior and tilting (mean+variances) 0.5341 (-0.3869) 0.5837 (1.8381)

Notes: Numbers in the parenthesis are the Diebold and Mariano (1995) test statistics on

the equality of loss in which the TVP-VAR model with loose prior and no tilting is the

baseline specification. A positive number for the Diebold and Mariano (1995) statistic

implies that the current specification has lower loss than the baseline specification. The

1%(5%, 10%) critical values for the two sided test is 2.33(1.645, 1.28).

Table 6: Quantile-weighted Probability Scoring of Five-year Ahead
Forecasts: 1985-2016

Specification Consumption Growth Inflation

TVP-VAR with tight prior 0.7071 (-5.3676) 0.5484 (1.0288)
TVP-VAR with loose prior 0.5023 0.5693

TVP-VAR with tight prior and tilting (mean only) 0.7074 (-5.5092) 0.5505 (1.0438)
TVP-VAR with loose prior and tilting (mean only) 0.5013 (0.3653) 0.5669 (0.8948)

TVP-VAR with tight prior and tilting (mean+variances) 0.7055 (-5.6279) 0.5453 (2.4617)
TVP-VAR with loose prior and tilting (mean+variances) 0.4962 (1.5085) 0.5596 (1.5399)

Notes: Numbers in the parenthesis are the Diebold and Mariano (1995) test statistics on

the equality of loss in which the TVP-VAR model with loose prior and no tilting is the

baseline specification. A positive number for the Diebold and Mariano (1995) statistic

implies that the current specification has lower loss than the baseline specification. The

1%(5%, 10%) critical values for the two sided test is 2.33(1.645, 1.28).

32



somewhat elevated from the average of 0.3% and 1.9% during the period of 1985-

2006, they were much smaller than those from other specifications. For example,

stagnation risk was 3.9% in the near-term and 8.1% in the long-term for the TVP-

VAR model with loose prior and no tilting in 2016, significantly higher than 0.5%

and 4.9%, which are the averages from this specification during the period of 1985-

2006. Overall, the estimation results from the TVP-VAR model support the view

that stagnation risk increased in the aftermath of the Great Recession but declined

subsequently to the relatively low level compared to the pre-WWII period. Esti-

mates of stagnation risk during the longer sample period of 1919-2016 in Figures 8

and 9 suggest that the recent estimates of stagnation risk after the Great Recession

are significantly lower than those in 1939 when the secular stagnation hypothesis

was originally proposed by Hansen (1939).
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What can explain the decline in stagnation risk that became elevated in the

aftermath of the Great Recession? Rachel and Summers (2019) point that major

increases in debt as well as social security and healthcare spending offset the

impact of a substantial decline in the equilibrium real interest rate on stagnation

risk, downplaying the role of unconventional monetary policies such as quantitative

easing and forward guidance. In their view, the ZLB constraint is a severe restraint

for monetary policy and fiscal policy seems to be a more effective tool to reduce

stagnation risk. However, the fiscal impact measure in Sheiner (2014) that takes

into account the contribution of trend growth in social spending still indicates

that the U.S. fiscal policy was in a contractionary territory between 2011 and 2014

as shown in Figure 10. The stimulus impact from the American Recovery and

Reinvestment Act of 2009 was mostly phased out by 2011. With the passage of

the Budget Control Act in 2011, the U.S. fiscal policy became less expansionary

while unconventional monetary policies such as the Federal Reserve’s large scale

asset purchases continued to expand. In addition, Albonico et al. (2017) find

that the fiscal policy during the recovery phase from the Great Recession was

contractionary in spite of the potentially large multiplier effect of government

spending due to the ZLB constraint. They interpret the lack of fiscal impetus

during the recovery phase as a missed opportunity.19

19The December 2013 post-meeting statement issued by the Federal Open Market Committee
(2013) explicitly acknowledged “the extent of federal fiscal retrenchment since the inception of
its current asset purchase program” to signal that monetary policy remained accommodative in
part to compensate for the lack of fiscal stimulus during this period.
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Figure 10: Fiscal Impact Measure in the U.S.: 2000-2019
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Notes: The first-quarter value of each year is plotted. The source data are from the
Hutchins Center on Fiscal and Monetary Policy at the Brookings Institution. The
methodology behind this measure is explained in Sheiner (2014). The shaded area
represents the period of 2011-2014 when the fiscal policy stance was contractionary,
meaning that the government was subtracting from real GDP growth.

Debortoli et al. (2018) offer an alternative view that the ZLB constraint became

empirically irrelevant because of aggressive monetary policy responses during and

after the Great Recession. Also, Aruoba et al. (2018) suggest that the U.S.

can avert the transition to the deflationary steady state in the aftermath of the

Great Recession unlike Japan who got trapped in it during the late 1990s. They

attribute the difference between the U.S. and Japan to more aggressive policy

responses by the Federal Reserve that might have helped in coordinating inflation

expectations at its positive target level. The time-variation in stagnation risk

from the TVP-VAR model seems to be more consistent with this view because

stagnation risk declined more substantially when the predictive density of the

model-implied forecasts is tilted to match cross-sectional means and variances of

survey forecasts.
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5 Conclusion

Empirical studies showing a decline in the trend real interest rate during the recent

few decades raised a concern that the U.S. economy might have entered into a low

growth and low inflation stagnation regime as monetary policy is more frequently

constrained by the ZLB constraint on the nominal interest rate due to the lower

level of the trend real interest rate. This risk of stagnation has received a lot of

attention since growth and inflation in the aftermath of the Great Recession of

2007-2009 were persistently lower despite the historically low interest rate than

in the previous recovery. Rigorous empirical analysis of the trend real interest

rate with stagnation risk is challenging because both concepts are subject to great

uncertainties given a limited sample of the time series data. This paper uses pre-

dictive distributions of macro variables from the TVP-VAR model to estimate both

the trend real interest rate and stagnation risk. The method can take into account

multiple sources of uncertainties as well as the departure from symmetric normal

distributions in estimating the trend real interest rate. In addition, the analysis in-

corporates information from survey forecasts of inflation and the nominal interest

rate by tilting predictive distributions of these variables to match cross-sectional

means and variances of survey forecasts. I use a quantile-weighted probability

scoring rule to rank different predictive distributions from various specification of

the TVP-VAR model. Such a rule provides the criterion for the statistical test of

the equal accuracy of density forecasts for negative tail events.

According to the estimated TVP-VAR model using long-run historical data in

the U.S. going back to the interwar period of 1919-1939, the trend real interest

rate has declined over the last few decades and the decline is correlated with

the increased risk of stagnation. The correlation is higher for long term (five-

year ahead) predictions than near-term (one-year ahead) predictions though the

magnitude varies by the precise specification of the TVP-VAR model. Time series

estimates of stagnation risk characterized by negative consumption growth and

deflation indeed increased during the Great Recession. Although the peak level of

stagnation risk in the aftermath of the Great Recession was significantly elevated

relative to the post-WWII average, it was much lower than the peak level reached
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during the interwar period. And the near-term risk declined quickly one year after

the Great Recession ended while the long-term risk declined more sluggishly. The

comparison of density forecasts from various specifications of the TVP-VAR model

based on the quantile-weighted scoring rule favors the predictive density from the

TVP-VAR that has a loose prior for the magnitude of the time variation of VAR

coefficients and is tilted to match cross-sectional means and variances from survey

forecasts of inflation and the nominal interest rate. The favored specification

generates a lower risk of stagnation. For example, the long-term risk of stagnation

approaching the pre-crisis (1985-2006) average by 2014 under this specification.

The existing literature on the secular stagnation hypothesis emphasizes the role

of expansionary fiscal policies in reducing stagnation risk when monetary policy

is constrained by the ZLB. However, the decline in the estimated stagnation risk

coincides with the ongoing monetary stimulus but contractionary fiscal policies

between 2011 and 2014. This finding is consistent with the view that the Federal

Reserve’s unconventional policies were effective in mitigating negative tail risks by

influencing the private sector’s expectations for inflation and the nominal interest

rate.

Appendix

The appendix first describes the details behind Bayesian estimation of the TVP-

VAR model and exponential tilting of the predictive density. Then it provides

estimates of the risk of a more moderate version of stagnation where consumption

growth and inflation both fall below 1%.

A.1 The elicitation of prior distributions

As explained in the main text, data from 1891 to 1914 are used to construct

prior distributions for parameters and initial values of latent variables. First, I

estimate the first-order VAR with constant coefficients and volatilities for the pre-

sample data.

Yt = θ0 + θ′1Yt−1 + ut. (17)
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The prior mean of Σθ is obtained by shrinking the estimated covariance matrix

for the VAR coefficients so that the implied change in trend estimates (measured by

long-run means) during the pre-sample period is less than or equal to the standard

deviation of each variable in Yt for the same period. More specifically, we choose

the prior mean of Σθ in the tight prior case to make the following condition hold.

T0 × E(Ȳt+1 − Ȳt|Σθ) = min[Std(Yt)]. (18)

The prior mean for Σθ in the loose prior case multiplies the prior mean of Σθ

obtained in the above way by 4.

A.2 The posterior simulation

While deriving the joint posterior distribution of (ϑ, ST ) analytically is in-

tractable, posterior distribution of a subset of (ϑ, ST ) conditional on all the rest

is tractable. The exception is the stochastic volatility in VAR residual shocks for

which we do not have the analytical form for the conditional posterior distribu-

tion. For that part, I use Metropolis-Hastings algorithm that simulates posterior

draws based on the conditional posterior kernel without knowing the exact pos-

terior density. For other parts, I use Gibbs Sampling by taking advantage of the

analytically known conditional posterior distribution. Below are some more details

of the posterior simulation.

Step 1: Initialization Estimate VAR residuals (ut) using the sample data

by setting θ0,t to the sample average of Yt − Yt−1 and θ1,t to the identity matrix.

This implicitly assumes a univariate random walk process for each variable in Yt.

Using squared VAR residuals as proxies for stochastic volatilities, one can draw

σξ,i from the known conditional posterior distribution which is an inverse gamma

distribution.

Step 2: Metropolis-Hastings algorithm to draw DT
ii Using the previous

draw for B and VAR residuals ut, one can construct structural shock estimates

εt = But. The variance of εt is Dii,t. While the exact posterior distribution of

Dii,t conditional on (Y T , ϑ, θT ) is not known analytically, the conditional posterior
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kernel can be calculated easily as follows:

p(Dii,t|ϑ, Y T , θT , Dii,t−1, Dii,t+1) ∝ p(εi,t|Dii,t, ϑ)p(Dii,t|Dii,t−1, ϑ)p(Dii,t+1|Dii,t, ϑ).

(19)

Under assumptions made in the TVP-VAR model, all the components in the

posterior kernel are analytically known and easy to compute.

Step 3: Draw B Given DT and uT , off-diagonal terms in B can be computed

as the regression coefficients of ut on εt. For example, B is a 2 × 2 matrix where

B21 is the only off-diagonal term. Because But = εt and B =

(
1 0

B21 1

)
, we can

run the following regressions.

u1,t = ε1,t,

(D−0.522,t u2,t) = B21(−D−0.522,t u1,t) + (D−0.522,t ε2,t).
(20)

As explained by Cogley and Sargent (2005), the above regressions imply the

normal posterior for B21. Generalizing this, one can draw B from the exact con-

ditional posterior distribution which is a multivariate normal distribution.

Step 4: Draw θT Given ϑ, DT , and Y T , the TVP-VAR model is represented

by a linear and Gaussian state space model for θT where θt is a latent state vector.

Using the Kalman filter, one can derive the conditional posterior distribution of

θT that is a normal distribution. Carter and Kohn (1994) provide an algorithm to

draw θT from the conditional posterior distribution by applying the Kalman filter

both forwards and backwards recursively.

Step 5: Draw Σθ Given θT , innovations in the evolution of VAR coefficients

are known and follow normal distributions. Assuming the inverse-Wishart prior

for Σθ, the conditional posterior distribution of Σθ is also inverse-Wishart and easy

to simulate. Once Σθ is drawn, go back to Step 1 and repeatedly draw another

posterior draw for ϑ and ST .

A.3 Implementing exponential tilting

The goal of exponential tilting is to find out a new predictive density p̂ that
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minimizes the KLIC subject to matching moments from the survey data.

p̂ = argminKLIC(p̂, p) =

∫
ln(

p̂

p
)p̂dY t+2h

t+h+1,

subject toE p̂
t (Ȳt+1:t+h) = Et(Y

s
t,t+h) , V

p̂
t (Ȳt+1:t+h) = Vt(Y

s
t,t+h).

(21)

Notice that p = 1
N

and p̂ is a probability density such that
∫
p̂dY Y+2h

t+h+1 = 1.

Now stack all the three constraints into g(Yt+1:t+h) as follows:

g(Yt+1:t+h) =
N∑
i=1

π?i [Y
i
t+1:t+h−Et(Y s

t,t+h), (Y
i
t+1:t+h−Et(Y s

t,t+h))
2−Vt(Y s

t,t+h)]
′. (22)

The above minimization problem is solved by two steps:1) maximize the La-

grangian with respect to Lagrangian multipliers (γ) and then 2) minimize the

Lagrangian with respect to p̂ given γ. To understand these steps, consider the

following Lagrangian function.

L =
N∑
i=1

N(ln(π?i ))π
?
i − γ′

N∑
i=1

π?i g(Ȳ i
t+1:t+h). (23)

Given γ, the first-order condition for π?i is given by

lnπ?i = −N + γ′g(Y i
t+1:t+h). (24)

Now, using the fact that
∑N

i=1 π
?
i = 1, π?i = e

γ′g(Y it+1:t+h)∑N
i=1 e

γ′g(Y i
t+1:t+h

)
, plug this expression

for π?i back into L. As a result, we can express L as the function of only γ noting

that all the constraints are binding (
∑N

i=1 π
?
i g(Y i

t+1:t+h) = 0).

γ? = argmax−N
N∑
i=1

ln(
N∑
i=1

eγ
′g(Y it+1:t+h)) = argmin

N∑
i=1

eγ
′g(Y it+1:t+h). (25)

To implement exponential tilting, first find out γ? by applying a numerical opti-

mization routine and then calculate π?i = e
γ?′g(Y it+1:t+h)∑N

i=1 e
γ?′g(Y i

t+1:t+h
)
.

A.4 Risk of a more moderate version of stagnation
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The stagnation scenario considered in the main text is an extreme tail event

where both consumption growth and inflation become negative. During the sample

period of 1919-2016, such an event happened only in 4 years (1931-1933, 1939) in

the pre-WWII period. In this section, I consider a more moderate version of

stagnation where consumption growth inflation both fall below 1%. On top of

the four years in the pre-WWII period, this event happened in 1962 and 2009. I

plot the time-variation of stagnation risk for the moderate version of stagnation

in Figures 11-14. They are qualitatively very similar to Figures 6-9 with a more

extreme definition of stagnation. Therefore, the main conclusion in this paper

appears to be robust to a change in the severity of stagnation.
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