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Abstract

This paper provides a tractable continuous-time constant-absolute-risk averse (CARA)-Gaussian

framework to quantitatively explore how the preference for robustness (RB) affects the interest

rate, the dynamics of consumption and income, and the welfare costs of model uncertainty

in general equilibrium. We show that RB significantly reduces the equilibrium interest rate,

and reduces the relative volatility of consumption growth to income growth when the income

process is stationary. Furthermore, we find that the welfare costs of model uncertainty are non-

trivial for plausibly estimated income processes and calibrated RB parameter values. Finally,

we extend the benchmark model to consider the separation of risk aversion and intertemporal
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1. Introduction

Hansen and Sargent (1995) first formally introduced the preference for robustness (RB, a concern

for model misspecification) into linear-quadratic-Gaussian (LQG) economic models.1 In robust

control problems, agents are concerned about the possibility that their true model is misspecified

in a manner that is difficult to detect statistically; consequently, they make their optimal deci-

sions as if the subjective distribution over shocks is chosen by an evil agent in order to minimize

their expected lifetime utility.2 As showed in Hansen, Sargent, and Tallarini (HST, 1999) and Luo

and Young (2010), robustness models can produce precautionary savings even within the class

of discrete-time LQG models, which leads to analytical simplicity. Specifically, using the explicit

consumption-saving rules, they explored how RB affects consumption and saving decisions and

found that the preference for robustness and the discount factor are observationally equivalent in

the sense that they lead to the identical consumption and saving decisions within the discrete-time

representative-agent LQG setting. However, if we consider problems outside the LQG setting

(e.g., when the utility function is constant-absolute-risk-averse, i.e., CARA, or constant-relative-

risk-averse, i.e., CRRA), RB-induced worst-case distributions are generally non-Gaussian, which

greatly complicates the computational task.3

The permanent income hypothesis (PIH) of Friedman states that the individual consumer’s

optimal consumption is determined by permanent income that equals the annuity value of his

total resources: the sum of (i) financial wealth and (ii) human wealth defined as the discounted

present value of the current and expected future labor income using the exogenously given risk-

free rate. Hall (1978) showed that when some restrictions are imposed (e.g., quadratic utility and

the equality between the interest rate and the discount rate), the PIH emerges and changes in

consumption are unpredictable. Consequently, the PIH consumer saves only when he anticipates

that their future labor income will decline. This saving motive is called the demand for “savings

for a rainy day”. In contrast, Caballero (1990) examined a precautionary saving motive due to

the interaction of risk aversion and unpredictable future income uncertainty when the consumer

has CARA utility. The Caballero model leads to a constant precautionary savings demand and a

constant dissavings term due to relative impatience. Wang (2003) showed in a Bewley-Caballero-

Huggett equilibrium model that the precautionary saving demand and the impatience dissavings

term cancel out in a general equilibrium and the PIH reemerges.

The main goal of this paper is to construct a tractable continuous-time CARA-Gaussian heterogenous-

agent dynamic stochastic general equilibrium (DSGE) model to link the two research lines dis-

1See Hansen and Sargent (2007) for a textbook treatment on robustness.
2The solution to a robust decision-maker’s problem can be regarded as the equilibrium of a max-min game between

the decision-maker and the evil agent.
3See Chapter 1 of Hansen and Sargent (2007) for discussions on the computational difficulties in solving non-LQG

RB models, and Bidder and Smith (2012) and Young (2012) for using numerical methods to compute the worst-case
distributions.
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cussed above and explore how robustness affects the interest rate, the cross-sectional distributions

of consumption and income, and welfare costs of model uncertainty in the presence of uninsurable

labor income.4 As the first contribution of this paper, we show that this continuous-time DSGE

model featuring incomplete markets and the separation of risk aversion and robustness can be

solved explicitly. Using the explicit consumption-saving rules, we find that risk aversion is more

important than robustness in determining the precautionary savings demand.5 In addition, we

establish the observational equivalence results between risk aversion, robustness, and discounting

in our continuous-time model.

Second, using the explicit decision rules, we show that a general equilibrium under RB can

be constructed in the vein of Bewley (1986) and Huggett (1993).6 In the general equilibrium, we

find that the interest rate decreases with the degree of RB. The intuition is that the stronger the

preference for RB, the greater the amount of model uncertainty determined by the interaction of

risk aversion, RB, and labor income uncertainty, and the less the interest rate. In addition, we

show that the relative volatility of consumption growth to income growth is determined by the

interaction of the equilibrium interest rate and the persistence coefficient of the income process.

Specifically, this relative volatility decreases with RB when the income process is stationary.

Third, after calibrating the RB parameter using the detection error probabilities (DEP), we find

that RB has significant impacts on the equilibrium interest rate and consumption volatility. In the

U.S. economy the average real risk-free interest rate is only about 1 percent between 1985 and 2014.

The full-information rational expectations model requires the coefficient of risk aversion parameter

to be 10 to match this rate.7 In contrast, when consumers take into account model uncertainty,

the model can generate an equilibrium interest rate of 1 percent with much lower values of the

coefficient of risk aversion.8 In addition, we find that when income uncertainty increases, the

relative volatility decreases with the degree of robustness.9 Using the Lucas elimination-of-risk

method, we find that the welfare costs due to model uncertainty are non-trivial. For plausibly

parameter values, they could be as high as 10 percent of the typical consumer’s permanent income.

4See Cagetti, Hansen, Sargent, and Williams (2002), Anderson, Hansen, and Sargent (2003), Maenhout (2004), and
Kasa (2006) for the applications of robustness in continuous-time models.

5Within the discrete-time LQG setting, Luo, Nie, and Young (2012) showed that although both RB and CARA pref-
erences increase the precautionary savings demand via the intercept terms in the consumption functions, they have
distinct implications for the marginal propensity to consume out of permanent income (MPC).

6Wang (2003) constructed a general equilibrium under full-information rational expectations (FI-RE) in the same
Bewley-Huggett type model economy with the CARA utility. Angeletos and Calvet (2006) characterized a closed-form
recursive general equilibrium in a neoclassical growth model with idiosyncratic production risk and incomplete mar-
kets.

7Note that since we set the mean income level to be 1, the coefficient of relative risk aversion (CRRA) evaluated at
this level is equal to the coefficient of absolute risk aversion (CARA).

8Barillas, Hansen, and Sargent (2009) showed that most of the observed high market price of risk in the U.S. can
be reinterpreted as a market price of model uncertainty and the risk-aversion parameter can thus be reinterpreted as
measuring the representative agent’s doubts about the model specification.

9This theoretical result might provide a potential explanation for the empirical evidence documented in Blundell,
Pistaferri, and Preston (2008) that income and consumption inequality diverged over the sampling period they study.
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Finally, we assume that consumers have stochastic differential utility (SDU or recursive util-

ity) and have distinct preferences for risk and intertemporal substitution. After solving the model

explicitly, we explore how it interacts with RB and affects the equilibrium interest rate and con-

sumption volatility.

This paper is organized as follows. Section 2 presents a robustness version of the Caballero–

Bewley-Huggett type model with incomplete markets and precautionary savings. Section 3 dis-

cusses the general equilibrium implications of RB for the interest rate and consumption and wealth

dynamics. Section 4 present our quantitative results after estimating the income process and cali-

brating the RB parameter. Section 5 discusses how RB help explain the observed low interest rate

in the U.S. economy. Section 6 considers the extension to the SDU. Section 7 concludes.

2. A Continuous-time Heterogeneous-Agent Economy with Robustness

2.1. The Full-information Rational Expectations Model with Precautionary Savings

Following Wang (2003, 2009), we first formulate a continuous-time full-information rational ex-

pectations (FI-RE) Caballero-type model with precautionary savings. Specifically, we assume that

there is only one risk-free asset in the model economy and there are a continuum of consumers

who face uninsurable labor income and make optimal consumption-saving decisions. Uninsur-

able labor income (yt) is assumed to follow an Ornstein-Uhlenbeck process:

dyt = ρ

(
µ

ρ
− yt

)
dt + σydBt, (1)

where the unconditional mean and variance of income are y = µ/ρ and σ2
y / (2ρ), respectively, the

persistence coefficient ρ governs the speed of convergence or divergence from the steady state,10

Bt is a standard Brownian motion on the real line R, and σy is the unconditional volatility of the

income change over an incremental unit of time. The typical consumer is assumed to maximize

the following expected lifetime utility:

J0 = E0

[ˆ ∞

t=0
exp (−δt) u(ct)dt

]
, (2)

subject to the evolution of financial wealth (wt):

dwt = (rwt + yt − ct) dt, (3)

10If ρ > 0, the income process is stationary and deviations of income from the steady state are temporary; if ρ ≤ 0,
income is non-stationary. The last case catches the flavor of Hall and Mishkin (1982)’s the specification of individual
income that includes a non-stationary component. The ρ = 0 case corresponds to a simple Brownian motion without
drift. The larger ρ is, the less y tends to drift away from y. As ρ goes to ∞, the variance of y goes to 0, which means that
y can never deviate from y.
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where r is the return to the risk-free asset, c is consumption, and the utility function takes the

CARA form: u(ct) = − exp (−γct) /γ, where γ > 0 is the coefficient of absolute risk aversion.11

To present the model more compact, we define a new state variable, st:

st ≡ wt + ht,

where ht is human wealth at time t and is defined as the expected present value of current and

future labor income discounted at the risk-free interest rate r:

ht ≡ Et

[ˆ ∞

t
exp (−r (s− t)) ysds

]
.

For the given the income process, (1), ht = yt/ (r + ρ) + µ/ (r (r + ρ)).12 Following the state-

space-reduction approach proposed in Luo (2008) and using the new state variable s, we can

rewrite (3) as

dst = (rst − ct) dt + σsdBt, (4)

where σs = σy/ (r + ρ) is the unconditional variance of the innovation to st.13 It is not difficult to

show that the above model with the univariate income process, (1), can be easily extended to the

model with distinguishable multiple income components that have differencing persistence and

volatility coefficients. In this more complicated case, we can still apply the state-space-reduction

approach to simplify the model. To make our benchmark model tractable, we focus on the univari-

ate income specification.

In this benchmark full-information rational expectations (FI-RE) model, we assume that the

consumer trusts the model and observes the state perfectly, i.e., no model uncertainty and no state

uncertainty. Denoting the value function by J (st). The Hamilton-Jacobi-Bellman (HJB) equation

for this optimizing problem can be written as:

0 = sup
ct∈C

[
− 1

γ
exp (−γct)− δJ (st) +D J (st)

]
,

where

D J (st) = Js (rst − ct) +
1
2

Jssσ
2
s , (5)

C is the set of admissible values for the consumption choice, and the transversality condition,

11It is well-known that the CARA utility specification is tractable for deriving optimal policies and constructing gen-
eral equilibrium in different settings. See Caballero (1990), Wang (2003, 2009), and Angeletos and Calvet (2006).

12Here we need to impose the restriction that r > −ρ to guarantee the finiteness of human wealth.
13In the next section, we will introduce robustness directly into this “reduced” precautionary savings model. It is not

difficult to show that the reduced univariate model and the original multivariate model are equivalent in the sense that
they lead to the same consumption and saving functions. The detailed proof is available from the corresponding author
by request.
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limt→∞ E |exp (−δt) Jt| = 0, hold at optimum. Solving the above HJB subject to (4) leads to the

following consumption function:

ct = rst + Ψ− Γ, (6)

where Ψ = (δ− r) / (rγ) and

Γ ≡ 1
2

rγσ2
s , (7)

is the consumer’s precautionary saving demand. Following the literature of precautionary savings,

we measure the demand for precautionary saving as the amount of saving due to the interaction of

the degree of risk aversion and uninsurable labor income risk. From (7), it can see that the precau-

tionary saving demand is larger for a larger value of the coefficient of absolute risk aversion (γ), a

more volatile income innovation
(
σy
)
, and a larger persistence coefficient (ρ).14 It is worth noting

that although incomplete markets generally imply that aggregate dynamics depend on the wealth

distribution, this “curse of dimensionality” can be overcome by our CARA-Gaussian specification

under which investment is independent of wealth.

2.2. Incorporating Model Uncertainty due to Robustness

Robustness (robust control or robust filtering) emerged in the engineering literature in the 1970s

and was introduced into economics and further developed by Hansen, Sargent, and others. A

simple version of robustness considers the question of how to make optimal decisions when the

decision maker does not know the true probability model that generates the data. The main goal

of introducing robustness is to design optimal policies that not only work well when the reference

(or approximating) model governing the evolution of the state variables is the true model, but

also perform reasonably well when there is some type of model misspecification. To introduce

robustness into our model proposed above, we follow the continuous-time methodology proposed

by Anderson, Hansen, and Sargent (2003) (henceforth, AHS) and adopted in Maenhout (2004) to

assume that consumers are concerned about the model misspecifications and take Equation (4) as

the approximating model.15 The corresponding distorting model can thus be obtained by adding

an endogenous distortion υ (st) to (4):

dst = (rst − ct) dt + σs (σsυ (st) dt + dBt) . (8)

As shown in AHS (2003), the objective D J defined in (5) can be thought of as E [dJ] /dt and plays

a key role in introducing robustness. A key insight of AHS (2003) is that this differential expec-

tations operator reflects a particular underlying model for the state variable because this operator

14As argued in Caballero (1990) and Wang (2009), a more persistent income shock takes a longer time to wear off and
thus induces a stronger precautionary saving demand of a prudent forward-looking consumer.

15As argued in Hansen and Sargent (2007), the agent’s committment technology is irrelevant under RB if the evolution
of the state is backward-looking. We therefore do not specifiy the committment technology of the consumer in the RB
models of this paper.
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is determined by the stochastic differential equations of the state variables. Consumers accept the

approximating model, (4), as the best approximating model, but is still concerned that it is misspec-

ified. They therefore want to consider a range of models (i.e., the distorted model, (8)) surrounding

the approximating model when computing the continuation payoff. A preference for robustness

is then achieved by having the agent guard against the distorting model that is reasonably close

to the approximating model. The drift adjustment υ (st) is chosen to minimize the sum of (i) the

expected continuation payoff adjusted to reflect the additional drift component in (8) and (ii) an

entropy penalty:

inf
υ

[
D J + υ (st) σ2

s Js +
1
ϑt
H
]

, (9)

where the first two terms are the expected continuation payoff when the state variable follows (8),

i.e., the alternative model based on drift distortion υ (st),H = (υ (st) σs)
2 /2 is the relative entropy

or the expected log likelihood ratio between the distorted model and the approximating model

and measures the distance between the two models, and 1/ϑt is the weight on the entropy penalty

term.16 ϑt is fixed and state independent in AHS (2003), whereas it is state-dependent in Maen-

hout (2004). The key reason of using a state-dependent counterpart ϑt in Maenhout (2004) is to

assure the homotheticity or scale invariance of the decision problem with the CRRA utility func-

tion.17 Note that the evil agent’s minimization problem, (9), becomes invariant to the scale of total

resource st when using the state-dependent specification of ϑt. In this paper, we also specify that

ϑt is state-dependent (ϑ (st)) in the CARA-Gaussian setting. The main reason for this specification

is to guarantee the homotheticity, which makes robustness not wear off as the value of the total

wealth increases.18

Applying these results in the above model yields the following HJB equation under robustness:

sup
ct∈C

inf
υt

[
− 1

γ
exp (−γct)− δJ (st) +D J (st) + υ (st) σ2

s Js +
1

ϑ (st)
H
]

. (10)

Solving first for the infimization part of (10) yields:

υ (st)
∗ = −ϑ (st) Js,

where ϑ (st) = −ϑ/J (st) > 0. (See Appendix 8.2 for the derivation.) Following Uppal and Wang

(2003) and Liu, Pan, and Wang (2005), here we can also define “1/J (st)” in the ϑ (st) specification

16The last term in (9) is due to the consumer’s preference for robustness. Note that the ϑt = 0 case corresponds
to the standard expected utility case. This robustness specification is called the multiplier (or penalty) robust control
problem. We will discuss another closely related robustness specification, the constraint robust control problem, in the
next subsection. See AHS (2003) and Hansen, Sargent, Turmuhambetova, and Williams (2006) (henceforth, HSTW) for
detailed discussions on these two robustness specifications.

17See Maenhout (2004) for detailed discussions on the appealing features of “homothetic robustness”.
18In the detailed procedure of solving the robust HJB proposed in Appendix 8.2, it is clear that the impact of robustness

wears off if we assume that ϑt is constant.
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as a normalization factor that is introduced to convert the relative entropy (i.e., the distance between

the approximating model and the distorted model) to units of utility so that it is consistent with the

units of the expected future value function evaluated with the distorted model. It is worth noting

that adopting a slightly more general specification, ϑ (st) = −ϕϑ/J (st) where ϕ is a constant, does

not affect the main results of the paper. The reason is as follows. We can just define a new constant,

ϑ̃ = ϕϑ, and ϑ̃, rather than ϑ, will enter the decision rules. Using a given detection error probability,

we can easily calibrate the corresponding value of ϑ̃ that affects the optimal consumption-portfolio

rules.19

Since ϑ (st) > 0, the perturbation adds a negative drift term to the state transition equation

because Js > 0. Substituting for υ∗ in (10) gives:

sup
ct∈C

[
− 1

γ
exp (−γct)− δJ (st) + (rst − ct) Js +

1
2

σ2
s Jss −

1
2

ϑ (st) σ2
s J2

s

]
. (11)

2.3. The Robust Consumption Function and Precautionary Saving

Following the standard procedure, we can then solve (11) and obtain the consumption rule under

robustness. The following proposition summarizes the solution:

Proposition 1. Under robustness, the consumption function and the saving function are

c∗t = rst + Ψ− Γ, (12)

and

d∗t = ft + Γ−Ψ, (13)

respectively, where ft = ρ (yt − y) / (r + ρ) is the demand for savings “for a rainy day”, Ψ (r) = (δ− r) / (rγ)

captures the dissavings effect of relative impatience,

Γ ≡ 1
2

rγ̃σ2
s (14)

is the demand for precautionary savings due to the interaction of income uncertainty, risk aversion, and

uncertainty aversion, and γ̃ ≡ (1 + ϑ) γ is the effective coefficient of absolute risk aversion. Finally, the

worst possible distortion is

υ∗ = −rγϑ. (15)

Proof. See Appendix 8.2.

From (12), it is clear that robustness does not change the marginal propensity to consume out

19See Section 4.2 for the detailed procedure to calibrate the value of ϑ using the detection error probabilities.
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of permanent income (MPC), but affects the amount of precautionary savings (Γ). In other words,

in the continuous-time setting, consumption is less sensitive to unanticipated income shocks than

that predicted in the discrete-time robust LQG-PIH model of Hansen, Sargent, and Tallarini (1999)

(henceforth, HST). In HST (1999), the MPC increases with model uncertainty determined by the

interaction between RB and income uncertainty.20 It is worth noting that this univariate RB model

unique state variable s leads to the same consumption and saving functions as the corresponding

multivariate RB model in which the state variables are w and y. The intuition behind this result

is that the level of financial wealth w evolves deterministically over time, so that the evil agent

cannot influence it.21 Adopting the univariate setting here can significantly help solve the model

explicitly when we consider state uncertainty into the RB model.

Expression (14) shows that the precautionary savings demand is increasing with the degree

of robustness (ϑ) via increasing the value of γ̃ and interacting with the fundamental uncertainty:

labor income uncertainty (σ2
s ). An interesting question here is the relative importance of RB (ϑ) and

CARA (γ) in determining the precautionary savings demand, holding other parameters constant.

We can use the elasticities of precautionary saving as a measure of their importance. Specifically,

using (14), we have the following proposition:

Proposition 2. The relative sensitivity of precautionary saving to robustness (RB, ϑ) and CARA (γ) can

be measured by:

µγϑ ≡
eγ

eϑ
=

1 + ϑ

ϑ
> 1, (16)

where eϑ ≡ ∂Γ/Γ
∂ϑ/ϑ and eγ ≡ ∂Γ/Γ

∂γ/γ are the elasticities of the precautionary saving demand to RB and CARA,

respectively. (16) means that the precautionary savings demand is more sensitive to the coefficient of (abso-

lute) risk aversion measured by γ than RB measured by ϑ.

Proof. The proof is straightforward.

HST (1999) showed that the discount factor and the concern about robustness are observation-

ally equivalent in the sense that they lead to the same consumption and investment decisions in

a discrete-time LQG representative-agent permanent income model. The reason for this result is

that introducing a concern about robustness increases savings in the same way as increasing the

discount factor, so that the discount factor can be changed to offset the effect of a change in RB

on consumption and investment.22 In contrast, for our continuous-time CARA-Gaussian model

discussed above, we have a more general observational equivalence result between δ, γ, and ϑ:
20Consequently, consumption is more sensitive to unanticipated shocks. See HST (1999) for a detailed discussion on

how RB affects consumption and precautionary savings within the discrete-time LQG setting.
21The proof of the equivalence between the univaritae and multivariate RB models is available from the corresponding

author by request.
22As shown in HST (1999), the two models have different implications for asset prices because continuation valua-

tions would alter as one alters the values of the discount factor and the robustness parameter within the observational
equivalence set.
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Proposition 3. Let

γ f i = γ (1 + ϑ) ,

where γ f i is the coefficient of absolute risk aversion in the FI-RE model, consumption and savings are

identical in the FI-RE and RB models, holding other parameter values constant. Furthermore, let δ = r

in the RB model, and

δ f i = r− 1
2

ϑ (rγ)2 σ2
s ,

where δ f i is the discount rate in the FI-RE model, consumption and savings are identical in the FI-RE and

RB models, ceteris paribus.

Proof. Using (12) and (14), the proof is straightforward.

2.4. Comparison with the Constraint Specification and the Multiple-Priors Utility

Specification

Following HSTW (2006) and Hansen and Sargent (2007), we could use the following constraint

specification of the above RB problem:

sup
ct∈C

inf
υt

[
− 1

γ
exp (−γct)− δJ (st) +D J (st) + υ (st) σ2

s Js

]
, (17)

subject to
1
2
(υ (st) σs)

2 ≤ η, (18)

where η > 0 measures the consumer’s tolerance for model misspecification. It is clear from the

above constraint that the worst-case distortion is

υ∗ (st) = −
√

2η/σs < 0.

Substituting this expression into (11), we can easily solve for the consumption function. The fol-

lowing proposition summarizes the solution.

Proposition 4. Given η, the consumption function and the saving function are

c∗t = rst + Ψ− Γ, (19)

and

d∗t = ft + Γ−Ψ, (20)

respectively, where ft = ρ (yt − y) / (r + ρ) is the demand for savings “for a rainy day”, Ψ (r) = (δ− r) / (rγ)
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captures the dissavings effect of relative impatience,

Γ ≡
(

1
2

rγ +

√
2η

σs

)
σ2

s (21)

is the demand for precautionary savings due to the interaction of income uncertainty, risk aversion, and

uncertainty aversion.

Proof. See Appendix 8.3.

Comparing (14) with (21), it is clear that the multiplier and constraint formulations are obser-

vationally equivalent in the sense that they lead to the same consumption and saving functions

when the following restriction on ϑ and η is satisfied:

ϑ =
2
√

2η

rγσs
or η =

1
8
(rγϑσs)

2 . (22)

If (22) holds, the two robustness formulations lead to different levels of the worst-case distortion:

υ∗ is −2
√

2η/σs in the multiplier specification, whereas it is −
√

2η/σs in the constraint specifica-

tion. In contrast, if the same amount of distortion is perceived under the two robustness specifica-

tion, i.e., −rγϑ = −
√

2η/σs, the precautionary saving demand under the constraint specification

is greater than that under the multiplier specification. From (22), we can also see that if we keep

ϑ constant, η is “elastic” and will change accordingly when the stochastic properties of the income

process change. For example, if the value of σs is reduced due to a stabilization taxation policy, the

amount of model uncertainty (i.e., η) will be reduced.

As is well known, we can use either robust decision-making (Hansen and Sargent 2007) or re-

cursive multiple-prior utility (Gilboa and Schmeidler 1989 and Chen and Epstein 2002) due to am-

biguity aversion to capture the same idea that the decision maker is concerned about their model

is misspecified and thus considers a range of models when making decisions. In a continuous-time

setting, Chen and Epstein (2002) assume that under ambiguity, the agent’s beliefs are captured by

a set of probability measures equivalent to a reference probability measure. That is, the agent’s

belief can deviate from the reference probability measure within probability measures equivalent

to it. We view the model proposed in Section 2.1 which has the subjective probability measure as

the reference model. The reference model serves as a benchmark among all the candidate models

that an ambiguity-averse agent is willing to consider. However, the agent doubts that the ref-

erence model is the true model governing the economy. He then considers a constrained set of

alternative models that are sufficiently close to the reference model. Therefore, the basic idea of

the multiple-priors utility specification is the same as that of the Hansen-Sargent robust decision

making specification. It is straightforward to show that in our univariate setting, the robust control
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specifications (the multiplier and constraint specifications) and the multiple-priors utility specifi-

cation lead to the same consumption and saving functions.23 We can therefore conclude that the

two different modeling devices are observationally equivalent in the sense that they lead to the

same consumption-saving decisions as well as the general equilibrium outcome. For simplicity, in

the subsequent analysis, we focus on the robust control specification.

3. General Equilibrium Implications of RB

3.1. Definition of the General Equilibrium

As in Huggett (1993) and Wang (2003), we assume that the economy is populated by a contin-

uum of ex ante identical, but ex post heterogeneous agents, with each agent having the saving

function, (14). In addition, we also assume that the risk-free asset in our model economy is a pure-

consumption loan and is in zero net supply. It is worth noting that the key insights delivered in

this paper may be also obtained in a CARA-Gaussian production economy with incomplete mar-

kets considered in Angeletos and Calvet (2006) by introducing a neoclassical production function

and using capital and bond as the saving instruments. We consider the simpler Huggett-type en-

dowment economy for two reasons. First, in the endowment economy, we can directly compare

the model’s predictions on the dynamics of individual consumption and income with its empirical

counterpart, and do not need to infer the idiosyncratic productivity shock process. Second, the

endowment economy allows us to solve the models explicitly, and thus helps us identify distinct

channels via which RB interacts with risk aversion, discounting, and intertemporal substitution

and affects the consumption-saving behavior.

In the model economy, the initial cross-sectional distribution of income is assumed to be its

stationary distribution Φ (·). By the law of large numbers in Sun (2006), provided that the spaces

of agents and the probability space are constructed appropriately, aggregate income and the cross-

sectional distribution of permanent income Φ (·) are constant over time.

Proposition 5. The total savings demand “for a rainy day” in the precautionary savings model with RB

equals zero for any positive interest rate. That is, Ft (r) =
´

yt
ft (r) dΦ (yt) = 0, for r > 0.

Proof. Given that labor income is a stationary process, the LLN can be directly applied and the

proof is the same as that in Wang (2003).

This proposition states that the total savings “for a rainy day” is zero, at any positive interest

rate. Therefore, from (13), for r > 0, the expression for total savings under RB in the economy at

time t can be written as:

D (ϑ, r) ≡ Γ (ϑ, r)−Ψ (r) . (23)

23The proof is available from the corresponding author by request.
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We can now define the equilibrium in our model as follows:

Definition 1. Given (23), a general equilibrium under RB is defined by an interest rate r∗ satisfying:

D (ϑ, r∗) = 0. (24)

3.2. Theoretical Results

The following proposition shows the existence of the equilibrium and the PIH holds in the RB

general equilibrium:

Proposition 6. There exists at least one equilibrium interest rate r∗ ∈ (0, δ) in the precautionary-savings

model with RB; if δ < ρ the equilibrium interest rate is unique on (0, δ). In equilibrium, each consumer’s

optimal consumption is described by the PIH, in that

c∗t = r∗st. (25)

Furthermore, the evolution equations of wealth and consumption are

dw∗t = ftdt, (26)

dc∗t =
r∗

r∗ + ρ
σydBt, (27)

respectively, where ft = ρ (yt − y) / (r∗ + ρ). Finally, the relative volatility of consumption growth to

income growth is

µ ≡ sd (dc∗t )
sd (dyt)

=
r∗

r∗ + ρ
. (28)

Proof. If r > δ, both Γ (ϑ, r) and Ψ (r) in the expression for total savings D (ϑ, r∗) are positive,

which contradicts the equilibrium condition: D (ϑ, r∗) = 0. Since Γ (ϑ, r)− Ψ (r) < 0 (> 0) when

r = 0 (r = δ), the continuity of the expression for total savings implies that there exists at least one

interest rate r∗ ∈ (0, δ) such that D (ϑ, r∗) = 0. To prove this equilibrium is unique, note that

∂D (ϑ, r)
∂r

= (1 + ϑ) γ
σ2

(r + ρ)2

(
1
2
− r

r + ρ

)
+

δ

r2γ
.

Let r > 0; the derivative is positive if

ρ > r.

Therefore, if ρ > δ there is only one equilibrium in (0, δ). From Expression (12), we can obtain the

individual’s optimal consumption rule under RB in general equilibrium as c∗t = r∗st. Therefore,

there exists a unique equilibrium in this aggregate economy. Substituting (25) into (3) yields (26).

Using (4) and (25), we can obtain (27).
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The intuition behind this proposition is similar to that in Wang (2003). With an individual’s

constant total precautionary savings demand Γ (ϑ, r), for any r > 0, the equilibrium interest rate

r∗ must be at a level with the property that individual’s dissavings demand due to impatience

is exactly balanced by their total precautionary-savings demand, Γ (ϑ, r∗) = Ψ (r∗). Following

Caballero (1991) and Wang (2003, 2009), we set that γ = 1.5, σy = 0.309, and ρ = 0.128.24 Figure

1 shows that the aggregate saving function D (ϑ, r) is increasing with the interest rate for different

values of ϑ when δ = 0.03, and there exists a unique interest rate r∗ for every given ϑ such that

D (ϑ, r∗) = 0.25

Given (12), (14), and (24), it is clear that even though precautionary saving at the individual

level increases with the degree of concerns about model misspecifications, the level of aggregate

savings is equal to zero in the general equilibrium. That is, RB does not affect the level of aggregate

wealth in the economy. Figure 1 shows how RB (ϑ) affects the equilibrium interest rate (r∗). It

is clear from the figure that the stronger the preference for robustness, the less the equilibrium

interest rate. From (28), we can see that RB can affect the volatility of consumption by reducing

the equilibrium interest rate. The following proposition summarizes the results about how the

persistence coefficient of income affects the impact of RB on the relative volatility:

Proposition 7. Using (28), we have:

∂µ

∂ϑ
=

ρ

(r∗ + ρ)2
∂r∗

∂ϑ
< 0

because ρ > 0 and ∂r∗/∂ϑ < 0.

Proof. The proof is straightforward.

In the next section, we will fully explore how RB affects the equilibrium interest rate and the

equilibrium dynamics of consumption after estimating the income process and calibrating the RB

parameter ϑ.

4. Quantitative Analysis

In this section, we first describe how we estimate the income process and calibrate the robustness

parameter. We then present quantitative results on how RB affects the equilibrium interest rate

and relative volatility of consumption to income.

24In Section 4.1, we will provide more details about how to estimate the income process using the U.S. panel data.
The main result here is robust to the choices of these parameter values.

25We ignore negative interest rate equilibria because the resulting consumption function does not make economic
sense. It is easy to see that D has the same zeroes as a cubic function, so that there exist conditions under which the
equilibrium is globally unique, but these conditions are not amenable to analysis.
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4.1. Estimation of the Income Process

To implement the quantitative analysis, we need to first estimate the income process. That is, we

need to estimate ρ and σy in the income process specification (1). We use micro data from the Panel

Study of Income Dynamics (PSID). Following Blundell, Pistaferri, and Preston (2008), we define

the household income as total household income (including wage, financial, and transfer income

of head, wife, and all others in household) minus financial income (defined as the sum of annual

dividend income, interest income, rental income, trust fund income, and income from royalties for

the head of the household only) minus the tax liability of non-financial income. This tax liability is

defined as the total tax liability multiplied by the non-financial share of total income. Tax liabilities

after 1992 are not reported in the PSID and so we estimate them using the TAXSIM program from

the NBER. Details on sample selection are reported in Appendix 8.1.

Following Floden and Lindé (2001), we normalize household income measures as ratios of the

mean for that year. We then exclude all household values in years in which the income is less

than 10 percent of the mean for that year or more than ten times the mean. To eliminate possible

heteroskedasticity in the income measures, we follow Floden and Lindé (2001) to regress each on

a series of demographic variables to remove variation caused by differences in age and education.

We next subtract these fitted values from each measure to create a panel of income residuals. We

then use this panel to estimate the household income process as specified by an stationary AR(1)

process by running panel regressions on lagged income. Specifically, we specify the AR(1) process

with Gaussian innovations as follows:

yt = φ0 + φ1yt−1 + σεt, t ≥ 1, |φ1| < 1, (29)

where εt ∼ N (0, 1), φ0 = (1− φ1) y, y is the mean of yt, and the initial level of labor income y0

are given. Once we have estimates of φ1 and σ, we can recover the drift and diffusion coefficients

in the Ornstein-Uhlenbeck process specified in (1). This can be done by rewriting (29) in the time

interval of [t, t + ∆t]:26

yt+∆t = φ0 + φ1yt + σ
√

∆tεt+∆t, (30)

where φ0 = µ (1− exp (−ρ∆t)) / (ρ∆t), φ1 = exp (−ρ∆t), σ = σy
√
(1− exp (−2ρ∆t)) / (2ρ∆t),

and εt+∆t is the time-(t + ∆t) standard normal distributed innovation to income. The estimation

results are reported in Table 1.

4.2. Calibration of the Robustness Parameter

To fully explore how RB affects the dynamics of consumption and labor income, we adopt the

calibration procedure outlined in HSW (2002) and AHS (2003) to calibrate the value of the RB pa-

26Note that here we use the fact that ∆Bt = εt
√

∆t, where ∆Bt represents the increment of a Wiener process.
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rameter (ϑ) that governs the degree of robustness. Specifically, we calibrate ϑ by using the method

of detection error probabilities (DEP) that is based on a statistical theory of model selection. We

can then infer what values of ϑ imply reasonable fears of model misspecification for empirically-

plausible approximating models. The model detection error probability denoted by p is a measure

of how far the distorted model can deviate from the approximating model without being dis-

carded; low values for this probability mean that agents are unwilling to discard many models,

implying that the cloud of models surrounding the approximating model is large. In this case, it

is easier for the consumer to distinguish the two models. The value of p is determined by the fol-

lowing procedure. Let model P denote the approximating model, (4) and model Q be the distorted

model, (8). Define pP as

pP = Prob
(

ln
(

LQ

LP

)
> 0

∣∣∣∣ P
)

, (31)

where ln
(

LQ
LP

)
is the log-likelihood ratio. When model P generates the data, pP measures the

probability that a likelihood ratio test selects model Q. In this case, we call pP the probability of

the model detection error. Similarly, when model Q generates the data, we can define pQ as

pQ = Prob
(

ln
(

LP

LQ

)
> 0

∣∣∣∣Q
)

. (32)

Given initial priors of 0.5 on each model and the length of the sample is N, the detection error

probability, p, can be written as:

p (ϑ; N) =
1
2
(pP + pQ) , (33)

where ϑ is the robustness parameter used to generate model Q. Given this definition, we can see

that 1− p measures the probability that econometricians can distinguish the approximating model

from the distorted model.

The general idea of the calibration procedure is to find a value of ϑ such that p (ϑ; N) equals a

given value (for example, 20%) after simulating model P, (4), and model Q, (8).27 In the continuous-

time model with the iid Gaussian specification, p (ϑ; N) can be easily computed. Since both models

P and Q are arithmetic Brownian motions with constant drift and diffusion coefficients, the log-

likelihood ratios are Brownian motions and are normally distributed random variables. Specifi-

cally, the logarithm of the Radon-Nikodym derivative of the distorted model (Q) with respect to

the approximating model (P) can be written as

ln
(

LQ

LP

)
=

ˆ t

0
υdBs −

1
2

ˆ t

0
υ2ds, (34)

where

υ ≡ υ∗σs = −r∗ϑγσs. (35)

27The number of periods used in the calculation, N, is set to be 31, the actual length of the data (1980− 2010).
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Similarly, the logarithm of the Radon-Nikodym derivative of the approximating model (P) with

respect to the distorted model (Q) is

ln
(

LP

LQ

)
= −

ˆ t

0
υdBs +

1
2

ˆ t

0
υ2ds. (36)

Using (31)-(36), it is straightforward to derive p (ϑ; N):

p (ϑ; N) = Pr
(

x <
υ

2

√
N
)

, (37)

where x follows a standard normal distribution. From the expressions of υ, (35), and p (ϑ; N), (37),

it is clear that the value of p is decreasing with the value of ϑ. It is worth noting that under the ob-

servational equivalence condition between the multiplier and constraint robustness formulations,

(37) can be rewritten as: p (ϑ; N) = Pr
(

x < −
√

2η
√

N
)

, where η is the upper bound on the dis-

tance between the two models and measures the consumer’s tolerance for model misspecification.

We first explore the relationship between the DEP (p) and the value of the RB parameter, ϑ. A

general finding is a negative relationship between these two variables. The left panel of Figure 2

illustrates how DEP (p) varies with the value of ϑ for different values of CARA (γ).28 We can see

from the figure that the stronger the preference for robustness (higher ϑ), the less the DEP (p) is.

For example, let γ = 1.5, then p = 0.22 and r∗ = 2.79 percent when ϑ = 2.5, while p = 0.31 and

r∗ = 3.02 percent when ϑ = 1.5.29 Both values of p are reasonable as argued in AHS (2002), HSW

(2002), Maenhout (2004), and Hansen and Sargent (Chapter 9, 2007). In other words, a value of ϑ

between 1.5 and 2.5 is reasonable.30 Using (16), we have µγϑ = 1.4 and 1.67 when we set p = 0.22

and 0.31, respectively. That is, risk aversion is relatively more important than RB in determining

the precautionary savings demand given plausibly calibrated values of ϑ.

The right panel of Figure 2 illustrates how DEP (p) varies with ϑ for different values of σy when

γ equals 1.5.31 It also shows that the higher the value of ϑ, the less the DEP (p). In addition, to

calibrate the same value of p, less values of σy (i.e., more volatile labor income processes) leads to

higher values of ϑ.32 The intuition behind this result is that σs and ϑ have opposite effects on υ.

(It is clear from (35).) To keep the same value of p, if one parameter increases, the other one must

28Based on the estimation results, we set y = 1, σy = 0.309, and ρ = 0.128. It is worth noting that the implied
coefficient of relative risk aversion (CRRA) in our CARA utility specification can be written as: γc or γy. Given that
the value of the CRRA is very stable and υ can be expressed as rϑγσy/ (r + ρ), proportional changes in the mean and
standard deviation of y do not change our calibration results because their impacts on γ and σy are just cancelled out.
For example, if both y and σy are doubled, γ is reduced to half such that the product of γ and σy remains unchanged.

29Caballero (1990) and Wang (2009) also consider the γ = 2 case.
30As shown by Figure 2, when DEP declines, ϑ increases monotonically.
31Since σs = σy/ (r + ρ), both changes in the persistence coefficient (ρ) and changes in volatility coefficient

(
σy
)

will
change the value of σs.

32It is straightforward to show that a reduction in ρ has similar impacts on the calibrated value of ϑ as an increase in
σy.
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reduce to offset its effect on υ.

An important comment follows these calibration results. As emphasized in Hansen and Sar-

gent (2007), in the robustness model, p can be used to measure the amount of model uncertainty,

whereas ϑ is used to measure the degree of the agent’s preference for RB. If we keep p constant

when recalibrating ϑ for different values of γ, ρ, or σy, the amount of model uncertainty is held

constant, i.e., the set of distorted models with which we surround the approximating model does

not change. In contrast, if we keep ϑ constant, p will change accordingly when the values of γ, ρ,

or σy change. That is, the amount of model uncertainty is “elastic” and will change accordingly

when the fundamental factors change.

4.3. Effects of RB on the Equilibrium Interest Rate and Consumption Volatility

As shown in the theoretic results, the equilibrium interest rate and relative volatility of consump-

tion to income are jointly determined by the degree of robustness, the risk aversion, and the income

process. To better see how RB affects the equilibrium interest rate and the relative volatility, we

present two quantitative exercises here. The first exercise fixes the parameters of the income pro-

cess at the estimated values and allows the risk aversion parameter to change, while the second

exercise fixes risk aversion parameter and allows the key income process parameter to vary.

Figure 3 shows that the equilibrium interest rate and the equilibrium relative consumption

volatility decrease with the calibrated value of ϑ for different values of γ when σy = 0.309, and

ρ = 0.128. For example, when ϑ is increased from 1.5 to 2 (i.e., when p decreases from 0.313 to

0.223), r∗ is reduced from 3.02 percent to 2.79 percent, and µ is reduced from 0.191 to 0.179 when

γ = 1.5.33 In addition, the figure also shows that the interest rate and the relative volatility decrease

with γ for different values of ϑ.

Figure 4 shows that the equilibrium interest rate and the equilibrium relative consumption

volatility decrease with the value of ϑ for different values of σy when γ = 1.5 and ρ = 0.128. The

pattern of this figure is similar to that of Figure 3. In addition, the figure also shows that the interest

rate and the relative volatility decrease with σy for different values of ϑ. For example, when σy is

doubled from 0.2 to 0.4, r∗ is reduced from 3.48 percent to 2.66 percent and µ is reduced from 0.214

to 0.172 when γ = 1.5 and ϑ = 1.5.

To check if these values on relatively consumption volatility are reasonable, we constructed a

panel of household income and consumption.34 Figure 5 shows the relative volatility of consump-

tion, defined as the ratio of the standard deviation of the consumption change to the standard

deviation of the income change between 1980 and 2000.35 From the figure, the average empirical

33Note that in the FI-RE case, r∗ is 3 percentage and µ is 0.215.
34Appendix 8.1 presents details on how the panel is constructed.
35Please see Appendix 8.1 for more details on how the panel was constructed.
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value of the relative volatility (µ) is 0.209, and the minimum and maximum values of the empir-

ical relative volatility are 0.159 and 0.285, respectively. Comparing these results with Figures 3

and 4 shows that the relative volatility of consumption to income generated from our model, with

plausibly estimated and calibrated parameter values, are well in line with the empirical estimates.

4.4. The Welfare Cost of Model Uncertainty

We can also quantify the effects of RB on the welfare cost of volatility in the general equilibrium

using the Lucas elimination-of-risk method. (See Lucas 1987; Tallarini 2000).36 It is worth noting

that although we do not discuss the welfare costs of business cycles in our heterogeneous-agent

economy without aggregate uncertainty, we can still use the Lucas approach to explore the welfare

cost of model uncertainty due to RB.37 Specifically, following the literature, we define the total

welfare cost of volatility as the percentage of permanent income the consumer is ready to give up

at the initial period to be as well off in the FI-RE economy as he is in the RB economy:38

J̃ (s0 (1− ∆)) = J (s0) , (38)

where

J̃ (s0 (1− ∆)) = − 1
α̃1

exp (−α̃0 − α̃1s0 (1− ∆)) and J (s0) = −
1
α1

exp (−α0 − α1s0)

are the value functions under FI-RE and RB, respectively, ∆ is the compensating amount measured

by the percentage of s0, α1 = r∗γ, α̃1 = r̃∗γ, α0 = δ/r∗ − 1 − (1 + ϑ) r∗γ2σ2
s /2, α̃0 = δ/r̃∗ −

1 − r̃∗γ2σ̃2
s /2, and r∗ and r̃∗ are the equilibrium interest rates in the RB and FI-RE economies,

respectively.39 The following proposition summarizes the result about how RB affects the welfare

costs in general equilibrium:

Proposition 8. When the equilibrium condition, (24), holds, the welfare costs due to model uncertainty can

be written as:

∆ =
s0 (α̃1 − α1)− ln (α̃1/α1)

α̃1s0
=

(
1− r∗

r̃∗

)
− 1

r̃∗γs0
ln
(

r̃∗

r∗

)
, (39)

36Tallarini (2000) found that the welfare costs of aggregate fluctuations are non-trivial when the representative agent
has a recursive utility that breaks the link between risk aversion and intertemporal substitution. However, in Tallarini’s
model, high welfare costs also require the agent to have implausibly high levels of risk aversion. In contrast, Barillas,
Hansen, and Sargent (2009) showed that the high coefficients of risk aversion in Tallarini (2000) may not only reflect the
agent’s risk attitudes but also reflect his concerns about model misspecification. They found that market prices of model
uncertainty contain information about the benefits of removing model uncertainty, not the consumption fluctuations
that Lucas (1987) studied.

37Ellison and Sargent (2014) found that idiosyncratic consumption risk has a greater impact on the cost of business
cycles when they fear model misspecification. In addition, they showed that endowing agents with fears about mis-
specification leads to greater welfare costs caused by the exisiting idiosyncratic consumption risk.

38This approach is also used in Epaulard and Pommeret (2003) to examine the welfare cost of volatility in a
representative-agent model with recursive utility. In their model, the total welfare cost of volatility is defined as the
percentage of capital the representative agent is ready to give up at the initial period to be as well off in a certain
economy as he is in a stochastic one.

39See Appendix 8.2 for the derivation of the value functions. Note that ∆ = 0 when ϑ = 0.
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which implies that
∂∆
∂ϑ

=
∂∆
∂r∗

∂r∗

∂ϑ
> 0

because ∂r∗/∂ϑ < 0, and ∂∆/∂r∗ = −1/r̃∗ [1− 1/ (r∗γs0)] < 0 for plausible parameter values.

Proof. Substituting (24) into the expressions of α0 and α̃0 in the value functions under FI-RE and

RB, we obtain that α0 = α̃0 = 0. Combining these results with (38) yields (39).

To do quantitative welfare analysis, we need to know the initial level of s, s0. We assume that

s0 = E [s] and the ratio of the initial level of financial wealth (w0) to mean income (y0 ≡ E [yt])

is 5, that is, w0/y0 = 5.40 Given that y0 = 1, γ = 1.5, and ρ = 0.128, we can easily calculate

that s0 = w0 + y0/r.41 Figure 6 illustrates how the welfare cost of model uncertainty varies with

ϑ for different values of γ and σy.42 We can see from this figure that the welfare costs of model

uncertainty are nontrivial and increasing in γ and σy. The intuition behind this result is that higher

income uncertainty leads to higher the induced model uncertainty. For example, when γ = 1.5

and ϑ = 1.5, the welfare cost of model uncertainty ∆ is 5.37%. If ϑ increases from 1.5 to 2.5, ∆

increases from 5.37 percent to 13.64 percent. Furthermore, the figure also shows that an increase

income volatility can significantly increase the welfare cost of model uncertainty. For example,

when γ = 1.5, ϑ = 1.5, and income volatility
(
σy
)

is reduced from 0.4 to 0.2, ∆ decreases from 6.7

percent to 3.13 percent. In contrast, when ϑ = 2.5, ∆ decreases from 8.72 percent to 4.7 percent

when income volatility
(
σy
)

is reduced from 0.4 to 0.2. One policy implication stemming from this

finding is that macro policies aiming to reduce income volatility and inequality are more beneficial

in an economy in which consumers have more fear about model uncertainty.

5. Further Discussion on the Impact of RB on the Interest Rate

Our theoretical and quantitative results obtained in the previous sections have implications for

explaining the observed low real interest rate as well as the declines in the equilibrium real interest

rate (or the natural rate of interest) in the U.S. economy. We discuss them in this section.

5.1. The Observed Low Interest Rate

Our theoretical results show that a larger concern about model uncertainty lowers the equilibrium

real interest rate. In the U.S. the average real risk-free interest rate is about 1.15 percent between

1985 and 2014.43 The full-information model without RB requires the coefficient of risk aversion

40This number varies largely for different individuals, from 2 to 20. 5 is the average wealth/income ratio in the
Survey of Consumer Finances 2001. We find that changing the value of this ratio does not change our conclusion about
the welfare implication of RB.

41Note that here we use the definition of st: st = wt + yt/ (r + ρ) + ρy/ [r (r + ρ)].
42When generating the left and right panels of this figure, we set σy = 0.309 and γ = 1.5, respectively.
43Following Campbell (2003), we calculate the average of the real 3-month Treasury yields. The averages from the

beginning of 1985 to the end of 2014 are 0.88% using core CPI inflation and 1.37% using core PCE inflation. Therefore,
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parameter to be 10 to match this rate.44 This value of CRRA might be too high to be plausible for

ordinary consumers. In contrast, when consumers take into account model uncertainty, the model

can generate an equilibrium interest rate of 1.15 percent with much lower values of the coefficient

of risk aversion.45 Figure 7 shows the relationship between γ and ϑ for the given real interest rate

1.15 percent.46 For example, when γ = 5 and ϑ = 3, the RB model leads to the same interest rate

as in the FI model with γ = 10. Using the same calibration procedure discussed in Section 4.1, we

find that the corresponding DEP is p = 0.16. In other words, agents have 16 percent probability

that they cannot distinguish the distorted model from the approximating model. As argued in

Hansen and Sargent (2007) and in Section 4.2, this value seems reasonable in the literature. In

summary, incorporating model uncertainty due to RB can relax the restriction on CRRA imposed

by the model and thus has the potential to explain the low interest rate we observed in the U.S.

economy.

5.2. Declines in the Equilibrium Real Interest Rate in the U.S.

Recent studies on monetary policy suggest a possible decline in the U.S. equilibrium real interest

rate (Hamilton et al., 2015). In the monetary policy literature, this equilibrium real interest rate

is also called the natural rate of interest or the neutral rate of interest, which simply refers to the

equilibrium interest rate that is consistent with full employment and stable inflation.47 Within the

context of a New Keynesian Dynamic Stochastic General Equilibrium (DSGE) model, it is the equi-

librium rate when the economy has no wage and price rigidities and no shocks to wage markups,

price markups, or technology. This concept is important because it helps to determine the level

at which policymakers should set the interest rate to be given the current inflation and economic

conditions. In general, when the equilibrium interest rate is lower, policymakers should also lower

the nominal interest rate (i.e., the federal funds rate in the U.S.) to keep the economy to stay at or

move back to a full employment level with stable inflation (i.e., an inflation level of 2 percent in

the U.S.).

The equilibrium real interest rate is unobserved because the real economy consists of distor-

tions such as price and wage rigidities as mentioned above. However, many researchers have

depending on what inflation index is used, the risk-free rate is between 0.9 and 1.4. (In our following discussion, we
set the risk free rate to be 1.15 which is the average of the two real interest rates under CPI and PCE.) We choose this
period because it is more consistent with our sample period in estimating the income process. The average 3-month
real treasury yields over the 1949− 2014 period is 0.79% using headline CPI inflation. Notice that the core CPI inflation
became available only starting from 1958.

44Note that since we set the mean income level to be 1, the coefficient of relative risk aversion (CRRA) evaluated at
this level is equal to the coefficient of absolute risk aversion (CARA).

45This result is comparable to that obtained in Barillas, Hansen, and Sargent (2009). They found that most of the
observed high market price of uncertainty in the U.S. can be reinterpreted as a market price of model uncertainty rather
than the traditional market price of risk.

46The pattern is robust for different values of the equilibrium interest rate.
47In a Taylor rule (Taylor 1993, 1999), it is the r∗ in the rule: it = r∗ + πt + απ(πt − π∗) + αy(yt − y∗t ), where π∗ is the

inflation target and y∗ is potential output. Policymakers thus set the nominal interest rate (i) based on the equilibrium
real interest rate (r∗), inflation (π), inflation gap (πt − π∗), and output gap (yt − y∗t ).

20



applied statistical methods to estimate the equilibrium real interest rate and show it has been

lower , especially following the financial crisis (Laubach and Williams 2003, 2014 and Hamilton

et al., 2015). Figure 8 plots Laubach and Williams’ estimates. It clearly shows the equilibrium real

interest rate became significantly lower after the 2007− 09 financial crisis.48

Our results provide an explanation for a lower equilibrium interest rate by showing an increase

in model uncertainty (i.e., an increase in ϑ) could contribute to a decline in the equilibrium real in-

terest rate. First, the comparison between a model without model uncertainty (the FI-RE model)

with a model taking into account model uncertainty (the RB model) shows agents’ concern about

model misspecification will increase aggregate savings and thus drives down the equilibrium in-

terest rate. Second, within the RB framework, we show an increase in the degree of model uncer-

tainty will further reduce the equilibrium interest rate through increasing precautionary savings.

The explanation that agents have become more concerned about model misspecification after the

2007− 09 financial crisis is not unreasonable given the long and deep recession which generated

skepticism about whether the standard macro models can fully capture how the economy is work-

ing. Actually, as Figure 8 shows, most large declines in the equilibrium rate followed recessions,

which is consistent with the view that recessions may have caused people to be more distrustful

of their implicit model of the economy. To provide a numerical example, under our calibrated pa-

rameter values and when γ = 1.5, an increase in model uncertainty reflected by a reduction in the

DEP from p = 0.31 to p = 0.11 leads to a reduction in the equilibrium interest rate by about 0.5

percentage point.

It is worth noting that the explanation of a lower equilibrium real interest rate due to higher

savings is not new. Summers (2014) and Blanchard et al. (2014) also argue that increases in global

savings could be a reason for a lower equilibrium real interest rate in the U.S. and other advanced

economies. However, their explanations for higher savings usually rely on demographic trends

(such as an aging population) and capital flows from emerging economies to advanced economies,

while our explanation for increases in savings comes purely from agents’ concern about model

uncertainty. In addition, neither of these papers provides a structural model to quantify the effects,

while we explicitly solve a stochastic general equilibrium model to show both the channel and the

effect.

6. Stochastic Differential Utility under RB

In this section, we assume that consumers have stochastic differential utility (SDU, a continuous-

time version of recursive utility) and thus risk aversion and intertemporal substitution are sepa-

rated in their preferences. After solving the SDF model with RB explicitly, we discuss how the in-

48It worth noting that in a standard Taylor rule which prescribes the monetary policy, the equilibrium interest rate
is set to be a constant. In other words, a change in this equilibrium interest rate could be interpreted as a change in
fundamentals in the economy.
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teraction of intertemporal substitution, risk aversion, and robustness affects individual consump-

tion and savings decisions and the equilibrium interest rate.

6.1. SDU: Separation of Risk Aversion and Intertemporal Substitution

In the previous sections, we discussed how the interaction of risk aversion and robustness affects

the equilibrium interest rate, consumption volatility, and welfare costs of model uncertainty. How-

ever, given the time-separable utility setting, we cannot examine how intertemporal substitution

affects the equilibrium outcomes. In this section, following Duffie and Epstein (1992a), we consider

a stochastic differential utility (SDU) model with constant intertemporal elasticity of substitution

(CIES) and constant absolute risk aversion (CARA or exponential risk aversion).49 This recursive

utility (RU) specification can be viewed as a continuous-time version of the Weil (1993) model.

To obtain the consumption function and the value function under SDU, we start with a discrete-

time setting and then consider the continuous-time limit of the discrete-time specification. Specif-

ically, let ∆t be a small discrete change in time. The diffusion process, (4), can be approximated

as:

∆st ≈ (rst − ct)∆t + σs∆Bt, (40)

where ∆st is the change in st over the time interval ∆t, ∆Bt =
√

∆tε, and ε is a standard normal

distributed variable. The corresponding Bellman equation for the optimization problem under RU

can be written as:

J (st)
1−1/ε = max

ct∈C

{(
1− e−δ∆t

)
c1−1/ε

t + e−δ∆tCE1−1/ε
t

}
(41)

subject to (4), where ε is the intertemporal elasticity of substitution, δ is the discount rate, γ is the

coefficient of absolute risk aversion, and

CEt≡−
1
γ

ln (Et [exp (−γJ (st+∆t))])

denotes the certainty equivalent in terms of period-t consumption of the uncertain total utility in

the future periods.50 Furthermore, (41) can be reduced to

0 = max
ct

{
δc1−1/ε

t − δ J̃ (st) +

(
rst − ct −

1
2

γAσ2
s

)
J̃s (st)

}
,

49SDU was introduced by Duffie and Epstein (2002a) as a continuous-time analog of recursive utility. For the applica-
tions of SDU with CIES and constant relative risk aversion (CRRA) in portfolio choice and asset pricing, See Svensson
(1987), Duffie and Epstein (2002b), and Maenhout (2004).

50Kraft and Seifried (2014) provided a rigorous proof of the connection between the discrete-time RU specification and
the SDU specification. Specifically, they showed that in a general semimartingale framework and under the standard
assumption son the aggregator function, SDF is the continuous-time limit of RU.
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where J̃ (st) = J (st)
1−1/ε = [A (st + A0)]

1−1/ε, and A and A0 are undetermined coefficients.51 (See

Appendix 8.4 for the derivation.)

If the consumer trusts the model represented by (4), we can solve for the consumption function

and the corresponding value function as follows:

c∗t = [r + (δ− r) ε] (st + A0)

and J (st) = A (st + A0), where A =
[

r+(δ−r)ε
δε

]1/(1−ε)
and A0 = −γAσ2

s / (2r).52 Here we need to

impose that r + (δ− r) ε > 0 to guarantee the existence of an optimal plan. In addition, as in Weil

(1993), we also need to assume that the initial financial wealth level, w0, is sufficiently high and

the share of risky human wealth is sufficiently low in total wealth to guarantee that consumption

would not become negative in finite time with positive probability.

6.2. Consumption and Saving Rules under RB

To introduce robustness into the above recursive utility model, we follow the same procedure as

in the previous section and write the distorting model by adding an endogenous distortion υ (st)

to the law of motion of the state variable st, (4),

dst = (rst − ct) dt + σs (σsυ (st) dt + dBt) . (42)

The drift adjustment υ (st) is chosen to minimize the sum of the expected continuation payoff, but

adjusted to reflect the additional drift component in (42), and of an entropy penalty:

0 = sup
ct∈C

inf
υt

{
δc1−1/ε

t − δ J̃ (st) +

(
rst − ct −

1
2

Aασ2
s

)
J̃s (st) + σ2

s υt J̃s (st) +
1

2ϑt
σ2

s υ2
t

}
,

where J̃ (st) = [A (st + A0)]
1−1/ε and J̃s (st) = (1− 1/ε) A [A (st + A0)]

−1/ε. The following propo-

sition summarizes the solution to this RB problem:

Proposition 9. Given ϑ, the optimal consumption and saving functions under robustness are

c∗t = rst + Ψt − Γ, (43)

d∗t = ft −Ψt + Γ, (44)

51Note that here we use the fact that the log-exponenial operator can be simplified to:

ln (Et [exp (−γJ (st+dt))]) = −γAst − γA0 − γA (rst − ct) dt +
1
2

γ2 A2σ2
s dt.

52Note that when δ = r, i.e., the discount rate equals the interest rate, the intertemporal substittuion channel is shut
down and the consumption rule reduces to: c∗t = rst − rγσ2

s /2, which means that consumption is independent of
intertemporal substitution in this special case.
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respectively, where ft = ρ (yt − y) / (r + ρ) is the demand for savings “for a rainy day”,

Ψt ≡ (δ− r) εst (45)

captures the dissavings effect of relative impatience,

Γ ≡ 1
2

A
r
[r + (δ− r) ε] γ̃σ2

s (46)

is the precautionary savings demand, γ̃ ≡ γ + ϑ is the effective coefficient of absolute risk aversion, and

A =

[
r + (δ− r) ε

δε

]1/(1−ε)

. (47)

Proof. See Appendix 8.4.

When δ = r, A = r and this RU model is reduced to the benchmark model. The reason is

that when the interest rate equals the discount rate, the effect of EIS on consumption growth and

saving disappears. When δ 6= r, A is increasing in ε. (We can see this from the upper panel of

Figure 9.)53 From (43), (45), and (46), we can see that EIS affects both the MPC out of st and the

precautionary saving demand Γ when δ 6= r. Specifically, both MPC and the precautionary saving

demand increases with ε when δ > r. The lower panel of Figure 9 clearly shows that Γ is increasing

with ε. That is, the larger the elasticity of intertemporal substitution (i.e., the weaker the desire for

consumption smoothing), the stronger the precautionary saving demand. The reason behind this

result is clear from the following expression for expected consumption growth:

Et [dc∗t ]
dt

= [r + (δ− r) ε] [Γ− (δ− r) ε] , (48)

i.e., the precautionary saving demand leads to higher expected consumption growth. This result is

consistent with that obtained in the discrete-time partial equilibrium RU model proposed by Weil

(1993). It is worth noting that the OE between the discount factor and a concern about robustness

established in HST (1999) also no longer holds in this RU model. It is clear from (43) to (46) that δ

affect the MPC, r + (δ− r) ε, whereas ϑ does not appear in the MPC.

The saving function, (44), can be decomposed as follows:

d∗t = ft −Ψ1,t −Ψ2 + Γ, (49)

53Empirical studies using aggregate data usually find the EIS to be close to zero, whereas calibrated RBC models
usually require it to be close to one. For example, Hall (1988) found in the expected utility setting that the value of ε is
close to 0.1. Guvenen (2006) allowed heterogeneity and estimated that the true value of ε is 0.47 in an economy with
both stockholders who have high EIS and non-stockholders who have low EIS. Although theoretically we cannot rule
out the ε > 1 case, we follow the literature and assume that ε ≤ 1 in this paper.
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where

Ψ1,t ≡ (δ− r) ε (st − s) and Ψ2 ≡ (δ− r) εs.

The term, Ψt = Ψ1,t + Ψ2,t, captures the dissaving effect due to relative impatience, which is affine

in the value of total source, the sum of financial wealth and human wealth. Furthermore, Ψ1,t is

a mean reverting process and Ψ2 is a constant term. It is worth noting that this part of saving

measures consumers’ intertemporal consumption smoothing motive, and is independent of the

degree of risk aversion and labor income uncertainty. Unlike the benchmark model with the time-

additive utility, in the RU case the Ψt term increases with the value of total wealth (st) when the

consumers are relatively more impatient, i.e., δ > r. This result is consistent with that obtained

in Wang (2006) in which the dissaving effect is generated by the endogenous discount factor. In

addition, the Ψt term can also capture the intuition that richer consumers are more impatient and

thus dissave more in the long run used to model the endogenous discount factor.

6.3. General Equilibrium Implications

Using the individual saving function (49) and following the same aggregation procedure used in

the previous sections, we have the following result on the total saving demand:

Proposition 10. Both the total demand of savings “for a rainy day” and the total demand for the estimation-

risk-induced savings in the RB model with IC equal zero for any positive interest rate. That is, Ft (r) =´
yt

ft (r) dΦ (yt) = 0 and Ht (r) =
´

st
Ψ1,tdΦs (st) = 0, for r > 0.

Proof. The proof uses the LLN and is the same as that in Wang (2003).

This proposition states that the total savings “for a rainy day” is zero, at any positive interest

rate. Therefore, from (49), after aggregating across all consumers, the expression for total savings

in this RU model can be written as:

D (r) ≡ Γ (r)−Ψ2 (r) , (50)

where the first term measures the amount of precautionary savings due to risk aversion and un-

certainty aversion, and the second term captures the steady state dissavings effects of impatience.

As in the benchmark model, we define the equilibrium in our model as: D (r∗) = 0. The following

proposition shows the existence of the equilibrium and the PIH holds in the general equilibrium:

Proposition 11. There exists at least one equilibrium with an interest rate r∗ ∈ (0, δ) in the RB model with

IC. In any such equilibrium, each consumer’s optimal consumption is described by the PIH, in that

c∗t = [r∗ + (δ− r∗) ε] st − (δ− r∗) εs. (51)
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Furthermore, in this equilibrium, the evolution equations of wealth and consumption are

dw∗t = ( ft −Ψ1,t) dt, (52)

dc∗t = [r∗ + (δ− r∗) ε] dst, (53)

respectively. Finally, the relative volatility of consumption growth to income growth is

µ ≡ sd (dc∗t )
sd (dyt)

=
r∗ + (δ− r∗) ε

r∗ + ρ
. (54)

Proof. If r > δ, D (ϑ, r∗) > 0 because Γ > 0 and Ψ2 < 0, which contradicts the equilibrium

condition: D (ϑ, r∗) = 0. When r = δ, it is straightforward to show that Γ > 0 and Ψ2 = 0, which

implies that Since Γ− Ψ2 > 0. When r converges to 0, Ψ2 > 0 and Γ converges to 0 because the

value of A/r converges to 1, which implies that Γ− Ψ2 < 0. The continuity of the expression for

total savings thus implies that there exists at least one interest rate r∗ ∈ (0, δ) such that D (r∗) =

Γ−Ψ2 = 0.

We can establish that uniqueness obtains on (0, δ) under a restriction that households are suffi-

ciently close to expected utility.

Proposition 12. The equilibrium is unique if ε > 0 is small enough.

Proof. We have
∂D (ϑ, r)

∂r
> 0

if

(2ε− 1) r2 + (ρ− 3δε) r− δερ > 0.

There are no real roots of this quadratic if the discriminant is negative:

∆ = (ρ− 3δε)2 + 4 (2ε− 1) δερ.

A necessary condition for ∆ < 0 is 0 < ε < 1
2 ; thus, necessary conditions for uniqueness are

ε <
1
2

(2ε− 1) r2 + (ρ− 3δε) r− δερ > 0.

At ε = 0 the second condition reduces to

ρ > r,

which holds as before if ρ > δ. By continuity these conditions continue to be satisfied for ε close

enough to zero, so that D is monotonic on (0, δ).
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Following the same calibration procedure adopted in Section 4.2, we can easily calibrate the

value of ϑ using the DEP. Specifically, given that υ∗ = −ϑA, the DEP for this RU case, p (ϑ; N), can

be expressed as:

p (ϑ; N) = Pr
(

x <
υ

2

√
N
)

, (55)

where υ ≡ υ∗σs = −ϑAσs. Since A increases with ε, (55) clearly shows that p decreases with ε for

given values of ϑ. For example, when ϑ = 1.5 and γ = 1.5, p decreases from p = 0.438 to 0.414

when ε increases from 0.1 to 0.4. That is, EIS does not have significant impacts on the amount of

model uncertainty facing the consumer if we fix ϑ and allow for elastic model uncertainty. This

result is not surprising because ε does not influence A significantly (we can see this from Figure 9).

Figure 10 shows that the aggregate saving function D (r) is increasing with the interest rate, and

there exists a unique interest rate r∗ for different values of ε such that D (r∗) = 0.54 From this figure,

it is clear that that the equilibrium interest rate (r∗) increases with ε. That is, the larger the elasticity

of intertemporal substitution, the larger the equilibrium interest rate. Comparing it with the result

about the impact of EIS on the precautionary saving we obtained when r is given, it is clear that

the intertemporal consumption smoothing motive measured by Ψ2 dominates the precautionary

saving motive in general equilibrium in the sense that an increase in ε has the potential to drive up

the interest rate. Furthermore, the impact of ε on r∗ is significant. For example, r∗ increases from

1.27 percent to 1.88 percent as ε increases from 0.1 to 0.4. In addition, the impact of ε on µ is also

significant. For example, µ increases from 0.1 to 0.145 as ε increases from 0.1 to 0.4.

7. Conclusions

This paper has developed a tractable continuous-time CARA-Gaussian framework to explore how

model uncertainty due to robustness affects the interest rate and the dynamics of consumption and

wealth in a general equilibrium heterogenous-agent economy. Using the explicit consumption-

saving rules, we explored the relative importance of robustness and risk aversion in determining

precautionary savings. Furthermore, we evaluated the quantitative effects of model uncertainty

measured by the interaction of labor income uncertainty and calibrated values of the RB parameter

on the general equilibrium interest rate, consumption volatility, and the welfare costs of model

uncertainty. Finally, we studied how RB interacts with stochastic differential utility and affect the

equilibrium interest rate and consumption volatility.

54As in the benchmark mode, here we also set that γ = 2 and ϑ = 1.5
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8. Appendix

8.1. Description of Data

This appendix describes the data we use to estimate the income process as well as the method we

use to construct a panel of both household income and consumption for our empirical analysis.

We use micro data from the Panel Study of Income Dynamics (PSID). Our household sample

selection closely follows that of Blundell et al. (2008) as well.55 We exclude households in the PSID

low-income and Latino samples. We exclude household incomes in years of family composition

change, divorce or remarriage, and female headship. We also exclude incomes in years where

the head or wife is under 30 or over 65, or is missing education, region, or income responses.

We also exclude household incomes where non-financial income is less than $1000, where year-

over-year income change is greater than $90, 000, and where year-over-year consumption change

is greater than $50, 000. Our final panel contains 7, 220 unique households with 54, 901 yearly

income responses and 50, 422 imputed nondurable consumption values.56

The PSID does not include enough consumption expenditure data to create full picture of

household nondurable consumption. Such detailed expenditures are found, though, in the Con-

sumer Expenditure Survey (CEX) from the Bureau of Labor Statistics. But households in this study

are only interviewed for four consecutive quarters and thus do not form a panel. To create a panel

of consumption to match the PSID income measures, we use an estimated demand function for

imputing nondurable consumption created by Guvenen and Smith (2014). Using an IV regression,

they estimate a demand function for nondurable consumption that fits the detailed data in the

CEX. The demand function uses demographic information and food consumption which can be

found in both the CEX and PSID. Thus, we use this demand function of food consumption and

demographic information (including age, family size, inflation measures, race, and education) to

estimate nondurable consumption for PSID households, creating a consumption panel.

In order to estimate the income process, we narrow the sample period to the years 1980− 1996,

due to the PSID survey changing to a biennial schedule after 1996. To further restrict the sample to

exclude households with dramatic year-over-year income and consumption changes, we eliminate

household observations in years where either income or consumption has increased more than 200

percent or decreased more than 80 percent from the previous year.

55They create a new panel series of consumption that combines information from PSID and CEX, focusing on the
period when some of the largest changes in income inequality occurred.

56There are more household incomes than imputed consumption values because food consumption - the main input
variable in Guvenen and Smith’s nondurable demand function - is not reported in the PSID for the years 1987 and 1988.
Dividing the total income responses by unique households yields an average of 7− 8 years of responses per household.
These years are not necessarily consecutive as our sample selection procedure allows households to be excluded in
certain years but return to the sample if they later meet the criteria once again.

28



8.2. Solving the Benchmark RB Model

The Bellman equation associated with the optimization problem is

J (st) = sup
ct

[
− 1

γ
exp (−γct) + exp (−δdt) J (st+dt)

]
,

subject to (8), where J (st) is the value function. The Hamilton-Jacobi-Bellman (HJB) equation for

this problem is then

0 = sup
ct

[
− 1

γ
exp (−γct)− δJ (st) +D J (st)

]
,

where D J (st) = Js (rst − ct) +
1
2 Jssσ

2
s . Under RB, the HJB can be written as

sup
ct

inf
υt

[
− 1

γ
exp (−γct)− δJ (st) +D J (st) + υ (st) σ2

s Js +
1

2ϑ (st)
υ2 (st) σ2

s

]
subject to the distorting equation, (8). Solving first for the infimization part of the problem yields

υ∗ (st) = −ϑ (st) Js.

Given that ϑ (st) > 0, the perturbation adds a negative drift term to the state transition equation

because Js > 0. Substituting for υ∗ in the robust HJB equation gives:

sup
ct

[
− 1

γ
exp (−γct)− δJ (st) + (rst − ct) Js +

1
2

σ2
s Jss −

1
2

ϑ (st) σ2
s J2

s

]
. (56)

Performing the indicated optimization yields the first-order condition for ct:

ct = −
1
γ

ln (Js) . (57)

Substituting (57) back into (56) to arrive at the partial differential equation (PDE):

0 = − Js

γ
− δJ +

(
rst +

1
γ

ln (Js)

)
Js +

1
2
(

Jss − ϑt J2
s
)

σ2
s . (58)

Conjecture that the value function is of the form

J (st) = −
1
α1

exp (−α0 − α1st) ,

where α0 and α1 are constants to be determined. Using this conjecture, we obtain that Js =

exp (−α0 − α1st) > 0 and Jss = −α1 exp (−α0 − α1st) < 0, and guess that

ϑ (st) = −
ϑ

J (st)
=

α1ϑ

exp (−α0 − α1st)
> 0.
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(58) can thus be reduced to

−δ
1
α1

= − 1
γ
+

[
rst −

(
α0

γ
+

α1

γ
st

)]
− 1

2
α1 (1 + ϑ) σ2

s .

Collecting terms, the undetermined coefficients in the value function turn out to be

α1 = rγ and α0 =
δ

r
− 1− 1

2
(1 + ϑ) rγ2σ2

s .

Substituting them back into the first-order condition (57) yields the consumption function, (12), in

the main text.

Finally, we check if the consumer’s transversality condition (TVC),

lim
t→∞

E [exp (−δt) |J (st)|] = 0, (59)

is satisfied. Substituting the consumption function, c∗t , into the state transition equation for st

yields:

dst = Adt + σdBt,

where A = − δ−r
rγ + 1

2 rγ̃σ2
s under the approximating model. This Brownian motion with drift can

be rewritten as:

st = s0 + At + σ (Bt − B0) , (60)

where Bt − B0 ∼ N (0, t). Substituting (60) into E [exp (−δt) |J (st)|] yields:

E [exp (−δt) |J (st)|] =
1
α1

E [exp (−δt− α0 − α1st)]

=
1
α1

exp
(

E [−δ− α0 − α1st] +
1
2

var (α1st)

)
=

1
α1

exp
(
−δt− α0 − α1 (s0 + At) +

1
2

α2
1σ2t

)
= |J (s0) | exp

(
−
(

δ + α1A− 1
2

α2
1σ2
)

t
)

where |J (s0) | = 1
α1

exp (−α0 − α1s0) is a positive constant and we use the facts that st − s0 ∼
N
(

At, σ2t
)
. Therefore, the TVC, (59), is satisfied if and only if the following condition holds:

δ + α1A− 1
2

α2
1σ2 = r +

1
2
(rγ)2 ϑσ2

s > 0.

Given the parameter values we consider in the text, it is obvious that the TVC is always satisfied

in both the FI-RE and RB models. It is straightforward to show that the TVC still holds under the

distorted model in which A = − δ−r
rγ + 1

2 rγ̃σ2
s − rγϑσ2

s for plausible values of ϑ.

30



8.3. Solving the Constraint Version of the RB Model

Substituting for υ∗ = −
√

2η/σs in the robust HJB equation gives:

sup
ct

[
− 1

γ
exp (−γct)− δJ (st) +

(
rst − ct −

√
2ησs

)
Js +

1
2

σ2
s Jss

]
. (61)

Performing the indicated optimization yields the first-order condition for ct:

ct = −
1
γ

ln (Js) . (62)

Substituting (62) back into (61) to arrive at the partial differential equation (PDE):

0 = − Js

γ
− δJ +

(
rst +

1
γ

ln (Js)−
√

2ησs

)
Js +

1
2

σ2
s Jss. (63)

Conjecture that the value function is of the form

J (st) = −
1
α1

exp (−α0 − α1st) ,

where α0 and α1 are constants to be determined. Using this conjecture, (63) can thus be reduced to

−δ
1
α1

= − 1
γ
+

[
rst −

(
α0

γ
+

α1

γ
st

)
−
√

2ησs

]
− 1

2
α1σ2

s .

Collecting terms, the undetermined coefficients in the value function turn out to be

α1 = rγ and α0 =
δ

r
− 1−

(
1
2

rγ +

√
2η

σs

)
γσ2

s .

Substituting them back into the first-order condition (62) yields the consumption function, (19), in

the main text.

8.4. Solving the RB Model with Recursive Utility

We first guess that the value function is J (st) = Ast + A0. The value function at t time t + ∆t can

thus be written as J (st+∆t) = Ast+∆t + A0 and the change in the value function is

∆J ≡ J (st+∆t)− J (st) = A∆st ≈ A (rst − ct)∆t + Aσs∆Bt,
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where ∆st ≡ st+∆t − st. Furthermore,

Et [exp (−γJ (st+∆t))] = Et [exp (−γAst − γA0 − γA (rst − ct)∆t− γAσs∆Bt)]

= exp (−γAst − γA0) exp (−γA (rst − ct)∆t) exp
(

1
2

γ2A2σ2
s ∆t
)

,

where we use the fact that ∆Bt =
√

∆tε and ε is a standard normal distributed variable. We can

therefore obtain:

− 1
γ

ln (Et [exp (−γJ (st+∆t))]) = Ast + A0 + A (rst − ct)∆t− 1
2

γA2σ2
s ∆t.

Substituting this expression back into the Bellman equation yields:

J (st)
1−1/ε = sup

ct

{(
1− e−δ∆t

)
c1−1/ε

t + e−δ∆t
[

J (st) + A (rst − ct)∆t− 1
2

γA2σ2
s ∆t
]1−1/ε

}
.

Dividing both sides of this equation by J (st)
1−1/ε and guessing that ct = ϕJ (st) yields

0 = sup
ct

{
δϕ1−1/ε∆t +

(
1− 1

ε

)
A (rst − ct)− 0.5γA2σ2

s
J (st)

∆t− δ∆t
}

Dividing it by yields and allowing ∆t→ 0:

0 = sup
ϕ

{
δϕ1−1/ε +

(
1− 1

ε

)
(−Aϕ + r)− δ

}

The FOC is

ϕ =

(
A
δ

)−ε

.

Substituting it back into the HJB equation yields:

A = δ

[
r + ε (δ− r)

δ

]1/(1−ε)

Under RB, the HJB can be written as:

0 = sup
ct

inf
υt

{
δc1−1/ε

t − δ J̃ (st) +

(
rst − ct −

1
2

Aγσ2
s

)
J̃s (st) + σ2

s υt J̃s (st) +
1

2ϑt
σ2

s υ2
t

}
,

where J̃ (st) = [A (st + A0)]
1−1/ε and J̃s (st) = (1− 1/ε) A [A (st + A0)]

−1/ε. In addition, we as-

sume that ϑt = −ϑA/ J̃s to guarantee the homothecity of the RB problem. Solving first for the
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infimization part of the problem yields

υ∗t = −ϑt J̃s = ϑA.

Substituting υ∗t back into the above robust HJB equation and following the same procedure above,

we obtain:

A =

[
r + (δ− r) ε

δε

]1/(1−ε)

and A0 = −1
2

A
r
(γ + ϑ) σ2

s .
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Figure 1. Effects of RB on Aggregate Savings
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Figure 3. Effects of RB on the Interest Rate and Consumption Volatility
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Table 1. Estimation and Calibration Results

Parameter Values
Discrete specification, eq. (29)
constant φ0 0.0006
persistence φ1 0.88
std. of shock σ 0.29
Continuous-time specification, eq. (1)
persistence ρ 0.128
std. of income changes σy 0.309
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