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A Additional Details Concerning Empirical Evidence

A.1 Data Construction and Estimation

This section provides additional details on the data construction and estimation procedure

for the empirical evidence from Section 2 of the main text. We estimate our baseline VAR

using data on the VXO, GDP, consumption, investment, hours worked, the GDP deflator,

the M2 money stock, and the Wu and Xia (2014) shadow rate. To match the concept in

the model, we measure consumption in the data as the sum of non-durable and services

consumption. Then, we use the sum of consumer durables and private fixed investment as

a measure of investment in our baseline empirical model. To match the quarterly frequency

of the macroeconomic data, we average a weekly VXO series for each quarter. Thus, our

measure of uncertainty captures the average implied stock market volatility within a quarter.

We convert output, consumption, investment, and hours work to per-capita terms by divid-

ing by population. Except for the shadow rate, all other variables enter the VAR in log levels.

We include four lags in the estimation of the VAR and generate our confidence intervals

using the Bayesian method outlined in Sims and Zha (1999).1 Figure A.1 plots the VXO

over time as well as the series of identified, structural uncertainty shocks from the VAR. The

empirical model identifies large uncertainty shocks after the 1987 stock market crash, the

failure of Lehman brothers, and the euro area sovereign debt crisis.

To generate the unconditional moments in Table 2 of the main text, we detrend the log

of each empirical data series using the HP filter with a smoothing parameter of 1600. We

measure the unconditional volatility using the sample standard deviation of the detrended

variable. We compute the empirical moments over the 1986 - 2014 sample period, which

is the same time frame used in our empirical VAR. In Appendix Section D.3, we provide

further analysis of the unconditional moments predicted by the model.

We estimate stochastic volatility using a simple model-free and non-parametric method

based on rolling sample standard deviations. Given an empirical data series, we estimate a

rolling 5-year standard deviation. This procedure provides a time-series of realized volatility

estimates for the given data series. Then, we compute the standard deviation of this time-

series of estimates. This simple measure provides an estimate of the stochastic volatility in

the data series. If the actual data were homoskedastic, the estimates of the 5-year rolling

1We are grateful to A. Lee Smith for many helpful discussions and for sharing his code for computing the

Sims and Zha (1999) confidence intervals.
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standard deviations should show little volatility and the resulting statistic would be near

zero.

A.2 Robustness of Macroeconomic Comovement

We argue that macroeconomic comovement between output, consumption, investment, and

hours worked is a key stylized fact after an identified uncertainty shock. In this section, we

show that our key empirical result is robust along several dimensions.

We now re-estimate our baseline specification but include the Standard & Poor’s 500

Stock Price Index in the VAR. Many other studies, such as Bloom (2009), commonly include

stock prices in their empirical specifications. According to our theoretical model, first- and

second-moment shocks both affect equity prices at impact, but only second-moment shocks

affect the expected volatility of equity returns. To be consistent with our model, we keep the

VXO ordered first, followed by stock prices and the other macroeconomic variables. This or-

dering allows both uncertainty and non-uncertainty shocks to affect stock prices at impact.

Consistent with our model, Figure A.2 shows that stock prices decline after an identified

uncertainty shock. Including stock prices in the VAR produces a slightly larger decline in

investment, but overall, the results are very similar to our baseline specification.

In our baseline specification, we use the VXO as our measure of uncertainty, which mea-

sures the expected volatility of the Standard & Poor’s 100 Stock Price Index. However, the

VIX, which is the implied volatility on the Standard & Poor’s 500 Stock Price Index, is

a more well-known measure of expected stock market volatility. We use the VXO in our

baseline model because it is available beginning in 1986, whereas the VIX is only available

beginning in 1990. Figure A.3 re-estimates our baseline model using the VIX, rather than

the VXO. While the confidence intervals for some variables are slightly larger (owing to

the shorter data sample), we continue to observe macroeconomic comovment following an

uncertainty shock in the data.

In our main empirical model, we treated consumer durables as a form of investment. If

we instead use the standard National Income and Product Accounts definitions of consump-

tion and investment, Figure A.4 shows a larger impact effect on consumption with a slight

over-shoot after three years. The response of investment, however, remains similar to our

baseline results.
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Our baseline results are also robust to using higher frequency estimation. In our base-

line model, we aggregate a weekly VXO series to quarterly frequency. However, the VXO

reflects the expected S&P 100 volatility over the next 30 days, not over the next quarter. To

ensure our results are robust to this aggregation strategy, we estimate a version of our em-

pirical model using monthly frequency data on the VXO, output, non-durable plus services

consumption, durable consumption, hours worked, the personal consumption expenditure

price index, the M2 money stock, and the shadow rate. To construct a monthly GDP se-

ries, we splice together monthly GDP from Macroeconomic Advisers beginning in 1992 with

Stock and Watson’s (2010) monthly GDP estimates from the NBER Business Cycle Dat-

ing committee website.2 Figure A.4 shows that our results are nearly unchanged if we use

this higher frequency data. However, data on investment are not available at a monthly

frequency. Therefore, we rely on the aggregated quarterly data for our baseline empirical

results.

In addition, we compute the impulse response to an uncertainty shock with the VXO

ordered last in our structural VAR. Figure A.4 also shows our main stylized fact regarding

macroeconomic comovement remains under this alternative identification scheme, which al-

lows contemporaneous macroeconomic events to affect the level of uncertainty. While this

ordering is not consistent with our theoretical model, it shows that our baseline identifica-

tion scheme alone is not crucial for our main result. We compute this robustness check using

monthly data, to match the interpretation of the VXO as closely as possible. However, the

results with quarterly data produce similar findings.

Figure A.3 contains three additional specifications, which examine alternative assump-

tions about monetary policy. As we discuss in the main text, the Federal Reserve hit the

zero lower bound on nominal interest rates at the end of 2008. While we model this outcome

rigorously using our theoretical model, it is less clear how to model the stance of monetary

policy during our 1986-2014 sample period econometrically. In our baseline VAR results, we

used the Wu and Xia (2014) shadow rate as our indicator of monetary policy. Away from

the zero lower bound, this series equals the federal funds rate. But at the zero lower bound,

the shadow rate uses information from the entire yield curve to summarize the stance of

monetary policy. However, this modeling choice is clearly not the only reasonable one.

2Since 2010, the Bureau of Economic Analysis now includes intellectual property as a form of investment.

Thus, we splice the two series together using the growth rates from the Stock and Watson estimates to fix

issues with the actual level of the data series.
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As an alternative, we can use the 5-year Treasury rate as a control for monetary policy.

Since hitting the zero lower bound, the Federal Reserve used a variety of large-scale asset

purchases and forward guidance to help stabilize the economy. Longer-term Treasury rates

reflect the effects of these unconventional policies. An alternative modeling assumption is to

use the federal funds rate but end the sample period before the zero lower bound binds for

too long. Figure A.5 shows that either of these alternative assumptions actually produces

responses that are larger than our baseline model. A different modeling assumption is to

remove the post-2008 period altogether. If we use the 1962Q3-2008Q2 sample of Bloom

(2009) with the federal funds rate as the measure of monetary policy, our stylized fact

remains: Higher uncertainty generates declines in output, consumption, investment and

hours worked.3

B Model

This section provides a detailed derivation and discussion of the baseline dynamic, stochastic

general-equilibrium model that we use in our analysis of uncertainty shocks. The baseline

model shares many features of the models of Ireland (2003), Ireland (2011), and Jermann

(1998). The model features optimizing households and firms and a central bank that follows

a Taylor rule to stabilize inflation and offset adverse shocks. We allow for sticky prices

using the quadratic-adjustment costs specification of Rotemberg (1982). Our baseline model

considers technology and household discount rate shocks. The discount rate shocks have a

time-varying second moment, which we interpret as the degree of uncertainty about future

demand.

B.1 Households

In our model, the representative household maximizes lifetime utility given Epstein-Zin pref-

erences over streams of consumption Ct and leisure 1 − Nt. The key parameters governing

household decisions are its risk aversion σ over the consumption-leisure basket and its in-

tertemporal elasticity of substitution ψ. The parameter θV , (1− σ) (1− 1/ψ)−1 controls

the household’s preference for the resolution of uncertainty. The household receives labor

income Wt for each unit of labor Nt supplied to the representative intermediate goods-

producing firm. The representative household also owns the intermediate goods firm and

3Since the VXO is first measured in 1986, we use the spliced volatility series constructed by Bloom (2009).

This series splices together predicted volatility from a time-series model in the pre-1986 period with the ex

ante VXO measure of implied volatility after 1986.
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holds equity shares St and one-period riskless bonds Bt issued by representative intermediate

goods firm. Equity shares have a price of PE
t and pay dividends DE

t for each share St owned.

The riskless bonds return the gross one-period risk-free interest rate RR
t . The household di-

vides its income from labor and its financial assets between consumption Ct and holdings of

financial assets St+1 and Bt+1 to carry into next period. The discount rate of the household

β is subject to shocks via the stochastic process at.

The representative household maximizes lifetime utility by choosing Ct+s, Nt+s, Bt+s+1,

and St+s+1 for all s = 0, 1, 2, . . . by solving the following problem:

Vt = max
[
at
(
Cη
t (1−Nt)

1−η) 1−σ
θV + β

(
EtV 1−σ

t+1

) 1
θV

] θV
1−σ

subject to its intertemporal household budget constraint each period,

Ct +
PE
t

Pt
St+1 +

1

RR
t

Bt+1 ≤
Wt

Pt
Nt +

(
DE
t

Pt
+
PE
t

Pt

)
St +Bt.

Using a Lagrangian approach, household optimization implies the following first-order

conditions:
∂Vt
∂Ct

= λt (1)

∂Vt
∂Nt

= λt
Wt

Pt
(2)

PE
t

Pt
= Et

{(
λt+1

λt

)(
DE
t+1

Pt+1

+
PE
t+1

Pt+1

)}
(3)

1 = RR
t Et

{(
λt+1

λt

)}
(4)

where λt denotes the Lagrange multiplier on the household budget constraint. Epstein-Zin

preferences imply the following relationships:

∂Vt
∂Ct

= atV
1− 1−σ

θV
t η

(Cη
t (1−Nt)

1−η)
1−σ
θV

Ct

∂Vt+1

∂Ct+1

= at+1V
1− 1−σ

θV
t+1 η

(
Cη
t+1(1−Nt+1)

1−η) 1−σ
θV

Ct+1

∂Vt
∂Ct+1

= βV
1− 1−σ

θV
t

(
EtV 1−σ

t+1

) 1
θV
−1 Et

{
V −σt+1

(
∂Vt+1

∂Ct+1

)}

= βV
1− 1−σ

θV
t

(
EtV 1−σ

t+1

) 1
θV
−1 Et

V −σt+1at+1V
1− 1−σ

θV
t+1 η

(
Cη
t+1(1−Nt+1)

1−η) 1−σ
θV

Ct+1
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Thus, we define the household stochastic discount factor M between periods t and t+ 1:

Mt+1 ,

(
∂Vt/∂Ct+1

∂Vt/∂Ct

)
=

(
β
at+1

at

)(
Cη
t+1 (1−Nt+1)

1−η

Cη
t (1−Nt)

1−η

) 1−σ
θV
(

Ct
Ct+1

)(
V 1−σ
t+1

Et
[
V 1−σ
t+1

])1− 1
θV

Using the stochastic discount factor, we can eliminate λ and simplify Equations (1) - (4):

1− η
η

Ct
1−Nt

=
Wt

Pt
(5)

PE
t

Pt
= Et

{
Mt+1

(
DE
t+1

Pt+1

+
PE
t+1

Pt+1

)}
(6)

1 = RR
t Et
{
Mt+1

}
(7)

Equation (5) represents the household intratemporal optimality condition with respect to

consumption and leisure, and Equations (6) and (7) represent the Euler equations for equity

shares and one-period riskless firm bonds.

B.2 Intermediate Goods Producers

Each intermediate goods-producing firm i rents labor Nt(i) from the representative household

to produce intermediate good Yt(i). Intermediate goods are produced in a monopolistically

competitive market where producers face a quadratic cost of changing their nominal price

Pt(i) each period. The intermediate-goods firms own their capital stocks Kt(i), and face

convex costs of changing the quantity of installed capital. Firms also choose the rate of uti-

lization of their installed physical capital Ut(i), which affects its depreciation rate. Each firm

issues equity shares St(i) and one-period risk-less bonds Bt(i). Firm i chooses Nt(i), It(i),

Ut(i), and Pt(i) to maximize firm cash flows Dt(i)/Pt(i) given aggregate demand Yt and price

Pt of the finished goods sector. The intermediate goods firms all have the same constant

returns-to-scale Cobb-Douglas production function, subject to a fixed cost of production Φ

and their level of productivity Zt.

Each firm producing intermediate goods maximizes discounted cash flows using the house-

hold’s stochastic discount factor:

max Et
∞∑
s=0

(
∂Vt/∂Ct+s
∂Vt/∂Ct

)[
Dt+s(i)

Pt+s

]
subject to the production function:[

Pt(i)

Pt

]−θµ
Yt ≤ [Kt(i)Ut(i)]

α [ZtNt(i)]
1−α − Φ,
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and subject to the capital accumulation equation:

Kt+1(i) =

(
1− δ

(
Ut(i)

)
− φK

2

(
It(i)

Kt(i)
− δ
)2
)
Kt(i) + It(i)

where
Dt(i)

Pt
=

[
Pt(i)

Pt

]1−θµ
Yt −

Wt

Pt
Nt(i)− It(i)−

φP
2

[
Pt(i)

ΠPt−1(i)
− 1

]2
Yt

and depreciation depends on utilization via the following functional form:

δ
(
Ut(i)

)
= δ + δ1

(
Ut(i)− U

)
+

(
δ2
2

)(
Ut(i)− U

)2
The behavior of each firm i satisfies the following first-order conditions:

Wt

Pt
Nt(i) = (1− α)Ξt [Kt(i)Ut(i)]

α [ZtNt(i)]
1−α

RK
t

Pt
Ut(i)Kt(i) = αΞt [Kt(i)Ut(i)]

α [ZtNt(i)]
1−α

qtδ
′(Ut(i)) Ut(i)Kt(i) = αΞt [Kt(i)Ut(i)]

α [ZtNt(i)]
1−α

φP

[
Pt(i)

ΠPt−1(i)
− 1

] [
Pt

ΠPt−1(i)

]
= (1− θµ)

[
Pt(i)

Pt

]−θµ
+ θµΞt

[
Pt(i)

Pt

]−θµ−1
+φPEt

{
Mt+1

Yt+1

Yt

[
Pt+1(i)

ΠPt(i)
− 1

] [
Pt+1(i)

ΠPt(i)

Pt
Pt(i)

]} (8)

qt = Et

{
Mt+1

(
Ut+1(i)

RK
t+1

Pt+1

+ qt+1

(
1− δ

(
Ut+1(i)

)
− φK

2

(
It+1(i)

Kt+1(i)
− δ
)2

+φK

(
It+1(i)

Kt+1(i)
− δ
)(

It+1(i)

Kt+1(i)

)))}

1

qt
= 1− φK

(
It(i)

Kt(i)
− δ
)

where Ξt is the marginal cost of producing one additional unit of intermediate good i, and

qt is the price of a marginal unit of installed capital. RK
t /Pt is the marginal revenue product

per unit of capital services KtUt, which is paid to the owners of the capital stock. Our ad-

justment cost specification is similar to the specification used by Jermann (1998) and allows
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Tobin’s q to vary over time.

Each intermediate goods firm finances a percentage ν of its capital stock each period with

one-period riskless bonds. The bonds pay the one-period real risk-free interest rate. Thus,

the quantity of bonds Bt(i) = νKt(i). Total firm cash flows are divided between payments

to bond holders and equity holders as follows:

DE
t (i)

Pt
=
Dt(i)

Pt
− ν

(
Kt(i)−

1

RR
t

Kt+1(i)

)
.

Since the Modigliani and Miller (1958) theorem holds in our model, leverage does not affect

firm value or optimal firm decisions. Leverage makes the payouts and price of equity more

volatile and allows us to define a concept of equity returns in the model. We use the volatil-

ity of equity returns implied by the model to calibrate our uncertainty shock processes in

Section 6.

B.3 Final Goods Producers

The representative final goods producer uses Yt(i) units of each intermediate good produced

by the intermediate goods-producing firm i ∈ [0, 1]. The intermediate output is transformed

into final output Yt using the following constant returns to scale technology:[∫ 1

0

Yt(i)
θµ−1

θµ di

] θµ
θµ−1

≥ Yt.

Each intermediate good Yt(i) sells at nominal price Pt(i) and each final good sells at nominal

price Pt. The finished goods producer chooses Yt and Yt(i) for all i ∈ [0, 1] to maximize the

following expression of firm profits:

PtYt −
∫ 1

0

Pt(i)Yt(i)di.

subject to the constant returns to scale production function. Finished goods-producer opti-

mization results in the following first-order condition:

Yt(i) =

[
Pt(i)

Pt

]−θµ
Yt.

The market for final goods is perfectly competitive, and thus the final goods-producing firm

earns zero profits in equilibrium. Using the zero-profit condition, the first-order condition

for profit maximization, and the firm objective function, the aggregate price index Pt can be

written as follows:

Pt =

[∫ 1

0

Pt(i)
1−θµdi

] 1
1−θµ

.
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B.4 Equilibrium

The assumption of Rotemberg (1982) (as opposed to Calvo (1983)) pricing implies that we

can model our production sector as a single representative intermediate goods-producing

firm. In the symmetric equilibrium, all intermediate goods firms choose the same price

Pt(i) = Pt, employ the same amount of labor Nt(i) = Nt, and choose the same level of

capital and utilization rate Kt(i) = Kt and Ut(i) = Ut. Thus, all firms have the same cash

flows and payout structure between bonds and equity. With a representative firm, we can

define the unique markup of price over marginal cost as µt = 1/Ξt and gross inflation as

Πt = Pt/Pt−1.

B.5 Monetary Policy

We assume a cashless economy where the monetary authority sets the net nominal interest

rate rt to stabilize inflation and output growth. Monetary policy adjusts the nominal interest

rate in accordance with the following rule:

rt = r + ρπ (πt − π) + ρy∆yt, (9)

where rt = ln(Rt), πt = ln(Πt), and ∆yt = ln(Yt/Yt−1). Changes in the nominal interest

rate affect expected inflation and the real interest rate. Thus, we include the following Euler

equation for a zero net supply nominal bond in our equilibrium conditions:

1 = RtEt
{
Mt+1

(
1

Πt+1

)}
. (10)

B.6 Shock Processes

The demand and technology shock processes are parameterized as follows:

at = (1− ρa) a+ ρaat−1 + σat−1ε
a
t

σat = (1− ρσa)σa + ρσaσ
a
t−1 + σσ

a

εσ
a

t

Zt = (1− ρZ)Z + ρZZt−1 + σZεZt

εat and εZt are first-moment shocks that capture innovations to the level of the stochastic

process for technology and household discount factors. We refer to εσ
a

t as second-moment or

“uncertainty” shock since it captures innovations to the volatility of the exogenous process

for household discount factors. An increase in the volatility of the shock process increases

the uncertainty about the future time path of household demand. All three stochastic shocks

are independent, standard normal random variables.
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B.7 Solution Method

Our primary focus is examining the effect of an increase in the second moment of the prefer-

ence shock process. Using a standard first-order or log-linear approximation to the equilib-

rium conditions of our model would not allow us to examine second moment shocks, since the

approximated policy functions are invariant to the volatility of the shock processes. Simi-

larly, second moment shocks would only enter as cross-products with the other state variables

in a second-order approximation, and thus we could not study the effects of shocks to the

second moments alone. In a third-order approximation, however, second moment shocks en-

ter independently in the approximated policy functions. Thus, a third-order approximation

allows us to compute an impulse response to an increase in the volatility of the discount rate

shocks, while holding constant the levels of those variables.

To solve the baseline model, we use the Dynare software package developed by Adjemian

et al. (2011). Dynare computes the rational expectations solution to the model using third-

order Taylor series approximation around the deterministic steady state of the model. Section

B.8 contains all the equilibrium conditions for the baseline model. To assist in numerically

calibrating and solving the model, we introduce constants into the period utility function

and the production function to normalize the value function V and output Y to both equal

one at the deterministic steady state. We use Dynare version 4.4.3 in Matlab 2014b to solve

and simulate the baseline model.

As discussed in Fernández-Villaverde et al. (2011), approximations higher than first-order

move the ergodic distributions of the model endogenous variables away from their determin-

istic steady-state values. With the exception of our simulation exercises in Sections 5.3 and

6.2 of the main text, we always analyze a traditional impulse response in percent deviation

from the stochastic steady state of the model. To construct these responses, we set the

exogenous shocks in the model to zero and iterate our third-order solution forward. After a

sufficient number of periods, the endogenous variables of the model converge to a fixed point,

which we denote the stochastic steady state. We then hit the economy with a one standard

deviation uncertainty shock but assume the economy is hit by no further shocks. We com-

pute the impulse response as the percent deviation between the equilibrium responses and

the pre-shock stochastic steady state.

By default, Dynare uses an alternative simulation-based procedure to construct impulse

responses for 2nd-order and higher model solutions. This method is based on the generalized
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impulse response of Koop, Pesaran and Potter (1996). As opposed to being centered around

the stochastic steady state, these alternative responses are computed in deviations from

the ergodic mean of the endogenous variables. In addition, these responses combine both

the effects of higher uncertainty about future shocks with higher realized volatility of the

actual shocks hitting the economy. We choose to compute the traditional impulse responses

at the stochastic steady state for two reasons. First, Figure B.1 shows that these two

procedures produce nearly identical results, yet the computational time is significantly less

for the traditional impulse response. This computational advantage is particularly helpful

when we estimate some of the model parameters using impulse response matching, which

requires us to repeatedly solve the model under various parameterizations. Second, the

traditional impulse response around the stochastic steady state allows us to analyze an

increase in uncertainty about the future without any change in the realized volatility of the

shock processes.

B.8 Complete Model

In the symmetric equilibrium, the baseline model in Dynare notation is as follows:

y + fixedcost = productionconstant*(z*n)^(1 - alpha)*(u*k(-1))^(alpha);

c + leverageratio*k/rr = w*n + de + leverageratio*k(-1);

w = ((1 - eta)/eta)*c/(1 - l);

vf = (utilityconstant*a*(c^(eta)*(1 - n)^(1 - eta))^((1 - sigma)/thetavf) +

beta*expvfsigma^(1/thetavf))^(thetavf/(1 - sigma));

expvfsigma = vf(+1)^(1 - sigma);

w*n = (1 - alpha)*(y + fixedcost)/mu;

rrk*u*k(-1) = alpha*(y + fixedcost)/mu;

q*deltauprime*u*k(-1) = alpha*(y + fixedcost)/mu;

k = ((1 - deltau) - (phik/2)*(inv/k(-1) - delta0)^(2))*k(-1) + inv;

12



deltau = delta0 + delta1*(u-1) + (delta2/2)*(u-1)^(2);

deltauprime = delta1 + delta2*(u-1);

sdf = beta*(a/a(-1))

*((c^(eta)*(1 - n)^(1 - eta))

/(c(-1)^(eta)*(1 - n(-1))^(1 - eta)))^((1 - sigma)/thetavf)

*(c(-1)/c)*(vf^(1 - sigma)/expvfsigma(-1))^(1 - 1/thetavf);

1 = rr*sdf(+1);

1 = r*sdf(+1)*(pie(+1))^(-1);

1 = sdf(+1)*(de(+1) + pe(+1))/pe;

log(r) = rhor*log(r(-1))

+ (1 - rhor)*(log(rss) + rhopie*log(pie/piess) + rhoy*log(y/y(-1)));

de = y - w*n - inv - (phip/2)*(pie/piess - 1)^(2)*y - leverageratio*(k(-1) - k/rr);

1 = sdf(+1)*(u(+1)*rrk(+1) +

q(+1)*((1 - deltau(+1)) - (phik/2)*(inv(+1)/k - delta0)^(2)

+ phik*(inv(+1)/k - delta0)*(inv(+1)/k)))/q;

1/q = 1 - phik*(inv/k(-1) - delta0);

phip*(pie/piess - 1)*(pie/piess) = (1 - thetamu) + thetamu/mu +

sdf(+1)*phip*(pie(+1)/piess - 1)*(y(+1)/y)*(pie(+1)/piess);

expre = (de(+1) + pe(+1))/pe;

expre2 = (de(+1) + pe(+1))^(2)/pe^(2);

varexpre = expre2 - (expre)^(2);

a = (1 - rhoa)*ass + rhoa*a(-1) + vola(-1)*ea;
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vola = rhovola*vola(-1) + (1 - rhovola)*volass + volvola*evola;

z = (1 - rhoz)*zss + rhoz*z(-1) + volzss*ez;

Since the capital stock is predetermined, we lag the capital stock K variables by one period

relative to the timing in the model derivation.
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C Estimating VARs on Simulated Model Data

This section provides additional details on our simulation exercises from Sections 5.3 and 6.2

of the main text. After a burn-in sample, we simulate 30 years of data from our theoretical

model. We then estimate our baseline empirical VAR, described in Appendix A.1, using the

simulated model data. In Section 5.3, the variables in the VAR are the model-implied VXO,

output, consumption, investment, hours worked, the price level, and the short-term nominal

policy rate. All variables, except the policy interest rate, enter the VAR in log levels. To

match our empirical specification, we use the annualized, net nominal interest rate as our

measure of monetary policy. After estimating the VAR, we compute the impulse responses

to an identified uncertainty shock using a Cholesky decomposition with the VXO ordered

first. We then repeat this exercise 10,000 times, which provides us with the probability

distribution of the impulse response function. In Section 6.2, we also add in the log of the

model-implied markup µt after the policy rate.

Since we compute a third-order approximation for this exercise, rather than a full non-

linear solution, the simulated variance for the model-implied stock market can occasionally

go negative. To reproduce our empirical framework where the VXO is always positive, we

truncate simulated values for the VXO at a lower bound of 1 percent which implies that

the log VXO always remains positive. Since the estimated impulse responses reflect the

average effect of uncertainty on the economy, we plot the unconditional generalized impulse

responses as the true model responses in Figures 5 and 6 of the main text.

D Examining Model Features & Predictions

Our baseline model is consistent with both the qualitative comovement and quantitative

predictions of an identified uncertainty shock in the data. In the following sections, we

provide further details on the key model ingredients and further examine some additional

predictions of the model.

D.1 Countercyclical Markups in a Real Model

Our mechanism for generating macroeconomic comovement relies on countercyclical markups

following an uncertainty shock. Following much of the literature, we implement countercycli-

cal markups by assuming prices adjust slowly to changing economic conditions. However,

our main results are unchanged if we instead consider a model with countercyclical markups
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but without nominal rigidities. To illustrate this idea, we replace our New-Keynesian Phillips

Curve in Appendix Equation (8) with the following equation:

log (µt/µ) = εµy log (Yt/Y ) , (11)

where µt is the markup over marginal cost and Yt is output. εµy denotes the elasticity of

the markup with respect to output. The variables without t-subscripts denote their steady

steady state values. Following the empirical evidence of Bils, Klenow and Malin (2015), we

calibrate εµy = −1.8. Figure D.1 plots the impulse responses to a demand uncertainty shock

in this entirely real model with countercyclical markups. Even without nominal rigidities,

countercyclical markups can generate macroeconomic comovment in response to an uncer-

tainty shock.

D.2 Uncertainty Shock about Future Technology

In our baseline model, we consider second-moment shocks to household discount factors. We

now extend our model to examine uncertainty shocks with respect to future technology. We

replace our stochastic process for technology with the following two equations:

Zt = (1− ρZ)Z + ρZZt−1 + σZt−1ε
Z
t

σZt = (1− ρσZ )σZ + ρσZσ
Z
t−1 + σσ

Z

εσ
Z

t

Figure D.1 shows the impulse responses to a technology uncertainty shock.4 Similar to a de-

mand uncertainty shock, higher uncertainty about future technology can generate a decline

in output, consumption, investment, and hours worked.

However, there are two reasons why second-moment technology shocks are not as good at

matching the quantitative aspects of the economy’s response to an uncertainty shock. First,

technology uncertainty shocks require significantly larger shocks to produce significant fluc-

tuations in output and its components. To produce the outcomes in Figure D.1, we needed a

five-fold increase in the volatility of the technology shocks relative to our baseline calibration.

This more volatile shock process implies too much unconditional and stochastic volatility in

key macroeconomic aggregates. Second, conditional on a given movement in consumption,

a technology impulse response generates a much smaller movement in investment than a

demand uncertainty shock. When the uncertainty about future technology increases, higher

4For this exercise, we calibrate σZ = 0.0064 and σσ
Z

= 0.0061. This calibration implies a 95% increase in

the volatility of future technology shocks, which is similar to our baseline model using demand shocks. We

also slightly increase the investment adjustment costs (φK = 10) to generate a larger decline in investment.
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capital provides a hedge against possible negative shocks to future marginal costs. This ad-

ditional substitution effect, which is not present under a demand uncertainty shock, provides

an incentive for firm to avoid disinvesting in the capital stock when uncertainty about future

technology increases. Accordingly, investment falls by only 10 basis points after a technology

uncertainty shock but falls by over 50 basis points after a demand uncertainty shock. Since

capital and labor are complements in production, the time path of investment implies that

equilibrium hours worked also falls by less after a technology uncertainty shock.

D.3 Model-Implied Unconditional Moments

Building on the discussion in Section 5.2 of the main text, we now provide further compari-

son of the unconditional moments generated by our model with their empirical counterparts.

Given that uncertainty shocks generate stochastic volatility in key macroeconomic aggre-

gates, a key litmus test for our model will be its ability to match the time-varying volatility

in the data.

To evaluate the model’s fit, we compare its simulated moments with their data counter-

parts along three dimensions. First, we assess the model’s ability to match the unconditional

volatility in the data as measured by the sample standard deviation. Second, we evaluate

the amount of stochastic volatility in key macro aggregates in both the data and in the

model. Finally, we examine the average real interest rate, equity premium, and implied

stock market volatility generated by the model. We examine the model’s predictions for

output, consumption, investment, hours worked, the real interest rate, equity premium, and

the implied stock market volatility. For output and its components, we construct the data

as outlined in Appendix A.1. For the real interest rate and equity premium, we calculate

the quarterly, annualized ex post returns.5

To compare the distance between the model-implied moments and their empirical coun-

terparts, we generate small-sample bootstrapped probability intervals from the model. Our

empirical moments come from about a 30-year sample of quarterly data. We want to de-

termine the likelihood that the moments from this given 30-year sample of data could be

generated by our baseline model. To compute the probability interval for each moment, we

simulate the model economy for 30 years after an initial burn in period. Then, we compute

and save all the desired model-implied moments using this small sample of simulated data.

5We calculate the real interest rate by subtracting the ex post GDP deflator inflation rate from the

effective federal funds rate.
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We repeat this exercise 10,000 times, which provides us with a series of small sample esti-

mates for each moment of interest. Table D.1 reports the mean and the 95% probability

interval for each model-implied moment as well as their empirical counterparts. If the empir-

ical moment falls outside of this model-implied probability interval, it is highly statistically

unlikely that the model is able to generate moments consistent with the data. In Table 2 of

the main text, we report the mean for each model-implied moment.

Our model is generally consistent with the unconditional and stochastic volatility in

output, consumption, investment. For each of these variables, the empirical moment falls

within the small-sample probability interval generated by the model. The model does strug-

gle slightly in generating sufficient unconditional and stochastic volatility in hours worked.

However, The general fit of the model suggests that we would likely draw similar conclusions

about the effects of uncertainty shocks if we instead chose to calibrate our model directly

using the stochastic volatility in key macro variables (as opposed to our impulse response

matching procedure).

However, the model’s predictions for the real interest rate, equity premium, and implied

stock market volatility could be improved. On average, the model generates real inter-

est rates that are too high relative to the data. In addition, the average equity premium

and VXO in the model are lower than in the data. Finally, the model does not generate

enough volatility in the real interest rate, equity premium, or implied stock market volatility.

Higher firm leverage, however, greatly improves the model’s predictions for the equity

premium and implied stock market volatility. In our baseline model, we calibrated leverage

ν = 0.9. This large value is near the upper end of the values examined by Jermann (1998).

If we raise leverage to an even higher value, ν = 0.985, the last column of Table D.1 shows

that the model can generate an equity premium and implied stock market volatility similar

to the data. While this calibrated value for leverage is quite high, two important caveats are

important to keep in mind. First, adding additional shocks (such as government spending

and monetary policy) would allow the model to match the volatility of the equity return with

a much smaller amount of leverage.6 Second, since the Modigliani & Miller (1963) theorem

holds in our model, the amount of leverage does not affect firm decisions or firm value.

Figure D.2 shows that the responses of the key macro variables to an uncertainty shock

are unchanged under this alternative leverage calculation. In our baseline calibration, we

calibrate a lower degree of firm leverage to stay as close as possible to the previous literature.

6The addition of monetary policy shocks would also generate additional volatility in the real interest rate.
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D.4 Other Shocks & the Persistence of the Uncertainty Shock

While the amount of leverage does not affect the response to an uncertainty shock, the in-

clusion of technology shocks does slightly affect the results of our impulse response matching

estimator. In Figure D.2, we simulate a demand uncertainty shock but double the uncon-

ditional volatility of the technology shocks σZ = 0.0025. While more volatile technology

shocks do not affect the macroeconomic responses of output and its components, we see that

the log of the model-implied VXO rises by less when technology shocks are more volatile.

Higher volatility of technology shocks raises the average model-implied VXO but does not

change how much the VXO moves in response to a demand uncertainty shock. Thus, our es-

timator would choose a different size of uncertainty shock under this alternative calibration.

Obviously, doubling the volatility of the technology shocks has significant implications for

the unconditional moments implied by the model. Thus, it provides an additional rationale

for checking the unconditional moments implied by our model against the data.

Finally, Figure D.2 also plots the responses to an independent and identically distributed

uncertainty shock process by setting ρσa = 0. Even without exogenous persistence in the

uncertainty shock process, output and its components continue to decline after an uncertainty

shock. However, like nearly all simple macroeconomic models, the model doesn’t have a great

deal of internal propagation. Therefore, the impulse response estimator prefers a somewhat

persistent uncertainty shock process to match the quantitative responses.

D.5 Risk Aversion & Epstein-Zin Preferences

In loose terms, the precautionary labor supply by households after an uncertainty shock

depends on the ‘price’ of risk multiplied by the ‘quantity’ of risk. The price of risk is

mainly influenced by risk aversion σ and the quantity of risk is determined by the size of

the uncertainty shock. We find the model can match the VAR evidence with a calibration

of σ = 80 and an uncertainty shock that increases the volatility of shocks by around 95%

relative to its steady state value.7 If we divide the risk aversion parameter by about ten

(σ = 8), then Figure D.3 shows that the resulting impulse responses are roughly one-tenth

as large as the baseline calibration. However, if set σ = 8 but dramatically increase the

volatility of the demand shock process, the model can generate responses that look like the

7Since households can adjust their labor margin, Swanson (2013) shows that σ in our model is not

comparable to fixed-labor risk aversion estimates.
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baseline model even with substantially less risk-averse households.8 Thus, the inclusion of

Epstein-Zin preferences allow us match the VAR evidence with smaller movements in the

expected volatility of the exogenous shocks.

D.6 Investment Adjustment Costs & Variable Capital Utilization

Our baseline model features a very small amount of investment adjustment costs. To il-

lustrate the role of these adjustment frictions, Figure D.4 shows the impulse responses to

a demand uncertainty shock under two alternative calibrations. In the first alternative, we

turn off the adjustment costs completely φK = 0. In the second calibration, we set the costs

of adjusting investment and capital utilization to extremely large values, which resembles a

model with a fixed capital stock.

Investment adjustment costs help the model generate a significant decline in investment

after an uncertainty shock. With zero adjustment costs, Figure D.4 shows that the resulting

decline in investment is much smaller than our baseline model. Investment adjustment costs

make it more difficult for households to convert their desired savings into physical assets.

Thus, small adjustment frictions cause a larger decline in investment after the shock. How-

ever, for extremely large adjustment frictions, firms find it too costly to disinvest. Thus

investment stays fixed in response to the uncertainty shock but firms greatly decrease their

demand for household labor. Figure D.4 also shows that investment adjustment costs are

helpful in generating a decline in inflation following an uncertainty shock.

Without the ability to adjust capital or utilization, the fixed capital stock calibration

resembles a simple New-Keynesian model without capital. Figure D.4 plots the impulse

responses for this fixed capital model under both flexible and sticky prices. When prices

are fully flexible and the capital stock is fixed, higher uncertainty causes a decline in real

interest rates and inflation but output and consumption remain unchanged. When prices

are sticky, an increase in uncertainty looks similar to standard time-preference or discount

factor shock. If the central bank can always close the gap between the real rate and natural

rate of interest, then higher uncertainty has no effect on output in the economy. In our

companion paper, Basu and Bundick (2015), we examine the effects of uncertainty shocks

in a simple New-Keynesian model without capital and discuss the optimal policy response

to higher uncertainty both at and away from the zero lower bound.

8For this exercise, we set σa = 0.0105 and σσ
a

= 0.01 such that an, as in the baseline model, an uncertainty

shock raises the preference shock volatility by roughly 95%.
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Our baseline model also features variable capital utilization. To illustrate the role of this

feature, Figure D.5 shows the response to a demand uncertainty shock under our baseline cal-

ibration and a calibration with a significantly higher value of δ2. As discussed by Christiano,

Eichenbaum and Evans (2005), this parameter controls the elasticity of capital utilization

with respect to the rental rate. Figure D.5 shows that highly elastic capital utilization helps

generate a larger decline in output and investment in our model. Capacity utilization ex-

tends the half-life of price stickiness, and hence the period of time over which our results

diverge substantially from those of a flexible-price model. Under nominal rigidities, firms set

prices according to the expected present value of marginal cost. Variable capacity utilization

creates an elastic supply of capital services and reduces the responsiveness of marginal cost

to output, just as elastic labor supply does.

D.7 Features of the Labor Supply Curve

In our model, increased precautionary savings and precautionary labor supply by house-

holds in response to higher uncertainty leads to a contraction in economic activity. In this

section, we examine how the exact features of the household’s labor supply curve influence

the equilibrium outcomes for the macroeconomy. Figure D.6 plots the impulse responses

to a demand uncertainty shock under several different labor supply curves. In our base-

line model, we set the Frisch labor supply elasticity equal to 2. If we instead calibrate a

labor supply elasticity of one half, Figure D.6 shows that a given uncertainty shock gener-

ates smaller movements in output and its components. In terms of the labor supply and

labor demand diagrams from Figure 2 of the main text, a smaller labor supply elasticity im-

plies a steeper labor supply curve. For given movement in the marginal utility of wealth λt,

a steeper labor supply curve implies a much smaller decline in wages and firm marginal costs.

Households in our model desire to increase saving and labor input in response to an

uncertainty shock. To decompose the relative effects of the distinct precautionary labor

supply and precautionary saving channels, we solve a version of our model that does not

feature a wealth effect on labor supply. Taking Appendix Equation (5), we divide each side

by its steady-state value and then remove the term involving consumption:

WR
t

WR
=

1−N
1−Nt

, (12)

where WR
t = Wt/Pt denotes the real wage. In the spirit of Greenwood, Hercowitz and Huff-

man (1988) preferences, this alternative labor supply curve features the same labor supply

elasticity as our baseline model but does not shift outward in response to an uncertainty
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shock. In Figure D.6, we plot the impulse responses using this alternative labor supply

curve under both flexible and sticky prices. Without a wealth effect on labor supply, hours

worked remain unchanged at impact under flexible prices. Since the current level of technol-

ogy and capital remain fixed, total output remains unchanged at impact as well. However,

households still lower their consumption and increase their savings, which leads to higher

investment by firms.

Under sticky prices, Figure D.6 shows that the precautionary saving channel alone can

cause output and its components to decline after an uncertainty shock. The decreased

demand for consumption goods reduces firm marginal costs. Lower marginal costs raise

markups, which causes the labor demand curve to shift inward. With an unchanged labor

supply curve, an inward shift of the labor demand curve results in a decline in equilibrium

hours worked. Compared with our baseline results, these results suggest that about half

the movement in markups is due to precautionary saving and about half of the increase is

due to precautionary labor supply. Thus, while both mechanisms can qualitatively generate

macroeconomic comovement, the combination of the two mechanisms is helpful in matching

the quantitative responses to an identified uncertainty shock in the data.9

D.8 Extension to Sticky Nominal Wages

In our baseline model, we generate macroeconomic comovment after an uncertainty shock

by assuming that output prices are sticky, but household wages are fully flexible. How-

ever, various types of evidence suggests that nominal wages are sticky, especially at high

frequencies. At the macro level, Christiano, Eichenbaum and Evans (2005) find that nomi-

nal wage stickiness is actually more important than nominal price stickiness for explaining

the observed impact of monetary policy shocks. At the micro level, Barattieri, Basu and

Gottschalk (2014) find that the wages of individual workers change less than once a year on

average.

In this subsection, we show that our results extend readily to the case where nominal

wages are sticky. Rather than writing down an extended model with two nominal frictions,

we make our point heuristically using the graphical labor supply-labor demand apparatus

from Section 3 of the main text. If households act competitively in the labor market:

U2(Ct, 1−Nt) = λtWt, (13)

9In related work, Leduc and Liu (2015) show that labor market search frictions can amplify the negative

effects of an uncertainty shock on unemployment.
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where W is the nominal wage and λt is now the utility value of a marginal dollar. Assuming

firms have market power, we can reorganize Equations (5) and (6) in the main text as follows:

Wt =
Pt
µPt

ZtF2(Kt, ZtNt). (14)

U2(Ct, 1−Nt)

λtPt
=

1

µPt
ZtF2(Kt, ZtNt), (15)

where µPt is the price-markup over marginal cost.

Now assume a new model, where households also have market power and set wages with

a markup over their marginal disutility of work. Equation (3) in the main text and the

resulting equilibrium are modified as follows:

Wt = µWt
U2(Ct, 1−Nt)

λt
. (16)

U2(Ct, 1−Nt)

λtPt
=

1

µWt

1

µPt
ZtF2(Kt, ZtNt) (17)

Compared with the competitive labor market model, we can replace the labor supply curve

in Figure 2 in the main text with U2(Ct, 1−Nt)/λtPt. This quantity has the interpretation

of the disutility faced by the household of supplying one more unit of labor, expressed in

units of real goods (the real marginal cost of supplying labor). On the vertical axis, we now

plot the equilibrium level of the real marginal disutility of work. This alternative ‘supply

curve’ is shifted in exactly the same way by uncertainty as the standard labor supply curve –

higher uncertainty raises λ, which shifts the supply curve out. But now the ‘demand curve’

in the right-hand side of Appendix Equation (18) is shifted by both price and wage markups

– only the product of the two matters.

Take the polar opposite of the case we have analyzed so far: Assume perfect competition

in product markets but Rotemberg wage setting by monopolistically competitive households

in the labor market. Then, the price markup is always fixed at 1, but the wage markup would

jump up in response to an increase in uncertainty (since the marginal cost of supplying labor

falls but the wage is sticky). This alternative assumption would make the qualitative outcome

exactly the same as in our previous results. Thus, while introducing nominal wage stickiness

would certainly affect quantitative magnitudes, it would not change our qualitative results.
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E Solving Model with a Zero Lower Bound Constraint

To analyze the impact of uncertainty shocks at the zero lower bound, we solve our model

using the policy function iteration method of Coleman (1990) and Davig (2004). This global

approximation method allows us to model the occasionally-binding zero lower bound con-

straint. To make the model computationally feasible using policy function iteration, we

simplify our baseline model by removing technology shocks and leverage. We also assume

that households receive firm dividends as a lump-sum payment. Finally, we keep the number

of grid points reasonable by slightly lowering our risk aversion parameter σ = 15, increasing

the amount of investment adjustment costs φK = 10, and slightly reducing the size of the

uncertainty shocks σσ
a

= 0.0015.

The policy function algorithm is implemented using the following steps:

1. Discretize the state variables of the model: {Kt × Yt−1 × at × σat }.

2. Conjecture initial guesses for the policy functions of the model Nt = N(Kt, Yt−1, at, σ
a
t ),

Ut = U(Kt, Yt−1, at, σ
a
t ), It = I(Kt, Yt−1, at, σ

a
t ), Πt = Π(Kt, Yt−1, at, σ

a
t ), and

EtV 1−σ
t+1 = EV (Kt, Yt−1, at, σ

a
t ).

3. For each point in the discretized state space, substitute the current policy functions into

the equilibrium conditions of the model. Use interpolation and numerical integration

over the exogenous state variables at and σat to compute expectations for each Euler

equation. This operation generates a nonlinear system of equations. The solution to

this system of equations provides an updated value for the policy functions at that

point in the state space.

4. Repeat Step (3) for each point in the state space until the policy functions converge

and cease to be updated.

We implement the policy function iteration method in FORTRAN using the nonlinear equation

solver DNEQNF from the IMSL numerical library. The model is solved using a Linux computing

cluster and the model solution is parallelized using Open MP.

To compute the impulse response of an uncertainty shock at the zero lower bound, we

generate two time paths for the economy. In the first time path, we simulate an economy

hit by a negative first-moment demand shock such that the the zero lower bound binds for

about six quarters. In the second time path, we simulate the same first-moment demand

shock, but also simulate an uncertainty shock. After the uncertainty shock, neither economy
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is hit with any further shock. We present the (percent) difference between the time paths

of variables in the two simulations as the impulse response to the uncertainty shock at the

zero lower bound. We choose the size of the uncertainty shock such that, at the stochastic

steady state, the simplified model generates roughly the same movements in output as our

baseline model from Section 4.
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Figure A.1: VXO and Estimated Uncertainty Shocks

1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

A
nn

ua
liz

ed
 P

er
ce

nt

0

10

20

30

40

50

60

70
Implied Stock Market Volatility

1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

S
ta

nd
ar

d 
D

ev
ia

tio
n

-3

-2

-1

0

1

2

3

4

5
Estimated Uncertainty Shocks

28



Table D.1: Empirical and Model-Implied Unconditional Moments

Moment Data Baseline Model Higher Leverage

Average

Real Interest Rate 1.7 2.3 2.3

(2.2, 2.4) (2.2, 2.4)

Equity Premium 6.3 0.9 4.7

(−0.6, 2.5) (−6.9, 15.4)

Implied Stock Market Volatility 20.8 2.8 13.4

(2.2, 3.3) (4.8, 21.0)

Unconditional Volatility

Output 1.1 1.0 1.0

(0.6, 1.7) (0.6, 1.7)

Consumption 0.7 0.8 0.8

(0.4, 1.2) (0.4, 1.2)

Investment 3.8 4.7 4.7

(2.5, 7.9) (2.5, 7.9)

Hours Worked 1.4 0.8 0.8

(0.4, 1.3) (0.4, 1.3)

Real Interest Rate 2.4 0.2 0.2

(0.1, 0.2) (0.1, 0.2)

Equity Premium 25.7 7.7 61.7

(6.3, 9.3) (42.8, 89.5)

Implied Stock Market Volatility 8.2 0.9 6.0

(0.6, 1.2) (3.3, 8.5)

Stochastic Volatility

Output 0.4 0.2 0.2

(0.1, 0.4) (0.1, 0.4)

Consumption 0.2 0.2 0.2

(0.1, 0.3) (0.1, 0.3)

Investment 1.6 1.2 1.2

(0.6, 2.2) (0.6, 2.2)

Hours Worked 0.5 0.2 0.2

(0.1, 0.4) (0.1, 0.4)

Note: Unconditional volatility is measured with the sample standard deviation. We measure

stochastic volatility using the standard deviation of the time-series estimate for the 5-year

rolling standard deviation. The 95% small-sample bootstrapped probability intervals appear

in parenthesis. The empirical sample period is 1986 - 2014.
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Figure A.2: Including Stock Prices in the Baseline Empirical Specification
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Figure A.3: Measuring Uncertainty with the VIX

4 8 12 16 20

P
er

ce
nt

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Output

4 8 12 16 20

P
er

ce
nt

-0.4

-0.2

0

0.2

0.4
Consumption

4 8 12 16 20

P
er

ce
nt

-1.5

-1

-0.5

0

0.5

1

1.5

2
Investment

4 8 12 16 20

P
er

ce
nt

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Hours

4 8 12 16 20

P
er

ce
nt

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Price Level

4 8 12 16 20

P
er

ce
nt

ag
e 

P
oi

nt
s

-0.6

-0.4

-0.2

0

0.2

0.4
Policy Rate

4 8 12 16 20

P
er

ce
nt

-10

-5

0

5

10

15

20
Implied Stock Market Volatility

Impulse Response

95% Confidence Interval

31



Figure A.4: Alternative Empirical Specifications
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Figure A.5: Alternative Specifications for Monetary Policy
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Figure B.1: Alternative Impulse Response Construction

4 8 12 16 20
-0.3

-0.2

-0.1

0

0.1

0.2

P
er

ce
nt

Output

4 8 12 16 20
-0.2

-0.1

0

0.1

P
er

ce
nt

Consumption

4 8 12 16 20
-1

-0.5

0

0.5

1

P
er

ce
nt

Investment

4 8 12 16 20
-0.2

-0.1

0

0.1

0.2

P
er

ce
nt

Hours Worked

4 8 12 16 20
-5

0

5

10

15

20

P
er

ce
nt

Implied Stock Market Volatility

Traditional Impulse Response
Stochastic Steady State

Unconditional Generalized
Impulse Response

Note: Impulse responses are plotted in percent deviations from either the stochastic steady

state or their ergodic mean.

34



Figure D.1: Countercyclical Markups in a Real Model & Technology Uncertainty Shocks
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Figure D.2: The Effects of Leverage, Other Shocks, and Uncertainty Shock Persistence
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Figure D.3: The Role of Epstein-Zin Preferences
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Figure D.4: The Role of Investment Adjustment Costs
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Figure D.5: The Role of Variable Capital Utilization
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Figure D.6: Alternative Labor Supply Curves
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