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1. Introduction

Policy modeling in macroeconomics is complicated by theory, �t, and exibility requirements.

An inuential theoretical standard is that models should provide an explicit template of

rational decision making by economic agents. Typical data-based objectives for estimated

relationships are to explain historical uctuations in macroeconomic aggregates and to

forecast future movements. A third model requirement is to select exible speci�cations

of features where economic priors are weak and data are scant, such as assumptions on the

information and dynamic adjustment constraints of �rms and households.

Macroeconomic modelers are forced to make signi�cant concessions in attempting to

simultaneously address these competing requirements. Thus, it is not surprising that

di�erent modeling strategies have evolved that better address one requirement more than

others. Between the boundaries of data-based, atheoretic time series models, such as the VAR

speci�cations developed by Sims (1980), and of theory-based simulation models, discussed by

Kydland and Prescott (1996), are many hybrid modeling strategies. A de�ning characteristic

of these hybrid approaches is the introduction of su�cient prior restrictions into data-based

speci�cations to enable coherent economic analysis of a particular issue. Examples of such

hybrid model methodologies range from the use of long-run priors in error correction models,

discussed in Hendry (1995), to explicit assumptions regarding the timing of responses to

information in structural VARs, reviewed in Watson (1994).

This paper develops a hybrid modeling framework that provides a tractable bridge

between data-based and theory-based modeling in the case of linear decision rules.

Given that a system of linear decision rules for I(1) instruments is isomorphic to a

restricted class of vector error correction (VEC) models, the purpose of this paper is to

examine the error correction equations implied by standard formulations of decision rules.

The paper indicates that a subset of a priori dynamic restrictions, imposed by many

implementations of intertemporal optimization, is generally rejected by error correction

models of macroeconomic aggregates.

Discussion is organized as follows. Using the example of a single decision variable, section

2 contrasts the role of a priori restrictions in conventional error correction models and in the

standard linear decision rules implemented in many existing macroeconomic models. The

common speci�cation where convex adjustment costs are applied only to the level of decision

variables is suggested as a potential source of dynamic misspeci�cation and of undesirable

properties in representative empirical estimates of decision rules in macroeconomics.

A modeling framework for a more general description of frictions is presented in section

3. A system of rational decision rules is derived for a vector of decision variables using the
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extension of convex frictions to polynomial lag functions of decision variables suggested by

Tinsley (1993). For di�erence-stationary variables, the resulting decision rules comprise

a system of vector \rational" error correction equations (VREC) with cross-coe�cient

restrictions due to convex frictions and cross-equation restrictions due to the assumption

of rational expectations. These restrictions are presented in analytic closed-form using a

solution method based on lead and lag companion systems.

Section 4, supplemented by subsections in the appendix, discusses full-information

maximum likelihood estimation of the vector rational error correction system. A tractable

two-step procedure is suggested, along with corrections of standard errors for the \generated

regressor" bias that is associated with two-step estimators. For cases where the forcing

terms of Euler equations are inuenced by feedback from decision variables, model-consistent

expectations are imposed by mapping the decision rules into the forecasting system for the

forcing terms.

Section 5 provides an empirical example. The methodology is applied to a model of

producers' investment in capital equipment with time-to-build constraints and convex costs

of adjusting the rate of equipment installations. Section 6 concludes.

2. Atheoretic and A Priori Descriptions of Dynamic Adjustment

From seminal work by Tinbergen in the 1930s to the present, the introduction of priors from

economic theory into linear dynamic models remains somewhat of an art form, subject to

cycles in theoretical fashion as well as trends in analytical and computational techniques.

In contrast to the \measurement without theory" trend and cycle decompositions of

prewar business cycle analysts, postwar researchers at the Cowles Commission indicated that

economic theory can be a source of exclusion restrictions in constructing empirical models.

Decision instruments are related to subsets of candidate explanatory variables by introducing

a priori zero coe�cient restrictions on both contemporaneous and lagged contributions of

selected regressors. However, because much of the inherited theory in macroeconomics is

viewed largely a source of static priors about equilibrium relationships, the assessment by

Sims (1980) that dynamic exclusion restrictions were \incredible" stimulated widespread use

of atheoretic VARs.

In recent years, there has been a revival of interest in a priori restrictions to develop

structural VARs where a priori zero restrictions are placed on the covariances of model

disturbances, as reviewed by Watson (1994) and Canova (1995). In many instances, these

restrictions are equivalent to non-dynamic versions of exclusion conditions. Examples
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include a priori zero restrictions on contemporaneous coe�cients, such as the restrictions

of current-period responses to shocks in Bernanke and Mihov (1995) and Christiano,

Eichenbaum, and Evans (1996), and a priori zero restrictions on selected steady-state

coe�cients, such as the long-run neutrality assumption in Blanchard and Quah (1989).

In contrast to the structural VAR literature on static restrictions, this section discusses

two theory-based sources of dynamic restrictions. These restrictions are less frequently

implemented in estimated macroeconomic models due to an extensive literature, reviewed

by Ericsson and Irons (1995), that suggests these restrictions are not supported by

macroeconomic data. These include restrictions associated with intertemporal optimization

under convex frictions and restrictions imposed by an explicit forecast model of agent

expectations. Because agent expectations are generally unobserved, the assumption of

rational expectations (RE) is often invoked to equate the agent forecast model with the

data generating mechanism of the explanatory forcing variables. Although both sources

of restrictions are collectively referenced as \RE overidentifying restrictions," this grouping

masks the di�erent types of restrictions contributed by these assumptions and, thus, the

source of empirical rejections.

The RE forecast assumption imposes cross-equation restrictions on dynamic coe�cients

in the agent decision rule and dynamic coe�cients in the agent forecast model of forcing

variables. By contrast, the intertemporal optimization assumption imposes lead and lag

cross-coe�cient restrictions that enforce similarities between the relative importance of

recent and older shocks and the relative importance of nearby and distant anticipations.

Discussion will indicate that conventional speci�cations of frictions imply a priori zero

restrictions on certain dynamic coe�cients when the decision rule is reformulated as

a restricted error correction, and these zero restrictions are almost always rejected by

macroeconomic aggregates. For simplicity, only the case of a single decision variable is

considered.

2.1 Conventional error correction

To establish notation, the decision variable of interest is yt, the set of k explanatory

variables is x0t � [x1;t; x2;t; : : : ; xk;t], and a q-order VAR references q lags of each regressor

in the kq � 1 information vector of agents containing the explanatory variables, z0x;t�1 =

[x0t�1; x
0

t�2; : : : ; x
0

t�q]. Thus, in the case of an unrestricted VAR, the equation for yt is
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represented by

Et�1yt = �y + a0(L)yt�1 +
kX

j=1

aj(L)xj;t�1;

= �y + a0(L)yt�1 + a0zx;t�1; (1)

where Et�1 denotes the expectation conditioned on agent information available at the end of

period t�1, aj(L) denotes a (q�1)-order scalar polynomial in the lag operator, Lixt = xt�i,

and a is the unrestricted kq � 1 coe�cient vector of the information vector, zx;t�1.

For stationary series, the equilibrium target for the decision variable implied by equation

(1) is

y�t = (1 � a0(1))
�1[�y +

kX

j=1

aj(1)xj;t];

= c0 +
kX

j=1

cjxj;t: (2)

In modeling the levels of variables, the assumption of di�erence-stationarity, I(1), is not

rejected for many macroeconomic aggregates. In these instances, the representation in the

second line of equation (2) will denote the equilibrium path of the decision target established

by cointegration analysis.

In the case of a cointegrating target path, equation (1) can be rewritten as an error

correction description of the adjustment to the equilibrium path.

Et�1�yt = �� (yt�1 � y�t�1) + b0(L)�yt�1 +
kX

j=1

bj(L)�xj;t�1;

= �� (yt�1 � y�t�1) + b0(L)�yt�1 + b0Rbzx;t�1: (3)

The coe�cients of the �rst line in (3) are unrestricted. To enable later comparisons with

error correction formulations of decision rules, the second line references the information

vector, zx;t�1. This more compact formulation requires a restriction matrix, Rb, to account

for the �rst-di�erence formats of the corresponding regressors in the �rst line.1

As noted by Hendry (1995), many macroeconomic models estimated in the United

Kingdom are error correction systems. An attractive feature of the error correction

1The restriction matrix imposes k zero sum restrictions on the coe�cients in b. Given the ordering of
variables in the information vector, Rb � Ikq � (Q
 Ik), where each element of the q � q matrix, Q, is q�1.
Equivalently, Rb can be interpreted as transforming the regressors into deviations from q-period averages.
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speci�cation is that additional \static" or equilibrium priors from economic theory, such

as long-run homogeneity of prices or Cobb-Douglas production, can be introduced into the

cointegrating relation, equation (2). Indeed, use of prior information to identify long-run

outcomes is very useful for macroeconomists confronted by short samples. Also, as shown by

Horvath and Watson (1992), the power of cointegration tests is improved for cointegrations

with known parameters.

As with unrestricted VAR models, error correction models generally provide good

empirical �ts of macroeconomic aggregates. While error correction models often satisfy

data-based objectives of modelers, the absence of explicit distinctions between dynamics due

to adjustment costs and to revisions of agent forecasts precludes theory-based interpretations

of economic events based on rational agent responses to \news." In this sense, error correction

equations continue to inherit many of the theoretical limitations of traditional dynamic

macroeconomic models developed in the 1960s. As discussed by Lucas (1976) and Sargent

(1981), models that weld together response dynamics and forecast dynamics into invariant

lag structures are less well-suited for policy analysis than models that explicitly represent

behavior as a consequence of rational planning by optimizing �rms and households.

2.2 Rational error correction

Apart from signal extraction �lters and scheduling or delivery lags, the main rationalization

of time series dynamics in macroeconomic models is that intertemporal optimizations of

utility or pro�ts are subject to frictions on the adjustments of decision variables. In turn,

for the case of linear decision rules, there are two interpretations of frictions. One, advanced

by Calvo (1983), is that each agent is subjected to a distribution schedule of random delays

in adjustment, so that an agent's setting of a decision variable in a given period is, in e�ect,

a weighted average of desired target settings over the expected interval between allowable

resets. The other, often attributed in macroeconomics to Eisner and Strotz (1963) in the

case of �xed targets, is that movements of the decision variable are subject to quadratic

adjustment costs, and these strictly convex frictions induce gradual adjustments toward the

desired target setting.2 In the simple cases usually implemented in macroeconomic models,

either the assumption of a geometric distribution of random delays (constant hazard rate)

or the assumption of a quadratic cost in adjusting the level of the decision variable produce

observationally equivalent decision rules, Rotemberg (1996).

2Additional references and discussion of issues in dynamic model interpretations of decision rules with
dynamic forcing terms are found in Tinsley (1970, 1971).
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In the latter case, the representative agent selects a current setting for the

decision instrument that minimizes the expectation of a multiperiod criterion, yt =

argmin(Et�1fCtg). Letting y
�

t denote the equilibrium settings that maximize pro�ts or utility

in the absence of frictions, the standard quadratic tracking criterion trades o� deviations from

equilibrium settings against the cost of adjusting the current level of the decision variable.

Ct =
1X

i=0

Bi[(yt+i � y�t+i)
2 + c1(yt+i � yt+i�1)

2]; (4)

where c1 denotes the cost of adjustment relative to the cost of disequilibrium, and B is a

�xed discount factor, 0 < B < 1. In the case of a trending equilibrium path, adjustment

cost terms may be reformulated as costly deviations around expected trend growth to ensure

that planned settings converge to the target equilibrium path.

With adjustment costs imposed only on changes in the level of the decision variable, the

Euler equation that de�nes the optimal current setting, yt, is second-order,

Et�1f�(BF )�(L)yt � �(B)�(1)y�t g = 0; (5)

where �(BF ) � 1��1BF and �(L) � 1��1L are scalar polynomials in the lead, F , and lag,

L, operators, and �1 is the fractional solution of the equation, c1 = �1=[(1� �1)(1 � �1B)].

Most current data-based macroeconomic models are constructed using estimated Euler

equations of the form in equation (5)3 A less common approach is full-information maximum

likelihood estimation of macroeconomic decision rules where speci�cation of the data

generating process of the forcing term, y�, is required. In early examples, such as the

seminal study by Sargent (1978), autoregressive models of the forcing term were used.

To facilitate term-by-term contrasts of the dynamic structures of optimal decision rules

and conventional error corrections, we will use the more general speci�cation that the k

determinants of the forcing term are generated by a q-order VAR, Et�1xt =
qP

j=1

Ajxt�j.

Under rational expectations, this model matches the agent forecast model. Recast into a

�rst-order companion form, the forecast model is

Et�1y
�

t+i = �0
�
H1+izx;t�1: (6)

3Second-order Euler equations have been used extensively in macroeconomic policy models estimated in
North America and elsewhere. Summary descriptions of several such models are provided in Bryant et al.

(1993). In most instances, these are directly estimated by GMM-IV, although recent policy models also rely
on calibration of simulation properties, such as sta� models constructed for the Bank of Canada, Poloz et

al. (1994), the Federal Reserve Board, Levin et al. (1997), and the Reserve Bank of New Zealand, Black et

al. (1997),
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As before, zx;t�1 denotes the kq�1 information vector of agents, �� is a kq�1 selector vector

for y�t , containing the relevant cointegration coe�cients de�ned in equation (2), and H is a

kq � kq top-row companion matrix of the forecast model

H =

"
A1 A2 : : : Aq

Ikq�q 0

#
:

.

As shown in Tinsley (1970), the optimal decision rule that satis�es the Euler equation

and the relevant endpoint (initial and transversality) conditions implies partial adjustment

to a discounted average of the forward equilibrium path. The decision rule solution can

be obtained by multiplying equation (5) by the inverse of the lead polynomial, �(BF )�1,

expanding the forward summation of discounted forward targets, and substituting in

forecasts of the expected target over the planning horizon from the model representing agent

expectations, equation (6). Following Tinsley (1993), the error correction format of the

optimal decision rule can be shown to be

Et�1�yt = ��(1)(yt�1 � y�t�1) + h0
�
zx;t�1; (7)

where the kq � 1 coe�cient vector of the agents' information set, zx;t�1, is de�ned by h� �

�(1)[H 0 � Ikq][Ikq � �1BH
0]�1��.

A term-by-term comparison of the conventional error correction in equation (3) with the

\rational" error correction in equation (7) indicates two di�erences in a priori restrictions

on the dynamic formats:

First, conditional on estimates of �1 from the coe�cient of the cointegrating discrepancy,

yt�1 � y�t�1, of the �xed discount factor, B, and of H from estimation of the forecast model,

the kq�1 coe�cient vector of the information vector, h�, is completely determined. In other

words, there are kq�k free parameters in the b
0

Rb coe�cient vector of the conventional error

correction, equation (3), but there are no free parameters in the h� coe�cient vector of the

decision rule, equation (7).

Second, turning to the remaining terms, note that the q lags of the decision variable in

the conventional error correction, equation (3), are now replaced in equation (7) by the single

lag of the decision variable indicated in the lagged cointegrating discrepancy, yt�1 � y�t�1.

Thus, the decision rule formulation, equation (7), imposes q � 1 additional zero coe�cient

restrictions on lags of the decision variable. Given estimates of the companion matrix, H, of

the forecast model and the discount factor, B, the only free parameter in the rational error

correction, equation (7), is the adjustment cost parameter, �1.
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One interpretation of the often disappointing empirical performances of conventional

two-root decision rules, including rejections of rational expectation restrictions, is simply

that expectations of actual agents may not be formed under conditions required for rational

expectations, such as symmetric access to full system information by all agents. However,

the limited dynamic speci�cations illustrated in equation (7) suggest another contributing

factor|the assumption that adjustment costs smooth only changes in the level of the decision

variable. This imposes q � 1 additional zero restrictions on the transfer function associated

with y. To explore consequences of relaxing this arbitrary dynamic restriction, Tinsley

(1993) suggests a generalization of frictions where costs of adjusting decision variables are a

function of a higher order polynomial in the lag operator or, equivalently, that the order of

the relevant linear Euler equation is higher than the two-root example usually implemented

in macroeconomics, such as equation (5).

Two general interpretations of polynomial frictions and the associated higher-order

Euler equations are discussed by Tinsley (1997). One is to replace the single-parameter,

exponential distribution of stochastic delays in Calvo (1983) with distributions of stochastic

responses that allow additional parameters (a nested case is the negative binomial

distribution). A second interpretation is that agents may aim to smooth weighted moving

averages of decision variables. A representative speci�cation of the latter is when costs

are associated with both the levels of assets and changes in time di�erences (discrete-time

derivatives) of assets. Examples of estimated decision rules with more than two eigenvalues

include many studies of inventory behavior, including Blanchard (1983), Callen, Hall, and

Henry (1990), and Cuthbertson and Gasparro (1993). In this instance, convex penalties are

associated with changes in the rate of inventory investment due to production smoothing,

given that planned inventory investment is the di�erence between planned production and

expected sales. A more direct example is smoothing moving averages of decision variables

when the periodicities of decision making are of lower frequencies than the periodicity of

observations, as with seasonal or term contracts.

In many applications, direct observations on average response times of agents can be

helpful in assessing the consequences of a polynomial extension of adjustment costs and

often support higher-order speci�cations. In addition, signi�cance tests of friction parameters

associated with lags of the dependent variable in error correction formulations of the optimal

decision rule are useful in testing the standard assumption that adjustment costs apply

only to changes in the level of the decision variable. Use of both sources of information is

illustrated in a later section
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The next section indicates that polynomial characterizations of frictions can be extended

to multiple decision variables to derive a general class of vector rational error correction

models.

3. Multiple Decision Variables with Polynomial Adjustment Costs

This section develops error correction formulations of intertemporal decision rules where the

prior that convex frictions apply only to levels of decision variables is replaced by a more

general speci�cation of frictions. The analysis is also extended to the case of multiple decision

variables.

3.1 Derivation of the Euler equations

Denote the p�1 vector of decision variables by yt, and the corresponding vector of equilibrium

targets by y�t . The criterion that agents seek to minimize is extended to:

Ct = Et�1f
1X

i=0

Bi[(yt+i � y�t+i)
0C0(yt+i � y�t+i) + (C(L)yt)

0(C(L)yt)]g; (8)

where the cost function now contains a quadratic function of a matrix lag polynomial of

the decision variables, C(L). As in the standard criterion shown in equation (4) for a single

decision variable, we assume C(1) = 0 to maintain the distinction between targets and

frictions. The system of Euler equations for the criterion is

Et�1f(C0 + C 0

0)(yt+i � y�t+i) + C(L)0C(BF )yt+ig = 0:

The reciprocal structure of this system of �rst-order conditions is illustrated for two

representative criteria. In the case of smoothing restrictions on moving averages of the

decision variables, the adjustment cost portion of the criterion is (C(L)yt)
0(C(L)yt) �

mP
k=1

((1 � Lk)yt+i)
0Ck((1� Lk)yt+i) with the associated Euler equation system

Et�1f(C0 + C 0

0)(yt+i � y�t+i) +
mX
k=1

(Ck + C 0

k)((1 � Lk)(1�BkF k)yt+i)g = 0:

Similarly, in the case of smoothing restrictions on di�erences (discrete-time derivatives) of

the decision variables, the adjustment cost portion of the criterion is (C(L)yt)
0(C(L)yt) �

mP
k=1

((1 � L)kyt+i)
0Ck((1� L)kyt+i) with the associated Euler equation system

Et�1f(C0 + C 0

0)(yt+i � y�t+i) +
mX
k=1

(Ck + C 0

k)([(1� L)(1�BF )]kyt+i)g = 0:
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As shown in these examples, the Euler equations are symmetric in L and BF , the roots

occur in reciprocal pairs about the discount factor, and the Euler equation system has the

alternative representation,4

Et�1fA(BF )A(L)yt+i �A(B)A(1)y�t+ig = 0: (9)

Note that this format is exactly the same as that used for the two-root Euler equation in (5)

but A(:) is now an m-order matrix polynomial with p� p matrix coe�cients in place of the

earlier �rst-order scalar polynomial �(:).

The system of p interrelated decision rules that satisfy the �rst order condition in (9) is:

Et�1�yt = �A(1)(yt�1 � y�t�1) +A�(L)�yt�1

+�0

m[Imp �G]�1
1X
j=0

Gj�mA(B)A(1)Et�1�y�t+j; (10)

where G is the mp�mp bottom-row companion matrix associated with A(BF ).

G =

2
66666664

0 Ip 0 � � � 0
0 0 Ip � � � 0
...

...
0 0 0 � � � Ip

�AmB
m �Am�1B

m�1 �Am�1B
m�2 � � � �A1B

3
77777775
:

The derivation of equation (10), including the de�nition of the selector matrix, �m, is

provided in section A.1 of the appendix. Aside from computational simplicity, a considerable

advantage of this representation for statistical inference is that it delivers a closed form

solution that preserves the parameters of the adjustment cost matrix polynomial without

transforming to eigenvalue forms or resorting to numerical solution methods.5

3.2 Adding a lag companion forecast system for the forcing terms

Two sets of variables are in the agents' information set: the decision variables, yt and a

remaining set of non-decision information variables that reect the economic environment of

the agents, xt. The information variables may be exogenous or may be subject to feedback

inuences from the agents' decision variables.

4See discussion of self-reciprocal polynomials in Tinsley (1993).

5Representative methods for obtaining linear decision rules from Euler equation systems range from partial
fractions expansions of the characteristic roots in Hansen and Sargent (1980) to Schur decompositions in
Anderson and Moore (1985) and Anderson, Hansen, McGratten, and Sargent (1996).
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The dynamic evolution of information variables, xt, is represented by a reduced form

model in which forecasts of xt depend on the information available to agents at the end of

period t� 1.

Et�1xt = Hxzt�1: (11)

The n � 1 information vector, zt�1, contains lagged observations on yt�j and xt�j; j =

1; : : : ; q.

In the case of equilibrium path variables, each element of the p�1 vector, y�t , is assumed

to be a linear combination of decision and information variables in the agent information

set. These p relationships are represented by

y�t = �0
�
zt; (12)

where the ith column of �� contains the coe�cients used to de�ne y�it. Because equilibrium

targets are often de�ned as functions only of contemporaneous observations, leaving

departures from equilibrium to be attributed to adjustment costs, �� is usually quite sparse,

with zero coe�cients on all lagged information in zt. In cases where the targets are linearly

related to contemporaneous values of exogenous I(1) variables in xt, it is often convenient to

assume that the equilibrium paths are identi�ed by prior cointegration analysis and included

explicitly in the information vector, zt; in these instances, �� is simply a selector matrix,

much like �m, containing relevant unit and zero elements.

Finally, to formally account for motion of the decision variables, yt, the decision rules in

the system (10) are denoted by

Et�1yt = Hyzt�1: (13)

Of course, the matrix, Hy, is tightly restricted, as shown below.

The two reduced form forecast models in (11) and (13) can be stacked to de�ne the

companion form of the full forecast model

Et�1zt+i = H i+1zt�1: (14)

Substituting the equations for equilibrium targets from (12) and the forecasts of variables

in the information set from (14) into the decision rule system, (10), shows the relationship

between planned movements in the decision variables and the agent information set

Et�1�yt = �A(1)(yt�1 � y�t�1) +A�(L)�yt�1

+[�0

m(Imp �G)�1
1X
i=0

Gi�mA(B)A(1)�
0

�
H i(H � In)]zt�1: (15)
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It is useful to compare the structure of this solution for the set of decision rules to the

standard format of an unrestricted vector error correction model,

Et�1�yt = �A(1)(yt�1 � y�t�1) +A�(L)�yt�1 +H�

yzzt�1: (16)

In conventional error corrections, H�

yz is an unknown p � n matrix whose nonzero elements

are coe�cients of series in the agent information set, zt�1, including lagged targets and

information variables. As with the error correction equation (3) in section 2, contributions

of lagged regressors in the information vector, zi�1, are often interpreted as decision variable

responses to forecasts of the economic environment of agents although no explicit use is

made of the forecast model, equation (14).6 Note that if equilibrium forcing variables are not

independent of feedback e�ects from decision variables, then H�

yz may also contain nonzero

coe�cients of lagged decision variables. Within the standard vector error correction format,

it is impossible to disentangle the contributions of adjustment costs, summarized in the terms

associated with the matrix polynomial, A(:), and lagged feedback e�ects on the forcing terms.

Inspection of the last term in (15) indicates that the lengthy expression in the brackets,

[ : ], likewise de�nes the coe�cients of the information vector, zt�1, for rational decision

rules. Thus, the set of decision rules can be rewritten in a compact format similar to that

in equation (16).

Et�1�yt = �A(1)(yt�1 � y�t�1) +A�(L)�yt�1 +Hyzzt�1; (17)

where each row of Hyz prescribes the inuence of variables in the information set on a

particular decision variable. However, in contrast to matrix H�

yz in the unrestricted vector

error corrections of (16), each row of the matrix Hyz in the decision rule equations of (17) is

tightly restricted.

To show the restrictions imposed on Hyz , the j
th row is extracted by premultiplying Hyz

by a 1 � p selector vector, �0j,
7 and simplifying, using column stacks.

hj
0 = vec[(�0jHyz)

0];

= vec[(H 0 � In)
1X
i=0

(H 0)i��A
0(1)A0(B)�0

m(G
0)i(Imp �G0)�1�m�j ];

6To reduce notation, we ignore restrictions in H�

yz associated with �rst-di�erences of regressors, such as
the coe�cient sum restriction matrix, Rb, shown earlier in section 2. First-di�erence transformations are
captured in equation (15) by the (H � In) term.

7The selector vector, �j has a one in the jth element and zeroes elsewhere.
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= [�0j�
0
m(Imp �G)�1 
 (H 0 � In)][Imnp �G 
H 0]�1[Imp 
 ��A

0(1)A0(B)]vec[�0
m]: (18)

This closed form expression for the elements of the n� n coe�cient matrix, Hyz, of the

information vector is useful in several contexts: First, it provides an explicit expression for

the e�ects of the overidentifying rational expectations restrictions on the forecast role of

variables in the information set. Second, it indicates that all of the elements of Hyz are

known if the elements of the companion matrix of the forecast system, H, and the elements

of the companion matrix of the adjustment cost polynomial, G, are known. Third, although

the adjustment cost and forecast model parameters are nonlinearly embedded in (18), exact

analytical gradients can be used in developing estimators of the unknown parameters.
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d
Insert Table 1 here

b

Table 1 contrasts the number of unrestricted coe�cients in a conventional vector error

correction model, equation (16), with the number of free parameters in a vector rational

error correction model, equation (17). The top half of the table indicates the conditioning

dimensions, such as the number of decision variables, p and number of forcing variables,

nv � p. As shown in the �rst line of the lower portion of Table 1, the number of unrestricted

coe�cients in the conventional vector error corrections (VEC) is pnvq � p2q + p(nv � p)q,

where q denotes the number of lags in the VEC model. By contrast, as indicated in the

next line of Table 1, the number of free parameters in the decision rule equations (VREC)

is substantially smaller, p2m. There are two sources of prior restrictions in the rational

decision rules (VREC) that reduce the number of free parameters. One is that the maximum

degree of the matrix friction polynomial, A( : ), is typically much smaller than the maximum

lag of the error correction equations, m << q. The other is that responses of decision

variables to forecasts of information variables, captured by the coe�cient matrix, Hyz , of the

decision rules, are fully de�ned by the friction parameters and the forecast model, whereas

the corresponding coe�cient matrix, H�
yz , of the conventional error corrections is unknown.

4. Estimation of Vector Rational Error Correction (VREC) Systems

As indicated in the preceding section, the forecast model of forcing terms often can be

reasonably approximated by a system that is linear in the unknown parameters. However,

the requirement for forward forecasts imposed by convex frictions and the assumption of

rational expectations lead to decision rules whose parameters are complicated nonlinear

functions of both the parameters in the forecast model, H, and the parameters in the frictions

polynomial, A(:). Thus, there are often signi�cant computational advantages in separating

estimation of the forecast model from estimation of the decision rules.

4.1 Estimating the forecast model

Turning �rst to the forecast model for non-decision variables, the model for current
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information variables in (11) can be restated as

Et�1xt = (z0t�1 
 Inx)hx; (19)

where hx � vec(Hx) and nx is the number of current values, which is presumably much

smaller than the full set of lagged variables in the n� 1 information vector, zt�1. Denoting

the marginal likelihood of the parameters of the forecast model by Lx(hx), estimates of the

parameters are obtained by solving the system of likelihood gradients, gx(ĥx) = 0. In all

cases considered here, these equations are linear in the unknown parameters, hx, and can be

estimated by GLS.

4.2 Issues in estimating the decision rules

The second stage of estimation is aimed at the unknown parameters in the optimal response

rules for the decision variables, yt. The restricted decision rules in (13) are represented in

the form

Et�1yt = (z0t�1 
 Ip)hy; (20)

where hy is the column stack of the p� n matrix, Hy . Three issues are discussed regarding

the estimation of decision rules.

First, a nontrivial computational issue for models of moderate dimensions is that the

elements of Hy are nonlinear functions of the forecast model and the adjustment cost

parameters. We indicate this dependence by the notation, Hy(�; hx), where � is now used

to denote the mp2 � 1 vector of the unknown adjustment cost parameters in the matrix

polynomial, A(:) and hx is the column stack of the forecast model parameters, as referenced

in equation (19). The second stage of the estimation proceeds by forming the marginal

likelihood of the adjustment cost parameters, Ly(�). Then, di�erentiating with respect to �,

the nonlinear likelihood gradients, gy(�̂jĥx), are solved for estimates of the adjustment cost

parameters. These gradients are conditioned on �rst-stage estimates of the forecast model

parameters, ĥx, and are presented in section A.2 of the appendix.

A second issue is the introduction of feedback e�ects of decision variables on forcing

terms of the Euler equations. In this case, forecasts of forcing terms depend on future

paths of decision variables. This self-referencing characteristic is noted by rewriting the

elements of the decision rules as Hy(�;H(hx; hy)) . This notation indicates that the matrix

of decision rule parameters, Hy, is a nonlinear function of itself, where the last argument is

the column stack of decision rule parameters, hy � vec(Hy). VREC system estimation when
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the forcing terms include feedback e�ects of decision variables is discussed in section A2.2 of

the appendix.

The �nal issue is the well-known problem that two-step estimation procedures can

understate sampling errors. Speci�cally, the sampling errors of the adjustment cost

parameters need to be adjusted to account for the sampling uncertainty of the �rst-step

estimates of the forecast model parameters that are used to initialize the second-step

gradients. Murphy and Topel (1985) cite empirical examples where uncorrected t-ratios

of two-step maximum likelihood estimates are overstated by more than 100%. The next

subsection, adapted from Tinsley (1997), discusses the issue of correcting for any \generated

regressor" bias in the estimated sampling errors of �̂ when these second-step estimates are

conditioned on the �rst-step estimates of the forecast model, ĥx.

4.3 Accounting for the sampling variability of the forcing term forecast model

To introduce a more compact notation, let � denote the concatenation of the unknown

parameters of the forecast model, hx, and the adjustment cost polynomial, �. Similarly, g(�̂)

will denote the stack of the relevant likelihood gradients, gx(ĥx) and gy(�̂).

For a T -period sample, the mean-value theorem implies that the
p
T -normalization of

the di�erence between the sample estimate, �̂ and the plim, �o, is provided by rearranging

the �rst-order expansion of the gradients around g(�o),

p
T (�̂ � �o) = [� 1

T
rg(��)]�1[ 1p

T
g(�o)];

wherer denotes the gradient of g with respect to �0, and the rows of rg(��) are evaluated at
��, on the segment connecting �̂ and �o. If the normalized Hessian approaches a �xed limit,

plim[� 1

T
rg(��)] ! M , and the marginal likelihood functions satis�es standard regularity

conditions then, as demonstrated in White (1994), the likelihood estimates are distributed

asymptotically as the normal distribution,

p
T (�̂ � �o)

a� N(0;M�1V (M 0)�1); (21)

where V denotes the expected value of the gradient covariance, V = Ef[ 1p
T
g(�o)][ 1p

T
g(�o)]0g.

The advantage of the two-step estimation approach is that the structure of the sampling

errors in (21) can be substantially simpli�ed regardless of the feedback characteristics of the

decision variables. To see this, partition M and V to reect the separate contributions of

the forecast coe�cients, hx, and the adjustment cost parameters, �.

M =

"
Mhx ;h0

x

Mhx ;�0

M�;h0

x

M�;�0

#
; V =

"
Vhx ;h0

x

Vhx ;�0

V�;h0

x

V�;�0

#
:
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Even when forecast equations for information variables include feedback e�ects of lagged

decision variables, the equations for xt are not functions of the adjustment cost parameters,

�. Thus, the upper right hand partition of M is zero, Mhx ;�0 = 0. This, in turn, implies that

the inverse of M required for equation (21) simpli�es to

M�1 =

"
M�1

hx ;h0

x

0

�M�1

�;�0M�;h0

x

M�1

�;�0 M�1

�;�0

#
:

Substituting this partitioned inverse into the asymptotic covariance indicated in (21) yields

the following expression for the asymptotic covariance of the adjustment cost parameters,

var(�̂ � �o) = M�1

�;�0 +M�1

�;�0 [M�;h0

x

M�1

hx ;h0

x

M 0

�;h0

x

�V 0

hx ;�0M�1

hx ;h0

x

M 0

�;h0

x

�M�;h0

x

M�1

hx ;h0

x

Vhx ;�0]M�1

�;�0 :

The �rst term, M�1

�;�0 , is the covariance of the adjustment cost parameters provided by

the two-step estimation procedure, without correction for \generated regressor" bias. The

remaining terms de�ne the adjustment to account for the sampling variability of the

estimated parameters of the forecast model, ĥx, where all moments are evaluated by sample

estimates such as the GLS estimate of the covariance of the forecast model parameters,

M�1

hx ;h0

x

.

5. An Empirical Application: Equipment Investment

This section will use the VREC methodology to empirically examine a simple model of

aggregate investment under uncertainty. The model adopts a time-to-build technology

assumption in the spirit of Kydland and Prescott (1982) but also assumes convex costs

of adjusting the rate of installed equipment.

The target for investment satis�es long-run pro�t maximization in the absence of

adjustment costs. For a Cobb-Douglas production function, the �rst-order condition is,

in logarithmic form,8

log(�K) + y � k + log(P Y =rPK ) = 0;

where �K is the steady-state capital share, P Y is the output price, y is log output, k is the

log capital stock, r is the return to capital, and PK is the price of capital. Based on this

8In this section, it and kt will denote the logs of capital investment, It and the capital stock, Kt,
respectively.



18

condition, the log of target capital, k�t , is

k�t = log(�K) + yt � log((rtP
K
t )=P Y

t ): (22)

Under time-to-build constraints, a fraction  j of investment expenditure in each period

is allocated to capital that is j periods from completion, j = 1; : : : ;m and
mP
j=1

 j = 1. The

investment expenditure in t on capital that is j periods from completion is denoted by  jIt,

where It is total investment expenditure in t. Thus, installations of capital equipment in t are

denoted by �t =
mP
j=1

 jIt�j, which determines the accumulation rate of productive capital,

Kt = (1� �)Kt�1 + �t:

In the steady state, the log of the installation rate of productive capital equipment,

log(�), equals log investment, i, and satis�es

i = log(g + �) + k;

where g is the average growth rate of output and � is the average depreciation rate of the

capital stock. The evolution of the log investment target, i�t , based on this steady state

condition is

i�t =
1 + g

g + �
gt +

1 � �

g + �
�t + k�t ; (23)

where gt � �yt denotes output growth and the �rst two terms on the right hand side of

equation (23) approximate log(gt + �t).

Finally, convex adjustment costs are assumed for changes in the installation rate of capital

c(��t)
2 � c1( (L)�it)

2;

using the approximation, (eit � eit�1) � �it:

Thus, producers choose the rate of investment that solves the stochastic optimization:

it = argmin

0
@Et�1f

1X
j=0

Bj[(it+j � i�t+j)
2 + c1(

mX
s=1

 s�it+j�s)
2]g

1
A ; (24)

where polynomial adjustment costs are a consequence of the embedded time-to-build

constraints within the convex costs of adjusting the installation rate of productive capital.

The criterion in (24) also encompasses a model of capital investment without polynomial

frictions. That is, the prior that convex frictions apply only to changes in the current level

of the decision variable is obtained by setting m = 1. The empirical consequences of relaxing
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this conventional prior are explored by estimating decision rules that di�er only in the order

of the friction polynomial, m.

The producer decision rule for capital equipment is estimated for the sample span

1971q1-1997q3. Quarterly data from the U.S. National Income and Product Accounts are

used for producers' durable equipment, it, business output, yt, and the depreciation rate

of durable equipment, �t, The relative rental rate of capital, (rtP
K
t )=P Y

t , is taken from the

data bank of the FRB/US model of the U.S. economy, Brayton and Tinsley (1996). The

quarterly discount factor, B, is set to :98, consistent with the postwar return to U.S. equity

of about 8 percent.9 The investment target series, i�t , is constructed using the de�nition

in equation (23) where required coe�cients are measured by sample moments.10 An ADF

test of the cointegrating discrepancy, it � i�t , rejects the null hypothesis of a unit root at

a signi�cance level that exceeds 99%. The arguments of the q-order VAR forecast model

are business output, yt, the equipment depreciation rate, �t, and the rental rate of capital

equipment, (rtP
K
t )=P Y

t , with q = 8.

d

Insert Table 2 here

b

Results of estimating the decision rule for producers' durable equipment are presented in

Table 2. All t-ratios, shown in parentheses, are adjusted for sampling errors associated with

�nite-sample estimates of the VAR forecast model, as discussed in the preceding section. The

�rst equation listed in Table 2 illustrates the conventional assumption that adjustment costs

apply only to changes in the level of the decision instrument, m = 1. The error correction

coe�cient, A(1) = �:073, is signi�cantly di�erent from zero. The associated mean lag

response of investment to unanticipated shocks is 12.6 quarters or about three and one-half

years. This seems lengthy for equipment responses given that the average useful lifetime

of equipment is only about seven years. By contrast, a study of the capital investments of

individual �rms by Schaller (1990) indicates a total response lag of about one year. The

mean lag from manufacturing new orders to shipments of machinery and equipment is about

two quarters, using a monthly sample from 1971-1997. However, this source of external lags

9Results are insensitive to moderate variations in the discount factor.

10The sample means, ĝ and �̂, imply (1 + ĝ)=(ĝ + �̂) = 7:3 and (1� �̂)=(ĝ + �̂) = 6:3.
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does not account for additional internal delays such as installation lags.

Two additional tests of the estimated two-root decision rule,m = 1, also suggest problems

in dynamic speci�cations. The Breusch-Godfrey test statistic, BG(12), indicates the null

hypothesis of serially independent residuals is rejected with a p-value of .00. The test of the

rational expectations overidentifying restrictions on the coe�cient vector of the agent VAR

forecast model indicates these restrictions are rejected also with a p-value of .00. As noted

in Tinsley (1993) and Ericsson and Irons (1995), serially correlated residuals and rejections

of RE restrictions are not atypical for applications of RE decision rules to macroeconomic

aggregates.

The second equation in Table 2 lists properties of an estimated investment decision rule

that is subject to a higher-order polynomial description of frictions. The coe�cients of two

additional lags of investment are statistically di�erent from zero.11 This is a six-root decision

rule, m = 3, using three eigenvalues to discount forward expectations of planned investment,

Et�1fi
�

t+jg.

The dynamic properties of the second estimated decision rule are quite di�erent. The

mean lag is about four quarters, which is more compatible with other estimates of response

times for capital equipment. Neither the null of serially independent residuals (p-value of

.63) nor the RE overidentifying restrictions (p-value = .15) are rejected at conventional levels

of signi�cance.

d

Insert Table 3 here

b

Another way of interpreting the role of the additional characteristic roots in the

higher-order decision rule is presented in Table 3. The decision rule for capital equipment

can be reformulated as

it = Et�1f
1X

j=�1

w(j)i�t+jg: (25)

to indicate the lag responses of current investment to unexpected shocks (w(j); j < 0) and

lead responses to expected future investment plans, (w(j); j � 0). The �rst line of Table

3 lists lag and lead response weights for the standard two-root decision rule (m = 1). The

11Signi�cance tests of additional lags of the dependent variable do not support m > 3.
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forward response weights, (w(j); j � 0), of the two-root rule are determined by powers of

a single root, as are the backward response weights. Thus, the response weights of the

conventional two-root decision rule resemble a two-sided geometric distribution with the

largest weight, w(0), on the current quarter, t. The weights are slightly asymmetric due to

the discounting of future periods over the planning horizon.

The second line of Table 3 lists the lag and lead weights for the higher-order decision rule

(m = 3). The principal e�ect of the additional friction parameters is to increase the size

of the response weights in a four-quarter neighborhood of the current quarter. Speci�cally,

the weights from w(�4) to w(4) of the 6-root decision rule are about twice the size of the

corresponding geometric response weights associated with the two-root rule. Because the

sum of the response weights is unity, the larger response weights near the current quarter,

t, imply much smaller responses than the geometric weights of the two-root decision rule

for the remaining periods that are more distant from the current quarter. Generally, as in

Tinsley (1997), relative larger responses to nearby events appear to be typical of polynomial

frictions applied to macroeconomic decision variables.

6. Concluding Remarks

This paper proposes vector rational error correction models as a useful intersection of

atheoretic time series models and rational agent models. Vector rational error correction

models inherit the data �tting objectives of VAR models but signi�cantly reduce the number

of free parameters by incorporating rational agent restrictions. Likewise, rational error

corrections provide linear-quadratic approximations of rational agent theories but facilitate

statistical testing of these theoretical priors.

The suggested extension of adjustment cost smoothing to a polynomial in the lag operator

means that lags in the �rst di�erences of decision variables appear as regressors, in addition

to the contributions of lagged decision variables in error correction terms. As illustrated in

section 5, empirical applications generally suggest that this polynomial generalization is very

important in obtaining a better match of data moments and a markedly lower rejection rate

of rational expectations restrictions.12

A matrix polynomial formulation of smoothing penalties may be useful in other

applications, Kozicki (1996). An example is a multivariate construction of unobserved trend

12See descriptions of additional empirical examples of decision rules with polynomial frictions applied to
a wide range of macroeconomic aggregates in Brayton and Tinsley (1996) and Tinsley (1997).



22

and cycle components. In a vector analogue of Hodrick and Prescott (1997), suppose a time

series vector, yt, is viewed as the sum of a vector of smoothly-varying trend components, K�t,

and a vector of trend deviations. The matrix, K, need not be square in the case of common

trends. The trend components can be interpreted as \decision variables" that minimize a

multivariate analogue of the Hodrick-Prescott criterion.

�t = argmin[
TX

t=1

(yt �K�t)
0C0(yt �K�t) + �

mX

k=1

(K(1 � Lk)�t)
0Ck(K(1 � Lk)�t)]:

As with the case of restricted movements in decision variables, the trend components will

be less volatile than the original time series if changes in moving averages (or higher-order

di�erences) of the trend components are penalized.

For simplicity, the exposition of this paper assumes the target paths of decision variables

are described by cointegrations. It is straightforward to accommodate theories that specify

stationary, I(0), arguments of the conditional equilibrium paths; see examples in Tinsley

(1993). This variation introduces discounted paths of expected future values of the stationary

variables into decision rules.

A distinguishing feature of the vector formulation of rational error correction decision

rules is the introduction of lagged error correction \gaps" from other decision variables.

Although empirical estimates of interrelated factor demand models are seldom reported in

macroeconomic literature, it seems plausible that agents with multiple decision variables will

choose systematic multivariate feedback responses to equilibrium displacements in their own

sector and in other sectors. Empirical work on persistent cross-sectoral e�ects reported in

Konishi and Granger (1992) and Konishi, Granger, and Ramey (1992) suggests that vector

rational error corrections may provide a framework for theoretical interpretations of these

empirical interactions.
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Appendix Derivation and Estimation of the VREC System

A.1. Derivation of the vector error correction system of decision rules, equation (10)

This section of the appendix derives the system of interrelated decision rules that satisfy

the �rst-order conditions in (9). The derivation follows that in Tinsley (1993) which uses

two companion systems. One is a lead companion system associated with the lead matrix

polynomial, A(BF ), and the other is a lag companion system formulation of the agent

forecast model of the forcing terms, y�.

To obtain the forward-looking format characteristic of intertemporal decision rules,

multiply through by the inverse of the factor polynomial in the lead operator, A(BF )�1.

Et�1A(L)yt = Et�1A(BF )
�1A(B)A(1)y�t : (26)

The forcing term of this equation

vet � Et�1A(BF )
�1A(B)A(1)y�t ;

is generated by the lead vector autoregression system

A(BF )vet = Et�1A(B)A(1)y
�

t : (27)

To recast this lead autoregressive model into a more convenient �rst-order format, de�ne

two mp�1 column vectors: wt � [vet+m�1
0; � � � ; vet

0]0 and ft � [00p; � � � ; 0
0

p; (A(B)A(1)Et�1y
�

t )
0]0.

Also, as an aid to later discussion, note that the second column vector can also be represented

by ft � �mA(B)A(1)Et�1y
�

t , where �m is an mp�p selector matrix with a pth-order identity

matrix in the bottom p rows and zeroes elsewhere.13 Using these vectors, the companion

form of the lead autoregression in (27) can be compactly represented by

wt = Gwt+1 + ft;

=
1X

j=0

Gjft+j; (28)

where the mp�mp companion matrix, G, is de�ned in section 3.

The solution for the current forcing term can be recovered by using the selector matrix,

vet = �0

mwt. Substituting this solution into (26) yields the system of p decision rules shown

13That is, �m � (�m
 Ip) where, in turn, �m is an m� 1 selector vector with a one in the bottom element
and zeroes elsewhere.
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earlier in (10):

Et�1�yt = �A(1)yt�1 +A�(L)�yt�1 +�0

m

1X

j=0

Gj�mA(B)A(1)y
e�
t+j;

= �A(1)yt�1 +A�(L)�yt�1

+�0

m[Imp �G]�1[�mA(B)A(1)y
�

t�1 +
1X

j=0

Gj�mA(B)A(1)Et�1�y
�

t+j];

= �A(1)(yt�1 � y�t�1) +A�(L)�yt�1

+�0

m[Imp �G]�1
1X

j=0

Gj�mA(B)A(1)Et�1�y
�

t+j; (29)

In the �rst line of (29), the lag matrix polynomial, A(L), is partitioned into a level and

di�erence format, A(L) = A(1)L+(I�A�(L)L)(1�L) where A�(:), is an (m-1)-order matrix

polynomial.14 The second line in (29) partitions the forward paths of the forcing terms into

an initial level and forward di�erences. The third line uses the identity, �0

m[I � G]�1�m �

A(B)�1, to isolate the error correction \gaps," yt�1 � y�t�1. The �nal term in the last

line captures the present-value e�ects of expected forward di�erences in the forcing terms.

In contrast to the single discount factor of forward expectations in the standard two-root

decision rule discussed in section 2, there are now mp discount factors associated with the

eigenvalues of the mp�mp companion matrix, G.

A.2. VREC system estimation

A.2.1 Forcing terms are independent of decision variables

In the �rst stage of estimation, we assume the forecast model of the non-decision variables

is linear in the unknown parameters. Assuming normally distributed forecast errors, the log

of the marginal likelihood of the forecast model parameters is

Lx(hx) = �(T=2)log(jV�xj)� (Tnx=2)log(2�)�
TX

t=1

(xt �Hxzx;t�1)
0V �1

�x (xt �Hxzx;t�1); (30)

where V�x � E[(xt � Hxzx;t�1)(xt �Hxzx;t�1)
0], and the subscript convention indicates that

the information vector for the forecast model of the forcing terms, zx;t�1, now excludes lagged

decision variables. Using notation introduced in equation (19), �rst-stage estimates of the

14Component matrices in A�(:) are sums of the matrices in A(L).
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coe�cients of the forecast equations for xt are the solutions of the following gradients of

equation (30):

gx(ĥx) =
TX

t=1

(z0x;t�1 
 In1)V
�1

�x (xt � Ĥxzx;t�1)

= 0:

These are equivalent to GLS estimates of the forecast model equations, or even OLS estimates

if the equations have identical regressors.

Turning to the second-stage estimation of the adjustment cost parameters, and again

assuming normally distributed errors, the log of the marginal likelihood of � is

Ly(�) = �(T=2)log(jV�yj)� (Tp=2)log(2�)�
TX

t=1

(yt �Hyzt�1)
0V �1

�y (yt �Hyzt�1); (31)

where V�y � E[(yt � Hyzt�1)(yt � Hyzt�1)
0] and the information vector now includes lagged

values of the decision variables to account for the adjustment cost terms associated with the

matrix polynomial, A(:). Maximum likelihood estimates of the adjustment cost parameters,

�̂, are de�ned by the zeroes of the gradients of (31) with respect to �, given the �rst-stage

estimates of the forecast model coe�cients, ĥx.

gy(�̂) =
TX

t=1

[@vec(Hy(:jĥx))=@�
0]0(z0t�1 
 Ip)V

�1

�y (yt �Hy(�̂jĥx)zt�1)

= 0: (32)

The brackets, [ . ], contain the derivatives of the decision rules with respect to the

adjustment cost parameters of the matrix polynomial, A(:), and its associated companion

matrix, G. The format of these nonlinear gradient equations is well-suited for estimation

by Gauss-Newton iterations. Details of this approach illustrating the use of exact analytical

gradients of REC decision rules are provided in Tinsley (1997).

The gradient solutions for the adjustment cost parameters are conditioned on the

�rst-step estimates of the parameters of the forecast model for the forcing terms, ĥx. Thus,

as discussed earlier, the sampling errors of the estimated adjustment cost parameters, �̂,

must be adjusted for the uncertainty of the �rst-step estimates. This requires constructing

the partitions of the Hessian, M , in (21). As indicated below, with the one exception of

additional gradients of the likelihood of adjustment cost parameters with respect to the vector
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of forecast model parameters, @Ly=@hx, these partitions can be assembled from gradients

and covariances already produced in the �rst and second stages of estimation.

Mhx ;h0

x

= E[� @2Lx
@hx@h0

x

] = E[gx(hx)gx(hx)
0]:

Mhx ;�0 = E[� @2Lx
@hx@�0

] = 0:

M�;�0 = E[� @2Ly

@�@�0
] = E[gy(�)gy(�)

0]:

M�;h0

x
= E[� @2Ly

@�@h0

x

] = E[gy(�)(
@Ly

@h0

x

)0]:

(33)

A.2.2 Forcing terms include feedback e�ects of decision variables.

Finally, consider the case of feedback e�ects from decision variables to the forcing terms of

the Euler equations. In brief, this means that forecasts of the forward positions of forcing

terms incorporated in agent decision rules now require also accompanying forecasts of the

decision variables.

As a consequence, the decision rules, Hyzt�1, are now included in additional rows of the

forecast model matrix of reduced form coe�cients, denoted by H in the earlier derivation of

the decision rules. This implies that the decision rules are self-referencing, which is indicated

by the notational convention

yt = Hy(�;H(hx; hy))zt�1; (34)

where there are now two components of the forecast model: hx, the coe�cient stack of the

forecast model for the non-decision information variables, xt; and hy, the coe�cient stack of

the p rows of the forecast model for the decision variables. Under rational expectations, the

vector, hy, is equal to the coe�cient stack of the decision rules.

To address this self-referential mapping, the partial derivatives of the decision rule

coe�cients with respect to the adjustment cost parameters are represented as

[@vec(Hy)=@�
0] = [@vec(Hy(:jĤ))=@�0] + [@vec(Hy(�̂; H(ĥx; hy)))=@hy

0][@hy=@�
0];

= [I � [@vec(Hy(�̂; H(ĥx; hy)))=@hy
0]]�1[@vec(Hy(:jĥx; ĥy))=@�

0]: (35)

In the �rst line, the initial term on the right hand side of the equal sign holds the forecast

model �xed when di�erentiating with respect to the adjustment cost parameters, �. The

second term identi�es the e�ect of di�erentiation through the decision rule channels in the
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forecast model by the chain rule of di�erentiation. Because the matrix [@hy=@�
0] is the

same as that on the left hand side of the equal sign, the second line provides a closed form

resolution of the mapping required by rational expectations.

As a consequence of the feedback e�ects of decision variables on forcing terms, two

alterations are needed in the de�nition of the decision rule gradients in equation (32). First,

rows containing the reduced forms of the decision rules are included in the companion matrix

of the forecast model, H. The conditioning of the decision rules on the extended forecast

model is indicated by replacing Hy(�̂jĥx) in equation (32) by Hy(�̂jĤ). Second, the rational

expectations mapping, shown above in equation (35), needs to be incorporated in the term

for the partial derivative of the stack of the decision rule coe�cients, [@vec(Hy)=@�
0]. Thus,

in accounting for feedback e�ects on forcing terms, the gradient equations for the decision

rule parameters in (32) are replaced by:

gy(�̂) =
TX

t=1

[I � [@vec(Hy(�̂; H(ĥx; hy)))=@hy
0]]�1 �

[@vec(Hy(:jĥx; ĥy))=@�
0]0(z0t�1 
 Ip)V

�1

�y (yt �Hy(�̂jĤ)zt�1)

= 0: (36)



Table 1

Restrictions in Decision Rule Equationsa

given:
total variables nv

decision variables p
forcing variables nv � p
lags in expectations VAR q
order of frictions polynomial m

implies:
parameters in unrestricted error correction equations (VEC) p2q + p(nv � p)q
unrestricted parameters in decision rule equations (VREC) p2m
restrictions in decision rule equations p2(q �m) + p(nv � p)q

aParameter count assumes nv � p, q � m. For simplicity, entries do not account for unit root restrictions
or cointegration among forcing variables, and excludes constants and coe�cients on deterministic trends
from free parameter calculations.



Table 2

Decision Rules for Producers' Durable Equipment Investmenta

�it = �A(1)[it�1 � i�t�1] +A�(L)�it�1 + h0
�
zx:t�1 + at:

mean
mb A(1) A�

1 A�

2 R2 SEE lagc BG(12)d LR(h�jzt�1)
e

1 -.073 .24 .028 12.6 .00 .00
(-3.6)

3 -.078 .266 .334 .50 .024 4.1 .63 .15
(-4.6) (2.8) (3.4)

aQuarterly data are: log producers' durable equipment investment, i; log target investment, i�; and
the producers' information vector, zx;t�1, containing lagged values of the determinants of i�, including
business output, the relative rental rate of producers' durable equipment, and the depreciation rate of durable
equipment. The sample span is 1971q1-1997q3. The current investment response to expected growth rates
of target investment is denoted by h0

�
zt�1 (see text).

bThe number of estimated friction parameters in the 2m-order decision rule.

cIn quarters.

dRejection probability of serially independent residual , Breusch-Godfrey test (12 lags).

eRejection probability of RE overidentifying restrictions on the coe�cient vector for expected growth
rates of target investment, h�.



Table 3

Selected Lag and Lead Weights for Equipment Investment Decision Rulesa

it = Et�1f
1X

j=�1

w(j)i�t+jg:

lag weights lead weights
w(-12) w(-8) w(-4) w(0) w(4) w(8) w(12)

m = 1 .017 .023 .031 .042 .029 .020 .013

m = 3 .002 .024 .065 .096 .060 .021 .001

aQuarterly weights generated by the estimated 2m-order decision rules of Table 2.


