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Abstract 
 

The economic geography of the United States’ energy landscape changed rapidly 

with domestic expansion of the natural gas sector. Recent work with smooth transition 

parameter models is extended to an establishment location model estimated using Poisson 

regression to test whether expansion of this sector, as evidenced by firm location 

decisions from 2005 to 2010, is characterized by different growth regimes. Results 

suggest business establishment growth of firms engaged in natural gas extraction was 

faster when the average area of shale and tight gas transition coverage in neighboring 

counties exceeded 17%. Local agglomeration externalities, access to skilled labor and 

transportation infrastructure were of more economic importance to location decisions in 

the high growth regime. Accordingly, growth rates were heterogeneous across the lower 

48 States, suggesting potentially different outcomes with respect to local investment 

decisions supporting this sector.  

 

JEL codes: C21, C25, D21, R12, R30 
 
Keywords: natural gas extraction, location choice, count model, endogenous growth 
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1. Introduction 

Technological advances in hydraulic fracturing and horizontal drilling accelerated 

the expansion of natural gas production in several regions of the United States. According 

to the Energy Information Agency (EIA, 2013), the total U.S. recoverable natural gas 

resources were estimated to be 2,327 trillion cubic feet. This quantity represents an 

estimated 70 years’ worth of supply taking into account the projected annual growth in 

domestic natural gas consumption. The natural gas supply shock reversed a several 

decades long downward trend in U.S. natural gas production. In the 1970s the U.S. 

energy sector seemingly conceded its decline and began investing in global markets. That 

trajectory reversed in the middle of the last decade. 

In the mid-2000s natural gas production increased dramatically in shale and tight 

gas formations. In recent years, domestic natural gas prices have declined because of 

increased supply and lack of infrastructure to transport and export to global markets, 

creating a gap between domestic U.S. and world prices. Natural gas prices have fallen 

dramatically from $12.76 to $1.95 per million British thermal units since recent peak 

drilling activity. As a result, the number of active drilling rigs and production has also 

decreased. Extraction is expected to increase once more favorable prices return. We use 

the recent period of increased natural gas production to model the location decisions of 

natural gas extraction establishments at the county level in the lower contiguous 48 states.  

We extend recent developments of smooth transition parameter models to an 

establishment location model estimated using Poisson regression to test whether growth 

in this sector, as evidenced by extraction establishment growth from 2005 to 2010, is 

characterized by high and low growth regimes according to the shale resource 
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endowments of counties. We develop a parsimonious count model that provides a 

tractable interpretation of parameters specific to spatial units according to endogenous 

growth regimes. Results suggest that counties with a locally weighted average of more 

than 17% coverage by shale and tight gas formations transition to a high establishment 

growth regime where the rate of extraction establishment growth is higher. Local 

agglomeration externalities, access to skilled labor, and transportation infrastructure 

appear to be of more economic importance to location decisions in the high growth 

regime than in other counties lacking comparative advantage in terms of shale and tight 

gas formation endowments.  

The presence of shale or tight gas formations in an area does not guarantee that 

the region will, ceteris paribus, attract business establishments engaged in the production 

and distribution of natural gas. However, if the shale and tight gas areas cover a large 

enough area in a given region, that region may be more likely to attract firms engaged in 

the natural gas economy. The medium or long term establishment growth trajectories of 

counties with relatively greater resource endowments, notwithstanding shale and tight gas 

formations, may be quantitatively different than trajectories characterizing other 

administrative units, given their resource endowments.  

Our contribution to the literature is to provide a method that estimates the 

threshold level of coverage of shale and tight gas formations where the probability of 

attracting a business engaged in the natural gas extraction sector is more likely and how 

being above or below that threshold changes the influence local endowments have on the 

site selection choice. The factors causing local variation in business establishment growth 

trajectories may be relevant to communities for planning short to medium term projects 
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that could impact the allocation of limited financial resources for attracting business 

ventures that could be spent elsewhere, or decisions that could alter the natural landscape 

of a region which could affect the non-market amenity value or resource base of a local 

community. 

 

2. Background of the Shale-Gas Industry 

Technologies pursued initially by two independent energy companies, but that 

were eventually combined, transformed the oil and gas industry. In the early 1980s 

Mitchell Energy drilled the first well in the Barnett Shale in western Texas (Yergin, 

2011). Instead of encountering the typical, highly porous, rock of conventional 

formations, Mitchell encountered shale. Shale can hold vast reserves of natural gas but is 

highly nonporous and traps gas. Over a period of 20 years, Mitchell Energy experimented 

with different extraction techniques and found that by using hydraulic fracturing 

(commonly referred to as “fracking”) shale layers could be broken to release natural gas. 

Fracking consists of injecting a mixture of water, chemicals, and sand into wells to create 

fissures in rock formations, liberating trapped gases. 

Over the same period, Devon Energy developed horizontal drilling technologies. 

Advances in controls and measurement allowed operators to drill to certain depths, and 

then drill further at angles to expose more of reservoirs, allowing much greater recovery 

of natural gas. In 2002 Devon acquired Mitchell Energy (Yergin, 2011). Devon combined 

their horizontal drilling expertise with Mitchell’s fracking techniques. By 2003 Devon 

discovered a combination of the two technologies that proved successful. Suddenly, 

natural gas that had been economically inaccessible was now exploitable.  
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Higher natural gas prices in the mid-2000s and the combination of horizontal 

drilling with fracking changed the economics of natural gas production. New reserves 

from unconventional shale and tight gas formations became profitable to extract, and 

continued development of drilling and hydraulic fracturing techniques enhanced further 

production efficiencies. Today, shale wells have an extremely low risk of being 

unproductive (unproductive wells are commonly referred to as “dry-holes”). Prior to the 

advent of shale gas, total annual natural gas production in the U.S. was flat; at about 19 to 

20 trillion cubic feet (figure 1). However, by 2011 total annual production grew nearly 30 

percent to 24.6 trillion cubic feet. Over the same period, the amount of proven reserves 

continued to increase as exploration intensified.   

 

<< Figure 1 >> 

 

Gas well profitability varies from formation to formation and depends on 

geological attributes that determine how quickly production declines after opening a well 

(Massachusetts Institute of Technology, 2011). Since the first major shale boom in the 

Barnett (TX), additional large-scale natural gas extraction has occurred in other shale 

formations including the Woodford (OK), Fayetteville (AR), Haynesville (LA and TX), 

Marcellus (PA and WV), and Eagle Ford (TX) plays. Activity has also increased in the 

Niobrara shale, which extends across portions of Colorado, Kansas, Nebraska, and 

Wyoming. We explain the pattern of new extraction businesses entering the natural gas 

extraction and distribution market using location theory models originally developed by 

Weber (1929), used extensively in numerous applied studies that explain business 
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establishment location as a function of local comparative advantage, resource availability, 

and input and product market access.  

 

3. Firm Location Theory 

 Optimal firm site selection is a trade-off between input transport costs from 

extraction sites to consumers (Weber, 1929). Firms choose least cost sites to maximize 

profit (π). Holding transportation costs and other local factors constant, firm-level profits 

relying extensively on natural resource extraction are more sensitive to the productivity 

of the site selected, which is typically unknown. The cost structure of the natural gas 

extraction sector is therefore similar to supply-oriented food processors to the extent that 

locating near raw materials naturally minimizes cost (Connor and Schiek, 1997). Supply 

oriented firms have a total industry cost structure dominated by the purchase of a single 

input, and therefore prefer to locate near raw materials to minimize input procurement 

costs (Lambert and McNamara, 2009). 

 The probability firm selects location i can be estimated with a conditional logit 

regression, assuming the stochastic components follow a Weibull distribution and are 

independent and identically distributed (McFadden, 1974). As an example, a firm 

chooses site i over n possible locations when the expected profits associated with site i 

exceed those of j; E[πi] > E[πj]. Consequently, the probability a firm chooses site i is Pr(πi 

> πj) = Pr(si = 1). The empirical analysis simplifies greatly when the analysis focuses on a 

single sector. In this special case locations decisions are typically modeled using standard 

count regression approaches such as the Poisson or negative binomial (Guimarães, 

Figueiredo, and Woodward, 2003; 2004). This convention provides the conceptual 
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framework for a number of empirical studies linking firm location events to location-

specific human capital, social, infrastructure, and natural resource endowments (e.g., 

Fotopoulos and Louri, 2000; Henderson and McNamara, 2000; Guimarães, Figueiredo, 

and Woodward, 2004; Carod and Antolín, 2004; Davis and Schluter, 2005; Carod, 2005; 

Chong, 2006; Lambert, Garret, and McNamara, 2006a,b; Lambert and McNamara, 2009; 

Lambert, Brown, and Florax, 2010). We extend this conventional modeling approach to 

explore the possibility that site selection determinants of business establishments engaged 

in the natural gas extraction and provision economy may exhibit (1) spatial heterogeneity 

as a function of endogenous growth regimes, (2) that the marginal effects of covariates on 

site selection decisions may vary across spatial units according to regimes, and (3) that 

regime membership is conditional on local resource endowments, namely the abundance 

of shale and tight gas formations. 

 

4. Data and Location determinants 

 The variable descriptions, data sources, and descriptive statistics are shown in 

Table 1. County Business Pattern (CBP) data measure firm site selection activity (n = 

3,078 counties) from 2005 to 2010. Gas extraction establishment location events were 

measured by counting the number of new extraction establishments following the method 

used by Davis and Schluter (2005). The positive cumulative change in the number of an 

establishment type over the sample period in a given county i was enumerated as si = Σt 

si,t, where si,t = Ci,t – Ci,t−1 if Ci,t > Ci,t−1, 0 otherwise (C is the number of observed 

establishments in period t). This measure of gross establishment entry may underestimate 

the actual number of establishments entering the sector because it is not possible to 
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identify exiting firms in the annual net count provided by the CBP data (Lambert and 

McNamara, 2009). 

 

<< Table 1 >> 

 

 Unlike prior studies examining firm location decisions, less is known about the 

local factors determining the site selection decisions of natural gas extraction 

establishments. Given the recent surge in natural gas production beginning in the mid-

2000s, it is likely that the earliest extraction companies selected sites by weighting more 

heavily the distribution of unconventional (shale and tight) gas formations in a particular 

region in their decision calculus. Using spatial information provided by the Energy 

Information Agency (EIA), we calculated the share of a county covered by shale and 

tight gas formations (figure 2). Counties endowed with more shale and tight gas 

formations are naturally expected to attract more gas extraction establishments (figure 3). 

In fact, these counties likely exhibited faster growth in the natural gas extraction sector 

early in the natural gas rush than counties endowed with less shale and tight gas 

formations. Similarly, historical production, as measured by natural gas production 

(billions of cubic feet) in 2000, is expected to be a reasonable site selection predictor as 

entering firms observe the past success of others.1  

 Infrastructure related to the shipment and storage of natural gas is likely to affect 

the profitability and therefore firm location choice. Transportation costs increase as 

distance to pipelines increases, possibly requiring the installation of additional pipelines 

1 County-level gas production data were collected from state agencies and compiled by the USDA 
Economic Research Service.  
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before extraction begins. Similarly, proximity to storage facilities at distribution or 

processing points is expected to affect prices as well as the variation in prices received by 

extraction firms. A priori, longer distances to storage facilities are expected to be 

negatively associated with location activity. Using ArcGIS, spatial data on the location of 

natural gas pipelines and storage facilities from the EIA were used to calculate the 

distance to the closest pipelines and storage facilities for each county.2  

 

<< Figure 2 >> 

<< Figure 3 >> 

 

Agglomeration economies are typically the most studied determinant of firm 

location (Carod, Solis, and Antolin, 2010). There is general agreement that agglomeration 

economies have a positive impact on firm location decisions via knowledge spillovers 

between businesses in similar market conditions when groups of firms in the same sector 

locate near each other (Glaeser and Kohlhase, 2004). For example, natural gas extraction 

companies may benefit from a common pool of labor skilled in specific drilling 

techniques. We measure this specialized labor pool by the share of mining employment in 

the county. We also control for local industrial structure by using the shares of 

manufacturing, construction, and agricultural employment in the county.  

The effect of urban areas and potential urban externalities on resource extraction 

establishments is ambiguous. On one hand, proximity to demand markets reduces input 

transportation costs used in production as well as final output prices. However, when it 

2 An ArcGIS file of natural gas pipelines was provided by EIA upon request. Storage capacity data are 
available at: http://www.eia.gov/naturalgas/storagecapacity/.  
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comes to natural resources extraction and the effects activities may have on local the 

appearance and quality of local amenities, environmental issues may be of concern in 

relatively densely populated areas. Moreover, more densely populated areas may also 

reflect higher land values and rental rates making resource extraction relatively more 

expensive. In the broader location literature, urbanization economies also tend to be 

positively correlated with firm location decisions (Head, Reis, and Swenson, 1995; 

Guimaraes, Figueiredo, and Woodward, 2000). We control for urban influence using 

county population density. 

Market demand is also an important firm location determinant (Blair and Premus, 

1987; List, 2001; Gabe, 2003; Guimaraes, Figueiredo, and Woodward, 2004). Proximity 

to demand markets reduces transportation costs of final products. Most of the natural gas 

extracted in the U.S. is consumed domestically; therefore, extraction establishments are 

assumed to find higher demand for gas from businesses and households in higher income 

locations. County median household income measures the effect of market demand on 

firm location decisions. 

Labor availability is an important factor in firm location decisions. Areas with 

slack in the labor force may make it easier for firms to hire workers. At the same time, 

firms are more likely to find skilled workers in locations with higher levels of educational 

attainment (Woodward, 1992; Coughlin and Segev, 2000). These two factors are 

measured by the unemployment rate in the county and the percentage of the population 

with a high school or associate degree and those with bachelor’s degree or higher, 

respectively.  
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Transportation infrastructure contributes to regional economic development by 

establishing and maintaining connections to other regions. Transportation infrastructure is 

important for some manufacturing location decisions (Smith and Florida, 1994; Luker, 

1998; List, 2001). Natural gas extraction using hydraulic fracturing is truck intensive 

because water and other drilling equipment must be transported to extraction sites. Areas 

with better transportation infrastructure are expected have relatively lower input sourcing 

costs. The total miles of interstate highway in a county measures the impact of 

transportation infrastructure on firm location decisions. 

Policies related to natural gas drilling as well as lease and royalty payments vary 

across states. Some states have been proactive in attracting natural gas development, 

while others have placed a ban on drilling, such as New York. State fixed effects are 

included in the model to control for these differences. 

 

5. Poisson Regression with a Smooth Growth Regime Transition 

We hypothesize that growth in the natural gas extraction sector is characterized by 

high and low growth regimes, with counties on the margin of shale-rich regions 

exhibiting lower entry rates over time. As such, the local determinants correlated with 

site selection decisions may exhibit different magnitudes of importance and county-

specific heterogeneity as determined by growth regimes. 

Recent attention has focused on the challenging issue of incorporating spatial 

processes into discrete regression models. Examples of approaches that incorporate 

spatial aspects into count model regression analyses are conditional autoregressive 

models (Rasmussen, 2004), spatial general linear models (Gotway and Stroup, 1997), 
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geographically weighted regression (Schabenberger and Pierce, 2002), information 

theoretic approaches (Bhati, 2005), Bayesian hierarchical methods (Banerjee, Carlin, and 

Gelfand, 2004; LeSage and Fisher, 2012), and Poisson models with spatially lagged 

dependent variables (Lambert, Brown, and Florax, 2010). This research extends the 

Poisson count model to the family of smooth transition models with endogenous spatial 

regimes developed by Pede (2010), Pede, Florax, and Holt (2009), and Lambert, Xu, and 

Florax (2013).  

The Poisson probability mass function for s random location decisions at location 

i is,  

 

(1)    exp( )( ) ,
!

is
i i

i
i

f s
s

µ µ−
=  

 

with μi the expected value that site i is selected by s firms in the natural gas extraction 

sector over some period. The expected conditional mean is typically represented by the 

inverse of the logarithmic canonical link function (Cameron and Trivedi, 1998);  

 

(2)    ( )exp ,i ixµ β ′=   

 

where xi is a k × 1 vector of covariates containing measurements on observation i = 1,…, 

N including a constant.  

Maximizing the log-likelihood function yields the mean vector of coefficients, 
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(3)   
1

max exp( ) ln (1 )N
i i i ii

L s x x s
β

β β
=

′ ′= − − Γ +∑ , 

  

where Γ is the gamma distribution. The Poisson maximum likelihood estimates are 

consistent and efficient when the conditional mean and variance are equal. This 

assumption is maintained while extending the Poisson regression model to one with 

endogenous growth regimes with spatially varying parameters. The mean-variance 

equality assumption of the Poisson regression is relaxed later and a quasi-maximum 

likelihood covariance estimator robust to spatial autocovariance and heteroskedasticity is 

proposed. 

At one extreme, the smooth coefficient Poisson model is but an extension of a 

count regression model with discrete regimes. For example, Lambert and McNamara 

(2009) used a negative binomial count regression model with discrete regimes according 

to metropolitan, micropolitan, and noncore counties to examine the location decision of 

food manufacturing firms. In this case, the conditional mean of (1) is 

 

(4)    ( )1 1E( ) exp ,i i i i Ri i Rs x d x d xβ δ δ′= + +   

 

where r = 1,…R spatial regimes are indicated by dummy variables. Intercepts and slopes 

are specific to each regime. A “spatial Chow” test (Anselin, 1988) can be applied to 

determine if the conditional means of the response variable vary according to regime 

membership. Under the null hypothesis δ1 = … δR = 0, the mean response is not different 

according to the indicators used to identify regimes.  
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The smooth transition parameter model with endogenous regimes is different 

from the discrete regime approach because regimes are not selected a priori and 

coefficients are permitted to vary across spatial units. Pede, Florax, and Holt (2009) and 

Pede (2010) modified Lebreton’s (2005) spatial version of the time series smooth 

transition autoregressive model for time series data by including spatial variables in the 

transition function, thereby admitting a smooth transition process by incorporating 

spillover effects through spatial multipliers. The Poisson model with a smooth spatial 

regime transition extends this strand of research. Other approaches such as local 

regression techniques or other nonparametric or semiparametric estimators could be used 

to explore spatially heterogeneous parameter variation are not considered in this analysis.  

Let G(v; γ, c) be a function with (respectively) slope and location parameters γ 

and c and a transition variable v. In the time series literature, and recent work with 

endogenous spatial regime models in the spatial econometric literature (Lambert, Xu, and 

Florax, 2013), use of the logistic function [1 + exp(–γ[v – c]/σv)]-1 is a common 

parameterization of G. As γ becomes large, G approaches 1; observations sort uniquely 

into one regime or another. When γ = 0, G = 0.5; and the model coefficients share a 

common global interpretation. When G is intermediate 0 and 1, observations sort into two 

growth regimes, but some observations are in transition, with the degree of coefficient 

heterogeneity dependent on the transition variable associated with a spatial unit.  

The location parameter c maps to the inflection point (the median) of G when γ > 

0. The parameters are scale-neutral when normalized by the standard deviation of the 

transition variable (σv). Of particular importance is the choice of the transition variable 

because it is hypothesized to drive the endogenous sorting process. Ideally, v conveys 
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information about connectivity, distance, or feedback between spatial units by identifying 

potentially nonlinear structural breaks across space. The transition variable should also be 

exogenous. In this analysis, we use the weighted average of a location’s neighbor’s share 

of the county covered by shale and tight gas formations. This measure is a localized 

neighborhood average of shale and tight gas coverage. A number of alternative transition 

variables are conceivable, but the choice of the average area of shale in surrounding 

counties is appealing to the extent that most of the increase in natural gas extraction over 

the last decade occurred in unconventional gas formations where the combination of 

hydraulic fracturing and horizontal drilling have been used. We therefore hypothesize 

that establishment growth of this sector occurs at different rates, depending on the 

likelihood that shale and tight formation deposits are relatively dense in a given micro-

region (i.e., a county neighborhood).   

The conditional mean function of the Poisson model with endogenous spatial 

regime-switching potential is, 

 

(5)   1 2= exp( ( , , ) + (1- ( , , )) )i i i i i i iG v c x G v c xµ β γ β γ′ ′
    

 

where “ ” is an element-wise Hadamer multiplication operator and (β1, β2) are 

coefficients corresponding with regimes 1 and 2. Equation 1 is rearranged following 

Madalla’s (1983) restriction; 

 

(6)    2 1 2= exp( + ( - ) ( , , ) )i i i i ix G v c xµ β β β γ′ ′ ′
 ,  
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or equivalently,  

 

(7)    2= exp( + ( , , ) )i i i i ix G v c xµ β δ γ′ ′
 . 

 

The interaction between the transition function and the covariates permits coefficients to 

vary nonlinearly across spatial units, with the coefficients of the interaction terms (δ) the 

difference from the reference group mean response to local determinants (the β1’s) and 

the alternative regime. Thus, in the context of discrete count models permitting the 

parameters determining location attractiveness to vary across sites, rejection of the null 

hypothesis δ = 0 suggests a nonlinear relationship between location factors, shale and 

tight gas geological formations, and site selection decisions of natural gas extraction 

establishments. As with the discrete regime approach using indicator variables, regimes 

are not evident when δ = 0 and the effects of the exogenous variables are geographically 

invariant. For continuous variables the marginal effects are calculated as; 

 

(8)  1
( ) = ( + ( , , ))exp( + ( , , ) )i

k k i i i i i i
ik

E s G v c x G v c x
x

β δ γ β δ γ∂ ′ ′
∂

 . 

 

Estimating the Poisson model with spatially varying parameters and endogenous regimes 

As suggested above, the log likelihood function of the typical Poisson model is 

altered to reflect regime switching potential according to the transition function, G; 

 

 

15 



(9)   11, ,
max + ( , , )N

i i i i i iic
L s x s G v c x

β γ
β δ γ

=
′ ′= ∑    

1exp( + ( , , ) ) ln (1 )i i i i ix G v c x sβ δ γ′ ′− − Γ + . 

 

Given this specification, the log likelihood function can be maximized using a variety of 

statistical software packages.  

 Critical for maximizing the success of convergence is determining a set of starting 

values for the transition function’s location parameter (c) and shape and slope parameter 

(γ). We use a double grid search to determine feasible starting points. The location 

parameter, c, is varied over the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th percentiles 

of the transition variable, v (the average percent of shale deposits in neighboring 

counties). The shape parameter, γ, is varied from 0 to 100 in increments of 5, noting that 

at γ = 0 there are no regimes and at γ = 100 there are two distinct regimes (similar to a 

dummy variable indicator). The modified Poisson log likelihood function is maximized at 

each starting point combination. The log likelihood is retained after each iteration and 

Akaike’s Information Criteria is calculated. After all combinations are exhausted, the (c, 

γ) combination yielding the lowest AIC score is used as a starting pair in a final 

maximum likelihood estimation of the modified Poisson log likelihood function.  

 

Quasi-maximum likelihood covariance estimator with spatial autocovariance 

 We extend covariance estimation of the smooth coefficient Poisson model to a 

general spatial autocorrelation model suggested by Kelejian and Prucha (2007) to 

accommodate the interaction between unobserved factors possibly influencing firm site 

selection, including competition between counties for firm investment, inter-county trade 
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patterns, or possibly similar resource endowments and the attendant spillover due to the 

correlated error structure arising from these omitted variables. The covariance model 

therefore assumes a cross sectional disturbance process allowing for unknown forms of 

heteroskedasticity and correlation between counties. Kelejian and Prucha (2007) outline 

the assumptions of their generalized spatial correlation model, which are comparable with 

robust covariance estimation in general linear model theory (Cameron and Trivedi, 2005). 

Given a consistent estimator for equation (9), the quasi-maximum likelihood disturbance 

vector is ui = si – E[si] = rj.ε, where rj. is the jth row of an n by n non-stochastic matrix (R) 

with unknown elements whose row and column sums are uniformly bounded in absolute 

value (i.e., correlation between cross sectional units is restricted), and ε is an n by 1 

independent and identically distributed vector of disturbance with and expected mean of 

zero and a constant variance. The exact form of R is unspecified, but Kelejian and Prucha 

(2007) demonstrate that the Cliff-Ord type spatial error processes models (e.g., Anselin, 

1988) are a special case of the generalized spatial autocorrelation model so long as some 

specific assumptions are maintained (below). The asymptotic distribution of the non-

stochastic location determinants is; Ψ = X´ΣX, where Σ = E[uu´]. Kelejian and Prucha 

(2007) define a non-parametric estimator for Ψ, and prove its consistency. As Kelejian 

and Prucha demonstrate, the asymptotic results extend to nonlinear models as well as a 

variety of other distributions, of which the Poisson model is a special class in the context 

of general linear model theory (Cameron and Trivedi, 2005). The spatial HAC estimator 

is extended to the Poisson robust covariance estimator below.3   

3 Cameron and Trivedi (1998) provide details of the time series Newey and West (1987) HAC analogue as 
applied to count models.  
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 Consider the heteroskedastic robust covariance matrix (V) of the Poisson 

maximum likelihood estimator; V = A-1BA-1, where A is the expected Hessian, B the outer 

product of the maximum likelihood function gradients, 
1

N
i ii=

B b b′= ∑ , and b the 

derivative of the Poisson log likelihood function with respect to relevant coefficients. For 

example, in the standard Poisson regression, bi = xi(yi – exp(β′xi)), which reduces to the 

product of a residual” and each covariate for the ith observation; xiui. 

Consider next the spatial HAC estimator suggested by Kelejian and Prucha (2007), 

which uses a nonparametric estimator to adjust for covariance between cross sectional 

units. A kernel function determines the range over which the cross products of the 

residuals are correlated. The kernel choice is generally not critical so long as K is a 

bounded, symmetric, real, and continuous function that integrates to one (Mittelhammer 

et al, 2000).4 Candidate functions include Gaussian, Parzen, Bartlett, Epanechnikov, or 

the bi-square. The Epanechnikov kernel (K) is applied here given its relative efficiency 

(Mittelhammer et al., 2000). Given an appropriate kernel function, and the covariance 

structure of the robust Poisson estimator, the (r, s) elements of Ψ are estimated as: 

 

(10)    
1 1

ˆ ˆ ˆ ( , )N N
rs ir js i j ij maxi j

x x u u K d dψ
= =

′=∑ ∑ , 

 

where (r, s) indexes the lag structure between locations (i, j), dij is the distance between 

spatial units i and j; and dmax is defined below. See Kelejian and Prucha (2007, p. 136) for 

details.   

4 Two recent applications of the spatial HAC estimator report that standard errors estimated using different 
kernels (but the same bandwidth) were similar with respect to inference (Lambert et al., 2007; Anselin and 
Lozano-Gracia, 2008). 
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 In large samples, the kernel bandwidth choice (dmax) is more important than the 

functional form of the kernel (Cameron and Trivedi, 2005). In the spatial context, this 

amounts to identifying an optimal neighborhood of observations. In their Monte Carlo 

evaluation of the spatial HAC estimator, Kelejian and Prucha (2007) use a plug-in 

bandwidth n1/4 for identifying the neighbors determining dmax. The theoretical idea behind 

the plug-in estimator is similar to the Newey and West (1987) HAC plug-in estimator 

determining the number of lags in the time series literature. In this study, n = 3,078, 

which corresponds with q = 7 neighbors. For county i, the vector of distances between j 

and all other locations are sorted in ascending order. The q value is therefore a cutoff 

point in the sorted distance vector identifying dmax, the last distance entry in the truncated 

vector corresponding with county i. The weighting mechanism allows K(dij, dmax) to 

expand or contract across cross-sectional units, thereby re-weighting residual cross-

products according to the distance between a set of neighbors. In this study, the distance 

between population-weighted county centroids was used as the inter-county distance 

measure.  

 

6. Empirical Results and Discussion 

 As a reference point we report results from standard Poisson count model in the 

absence of spatial regimes in addition to the smooth transition count model (table 2). 

Results from the standard model are generally as expected. Oil and gas companies often 

rely on information of past production for future location decisions. The historical 

production of natural gas (gas) was positively correlated with location decisions. Both 

distance to nearest pipeline (pipeline distance) and storage facility (storage distance) had 
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the expected negative sign, while only distance to the nearest natural gas storage facility 

was statistically significant. Local agglomeration, as measured by the share of mining 

employment in the county (mining share), was positively associated with business 

establishment site selection decisions. Access to a specialized labor pool is often 

important to drilling operations. Higher educational attainment (bachelors) and road 

infrastructure (interstate) were also positively correlated with the extraction 

establishment count. These results assume that the effects of these local attributes are the 

same across space.  

 

<< Table 2 >> 

 

 The smooth transition count model relaxes the assumption of coefficient spatial 

homogeneity across space. The null hypothesis that the effects of the covariates on 

location choices were geographically invariant (δ = 0, from equation 7) was rejected at 

the 99% level (LR = 162, df = 14), suggesting that the location factors exhibited 

heterogeneity across counties. Based on this result, we conclude that the smooth 

transition count model aptly described the data-generating process determining gas 

extraction establishment location decisions during the study period. The transition 

function parameters were γ = 100 (the shape parameter) and c = 0.17 (the location 

parameter, moving neighborhood average of shale and tight gas formation). The value 

and statistical significance of the shape parameter suggests the presence of two distinct 

growth regimes (figure 4a) with a transition threshold of 17% coverage of shale or tight 

gas formations. The regime probabilities suggest that location counts were more common 
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in regime 1 when G = 1 but less common in regime 2 when G = 0 (figure 4b). As a result, 

the effects of the covariates on extraction establishment location decisions are expected to 

be different once the coverage of a county exceeds 17%.  

 The coefficient vector (δ) is the difference of effects between regime 1 (G = 1) 

and regime 2 (G = 0). Positive and significant differences were observed for the 

manufacturing, construction, and mining shares of employment as well as for interstate 

highway infrastructure. Negative and significant differences were found for the 

unemployment rate and population density. 

Marginal effects were calculated for counties sorting into both regimes as well as 

those in transition (Table 3). In the high growth regime (regime 1), a one unit increase in 

the share of mining employment in from the base year is associated with an increase of 

almost 7 additional establishments compared to less than two in the low growth regime 

(regime 2). Counties in the high growth regime were also more sensitive to educational 

attainment. Higher levels of educational attainment had stronger positive association with 

location decisions in the high growth regime. The marginal effect suggests a one percent 

increase in the unemployment rate decreases the growth in establishments by 0.3. 

Similarly, an increase of 100 miles of interstate highway network in the high growth 

regime is associated with two additional natural gas extraction establishments. 

 

<< Table 3 >> 

 

 The likelihood of counties sorting into high growth regions was determined by 

calculating the probability of the predicted value of establishments being greater than or 
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equal to the 90th percentile of counts; e.g., two establishments locating in a county during 

the study period as observed in the full sample. This conditional probability is: 

 

(11)   
0 1

Pr( 2) 1 ,
0! 1!

i i
i i

i
e es

µ µµ µ− − 
≥ = − + 

   

 

The mapped probabilities are shown in figure 5. A spatial cluster analysis was then 

conducted on these estimated location probabilities to determine regions where, ceteris 

paribus, natural gas extraction business establishment events were more likely to occur. 

Using the Getis-Ord statistic (Ord and Getis, 1995), figure 6 shows statistically 

significant clustering of counties with high probabilities of growth exceeding the 90th 

percentile that have neighboring counties with similar high growth probabilities (shaded 

red) and counties with low location event probabilities with neighboring counties 

exhibiting similarly low site selection probabilities (shaded blue). The map highlights 

several regions where future natural gas extraction is more likely to occur with a return to 

higher prices or policy changes. These areas are identified by the lighter red color. 

Several of these counties are in Colorado, Wyoming, Oklahoma, Texas, Louisiana, 

southern California, eastern Ohio and western Pennsylvania. Activity levels have been 

high in the Marcellus shale which covers large portions of Pennsylvania and New York. 

However, New York currently has a moratorium on fracking, which has prevented 

drilling in the state. California has also been resistant to develop the Monterey Shale in 

the southern part of the state citing environmental concerns. Given price and/or policy 

changes, those areas would be the most likely to see more activity in the future. 
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<< Figure 5 >> 

<< Figure 6 >> 

 

7. Conclusion 

 The exponential growth of natural gas production over the last decade has been 

largely driven by the combination of horizontal drilling and hydraulic fracturing 

technologies. Gas reserves that were once unprofitable to extract in shale and tight gas 

formations have opened up in several regions of the United States. We find that business 

establishment growth in this sector (as evidenced by location decisions of natural gas 

extraction establishments from 2005 to 2010) is characterized by high and low growth 

regimes, with counties on the margin of shale-rich regions exhibiting slower growth. As 

such, the local determinants correlated with location decisions exhibited different 

magnitudes of importance and county-specific heterogeneity associated with firm site 

selection rates. Our results show that counties with a locally weighted average of more 

than 17% coverage by shale and tight gas transition to a high growth regime where the 

incidence of extraction establishments is higher. Local agglomeration externalities, 

access to skilled labor, and transportation infrastructure where of more economic 

importance to location decisions in the high growth regime. 

Presence of shale or tight gas formations in an area does not guarantee that a 

county will be an ideal location for businesses engaged in natural gas extraction and 

distribution. However, if the shale and tight gas formations cover a large enough area, it 

is more likely that attracting firms involved in this sector will occur. Our contribution to 

the literature is to provide a method that allows for the estimation of the threshold level of 
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coverage where the probability of development is more likely and how being above or 

below that threshold affects the location factors relevant to location choice. A priori, one 

might think that the necessary coverage for development to occur would be higher than 

what was estimated in the model. Our approach also helps identify areas where future 

development is more likely. This information could help policy makers and economic 

development practitioners better plan for infrastructure and other local service needs in 

the face of resource extraction. 

 One limitation in the data relates to our measure of gross establishment entry, 

which may underestimate the actual number of new establishments. It is not possible to 

identify exiting firms in the annual net count in publically available data.  Moreover, we 

are not able to distinguish between single- and multi-unit establishments, which may face 

very different location choice problems. Having additional information on the cost of 

extraction (depth of the shale) and the quality (thickness of the shale) of the natural gas 

resource would also be useful. Information on water availability and location of water 

treatment facilities would also aid in determining some of the environmental costs of 

extraction. 

 Possible extensions of this work would be to consider other count data models. 

The Poisson model assumes that the conditional mean and variance are equal. Relaxing 

this assumption by estimating a negative binomial model would allow for unobserved 

heterogeneity, which is often interpreted as a location specific random effect. Future 

work might also consider other semi-parametric models with more flexible functional 

forms to estimate endogenous regimes. 
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Table 1. Natural Gas Extraction Establishments and Location Factors 
 
Variable Description Mean Std. Dev. 
gas establishments Count of new extraction establishments (2005 - 2010)1 0.9 3.4 
shale  Share of the county covered by shale or tight gas formations2 0.2 0.4 
gas production Natural gas production in 2000 (billions of cubic feet)3 5.1 28.0 
pipeline distance Distance to nearest natural gas pipeline (miles)2 24.7 35.7 
storage distance Distance to nearest natural gas storage facility (miles)2 107.2 92.9 
manufacturing share Manufacturing share of employment4 0.13 0.09 
construction share Construction share of employment4 0.06 0.03 
mining share Mining share of employment4 0.01 0.03 
agriculture share Agricultural share of employment4 0.11 0.09 
unemployment Unemployment rate (%)5 4.3 1.6 
household income Median household income (Thous. $)6 35.2 8.7 
population density Hundred people per square mile6 9.4 18.3 
associates % of adult population with high school or associates degree6 60.9 7.0 
bachelors % of adult population with bachelor’s degree or higher6 16.4 7.7 
interstate Total miles of Interstate highway in the county7 14.7 25.2 

 
N = 3,078; Sources: 1 County Business Patterns; 2 Author’s calculations; 3 USDA ERS; 4 

Bureau of Economic Analysis, REIS; 5 Bureau of Labor Statistics; 6 US Census Bureau, 
2000 Decennial Census; 7 US DOT. 
 
 
 

30 



Table 2. Standard and Smooth Transition Count Model Results 
 
 Standard Count Model  Smooth Transition Count Model 

 
β Coefficient Robust S.E. 

 
β Coefficient Robust S.E. δ Coefficient Robust S.E. 

Intercept -1.104 0.888 
 

1.244 1.245 -3.942*** 1.430 
gas 0.004*** 0.001 

 
0.004*** 0.001 -0.0004 0.001 

pipeline distance -0.008 0.005  -0.009 0.005 -0.005 0.006 
storage distance -0.008*** 0.001  -0.007*** 0.002 0.0004 0.002 
manufacturing share -1.792*** 0.575 

 
-3.007*** 0.969 2.133* 1.158 

construction share -3.645* 2.168 
 

-8.465*** 2.839 6.775** 3.191 
mining share 3.908*** 0.839 

 
3.857*** 1.390 1.134 1.746 

agriculture share -5.716*** 0.657 
 

-6.618*** 0.969 2.066* 1.117 
unemployment -0.001 0.048 

 
-0.080 0.070 0.127 0.078 

household income 0.002 0.006 
 

0.005 0.008 -0.006 0.010 
population density 0.003*** 0.001 

 
0.007*** 0.003 -0.003 0.002 

associates  0.007 0.010 
 

-0.014 0.013 0.036** 0.015 
bachelors  0.032*** 0.009 

 
0.015 0.012 0.025* 0.015 

interstate 0.008*** 0.002 
 

0.001 0.002 0.012*** 0.002 
γ        ---   100.0    
c        ---   0.168*** 0.001   
State fixed effects†       yes   yes    
        
Fit statistics        
Log Likelihood -3192.4   -3111.1    
AIC 6504.8   6374.1    

 
Notes: N = 3,078; Statistical significance at the 99th, 95th, and 90th percentile is represented by ***, **, and *, respectively.† The results 
for the state fixed effects are not shown to conserve space. 
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Table 3. Average Marginal Effects by Regime 
 

 
Regime 1 Regime 2 

G (regime probability) 1.000 0.000 

   Gas 0.006 0.002 
pipeline distance -0.020 -0.004 
storage distance -0.010 -0.003 
manufacturing share* -1.262 -1.374 
construction share* -2.441 -3.868 
mining share* 7.212 1.763 
agriculture share -6.576 -3.024 
unemployment* 0.068 -0.037 
household income -0.001 0.002 
population density 0.005 0.003 
associates*  0.032 -0.006 
bachelors*  0.058 0.007 
interstate* 0.019 0.0004 

 
Notes: The asterisk indicates significant differences between regimes 1 and 2. 
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Figure 1. U.S. Natural Gas Production and Proved Reserves, 2001 – 2011 
 

Source: Energy Information Agency 
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Figure 2. Share of County Covered by Shale and Tight Gas Formations 

 
Source: Energy Information Agency 
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Figure 3. Location of new natural gas extraction establishments, 2005 to 2010. 

 
Source: Authors’ calculations 
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(b) 

 
Figure 4. Regime Probabilities Across Counties 

 
Source: Authors’ calculations 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

T
ra

ns
iti

on
 P

ro
ba

bi
lit

y 

Weighted Average of Neighboring Counties' Shale and Tight Gas 
Coverage 

Low 
growth 
regime 

High 
growth 
regime 

36 



 
 
 

 
 

Figure 5. Probability of Establishment Growth Exceeding 90th Percentile 
 

Source: Authors’ calculations 
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Figure 6. Clusters of High and Low Growth Probabilities 

 
Source: Authors’ calculations 
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