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Abstract

The monocentric city framework is generalized to comprise a system of metros. A “represen-
tative” closed metro calibrates parameters and establishes a reservation utility and perimeter
land price that must be matched by an indeterminate number of open metros. The open metros
have exogenous productivity different from that in the representative metro. Large changes to
the parameterization and to key model assumptions often affect land use patterns in the repre-
sentative metro only minimally but have first-order effects on land usage in open metros. For a
given level of productivity, transportation technology is the most important determinant of pop-
ulation, land area, population density, and house prices across and within metros. Changes in
highway capacity significantly affect these quantities while leaving commute speeds unchanged.
Telecommuting one workday per week increases the population of already crowded metros by
as much as one third. Open metro land area asymptotes to a maximum at only moderately
high relative productivity. A high threshold productivity is required for potential metro land to
exceed is agricultural opportunity cost. The framework yields a number of quantitative insights
into how preferences, production technologies, and transportation technologies shape outcomes
within and across metros.
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JEL classifications: R10, R41, C68

1 Introduction

The Alonso-Muth-Mills (AMM) model of circular metro area has been a workhorse model of urban

land use for more than 50 years (Alonso, 1964; Mills, 1967; Muth, 1969). At its core, AMM gives

insight into the fundamental tradeoffs by which decreasing house prices compensate workers for

the monetary and time costs of commuting. From a theoretical viewpoint, it illuminates how the

slopes of bid-rent functions determine income segregation within a metro area. From an empirical

∗The views expressed herein are those of the author and do not necessarily reflect the views of the Federal Reserve
Bank of Kansas City or the Federal Reserve System. The calibration herein is superseded by that in “Moncentric
City Redux,” Federal Reserve Bank of Kansas City RWP 14-09. Thank you to David Albuoy for extensive advice
and feedback. Thank you to Martina Chura, Kathleen Navin, and Daniel Molling for excellent research assistance.
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viewpoint, AMM presents numerous testable hypotheses. For example, it implies that suburban-

ization will depend closely on the speed with which workers can commute to the CBD and so on

highway infrastructure (Baum-Snow 2007a, 2007b). From a quantitative viewpoint, it gives insight

into the degree to which population density and price gradients depend on deep structure such as

the ability to substitute between land and structure in the production of housing (Muth, 1975;

Arnott and MacKinnon, 1977a) and individuals’ willingness to tradeoff housing and non-housing

consumption (King, 1977; Richter, 1978).

In a world of seemingly self-evident polycentricity, it is natural to question how much the the

monocentric framework can teach us. From early on, it was criticized it as being largely irrelevant

to modern metro areas (Wheaton, 1979). But such criticism misses the necessity in all economic

modeling to starkly simplify a complicated world. The benefit of such simplifications is that they

often yield considerable insight. The assumption of a monocentric metro is likely no worse than

the assumption of a world populated by homogeneous individuals and firms.

A stylized monocentric allocation of land may also not be as egregious as it would seem. Baum-

Snow (2014) shows that the suburbanization of urban residents from 1960 to 2000 was nearly three

times as large as the suburbanization of urban jobs. For industries in which there is likely to

be large local agglomerative spillovers—such as finance, insurance, and real estate—employment

decentralization was relatively minimal. Similarly, Brinkman (2013) documents the sharp fall

in employment densities near the city center in each of the three metros he studies (Columbus,

Houston, and Philadelphia, each in 2000).

A more salient concern is the extent to which assumptions such as monocentric land use

obscure or rule out outcomes of first-order interest. In the quantitative implementation below,

assumed monocentricity rules out generating a megalopolis such as the New York CBSA without

resorting to implausible parameterizations of minimal traffic congestion, a high leisure content of

commute time, and very high substitutability between numeraire consumption and each of housing

and leisure. In one sense, this failure is reassuring. A model that suggested that 10 million

workers could enjoyably commute at constant speed to a single CBD should provoke considerable

skepticism. But the failure also emphasizes the importance polycentric production. To incorporate

this, a number of models exogenously specify two or more production locations (Brueckner, 1978,

1979; Helsley and Sullivan, 1991; Sivitanidou and Wheaton, 1992). Additionally, some models

endogenize heterogenous production land use within one or more exogenously-specified locations

(Sullivan, 1983a,b,c; Sullivan, 1986).

More recently, economic models have successfully endogenized the location of multiple work

places. Anas and Kim (1996) show that with sufficient scale economies in the retail sector, metro

form is characterized by multiple stable equilibria with a discrete number of workplaces. Lucas

and Rossi-Hansberg (2002) develop a more general framework in which the interaction of local

agglomerative spillovers among firms together with commuting time costs can support a wide

array of stable residential and business land use patterns. Chatterjee and Eyigungor (2013) and
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Brinkman (2013) build on this framework by introducing land use restrictions and commuting

congestion. Solving these models requires several important tadeoffs. For example, individual

utility is assumed to be Cobb Douglas and housing production is assumed to be a linear function

of land.

Reverting to an assumed exogenous pattern of business location allows for a more richly spec-

ified quantitative model. A closed monocentric metro with exogenously set population, CBD land

area, and residential land area calibrates several key structural weighting parameters. This “repre-

sentative” metro corresponds exactly to the metro typically modeled in the existing literature on

urban form. It additionally establishes the reservation utility and perimeter land price that must

be matched in an indeterminate number of open metros. Each of these open metros may exoge-

nously differ from the representative metro with respect to one or more characteristics, such as

productivity, consumption amenities, transportation technology, and public policy. The resulting

system of metros represents a general equilibrium in the sense that all outcomes across and within

metros are mutually consistent. But the system retains a partial equilibrium flavor because it does

not endogenize the number of metros as in the system of cities developed in Henderson (1974).

From a quantitative perspective, land use in the representative metro proves fairly insensitive

to changes in key assumptions and parameterized values, such as on transportation technology and

on elasticities of substitution in utility and production. The reason is that endogenously calibrated

weighting parameters in utility and production adjust shift in order to continue to hit key calibration

targets.

The remainder of the paper is structured as follows: Section 2 presents some motivating empir-

ics on variations in population density and commute times across and within metro areas. Sections

3 and 4 respectively describe the model and its calibration. Section 5 shows how gradients for pop-

ulation density, house and land prices, and number of other important outcomes vary within and

across the representative metro and two open metros, one with total factor productivity moderately

below that of the representative metro and one with total factor productivity moderately above

that of the representative metro. Section 6 shows how summary measure outcomes, such as total

population, total land area, and mean house and land prices, vary with open metro productivity.

Section 7 illustrates how outcomes across and within metros are affected by perturbations to the

baseline calibration and assumptions.

2 Empirical Motivation

A key goal of the quantitative system of monocentric metros is to approximately match the large

variations in population, land area, and population density across and within metro areas. To do

so, it is critical that observed and quantitative outcomes be measured comparably.

Beginning in the 1950s, the Office of Management and Budget has used an evolving set of

technical criteria to designate the existence and borders of metro areas. In general, these have
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sought to define contiguous land areas that constitute integrated labor markets within which people

both live and work. The current generation of criteria was first promulgated in 2003 based on Census

2000 data. It defines a set of “Core-Based Statistical Areas” (CBSAs), the delineations of which

are updated each year. Compared to the previous generation delineation of MSAs, PMSAs, and

CMSAs, the current generation considerably improves the correspondence to metro labor markets.

A continuing weakness is that by delineating metro areas to be composed of one or more complete

counties, CBSAs are primarily made up of land that is agricultural or otherwise unoccupied.1

This incongruity between formal and functional metro boundaries makes comparison of “raw”

population density—total CBSA population divided by total CBSA land area—a highly misleading

measure. For example the Phoenix CBSA spans two largely unoccupied desert counties. Its raw

density in 2000 was under 600 persons per square mile, which is on par with the raw density of

census tracts near the border of suburban settlement and agricultural land use. A more meaningful

measure of metropolitan population density is to use the population-weighted mean of the raw

density of small geographic units such as census tracts (Glaeser and Kahn, 2004; Rappaport, 2008a).

This alternative measures average population density as experienced by metro residents rather than

as experienced by metro land parcels. No judgement is required on which which parcels of CBSA

land are truly “metropolitan” as the non-metropolitan parcels, whichever they might be, receive

essentially no weight. Similarly, the aggregate population across all CBSA land parcels should be

a reasonably accurate proxy for metropolitan population because non-metropolitan parcels will by

definition be sparsely settled.

For measuring metropolitan land area, however, a more subjective approach is required. The

most obvious way to do so is to measure the raw population density of small geographic units and

then arbitrarily specify a lower bound threshold to be considered part of a functional metro area.

Some experimentation suggests that 500 persons per square mile is a reasonable lower threshold.

Aggregating over all census tracts in all CBSAs that had a population of at least 100 thousand in

2000, a 500 person per square mile threshold includes census tracts that account for 88 percent

of aggregate CBSA population but only 16 percent of aggregate CBSA land area. For some high-

population CBSAs, the 500 threshold captures an even higher share of CBSA population and a

much higher share of CBSA land. For the New York CBSA, tracts with density of 500 or more

account for 99 percent of CBSA population and 75 percent of CBSA land. For the Boston CBSA,

the respective values are 98 and 80 percent. For the Phoenix CBSA, the 500 threshold captures 90

percent of population but only 9 percent of land.2

Figures 1 and 2 show the density variation by Census tract within two intermediate population

1But a considerable benefit of delineating CBSAs to be the union of entire counties is the ability to match metros
to numerous sources of aggregate and micro data.

2For comparison, the Census Bureau uses a threshold of 1000 persons per square mile to delineate the borders of
urbanized areas. Using 500 instead captures a significant additional share of the aggregate population of the counties
that together make ups CBSAs while adding relatively little land area. As such, a 500 threshold implies geographic
borders relatively similar to those of Census-delineated urbanized areas.
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Figure 1: St. Louis Tract Population Density. Map shows tract population density in 2000

within the counties that formally constitute the St. Louis Core Based Statistical Area (CBSA). Tracts

with population density of at least 500 persons per square mile account for 85 percent of St. Louis CBSA

population but only 18 percent of CBSA land area.

CBSAs, St. Louis and Pittsburgh. The color-shaded cells have raw population density of 500 or

higher and so illustrate the functional land area within formal CBSA boundaries. Consistent with

the monocentric stylization, residential density rapidly decreases moving away from a moderately

tight central location.

Population, land area, and summary density measures across and within selected functional

metro areas are enumerated in Table 1. The metros are ranked by population. The second column

shows the lower bound percentile of metro population as “experienced” by all residents in U.S.

functional metro areas. For example, the 18.1 million residents of the functional New York metro

area account for 9 percent of U.S. aggregate metro population. And so New York metro residents

make up the 91st through 100th percentiles of aggregate U.S. metro population. Similarly, the

12.3 million residents of the functional Los Angeles metro area make up the the 85th through 91st

percentiles in terms of experienced metro population.

Functional metro land area and population-weighted mean density are generally decreasing
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99th 95th 90th 75th 50th 25th 10th

  Aggregate Metro 186 million 74,400 8,300   93,300 29,000 16,100 7,500     4,000     2,000 1,000
 

  1 90.7% New York 17,623,000 3,360 33,930  172,700 122,410 94,960  50,940    15,410    4,380  1,940 

  2 84.3% Los Angeles 12,172,000 1,830 12,400  49,530  29,980  23,580  15,560    9,800       6,230  3,390 

  3 79.8% Chicago 8,548,000 2,490 10,270  50,480  33,650  26,290  14,060    5,590       2,710  1,390 
 

  Large (mean) 4,230,000 1,550 6,700     32,900   19,000   14,600   8,700     4,600     2,500   1,300  

  4 77.1% Philadelphia 5,151,000 1,860 8,850     39,940  29,140  23,510  12,500    4,590       2,160  1,100 

  5 74.5% Miami 4,856,000 1,180 6,970     29,330  16,800  12,520  8,580      5,760       3,730  2,060 

  6 69.9% Dallas 4,476,000 1,750 4,660     20,900  10,870  8,510     5,750      3,940       2,180  1,120 

  7 69.9% Washington DC 4,181,000 1,380 6,780     37,460  22,670  15,350  7,370      4,450       2,680  1,330 

  8 67.8% Detroit 4,051,000 1,380 4,960     13,030  10,990  9,530     6,710      4,440       2,520  1,320 

  9 63.6% Houston 4,024,000 1,550 4,650     19,580  10,080  8,700     6,150      3,910       2,190  1,230 

  10 63.6% Boston 3,956,000 1,810 8,360     46,610  28,380  21,710  11,200    4,000       1,470  790     
: : : :

 

  Intermediate (mean 1,800,000 680 5,000     17,000   11,500   9,500     6,600     4,300     2,500   1,300  

Mean 1,730,000 670 4,300     15,400   9,500     7,700     5,700     3,800     2,300   1,300  

  13 56.3% Phoenix 2,931,000 880 5,370     15,890  10,810  9,250     6,850      5,180       3,180  1,680 

  14 54.9% Seattle 2,754,000 1,040 4,910     27,030  10,510  8,560     6,010      4,010       2,520  1,100 

  15 53.4% Riverside 2,713,000 1,070 4,470     12,480  10,020  8,540     6,260      3,830       2,120  1,110 

  16 52.1% San Diego 2,584,000 640 7,590     28,190  17,790  15,010  9,620      6,140       3,790  2,020 

  17 50.8% Minneapolis 2,431,000 1,010 4,330     18,810  11,860  8,690     5,250      3,250       2,020  1,160 

  18 49.6% Baltimore 2,222,000 830 6,360     29,090  19,430  15,530  7,910      4,180       2,220  1,130 

  19 47.4% Tampa 2,161,000 930 3,590     8,360     6,760     6,010     4,820      3,620       1,930  1,040 

  20 47.4% St. Louis 2,113,000 990 3,760     13,510  9,410     7,340     4,840      3,150       1,650  960     

  21 46.3% Denver 1,957,000 580 5,410     17,010  10,670  9,100     6,960      5,050       3,130  1,660 

  22 44.4% Cleveland 1,911,000 740 5,210     16,760  12,880  11,240  7,470      4,200       2,200  1,060 

  23 44.4% Pittsburgh 1,778,000 860 4,330     17,210  11,410  8,900     5,950      3,500       1,540  820     
: : : :

 

  Small (mean) 715,000 340 4,200     15,100   10,800   8,500     5,500     3,400     1,800   990     

  38 32.6% Buffalo 997,000 430 5,340     17,610  13,800  11,500  7,760      4,310       1,980  900     

  39 33.1% Charlotte 970,000 710 2,130     7,310     4,330     3,970     2,910      1,830       910      650     

  40 32.6% Memphis 936,000 400 3,400     8,980     6,790     6,110     4,530      3,120       1,900  1,160 

  41 31.6% Austin 903,000 390 4,260     17,360  10,850  8,320     5,250      3,520       1,790  950     

  42 31.6% Hartford 888,000 500 4,140     20,910  14,860  10,430  5,090      2,280       1,240  750     

  43 31.2% Jacksonville FL 886,000 450 2,740     7,250     5,800     4,700     3,530      2,520       1,700  1,110 

  44 30.3% Salt Lake City 871,000 240 5,230     14,070  9,090     8,020     6,640      5,150       3,550  2,040 

  45 30.3% Louisville 835,000 390 3,530     10,570  7,850     6,670     4,580      3,030       2,060  910     

  46 29.8% Oklahoma City 819,000 380 3,290     7,860     6,300     5,540     4,370      3,340       1,810  950     

  47 29.0% Bridgeport 811,000 420 5,360     23,980  18,910  12,500  7,680      3,280       1,220  810     

  48 29.0% Nashville 810,000 510 2,490     8,950     5,380     4,930     3,400      1,980       1,180  770     

  49 28.6% Honolulu 804,000 240 11,590  69,760  42,760  32,530  12,030    7,150       2,730  1,220 

  50 28.1% Richmond 792,000 450 2,890     14,410  7,900     5,010     3,390      2,300       1,300  830     

  51 27.7% New Haven 766,000 430 4,110     16,840  12,240  9,590     5,670      2,830       1,200  710     

  52 27.4% Rochester NY 745,000 350 4,260     14,590  11,860  10,570  6,140      2,630       1,580  950     
: : : :

density percentile across census tracts
(pop‐weighted)

mean

density

(pop‐

wghtd)

pop

pctile
(lwr

bnd) metro area population

land

area

(sq.mi)

Table 1: Metro Population Density in 2000. Metros are constructed as the combination of all

census tracts located within each 2003 Core Based Statistical Area that have a population density of at least

500 persons per square mile. Density percentiles are weighted by tract population.
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Figure 2: Pittsburgh Tract Population Density. Map shows tract population density in 2000

within the counties that formally constitute the Pitsburgh CBSA. Tracts with population density of at least

500 persons per square mile account for 87 percent of Pittsburgh CBSA population but only 38 percent of

CBSA land area.

as functional metro population decreases. On average, so too are the 99th and 90th percentile

population density within each metro area. These percentiles are constructed in a similar way to

the metro population percentiles. Census tracts within each specific functional metro are ordered

according to raw density. For example, the 90th percentile within density of a metro is the density

experienced by a person for whom at least 10 percent of metro residents live in tract with at least as

high population density and at least 90 percent live in a metro with no higher population density.

Metros are grouped by population into “large,” “intermediate,” and “small” categories. The

summary rows for each of these report mean values over the metro-specific values immediately

below. In contrast, the aggregate population-weighted mean density and density percentiles enu-

merated in the topmost row are constructed by stacking all functional metro tracts and then

applying the same calculations that are used for each specific metro.

The functional New York metro stands out with several extreme values. Its total population is

45 percent greater than the next highest; its population mean density is more than 2.5 times that
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of the next highest.3 Its 99th percentile within density, 173 thousand persons per square mile, is

more than three times that of the next highest 99th percentile within density. Its 95th, 90th and

75th percentile within density are similarly more than three times higher than the next highest of

each.

Commute times across and within selected functional metros are enumerated in Table 2. Mean

one-way commute time in 2000 for all residents in functional U.S. metros, calculated by stacking

census tracts in all metros, was 29 minutes. The corresponding 10th through 90th percentile

commute times across all metro residents were 11 and 51 minutes. These percentiles are constructed

in two steps. Within tract commute-time percentiles are constructed by interpolation applied to

the number of workers in each tract (who did not work at home) based on reported commute times

within each of 11 bins, 0 to 5 minutes through 90 or more minutes. The reported 10th and 25th

percentiles for each metro are across the 25th within tract percentiles. The rationale for using

the 25th percentile within percentile rather than a lower one is to exclude the short commutes of

suburban residents who live near their workplace. The reported 50th percentile for each metro is

the 50th percentile commute time across tracts of the 50th percentile commute time within each

tract. The reported 75th, 90th, and 95th commute times are measured across 75th percentile within

tract commute times. The rationale for using the 75th within tract percentile rather than a higher

one is the goal of measuring the location choice of a worker with approximately “representative”

preferences.

Constructed percentile commute times across metros are sensitive to the within percentile

choice. For example, the 90th percentile across-metro commute time measured by the 90th per-

centile within commute time is 69 minutes or higher for each of the nine highest population metros.

For most of these metros, this represents a 20 minute increase from the 90th percentile across-metro

time measured by the 75th percentile within commute time. For the New York metro area, the

90th percentile across tracts of the 90th percentile within tract lies in uppermost bin (90 minutes

or more).

3 The Model

The system of monocentric metros is composed of a closed “representative” metro and an inde-

terminate number of open metros. The former corresponds to the single metro that has been the

subject of most AMM theoretical research to date. It is closed in the sense that its population and

land area are specified exogenously. Utility is required to be equal across a finite number of discrete

residential rings, but the actual level at which this equalization takes place is endogenous.4

3Note that neither of these ratios is consistent with Zipfs Law.
4The representative metro can be interpreted as open when it is calibrated by exogenously setting the level of

utility and perimeter land price. Doing so has sometimes proved necessary to solve models (Sullivan, 1983a,b,c).
But the targeted levels of utility and perimeter land price are necessarily arbitrary because utility is ordinal and the
numeraire with which the price of land is measured has no inherent units. With the exponential increase in computing
power over the past 30 years, this solution approach is typically no longer necessary.
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10th 25th 50th 75th 90th 95th

Aggregate 29       11          13          23          42          51          56         

1 New York 18,100,000 1,900 38     13        15        31         62          72        76       

2 Los Angeles 12,300,000 830 32     14        15        25         43          49        52       

3 Chicago 8,800,000 1,300 34     13        15        28         51          56        59       

Large (mean) 4,010,000 800 31.7       13.0       14.9       26.2       45.5       51.3       54.6      

4 Philadelphia 5,500,000 1,200 31     12        14        24         44          49        53       

5 Miami 5,000,000 580 31     13        15        25         43          49        53       

6 Dallas 4,760,000 1,030 30     13        14        24         42          48        51       

7 Washington DC 4,470,000 870 36     15        17        31         53          59        62       

8 Houston 4,340,000 1,000 31     12        15        27         46          52        55       

9 Boston 4,300,000 1,080 31     12        14        26         45          51        54       
:

Intermd (mean*) 2,090,000 540 26.9       11.7       13.2       21.9       35.1       40.5       45.1      

17 Minneapolis 2,640,000 640 26     12        13        22         35          42        47       

18 Baltimore 2,440,000 600 32     14        15        27         46          51        54       

19 Tampa 2,310,000 540 28     12        13        22         37          44        47       

20 St. Louis 2,300,000 650 24     10        11        18         30          33        36       

21 Pittsburgh 2,100,000 760 28     11        13        23         39          44        45       

22 Cleveland 2,050,000 470 26     12        13        22         34          38        41       

23 Denver 2,050,000 350 29     13        15        24         37          42        50       

24 Cincinnati 1,760,000 540 27     12        14        22         34          41        49       

25 Portland, OR 1,730,000 370 27     12        13        22         34          40        46       
:

Small (mean) 590,000 160 24.0       10.2       11.5       19.3       31.4       37.1       40.7      

63 Omaha 650,000 150 22     10        12        19         28          34        37       

64 Albuquerque 640,000 160 25     11        13        21         33          42        50       

65 El Paso 631,000 120 22     9          9          17         28          31        32       

66 Springfield, MA 586,000 220 24     10        11        19         32          36        41       

67 Toledo 571,000 170 22     10        11        19         29          33        34       

68 Sarasota 562,000 140 24     11        12        19         32          34        38       

69 Grand Rapids 545,000 170 24     11        12        19         33          41        46       

70 Bakersfield 545,000 100 25     9          11        18         32          35        35       

71 Baton Rouge 536,000 220 28     11        13        22         36          49        54       
:

Pop 

Rank

Mean

Cmt

Time

one‐way cmt time pctiles across tracts (min)

Metro Area population

Land

Area

(sq.mi)

Table 2: Metro One-Way Commute Times in 2000. The 10th and 25th percentile commute

times across tracts are with respect to the 25th percentile commute time within each tract. The 50th

percentile commute times are with respect to the interpolated 50th percentile commute time within each

tract. The 75th, 90th, and 95th commute times are with respect to the 75th percentile commute times within

each tract. Aggregate and individual metro mean times are the population-weighted mean of tract means.

*Mean values over the intermediate-sized metros exclude Baltimore due to its adjacency to Washington D.C.
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The representative metro has two purposes. First, is serves as the sole basis for calibrating

structural weighting and cost parameters that are determined by targeting endogenous outcomes.

For example, the weighting of the housing component of assumed CES utility is calibrated by

targeting a mean housing expenditure share in the representative metro. Similarly, the per mile

numeraire commute cost is calibrated by targeting a per mile-share of wage income in the repre-

sentative metro. Second, the representative metro establishes the reservation utility and perimeter

land price that must be matched by each open metro.

As in the existing AMM literature, the representative metro generates patterns of land usage

such as gradients of population density, land price, and housing price that are downward sloping as

one moves outward from the CBD. The house price gradient is simply the bid-rent curve that allows

utility to remain constant as commute time increase. The population density gradient reflects the

interaction of housing demand and supply required to support the house price gradient. Because

utility and housing production are modeled as constant elasticity of substitution rather than Cobb-

Douglas or linear, closed form solutions are not possible. For this reason, each metro is constructed

using rings with discrete width, as is typical in the quantitative AMM literature.

There are several large payoffs to the additional modeling of the open metros. Most important

is that the effect of varying key assumptions and deep structural parameters can often be seen

only in the open metros. For example, the assumption of whether commuting speed is subject

to congestion helps determine the calibrated weight on leisure in utility. As will be illustrated

in Section 7, the effect on land use from assuming no traffic congestion rather than significant

traffic congestion is essentially “undone” in the representative metro by an offsetting decrease in

the weight on leisure. This offset is needed to match the calibration target that residents in the

representative metro on average desire to work 40 hours per week. Without the offset, residents in

the representative metro unsurprisingly want to use some of their saved commute time to increase

their leisure time. In sharp contrast, the same assumption of no traffic congestion can boost several

fold the population of an open metro with moderately high TFP.

Two additional payoffs concern the potentially “black box” nature of quantitative research.

One way of illuminating the black box is to quantitatively model the effect of characteristics that

vary across metro areas. The present paper focuses on variations in the total factor productivity

with which numeraire is produced. Unsurprisingly, open metro population and land area increase

as open metro productivity increases relative to productivity in the representative metro. More

surprising is that open-metro land area asymptotes to an upper bound as open-metro productivity

increases from a moderately above-average level. Further plausible increases in relative productivity

increase open-metro population via population infill. Also surprising is that the effect of metro

productivity on metropolitan population proves highly asymmetric. Increases in productivity to

even implausibly high relative levels increase population log linearly. But decreases in productivity

to levels only moderately below that in the representative metro cause open-metro population to

plunge to near zero. Importantly, such quantitative results can be matched to underlying theoretical
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considerations such as the high convexity of marginal product and marginal utility that are implied

by CES specifications with elasticities of substitution less than 1.

A second way of illuminating the potential black box is to quantitatively model how various

assumptions and calibration choices that hold in both the representative and open metros mediate

the effects of exogenous variations across metros, such as to productivity. For example, the baseline

setup assumes that commute speed endogenously slows from 65 mph to 10 mph as traffic volume

increases. An alternative assumption is that commute speed is constant at its baseline average in

the representative metro (37mph). For an open metro with TFP moderately higher than TFP in

the representative metro, the absence of congestion increases population threefold. As a second

example, a baseline assumption is that individuals are required to work 40 hours per week. Instead

allowing individuals to choose their own hours increases the population of an open metro with

moderately high TFP by more than 10 percent. In addition, the fixed hour requirement causes

individuals with long commutes to have a marginal value of leisure time that far exceeds their wage.

More generally, quantitative analysis can be used to sign first and second total derivatives

across exogenous model parameters.

3.1 Setup

The setup is static and so should be interpreted as a long-run steady state. Each metro, represen-

tative and open, consists of a central business district where production of a numeraire good takes

place and a finite number of concentric residential rings surrounding it. The CBD has exogenous

radius, d̂0, both in the representative and in each open metro. The width of each ring except

the outermost one is also exogenous and identical across metros,
̂̃
dj . The number of rings in each

metro, J , and the width of the outermost ring in each, d̃J is endogenously determined. For the

representative metro, J and d̃J are immediately implied by the assumed land area. But for the

open metros, land area is itself endogenously determined.5

Rather than being a complete circle, each metro has an identical exogenous span of occupation,

θ̂m ≤ 360◦. Calibrating metro settlement as occupying considerably less than a full circle is

essential to simultaneously matching observed land areas and commute distances.

Utility is assumed to be a function of numeraire consumption, housing consumption, and

leisure. The explicit inclusion of leisure in utility is essential to the calibration. More typically,

5A quick guide to notation: Decorative hats, such as in d̂0, denote variables with exogenous values that are identical
across the representative and open metros. Decorative tildes denote “local” variables that apply within a ring but
that are also experienced by residents in other rings. For example, s̃j denotes the speed of commute traffic across
ring j. The one exception to this is Ũ , which is the housing-numeraire sub-compoent of utility. The combination of

a hat on top of a tilde denotes a local variable that is exogenous and identical across metros. For example,
̂̃
dj is the

identical width of the jth ring in each metro. For the case of ring width, the exogenous and identical characteristics
no longer hold for the outermost ring of each metro, whatever ring number that may be. In other words, the width of
the outermost residential ring for each metro is d̃J . A decorative overbar denotes a population-weighted mean value.
For example, n denotes the population-weighted mean number of work hours ((

∑J
j=1 POPj · nj)/POP ). In order to

not further complicate notation, subscripts to denote the metro to which a variable applies are typically dropped.
But occasionally they are included. For example, rLm,j denotes the price of land in ring j of metro m.
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leisure is implicitly modeled by assuming there is a numeraire opportunity cost per unit of commute

time. Labor mobility is perfect and so utility must be equal across and within metros. Endogenously

determined prices and commute times determine individuals’ desired labor supply. However, a

baseline assumption is that individuals are required to supply a fixed number of hours.

Production of the numeraire good combines land, capital, and aggregate work hours using a

Cobb Douglas production technology with total factor productivity that exogenously varies across

metro areas. Housing production combines land and capital in each residential ring using a CES

technology. Capital is residually determined by an exogenously specified rental rate. As will be

explained immediately below, a key baseline assumption is that capital and land rents are paid

to absentee owners. Alternatively, capital and land rents can be rebated lump sum to individuals

without respect to where they live.

Figure 3 illustrates the setup. It includes additional variables that will be described in the

subsections below.

3.2 Production

Numeraire production is Cobb Douglas in land, capital, and aggregate hours of labor input,

X = A · LαL
0 KαK

0 N1− αL − αK (1)

Aggregate labor hours is the sum of labor hours supplied by residents in each residential ring, j,

N =
J∑

j=1

POPj · nj (2)

Each factor of production is paid its marginal product, rL0 , rK0 , and w. CBD capital is determined

residually by achieving an exogenously-specified required rent, rK0 = r̂K .

Housing in each residential ring is produced with a constant elasticity of substitution between

land and capital. For housing, capital can alternatively be interpreted as structure. Productivity

is assumed to be equal across and within metros and so it is not explicitly parameterized,

Hj =

(
ηL Lj

σL − 1
σL + (1− ηL) K

σL − 1
σL

j

) σL

σL − 1
(3)

Labor is excluded from housing production so that all work remains located in the CBD. Land and

capital are each paid their marginal revenue product,

rLj = pj ·
∂Hj

∂Lj
rKj = pj ·

∂Hj

∂Kj
(4)

As in the CBD, the quantity of capital in each ring is residually determined such that rKj = r̂K .

All payments to land and structure are paid to absentee owners. For housing, this is equivalent

to paying rent to an absentee landlord. In the quantitative literature, the rent a household pays is
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Figure 3: Metro Structure. Figure shows the layout of typical metro, either representative or open.

(Footnote 5 explains notation conventions.)

often instead assumed to be rebated to that household on a nominally lump sum basis. But while

the household takes the rebate as predetermined in choosing how much housing to consume, the

rebate does continue to affect the household’s decision of where to live. In particular, the household

considers that by moving to a location where the price of housing is high, it will receive a larger

rebate. In consequence, significantly more households choose to live in high-priced locations than

would be the case if there were no positive wealth transfer from doing so.6

6Alternatively, all households can be assumed to have equal shares in a single firm or mutual fund that owns
all land and capital in all metros. Households, wherever they live, would receive a lump sum transfer equal to per
household aggregate land and capital payments across all metros in the economy. A disadvantage of this alternative
assumption is that it lessens the importance of wage income in determining the distribution of population across
metros. In particular, a system-wide rebate of this sort would obviate the result, described in Section 6, that there
is a relatively high threshold productivity level, Am, for a metro to have positive land area.
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3.3 Individuals

Utility is nested constant elasticity of substitution. Housing services and numeraire consumption

are combined in an inner nesting. Leisure, `, and the housing-numeraire hybrid are then combined

in an outer nesting to give actual utility,

Ũj =

(
ηh h

σh − 1
σh

j + (1− ηh) x
σh − 1
σh

j

) σh

σh − 1
(5a)

Uj =

(
η`
(
`j − `min

)σ` − 1
σ` + (1− η`) Ũ

σ` − 1
σ`

j

) σ`

σ` − 1
(5b)

The parameters weighting housing and leisure, ηh and η`, are constrained to lie strictly between 0

and 1. Modeling leisure as entering utility in a nested CES specification follows Aguiar and Hurst

(2007). Including a required minimum (i.e., a Stone-Geary specification) serves as a normalization

to allow for necessities such as sleeping and eating. Equivalently, individuals’ time budget could be

reduced by `min.

Leisure is derived both from leisure time, t`j , and from commute time, tcj ,

`j = t`j + λ · tcj λ ≤ 1 (6)

The leisure component to commuting time makes it possible to match empirical estimates that,

on average, individuals are willing to pay only half their wage rate to marginally shorten their

commutes (Small and Verhoef, 2007). A possible explanation is that drivers enjoy listening to their

radio and talking on their cell phones (hand free). If individuals can choose their work hours, (6)

implies that they will value their commute time at (1− λ) times their wage. An alternative inter-

pretation of individuals’ unwillingness to pay their full wage to marginally shorten their commute

is that they dislike working time more than they dislike commuting time. To the extent that this

latter interpretation is correct, including a positive leisure component to commuting will overly

flatten bid-rent curves.

Individuals face the budget constraint that their consumption expenditure not exceed their

disposable income,

xj + pj · hj ≤ w · nj − δ · dj · trips (7)

The first right-hand-side term is simply the wage times weekly work hours. The second right-hand-

side term represents weekly commute costs, which are the product of the cost per mile times the

distance of each one-way trip times the number of weekly trips.

Similarly, individuals face the weekly time constraint that work time plus commute time plus

leisure time not exceed total weekly hours.

nj + tcj · trips + t`j ≤ 24 · 7 (8)
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Under the baseline set of assumptions, weekly work hours are required to be supplied inelas-

tically. Specifically, individuals in all rings of all metros work nj = n̂ hours per week. Abstracting

from household labor force participation, a fixed number of work hours is likely to be more realistic

than allowing individuals to offset longer commutes with shorter work hours. Under the latter as-

sumption, the marginal valuation of leisure will be identical within a metro, regardless of commute

time. If there is no leisure component to commuting, reduced work time offsets commute time one

for one.

3.4 Commuting

Individuals drive directly from the outer perimeter of their residential ring to the outer perimeter

of the CBD, whatever their circumference location. The model thus abstracts from the number

and placement of highway rays and the arterial segments of commutes. Having commutes end at

the perimeter of the CBD lessens the commute distance driven at the most congested speeds and

so minimizes the sensitivity of outcomes to the calibration of CBD radius.7

As described above, the numeraire cost of a one-way commute is the per-mile cost, δ, times the

distance from the outer perimeter of one’s residential ring to the edge of the CBD, dj . The per mile

cost is calibrated to achieve a targeted mean ratio of commute cost relative to wage income in the

representative metro. Distance is simply the sum of the ring widths required to reach the perimeter

of the CBD. More realistically, numeraire commute costs also depend on congestion: sitting in

traffic uses more gasoline per mile than driving at a free-flow speed. Including a numeraire cost to

congestion would steepen the bid rent curve across rings near the CBD, which is where speeds are

slowest.

A baseline assumption is that commute speed endogenously decreases with the volume of

traffic. Let Vj denote the volume of commuters passing through residential ring j during each daily

commute,

Vj ≡
J∑

i=j

POPi

The speed through any residential ring depends on highway capacity through that ring, Ṽj , and

free-flow traffic speed, ŝf , according to the following standard formula subject to minimum and

maximum limits (Small and Verhoef, 2007) ,

1˜̃sj =
1

ŝf
·

1 + a ·

(
Vj

Ṽj

)b
 a, b > 0 (9a)

s̃j = min
(

max
(˜̃sj , smin

)
, smax

)
(9b)

7The requirement that commutes begin at the outer perimeter of residential ring is for technical reasons. Al-
ternatively assuming that households begin their commutes from the interior of a ring makes it more difficult to
quantitatively solve for the number of rings and the width of the outermost one.
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Highway capacity is assumed to endogenously depend on commute volume according to the

specification,

Ṽj = V̂ ·
(
Vj

V̂

)σV

0 ≤ σV ≤ 1 (10)

The term V̂ is an exogenously specified value at which road capacity volume exactly equals actual

commute volume. The term σV is the elasticity at which commute capacity is adjusted to meet

demand. Parameterizing σV to equal 1 is equivalent to assuming that speed is constant. Param-

eterizing σV to equal 0 is equivalent to assuming that road capacity is constant. While a fixed

highway capacity through a given residential ring may be realistic in an intermediate-time context,

it is difficult to rationalize in a static model meant to capture long-run outcomes (a temporal state-

ment). Similarly, it is difficult to rationalize an assumption that highway capacity does not increase

with the volume of traffic as commuters approach the CBD (a location statement). Intermediate

values of σV imply that speed decreases with commute volume.

The time to commute through any ring, t̃cj , is the inverse of the speed through that ring, 1
s̃j

.

Total commute time is the sum of the times required to pass through each residential ring, from

the innermost one through ring one in which one lives, plus a ring-invariant fixed component,

tcj =

j∑
1

t̃cj + t̂c (11)

4 Baseline Calibration

Key baseline parameters, which apply to all metros, and calibration targets, which apply only for

the representative metro, are shown in Table 3.8 An extensive discussion on the robustness of

outcomes to these is the subject of Section 7.

4.1 Population and Geography

The population and land area of the representative metro are respectively assumed to be 2.2

million and 700 square miles. These are the rounded average values for the functional St. Louis

and Pittsburgh metro areas, which together span the 48.9 through 51.1 percentiles of aggregate

U.S. metro population in 2000 as experienced by residents and so include the “median person”

(second column of Table 1).9 The fixed CBD radius and the span of occupancy are respectively

assumed to be 5 miles and 90◦. Together these parameters calibrate the share of representative

metro land area occupied by the CBD and the distance of the outermost commute. For the present

case, these are respectively 2.8 percent and 24.9 miles. The latter outbound commute consists

8The baseline calibration herein is superseded by that in “Moncentric City Redux,” Federal Reserve Bank of
Kansas City RWP 14-09.

9A revised calibration will likely use the mean values of the intermediate sized metros listed in Table 1. The
corresponding representative metro population would remain 2.2 million but the representative land area would be
550 square miles rather than 700 square miles.
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of driving through five inner rings with width 2 miles each, four intermediate rings with width

3 miles each, and an outermost ring with width 2.9 miles. The assumed span of occupancy is

small compared to quantitative monocentric models, which typically assume a full 360◦ span.10

But for the nine intermediate-sized metros enumerated in Table 1, Saiz (2010) estimates that an

average of 25 percent of land area within a 30 mile radius of the CBD is not developable due

to geographic constraints such as steep slopes and bodies of water. Within land area that can

be feasibly developed, suburban population density tends to be clustered along major highways,

which have been a main conduit for suburbanization (Baum-Snow, 2007a, 2007b). For example, in

St. Louis tracts with density above 500 persons per square mile approximately occupy only 120◦

around the CBD (Figure 1). In Pittsburgh, the corresponding span of occupancy is approximately

180◦ (Figure 2).

4.2 Utility

The utility specification, (5a) and (5b), requires the calibration of five parameters. The elasticity of

substitution between housing and the numeraire good, σh, is set to 0.85. This is the approximate

maximum likelihood point estimate based on median annual housing expenditure shares and median

gross rents in 2000 across 50 large metropolitan areas using data constructed by Davis and Ortalo-

Magné (2011).11 Several studies using micro data suggest that σh may be considerably lower.

Based on results from subsidizing rents for treatment groups of low income households, Hanushek

and Quigley (1980) report point estimates for σh of 0.45 from an experiment in Phoenix and 0.64

from an experiment in Pittsburgh. Using simulated method of moments applied to a structural

model of life-cycle housing consumption, Li et al. (2012) estimate σh to be 0.32.

The elasticity of substitution between leisure and the housing-numeraire hybrid, σ`, is set to

0.35. The criteria for this choice was to achieve a mean compensated elasticity of desired weekly

work hours, n∗j , with respect to wages in the representative metro of approximately 0.20, which is

the value suggested by a comprehensive survey of empirical literature reported in Reichling and

Whalen (2012). This targeted Frisch elasticity applies to the intensive margin only and so does not

include the effect of wages on labor force participation. A baseline assumption is that actual labor

hours, nj , are fixed and so the elasticity of observed labor hours with respect to the wage is zero.

The weighting on housing, ηh, is calibrated such that the mean housing share of consumption

expenditures in the representative metro, µ ≡ (p ·h)/(x+p ·h), equals 18 percent. This is consistent

with housing expenditure shares reported in the U.S. consumer expenditure survey and in U.S.

NIPA accounts but is on the low side compared to the range of values across metros reported in

Davis and Ortalo-Magné (2011).

The weighting on leisure, η` is calibrated such that the mean number of desired hours in the

10An exception is Arnott and MacKinnon (1977b), who assume a semicircular metro.
11Excluding San Jose, which is a considerable outlier, considerably lowers the maximum likelihood estimate of σh.

So too does using contract rents, which exclude imputed utility expenses.
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Description Notation Value/Target Rationale

Population & Geography

Population POP 2.2 million median U.S. metro resident

Land Area L 700 sq.mi. median U.S. metro resident

CBD Radius d0 5 mi arbitrary

Span of Settlement θ 90◦ s.t. outer commute ≈ 25 mi

Utility

CES, h and x σh 0.85 Davis and Ortalo-Magne (2011);
Li, Haiyong, Yang, Yao (2012)

CES, h-x hybrid and ` σ` 0.35 s.t. mean Frisch elasticity ≈ 0.20
(Reichling and Whalen, 2012)

weight on housing ηh

(
p·h

x+p·h

)
= 0.18 Consumer Expenditure Survey

weight on leisure η` n∗ = n̂ s.t. mean desired = required

min wkly leisure `min 70 hrs normalization

Production

housing
CES, L and K σL 0.85 literature survey

weight on land ηL

(
rL·L

rK ·K+rL·L

)
= 0.35 Davis and Heathcote (2007)

numeraire
land factor share αL 0.016 Jorgenson et al.

capital factor share αK 0.328 Jorgenson et al.

req wkly wkr hrs n̂ 40 Robinson and Godfrey (1999);
Aguiar and Hurst (2007)

Commuting

wkly one-way commutes trips 10

per mile cost δ δ
w · n = 0.0004 s.t.

(
δ · d · trips
w · n

)
≈ 0.05 (Albouy

and Lue, 2014)

leisure content λ 0.50 Small and Verhoef (2007)

speed
free/max/min ŝf/ŝmax/ŝmin 75/65/10 mph arbitrary

fixed time component t̂c 10 min s.t. mean commute ≈ 30 min

road capacity

benchmark capacity V̂ 750 ths arbitrary

elasticity w/ volume σV 0.80 arbitrary

1

Table 3: Calibrated Values and Targets for the Representative Metro. A bar decoration

denotes a population-weighted mean. The implied values for the structural parameters, ηh, η`, ηL, and δ,

are used to calculate outcomes in open metros.
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representative metro, n∗rep, is 40. This is consistent with average hours for working males in 1985

and 2003 respectively reported in Robinson and Godbey (1999) and Aguiar and Hurst (2007). In

any case, representative and open-metro outcomes are relatively insensitive to the calibration of η`.

Much more important is the relationship between desired work hours and required work hours, n̂.

The latter is set to equal n∗rep.

4.3 Production

Assumed Cobb Douglas production of the numeraire good requires setting the factor income shares

accruing to land and to capital, αL and αK . The factor income share for labor is determined

residually. The land share is assumed to be 1.6%. This value is a weighted average across a

large number of industries using intermediate input shares estimated by Jorgenson, Ho, and Stiroh

(2005).12 It is nearly identical to the 1.5% land share that Ciccone (2002) suggests is reasonable for

the manufacturing sector. One third of remaining factor income is assumed to accrue to capital;

two thirds are assumed to accrue to labor (Gollin, 2002).

Production of housing services requires calaibrating the elasticity of substitution between land

and structure, σL, and the relative weight on land, ηL. The former is set to 0.85, which is meant

to balance the wide range of empirical estimates. A survey by McDonald (1981) reports preferred

estimates from twelve different studies ranging from 0.36 to 1.13. Updating this research, Jackson,

Johnson, and Kaserman (1984) estimate the elasticity to lie somewhere between 0.5 and 1. More

recently, Thorsnes (1997) argues that a unitary elasticity of substitution cannot be rejected. The

weight on land is calibrated such that the household-weighted mean share of housing factor income

in the representative metro, ν ≡ (rL · L)/(rL · L + rK ·K), equals 0.35 as suggested in Davis and

Heathcote (2007).13

4.4 Commuting

The number of weekly one-way trips under the baseline calibration is assumed to be 10. The

quantitative implications of making fewer weekly trips are described in Section 7. The per mile

commute cost (which applies in all metros), δ, is calibrated to equal 0.04 percent of weekly wage

income in the representative metro. This target is chosen so that the implied mean weekly commute

cost in the representative metro approximately equals 5 percent of wage income there, which is the

estimated value reported in Albouy and Lue (2014).14

The leisure content of commuting time, λ, is set to 0.5. If individuals choose their work hours,

12The industry-specific intermediate input estimates, which are not included in the publication, were kindly pro-
vided by the authors.

13Davis and Heathcote find that between 1975 and 2004, land accounted for an average of 47 percent of the sales
value of the aggregate U.S. housing stock. Adjusting for the fact that structures depreciate but land does not brings
the land share down to approximately 35 percent.

14The per mile numeraire cost is not explicitly targeted to match a mean share of wage income because doing so
makes it significantly more difficult to get solutions.
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this calibration implies that all individuals across and within metros are willing to pay at exactly

50 percent of their wage rate to marginally shorten their commute. This marginal valuation of

commute time matches the benchmark estimate reported in Small and Verhoef (2007). Under the

baseline assumptions, however, workers are required to supply a fixed number of weekly hours that

is calibrated to match mean desired hours in the representative metro (n̂ = n∗rep) and so most

workers’ willingness to pay will not exactly equal 50 percent. But n∗m,j remains close to n∗rep across

and within metros that have TFP similar to or below that of the representative metro. Residents

of these will have a marginal willingness to pay close to 50 percent of their wage (whatever wm

may be). Similarly, individuals living in the inner rings of metros with TFP significantly higher

than that of the representative metro have n∗m,j close to n∗rep and so value marginal commute time

at close to 50 percent of their wage.

For the equation determining commute speeds, (9b), the technical parameters, a and b are

respectively set 0.2 and 10, which are standard values for highway travel (Small and Verhoef,

2007). “Free flow” speed, the speed at which traffic is capable of flowing absent any congestion

is set to 75 mph. This implies that commute speed when actual commute volume through a ring

equals assumed highway capacity will be 62.5 mph. Commuters are law abiding and so their

maximum actual speed is set to 65 mph. The minimum commute speed is set to 10 mph. To urban

commuters accustomed to sitting in gridlock traffic, this minimum might seem overly optimistic.

But in metros where 10 mph commuting traffic is typical, other transportation modes such as

walking and subways are likely to be (endogenously) available.15 Gradients and total population

of open metros with TFP at least moderately above that of the representative metro are especially

sensitive to the assumed minimum speed.

The benchmark level at which assumed highway capacity matches actual highway volume, V̂ ,

and the elasticity with which (long-term) highway capacity adjusts to commute volume, σV , are

arbitrarily set to 750 thousand and 0.80. Figure 4 shows the implied relationship between commute

speed and commute volume. Also shown is the implied speed for a lower assumed elasticity, σV =

0.65. Outcomes under this lower elasticity are described in Section 7.

5 Baseline Quantitative Results

The first subsection below describes how population density, land prices, house prices, and house

expenditure vary within a system composed of one representative metro, one low-TFP metro, and

one high-TFP metro. The second subsection then measures the fit of the calibrated model to

observed metro outcomes.

The differences in open-metro productivity are modeled as exogenous, which superficially con-

trasts with the large urban economics literature on agglomeration. In a deeper sense, however,

the exogenous modeling of productivity complements models of agglomeration. From a quanti-

15Modeling multi-modal commuting is a priority for future research.
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Figure 4: Commute Speed, Commute Volume, and Highway Capacity. Figure shows

commute speed as a function of commute volume when highway capacity is itself assumed to be a function of

commute volume. The curves are drawn for two alternative elasticities. The baseline calibration sets σV to

0.80. An alternative calibration, discussed in Section 7, sets σV to 0.65. In both cases, capacity is assumed

to equal volume at a daily level of 750 thousand commuters.

tative perspective, the exogenous productivity levels should be interpreted as what is required to

support observed differences in population, land area, and population density. In the real world,

such required differences almost surely arise from non-agglomerative metro attributes multiplied by

agglomerative ones. The production functions for numeraire and housing can easily be generalized

to allow for endogenous components to productivity.16

5.1 A System of Three Metros: Representative, Low-TFP, and High-TFP

Comparing outcomes within and across the three metros yields a number of quantitative and

qualitative insights. As stressed in the introduction, caution is required in interpreting the three

metros below as comprising a system. The three satisfy all general equilibrium criteria for mutually

consistent outcomes in the presence of perfect mobility and linked perimeter land prices. But the

16In a quantitative framework without internal metro structure, Rappaport (2008b) illustrates how agglomerative
TFP multiplies differences in consumption amenities.
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Wage (relative) 0.91 1.00 1.21

Population 510,000 2,200,000 6,890,000

Radius

         cbd  |  metro    5.0 mi 18.4 mi 5.0 mi 29.9 mi 5.0 mi 36.9 mi

Land Area 

         cbd  |  metro  20 sq.mi 265 sq.mi 20 sq.mi 700 sq.mi 20 sq.mi 1,070 sq.mi
 
Metro Pop Density

(pop‐wghtd mean) 2,300 pop/sq.mi 4,700 pop/sq.mi 20,600 pop/sq.mi
 
Res Ring Pop Density

       max   |   min 3,700 pop/sq.mi 1,300 pop/sq.mi 9,900 pop/sq.mi 1,200 pop/sq.mi 50,400 pop/sq.mi 1,000 pop/sq.mi
 
Gradients (fitted)

   density  |  p ‐0.093 ‐0.037 ‐0.090 ‐0.038 ‐0.128 ‐0.058

            rL   |  p∙h ‐0.114 ‐0.009 ‐0.110 ‐0.009 ‐0.153 ‐0.011

Low‐TFP Open Metro
Alow = 0.92

Representative  Metro
Arep = 1

High‐TFP Open Metro
Ahigh = 1.16

Table 4: Summary Metro Outcomes. Italics denote directly calibrated values. (CBD land areas

follow immediately from the assumed 5 mile cbd radius and 90◦ span of occupancy.) Gradients are measured

as semi-elasticities based on a regression of the log of the outcome on the distance from the perimeter of the

CBD.

combined population of the three metros is determined residually.

The low-productivity open metro is assumed to have numeraire TFP that is 0.92 times that

of the representative metro. The high-productivity open metro is assumed to have numeraire TFP

that is 1.16 times that of the representative metro. Under the baseline calibration, these imply

respective wages 0.91 and 1.21 times the wage in the representative metro. This range of wage

variation is well within that estimated in Albuoy (2009) after controlling for observable human

capital. As described in the previous section, the representative metro is assumed to have 2.2

million residents and occupy 700 square miles. The endogenous population and land area of the

low-TFP metro are 510,000 and 275 square miles. The same for the high-TFP metro are 6.9 million

and 1,100 square miles. Table 4 summarizes these and other aggregate metro outcomes.

Population density, house price, land price, and housing expenditure gradients under the base-

line calibration and assumptions are shown in Figure 5. The horizontal axis in each panel measures

the distance from the perimeter of each residential ring to the border of the CBD. For the represen-

tative metro, the assumed 700 square mile total land area, 90◦ span of occupancy, and 5-mile CBD

radius together imply an outer commute distance of 24.9 miles. The low-TFP and high-TFP metros

are similarly assumed to have a 90◦ span of occupancy, and 5-mile CBD radius. The respective

endogenous outer commutes are 13.4 miles and 31.9 miles.

Within each of the four panels, the low-productivity gradient is primarily a downward shift

of the representative gradient together with a shorter outermost commute. Each of the high-
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Figure 5: Population Density and Price Gradients. Figure shows log population density, log

relative prices, and log total housing expenditure for each residential ring under the baseline calibration and

set of assumptions. The middle line in each panel corresponds to the representative metro. The lower and

upper lines respectively correspond to open metros with low and high relative TFP in the production of the

numeraire good. Metro population and fitted gradients are reported in parentheses.
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productivity gradients is primarily an upward shift of the respective representative gradient together

with a longer outermost commute. At closer commute distances, each higher productivity gradient

is also at least moderately steeper than the corresponding representative metro gradient. This is

especially true for the house price gradient, reflecting slow commute speeds at near distances and so

large incremental increases in commute time from living one additional residential ring away from

the CBD. By assumption the low- and high-TFP metros have outermost-ring land prices equal to

that of the representative metro (Panel C: identical lowermost point of the three gradients). By

implication, outermost-ring house prices are equal across metros because both input prices are the

same (Panel B).

For each metro type in each of the four panels, gradients are always steepest for land prices

and next steepest for population density. For example the representative metro has land price

gradient, γr, and population density gradient, γdensity, respectively equal to -0.11 and -0.09. The

representative-metro house price gradient is considerably flatter (γp = -0.04). Its more gradual

falloff reflects households’ willingness to substitute from housing to numeraire consumption and

developers’ ability to substitute from land to structure inputs. The housing expenditure gradients,

which correspond to observed rents and sales prices, are nearly flat. This reflects the assumed near

unitary elasticity of substitution between housing services and numeraire consumption in utility (σh

= 0.85). The small downward slope that remains primarily arises from the decrease in disposable

income associated with the per mile commute cost.

Ring segment commute speeds, s̃j , and one-way commute times, tj , are shown in Figure 6.

For the commute speeds, it is helpful to think of the inbound commute (moving from right to left

in Panel A). In the representative metro, speed through the outermost 9 miles of the commute,

which correspond to the outermost three residential rings, is at its maximum value of 65 mph. The

“entry” of additional commuters at the perimeter of the fourth-from-outer residential ring increases

volume relative to highway capacity sufficiently to bring representative-metro commute speed down

to 59 mph. Moving inward toward the CBD, commute volume continues to increase faster than

does highway capacity thereby slowing commute speed. Across the innermost residential ring of

the representative metro, speed has slowed to 28 mph. In the low-TFP metro area, volume remains

sufficiently below capacity for speed to be at its maximum value for the entire commute. In the

high-TFP metro area, commute speed is at its maximum for the outer 7 miles of the commute.

Continuing toward the CBD, speed rapidly slows. Speed during the final 6 miles is at is assumed

floor of 10 mph.

Of particular importance for one-way commute times is the variation in commute speeds across

the three metros at identical distances from the CBD. For the low-TFP and representative metros,

innermost-ring commutes are respectively 12 and 14 minutes, most of which is accounted for by

the assumed 10 minute fixed component. In the high-TFP metro, the innermost commute time is

22 minutes. More generally, longer relative commute times in the high-TFP metro primarily arise

from slower commute speeds rather than commutes from further away. For example, the one-way
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Figure 6: Commute Speeds and Time. Figure shows commute speed through each residential ring

and one-way commute times.

commute from a distance 10 miles from the CBD takes 27 minutes in the representative metro but

66 minutes in the high-TFP metro.

Gradients for numeraire consumption, housing consumption, and leisure time are shown in Fig-

ure 7. Numeraire and housing consumption values are normalized by the mean level of consumption

in the representative metro, xrep and hrep.

Numeraire consumption at any given commuting distance is always highest in the high-TFP

metro, reflecting higher numeraire wages there (Panel A). In each metro, the numeraire consumption

gradient slopes downwards. In part this reflects the hit to disposable income from numeraire

commuting costs. For example, disposable income (total income minus numeraire commute costs)

of someone living in the outer ring of the representative metro is 9 percent below that of someone

living in the innermost ring of the representative metro. In part the downward slope reflects

substitution from numeraire to housing consumption as the price of housing decreases.

Conversely, housing consumption at any given commuting distance is highest in the low-TFP

metro (Panel B). In each metro, the housing consumption gradient slopes upward. As is intuitive,

this increase in housing consumption with commute distance is driven by the steep falloff in the

price of housing and the associated income and substitution effects. These dominate the negative

effect from the falloff in disposable income. Because σh is calibrated to be less than 1, the housing

share of consumption expenditure, µm,j , falls with the price of housing and so with commute

distance (not shown). For the representative metro, this decrease is moderate: from 18.9 percent

in the innermost ring down to 17.0 percent in the outer ring. (The baseline calibration targets µrep
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Figure 7: Consumption Gradients. Panels A and B show numeraire and housing consumption

relative to the mean value of each in the representative metro. Panel C shows weekly leisure time above its

assumed minimum value of 70 hours. Panel D shows the marginal value of leisure and leisure time relative

to the wage in the representative metro (solid lines) and relative to the wage in the high-tfp metro (dashed

line).
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to be exactly 18 percent). In the high-TFP metro, the decrease in µ is larger: from 21.1 percent in

the innermost ring down to 17.0 percent in the outer ring.

Leisure time at any commuting distance, t`j , is always highest in the low-TFP metro and lowest

in the high-TFP metro (Panel C). Leisure time falls off especially sharply in the high-TFP metro

due to the traffic congestion there. Because commuting time is calibrated to include a 50 percent

leisure component, total leisure, `j , falls off only half as steeply as does leisure time (not shown).

The solid-line gradients in Panel D show individuals’ marginal valuation of leisure and leisure

time normalized by the wage in the representative metro.17 If individuals could work their desired

hours, the marginal valuation of leisure would be pinned down by a metro’s wage. In consequence,

total leisure and its marginal valuation would be equal within metros. Each of the displayed

gradients would then be exactly horizontal. The gradient for the representative metro would be

horizontal at a value of 1. But with hours required to be supplied inelastically, leisure decreases and

its marginal valuation increases with commute time and so the gradients in Panel D are upward

sloping. p The lower marginal valuations of leisure in the low-TFP metro and higher valuations in

the high-TFP metro in part reflect differences in numeraire wages and hence differences in n∗m,j for

a given commute time. In addition, commute times at any given commute distance are shortest

in the low-TFP metro and longest in the high-TFP metro, which further pushes apart marginal

valuations.

At commute distances of 19 miles or higher, the marginal valuation of leisure in the high-

TFP metro is at least twice that at the same distances in the representative metro. These large

differences in marginal valuation occur despite the baseline assumption that commute time includes

a 50 percent leisure component. The dashed-line gradient in Panel D shows the marginal valuation

of leisure in the high-TFP metro relative to the high-TFP wage. The downward shift from the solid

high-TFP line reflects the higher denominator wage. At the outermost commute distance (which

corresponds to a commute time of 99 minutes), the marginal value of leisure is almost twice the

high-TFP wage. Individuals making such a commute would be willing to pay 1.5 times their wage

rate to marginally shorten it.18

A more comprehensive set of quantitative outcomes within and across each of the metros is

enumerated in Table 5. Italicized numbers represent moments that are directly targeted in the cal-

ibration or else immediately implied by it.19 Flagging these helps distinguish between assumptions

17The marginal valuation of leisure is equivalent to (∂U/∂`)/(∂U/∂x). The numerator also equals the marginal
value of leisure time because ∂`/∂tc = 1. Individuals’ desired number of hours, n∗

j , is determined by equating the
marginal utility of leisure time divided by its price (i.e., the wage) to the marginal utility of numeraire consumption.

18For comparison, Small, Winston, and Yan (2005) estimate that freeway commuters in Orange County CA have a
median marginal value of commute time that is approximately equal to their wage. If commute time indeed included
a 50 percent leisure component, they would have a marginal value of leisure 1.5 times their wage. For the calibrated
high-TFP metro, a one-way commute from the sixth residential ring (13 miles, 55 minutes) has a marginal value of
leisure equal to 1.5 times the high-TFP wage and so a marginal valuation of commute time approximately equal to
the high-TFP wage. Small et al. note that commuters using the specific freeway segment on which they base their
estimate typically have long commutes.

19An example of a moment that is “immediately implied” is the mean unitary marginal value of leisure relative to
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and results. Four outcomes particularly stand out.

First, the land share of housing factor income, νm,j , varies considerably across and within

metros (first horizontal block, top row). Within each metro, νj decreases moving outward from the

CBD as the price of land decreases. Across metros, the mean land income share, νm is highest in the

high-TFP metro, where the average price of land is highest. Both of these patterns follow directly

from the assumed complementarity of land and structure in housing production. More surprising

is the broad quantitative range of the land factor share: from 0.30 in the outer ring of all three

metros up to 0.47 in the innermost residential ring of the high-TFP metro. This wide range occurs

notwithstanding the relatively high assumed elasticity of substitution between land and structure

(σL = 0.85). The “explanation” is the extremely wide variation in land prices within and across

metros. In the high-TFP metro, for example, the price of land in the innermost residential ring is

100 times the price of land in the outermost residential ring (fifth horizontal block, middle row).

Second, the price elasticity of housing supply, εsh, also varies considerably across and within

metros (first horizontal block, bottom row). Within the high-TFP metro, εsh increases from 0.97 in

the innermost residential ring up to 1.96 in the outermost ring. Across metros, the mean housing

supply elasticity, εsh, ranges from 1.27 in the high-TFP metro up to 1.78 in the low-TFP metro.

Across the three metros, εsh is identical in the outermost ring, reflecting identical land and house

prices. More generally, the endogenous variation in εsh reflects the endogenous variation in land

prices which in turn follows from the assumed sharply decreasing marginal product of structure in

housing production.

For comparison, several empirical studies estimate that across metro areas, εsh ranges from close

to zero up to at least 3 (Green, Malpezzi, and Mayo, 2005; Saiz, 2010; Davidoff, 2013; Wheaton

et al., 2014). The quantitative range under the baseline calibration thus falls in the middle of this

estimated range. Achieving a near-zero supply elasticity, which estimates suggest characterizes

some especially crowded U.S. metros, would likely require the imposition of land-use constraints

such as those described in Glaeser, Gyourko, and Saks (2005). In addition, the static nature of the

current model upwardly “biases” supply elasticities. In a dynamic context, acquiring and tearing

down existing houses to make room for new construction can be expensive, even without land-use

restrictions.

Third, the price elasticity of housing demand, εdh, varies relatively little across and within metro

areas (second horizontal block, bottom row). This reflects the relatively high calibrated elasticity

of substitution between housing and numeraire (σh = 0.85) together with the endogenous variation

of house prices across and within metros that is an order of magnitude smaller than the variation

in land prices (fifth horizontal block, top row).

Fourth, the “Frisch” compensated elasticity of desired work hours with respect to wages, εn
∗

w ,

the wage in the representative metro, ((∂U/∂`)/(∂U/∂x)) /wrep. The direct calibration target is that the required
number of work hours n̂ equals mean desired hours in the representative metro, n∗

rep. A first order condition for
determining n∗ is that the marginal value of leisure equal the wage.
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mean ring 1 outer ring mean ring 1 outer ring mean ring 1 outer ring

1. HOUSE PRODUCTION

land factor share (ν) 0.32 0.34 0.30 0.35 0.39 0.30 0.41 0.47 0.30

capital per land (rel) 0.46 0.74 0.25 1.00 2.15 0.25 5.25 12.9 0.25

h srvcs per land (rel) 0.62 0.86 0.41 1.00 1.70 0.41 2.57 4.73 0.41

supply elasticity  (        ) 1.78 1.61 1.96 1.59 1.34 1.96 1.27 0.97 1.96

2. CONSUMPTION

numeraire (rel) 0.94 0.96 0.92 1.00 1.03 0.96 1.21 1.22 1.16

housing (rel) 1.15 0.98 1.34 1.00 0.72 1.41 0.76 0.39 1.69

housing expnd (rel) 0.90 0.95 0.85 1.00 1.10 0.89 1.33 1.48 1.08

h expnd share (μ) 0.174 0.179 0.170 0.180 0.189 0.170 0.195 0.211 0.170

h dmnd elasticity  (       ) ‐0.70 ‐0.70 ‐0.71 ‐0.70 ‐0.69 ‐0.71 ‐0.68 ‐0.67 ‐0.71

3. LEISURE

lsr hrs (wkly, above min) 55.1 56.0 54.3 53.2 55.6 51.0 48.0 54.3 41.6

lsr (wkly, above min) 56.6 57.0 56.1 55.6 56.8 54.5 53.0 56.2 49.8

MV lsr (rel to rep wage) 0.84 0.83 0.86 1.00 0.93 1.06 1.70 1.20 2.35

MV lsr (rel to own wage) 0.92 0.91 0.94 1.00 0.93 1.06 1.40 0.99 1.93

desired work hrs (wkly) 40.6 hr 40.8 hr 40.5 hr 40.0 hr 40.6 hr 39.5 hr 37.6 hr 40.1 hr 35.3 hr

Frisch elstcty (desired hrs) 0.19 0.19 0.19 0.20 0.19 0.20 0.24 0.20 0.28

4. ONE‐WAY 

distance 7.7 mi 2.0 mi 13.4 mi 12.4 mi 2.0 mi 24.9 mi 11.4 mi 2.0 mi 31.9 mi

hwy segment speed* 65 mph* 65 mph 65 mph 51 mph* 28 mph 65 mph 11 mph* 10 mph 65 mph

avg commute hwy speed 65 mph 65 mph 65 mph 37 mph 28 mph 46 mph 12 mph 10 mph 22 mph

avg speed (incl fixed time) 25 mph 10 mph 36 mph 23 mph 8 mph 35 mph 10 mph 5 mph 19 mph

time 17 min 12 min 22 min 29 min 14 min 42 min 60 min 22 min 99 min

weekly cost (rel to w incm) 0.034 0.009 0.058 0.050 0.008 0.099 0.038 0.007 0.105

5. PRICES

housing (rel) 0.75 0.91 0.60 1.00 1.45 0.60 2.05 3.57 0.60

residential land (rel) 0.39 0.67 0.19 1.00 2.38 0.19 7.28 19.6 0.19

CBD land (rel) 0.21 1.00 3.80

Low‐TFP Open Metro

Alow = 0.92, wlow/wrep = 0.91 

Representative  Metro

Arep = 1

High‐TFP Open Metro

Ahigh = 1.16, whigh/wrep = 1.21

Table 5: Detailed Metro Outcomes. Relative values are with respect to the population-weighted

mean across the residential rings of the representative metro. Italics denote moments that are directly

targeted by the calibration or else immediately implied by it. Also italicized are unitary values that represent

a representative-metro outcome normalized by itself. *Highway segment speed: the starred value is the speed

through the segment in which the individual with the median-commute distance lives.
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is relatively constant across and within the representative and low-TFP metros. But it varies

meaningfully within the high-TFP metro: from 0.20 in the innermost residential ring to 0.28 in

the outermost one (third horizontal block, last row). This might seem counterintuitive given the

high marginal utility of leisure of outer ring residents in the high-TFP metro. But the elasticity

is measured for desired work hours rather than actual work hours. In the high-TFP metro, n∗j
ranges from 40.1 in the innermost residential ring to 35.3 in the outermost ring (third horizontal

block, next-to-last row). The higher Frisch elasticity in the outer rings primarily reflects that an

identical absolute increase in n∗ represents a larger percentage increase when n∗ is lower. The

higher Frisch elasticity in the outer rings is also partly driven by the lower disposable income there,

due to the numeraire per mile cost (fourth horizontal block, bottom row). Numeraire consumption

thus decreases and its marginal utility increases with commute distance. Partly offsetting this

is that housing consumption increases and its marginal utility decreases with commute distance.

Under the baseline calibration, the higher numeraire marginal utility from numeraire consumption

quantitatively dominates the lower marginal utility from housing consumption thereby causing a

larger marginal increase in n∗ in response to a compensated marginal increase in the metro wage.

5.2 Model Fit

As the description of results above and below is meant to illustrate, the present quantitative frame-

work can yield considerable qualitative insight into the determination of outcomes across and within

metropolitan areas. But for one to have much confidence in such insights, it is important that the

calibrated model sufficiently match corresponding observed outcomes.

By construction, representative-metro mean outcomes equal their targeted values for the land

share of housing factor income, the housing share of consumption, and desired work hours. By

trial and error, the representative-metro mean commute cost almost exactly hits its implicit target.

And as argued immediately above, the calibrated model implies a range for the price elasticity of

housing supply that is within the empirically-estimated range.

The calibrated model also does a reasonably good job at matching the variation in population

density and commute times across and within metros.

Figure 8 shows density percentiles along the representative and high-TFP metro gradients.

For example, the right-most marker along the representative-metro gradient indicates the commute

distance and population density of the household experiencing the 10th percentile population den-

sity within the representative metro. The left-most markers on the left-hand-side of the figure show

the average of the St. Louis and Pittsburgh tract densities at the labeled population percentile. In

other words the displayed 10th percentile marker is at average of the St. Louis 10th percentile den-

sity and the Pittsburgh 10th percentile density. These serve as benchmarks for the representative

metro density gradient. Density percentiles for each of Chicago, Los Angeles, and New York City

serve as benchmarks for the high-TFP metro density gradient.

The interdecile log population density range in the representative metro lies entirely within
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Figure 8: Quantitative versus Observed Population Density. Population density gradients

on the right are for the representative and high-TFP metros. Marked density percentiles on the left are for

actual metros. The average of the indicated percentile densities in Saint Louis and Pittsburgh benchmark the

representative metro. The percentile densities within Chicago, Los Angeles and New York City benchmark

the high-TFP metro.

and is more compact than the interdecile range of the Pittsburgh-St. Louis hybrid. This greater

compactness suggests that variations in other outcomes within the representative metro may be

similarly compact in comparison to the range of observed results within an intermediate-sized real

metro. A possible reason is the considerable homogeneity within the quantitative model, such as

ex ante identical households and the immediate adjacency of all households to radial commuter

highways. The interdecile log population density range in the high-TFP metro is slightly shifted

down from the corresponding inter-decile range in Chicago. Assuming a high relative TFP level of

1.19 rather than 1.16 shifts the high-TFP density gradient upwards to approximately match that

of Chicago and implies a total metro population of 8.5 million, which also approximately matches

that of Chicago.

Figure 9 shows analogous percentile commute times. For the representative metro, commute
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Figure 9: Quantitative versus Observed Commute Times. Commute time gradients on the

right are for the representative and high-TFP metros. Marked commute time percentiles on the left are for

actual metros. The average of the indicated percentile densities in Saint Louis and Pittsburgh benchmark

the representative metro. The percentile commute times within Chicago, Los Angeles and New York City

benchmark the high-TFP metro.

times at lower percentiles moderately exceed commute times at the same percentile averaged across

St. Louis and Pittsburgh. For example, the respective modeled and observed 10th-percentile com-

mute times are 18 minutes and 10 minutes. The shorter observed times may reflect commutes

from residences to work locations close to each other but far from the CBD. They may also reflect

individuals who walk to work. Recalibrating the fixed time component of commutes to be 5 min-

utes rather than 10 minutes should achieve a better fit. At higher percentiles, representative-metro

commute times approximately match the average values across St. Louis and Pittsburgh.

Commute times in the high-TFP metro significantly exceed commute times even in the New

York City metro area. For shorter-time commutes this is unsurprising. The New York metro area

is especially polycentric with large portions matching the interspersed residential and commercial

land use modeled in Lucas and Rossi-Hansberg (2002). Hence a large share of commutes will be
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very short, both in distance and time. More surprising is that the modeled longer-time commutes

significantly exceed long observed commutes in the New York City metro and elsewhere. In this

case, the measurement of observed commutes partly accounts for the difference. As described in

the empirical motivation section above, observed commute times at the 75th percentile and above

are measured by the 75th percentile commute time within each census tract. In other words,

the reported 90th percentile time is the 90th percentile across the tracts in a metro of the 75th

percentile commute time within in each tract. Alternatively measuring the 90th percentile time

within each metro by the 90th percentile time within each tract implies an observed value of 81

minutes in Chicago and at least 90 minutes in New York (the uppermost reported bin is for commute

times that exceed 90 minutes). The longer high-TFP commute times approximately match this

alternative observed measure.

6 The Effect of Productivity on Aggregate and Mean Metro Out-
comes

The previous section focused on how productivity affects outcomes both across and within metro

areas. The present section focuses only on outcomes across metros. Using the same baseline

calibration and set of assumptions as above, it shows how continuously varying productivity below

and above that of the representative metro affects aggregate metro population and land area and

how it affects mean population density, prices, and consumption.

Doing so yields two important results. First, open-metro land area asymptotes to a value

about twice that of the representative metro as its productivity increases without bound. Further

increases in productivity increase population through “infill.” Second, there is a relatively high

productivity threshold for a metro area to exist. At productivity levels below this threshold, the

price of potentially residential land falls below its agricultural value, as proxied by the perimeter

land price in the representative metro.

6.1 Quantities

The top two panels of Figure 10 show open-metro population, land area, and mean population

density as open-metro relative TFP varies from 0.76 to 1.42. As above, open-metro population

is pinned down by the equal utility requirement and open-metro land area is pinned down by

equal perimeter price requirement. The dashed vertical lines are drawn at relative TFP levels that

correspond to the benchmark low- and high-TFP metros described in the previous section.

Open-metro population, residential land area and mean population density each increase as

open-metro TFP increases. These positive relationships were implicit in the corresponding bench-

mark gradients shown in the previous section. More interesting is that open-metro land area and

outermost commute distance approximately asymptote to upper bounds as relative TFP rises from

33



4

6

8

10

12

14

16

18

0.76 0.84 0.92 1.00 1.08 1.16 1.24 1.32 1.40 1.48
Relative TFP

population

population
density

log(prs); log(prs/sq.mi)

‐4

‐2

0

2

4

6

8

10

0.76 0.84 0.92 1.00 1.08 1.16 1.24 1.32 1.40 1.48

Relative TFP

residential
land area

log(sq.mi)

0.6

1.0

1.4

1.8

2.2

2.6

0.76 0.84 0.92 1.00 1.08 1.16 1.24 1.32 1.40 1.48

Relative TFP

mean marginal 
val of lsr rel to 
own wage

mean(MV(lsrm)/wrep); mean(MV(lsrm)/wrep) 

mean marginal val of lsr 
rel to rep wage

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.76 0.84 0.92 1.00 1.08 1.16 1.24 1.32 1.40 1.48

Relative TFP

mean numeraire 
consumption

mean housing 
consumption

xm̄/xr̄ep;  hm/hrep

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.76 0.84 0.92 1.00 1.08 1.16 1.24 1.32 1.40 1.48

Relative TFP

wage

wm/wrep

46

48

50

52

54

56

58

0.76 0.84 0.92 1.00 1.08 1.16 1.24 1.32 1.40 1.48

Relative TFP

hrsmn (above min)

mean leisure time

mean leisure

Figure 10: The Effect of Productivity on Aggregate and Mean Quantities. Figure shows

the aggregate and mean open-metro outcomes as TFP in producing the numeraire good varies from its

level in the representative metro. Vertical dashed lines are drawn at the representative-metro and at the

benchmark low- and high-TFP relative values discussed in Section 5.
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a level moderately below 1.20 The outermost commute time proves to be the key characteristic

limiting land size. As speed becomes less sensitive to commute volumes, the asymptotic land area

increases. This underscores the importance of traffic congestion in driving outcomes.

Conversely, as relative productivity decreases moderately below 1, population and residential

land area quickly fall off to near zero. To support a population of at least 100 thousand people—a

reasonable threshold to merit “metropolitan” status—open-metro productivity must be no more

than 14 percent below that of the representative metro (Am/Arep ≥ 0.86). At this threshold,

metro residential land area is 52 square miles. At a productivity just 20 percent below that of the

representative metro, population is just 2,700 and residential land area is just 5 miles.

This sharp falloff in metro size follows from the required matching of perimeter land prices.

Because the price of capital is equal everywhere, perimeter house prices must be the same across

metros as well. And so there is a binding limit on how far house prices can fall to compensate for

low wages (Figure 11, top right panel, lower left). Conversely, there is a binding limit on how far

relative wages can drop because residents must still achieve the representative-metro level of utility

(Figure 10, middle left panel, lower left). To keep wages from falling below this limit, numeraire

production becomes extremely intensive in land input thereby driving down the marginal product

of CBD land and its price to near zero (Figure 11, bottom left panel, lower left).21

An additional salient characteristic of the open-metro outcomes is that mean leisure, mean

leisure time, and the marginal value of open-metro leisure relative to the open-metro wage each

transition from an approximately fixed level at relatively low productivities to a different approx-

imately fixed level at high productivities (Figure 10, bottom panels). The leveling at low relative

productivities reflects that at the maximum commute speed, the differences in commute time from

the outer residential ring (whatever it may be) to the CBD are a matter of just a few minutes. The

plateau at high relative productivity reflects that the majority of the population infill is to rings

from which commute speed is already at its minimum.

6.2 Prices

Unsurprisingly, mean residential land prices, house prices, and house expenditure increase as TFP

increases (Figure 11). Similar to the case of price variations within metros, the variation in means

across metros is an order of magnitude larger for land prices is an order of magnitude larger than

the variation in means for house prices and expenditures. As described immediately above, mean

prices are insensitive to productivity at levels below the threshold for metropolitan land use.

20Less approximately, land area and outermost commute distance eventually attain maximum values and then
decrease with further increases in TFP. Under the baseline calibration, these occur at a relative TFP of 1.80 and
respectively equal 1,390 square miles and 37 miles. As the open-metro population at such a high relative TFP is
207 million, it seems most appropriate to describe land area and outermost commute distance as asymptoting to an
upper bound over plausible relative TFP levels.

21With externally-funded transfers—such as Social Security, Medicare, and Medicaid—the threshold productivity
for metro land use would be lower. Threshold productivity levels are also inversely affected by the level of metro
consumption amenities (Rappaport, 2008b).
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Figure 11: The Effect of Productivity on Mean House and Land Prices. Figure shows

aggregate, mean, and CBD relative prices as TFP in producing the numeraire good varies from its level in

the representative metro. Vertical dashed lines are drawn at the representative-metro and at the benchmark

low- and high-TFP relative values discussed in Section 5.

A baseline assumption is that the CBD in each metro has an identical fixed radius and land

area. As a result, the price of land in each CBD will differ from the price of land in the surrounding

innermost residential ring (Figure 11, bottom right panel). In the representative metro, the price

of CBD land is nearly four times the price of innermost residential land (rLrep,0 >> rLrep,1).

As open-metro TFP increases above the representative level, the two prices quickly converge.

The primary reason is the sharp rise in rLm,1 as people crowd into the inner residential ring, due

both to the increase in metro population and to the increase in traffic congestion. This increase is

partly offset by an increase in rLm,0 as the marginal product of CBD land increases (both as a direct

consequence of the increase in TFP and as an indirect consequence from the implied increases in

labor and capital input). But because land is calibrated to have a very small share of numeraire
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factor income, the residential crowding dominates.22

7 Alternative Calibrations and Assumptions

A common criticism of quantitative models is that they are a “black box” in the sense that it

is difficult to divine the underlying mechanisms driving outcomes. To the extent that this is

true, quantitative models will fail to deliver intuition. In order to further remove opaqueness and

build intuition, this section describes population density and house price gradients for a number of

perturbations from the baseline calibration and assumptions. These perturbations include changing

the various elasticities of substitution, the calibration targets determining weights in the CES

housing production and utility functions, the requirement that hours be inelastically supplied, and

several key characteristics of commuting. For each perturbation, gradients are shown both for

the representative metro and for an open metro and the benchmark high-TFP metro described in

Section 5. In many cases the perturbations leave outcomes in the representative metro virtually

unchanged from baseline outcomes. In contrast, the perturbations typically have first-order effects

on outcomes in the high-TFP metro.

7.1 Perturbations to Utility and Production Elasticities

Population density and house price gradients from perturbing the elasticities of substitution in

utility and housing production are shown in Figure 12. Counterintuitively, the gradients for the

perturbed representative metros are indistinguishable from the gradients for the baseline represen-

tative metro (various colored lines versus thick navy line). For example, intuition suggests that

increasing the elasticity of substitution in utility between housing and the numeraire good, σh,

should steepen the population density gradient because individuals in the inner rings are more

willing to substitute away from housing. This does not happen in the perturbed representative

metro because the calibrated weight on housing, ηh, adjusts upward in order to continue to hit the

unchanged calibration target for the housing consumption share, µrep.
23

In contrast, the intuition on steepening does indeed hold in the high-TFP metro. For an

increase in σh to 0.95 (from 0.85), innermost density increases by 20 percent from its baseline value

(left panel, light blue gradient).24 In addition, the high-TFP population increases to 7.5 million

(versus 6.9 million under the baseline). Notice that there is no decrease in population density at

further distances. The reason is that residents there are already consuming five times the quantity

22The CBD radius and land area can be endogenized by requiring the price of CBD land to equal the price of inner-
ring residential land. Doing so generalizes the present setup to include the Rosen (1979)-Roback (1982) compensating
differential model with quantities described in Rappaport (2008a,b).

23Four parameters are calibrated by matching representative-metro targets: the weight on land in producing
housing, the weight on housing in utility, the weight on leisure in utility, and the per mile commute cost (ηL, ηh, η`,
and δ). For a change to either σh or σ` but not both, only the corresponding weight, ηh or η`, adjusts. For a change
to either σL or the per-mile commute cost target share of wage income, all four of these calibrated variables adjust.

24Because density is displayed as a logarithm, the vertical increase in the density gradient is relatively modest.
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Figure 12: Population Density and House Prices with Alternative Elasticities. Popula-

tion and gradients enumerated in parentheses are for the high-productivity open metro. The combination

calibration combines σh = 0.95, σ` = 0.25, and σL = 0.95. As described in the text, representative metro

gradients are essentially unaffected because of the adjustment of weighting parameters to match calibration

targets.

of housing consumed by individuals in the innermost ring. Even with less curvature of utility

than under the baseline calibration, further increases in housing consumption yield considerably

diminished marginal utility. Notice also that the price gradient is unchanged. This simply reflects

that as σh increases, individuals need less compensation for decreases in housing consumption from

already-low levels.

Decreasing the leisure elasticity from 0.35 to 0.25 steepens the the population-density gradient

for the high-TFP metro at far commute distances (left panel, high-TFP red line). For commute

times that are already fairly long, a lower value of σ` makes individuals less willing to tradeoff even

longer commutes for higher levels of housing consumption. Correspondingly, the price gradient also

steepens at far commute distances (right panel, high-TFP red line). In addition, the outermost

commute distance and total metro population modestly decrease (respectively, to 6.6 million and

29.8 miles from 6.9 million and 31.9 miles).

Increasing the housing-production elasticity, σL, makes it easier to shift away from scarce

land in producing housing and so accommodate a higher population at short commute distances
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without upward pressure on house prices. For the high-TFP metro, innermost-ring population

density increases by 50 percent and and total population increases to 8.2 million. But the price

gradient is unchanged.

Combining all three perturbations to the baseline elasticities causes some additional steepening

in the population density gradient (left panel, high-TFP pink line). High-TFP innermost density

doubles from its baseline value and total metro population increases to 8.7 million.

7.2 Perturbations to Utility and Production Weights

Figure 13 illustrates the effects of perturbations to the targets that calibrate the structural weighting

variables in utility and housing production. A first perturbation targets the mean housing share

of consumption expenditure in the representative metro, µrep, to be 0.15 rather than its baseline

value of 0.18 (red lines). A second perturbation targets the mean factor income share of labor

from housing production in the representative metro, νrep, to be 0.30 rather than its baseline value

of 0.35 (light blue lines). A third perturbations combines combines both of these (νrep = 0.30

and µrep = 0.15; orange lines). A fourth perturbation targets mean desired work hours in the

representative metro, n∗rep, and required hours in all metros, n̂, to each equal 45 rather than 40

(magenta lines). This is equivalent to an decrease in desired leisure hours and so a decrease in the

weighting on leisure. A final perturbation sets the land factor income share for numeraire production

in the representative metro to near zero (αL = 0.001) rather than its already-low baseline value of

0.016 (green lines).

Similar to the perturbations to elasticities, the perturbations to n∗rep and to αL have essentially

no effect on the representative-metro gradients. In contrast, the lower targets for µrep and νrep

each moderately steepens the representative population density gradient. This is intuitive as the

scarce factor and the good in which it is used intensively have been down weighted and so there is

less aversion to crowding. Importantly, there is no offset in the weighting parameters as they are

now the object of the perturbation. The third perturbation, which lowers the targets for both µrep

and νrep, causes an even larger steepening of the representative-metro density gradient. Each of

these three perturbations also steepens the density gradient in the high-TFP metro in proportion

to the corresponding steepening of each in the representative metro. For the high-TFP metro, the

perturbations to νrep and µrep respectively increase innermost-ring density by 40 and 50 percent

from its baseline high-TFP value. The combined perturbations more than double innermost density.

Correspondingly, high-TFP population rises to 8.0 million and 8.3 million for the respective single

perturbations (versus 6.9 million under the baseline). The combined perturbations increase high-

TFP population to 10.1 million.

The increased weighting on housing also steepens the price gradient in each metro. As individ-

uals care less about housing, a sharper price drop is necessary to compensate for longer commutes.

This steepening primarily occurs at further distances. The reason is that at nearer distances,

households consume considerably less housing than under the baseline calibration, which is just

39



6.0

7.0

8.0

9.0

10.0

11.0

12.0

0 4 8 12 16 20 24 28 32 36

baseline  (pop=6.9m; γ= ‐0.13)

μ̄ = 0.15 (pop=8.3m; γ= ‐0.15)

ν̄ = 0.30 (pop=8.0m; γ= ‐0.15)

μ̄=0.15 & ν̄=0.30 (pop=10.1m; γ= ‐0.18)

n̄*=45, n̂=45 (pop=7.2m; γ= ‐0.12)

αL=0.001 (pop=8.1m; γ= ‐0.13)

log(prs/sq.mi)

TFP = 
1.16

TFP = 1

Distance from CBD Boundary (miles)

A.  Population Density

‐1.0

‐0.5

0.0

0.5

1.0

1.5

0 4 8 12 16 20 24 28 32 36

baseline  (γ= ‐0.06)

μ̄ = 0.15 (base=0.18; γ= ‐0.07)

ν̄ = 0.30 (base=0.35; γ= ‐0.06)

μ̄=0.15 & ν̄=0.30 (γ= ‐0.07)

n̄*=45, n̂=45 (base=40, 40; γ= ‐0.06)

αL=0.001 (base=0.016; γ= ‐0.06)

B.  Relative Housing Price

Distance from CBD Boundary (miles)

TFP = 
1.16

TFP = 1

log(pm,j/p̄rep)

Figure 13: Population Density and House Prices with Alternative Weights. Population

and gradients enumerated in parentheses are for the high-productivity open metro.

the flip-side of the increase in densities at near distances. This pushes up the marginal utility from

housing consumption at near distances to a level similar to under the baseline and so the price

tradeoff for longer commutes is approximately the same.

The lower weighting of leisure very modestly flattens the density and price gradients in the

high-TFP metro and nudges its population up to 7.2 million.

Setting the factor income share of land in numeraire production to near zero significantly

increases the population of the high-TFP metro to 8.1 million. As is intuitive, this increase reflects

that the fixed land input no longer exerts as much downward pressure on the marginal product of

labor. Correspondingly, the high-TFP relative wage rises modestly from it baseline value.

7.3 Alternative Key Assumptions

Gradients and high-productivity metro population under four alternative key assumptions are

shown in Figure 14. The first alternative assumes that the loss from commuting arises exclu-

sively from the per mile numeraire cost (magenta line). Conversely, the second alternative assumes

that the loss from commuting arises exclusively from reduced leisure (red line). The third alter-

native sets required hours (in both metros) to be above targeted mean desired work hours in the

representative metro (blue line). The fourth alternative allows individuals to choose their own work
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Figure 14: Population Density and House Prices with Alternative Key Assumptions.
Population and gradients enumerated in parentheses are for the high-productivity open metro. For the

alternative assumption that there is no leisure cost to commuting (λ = 1), the outermost commute is 67

miles.

hours (green line).

Eliminating the leisure cost to commuting can be accomplished by parameterizing commute

time to have 100 percent leisure content (λ=1). Doing so dramatically affects metro outcomes

(pink lines). In the representative metro, the density and price gradients significantly flatten. In

the the high-TFP metro, they flatten by an order of magnitude. The high-TFP metro expands to

have an outer radius of 67 miles and a total population of 32 million! Even doubling the per mile

commute cost to equal 0.08 percent of representative-metro wage income still implies a high-TFP

metro with an outer radius of 48 miles and a total population of 21 million.

Eliminating the per mile numeraire cost to commuting also significantly affects metro outcomes

(red lines). Under the baseline assumptions and calibration, the numeraire cost to commuting

depresses disposable income in the representative metro by as much as 10 percent. And so for

the representative metro, eliminating the numeraire cost considerably lessens the compensation

needed for longer commutes. A partial offset comes from an implicit increase in the leisure cost to

commuting. This occurs because the increase in disposable income decreases the marginal utility of
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numeraire and housing relative to the marginal utility of leisure.25 On net, the representative-metro

gradients considerably flatten. Population density in the innermost residential ring decreases by

more than one third. population density in the outermost ring nearly doubles.

In the high-TFP metro, the flattening of gradients is more moderate and occurs primarily at

further commute distances. At near distances, where commute speeds are slow, the implicit increase

in the weight on leisure approximately offsets the elimination of the numeraire distance cost leaving

the density and price gradients similar to what they were under the baseline. At further commute

distances, where speed is near its maximum, there is less offset and so gradients flatten significantly.

On net, the implicit increase in the weight on leisure slightly dominates the elimination of the

numeraire commute cost in the sense that the high-TFP metro population moderately decreases

(to 6.2 million from 6.9 million).

The third alternative assumption increases required weekly work hours, n̂, to 45 while con-

tinuing to target mean desired work hours, n∗, to equal 40. Doing so pushes individuals up their

marginal utility of leisure curve thereby making the leisure cost of commuting higher. In conse-

quence, the population density and house price gradients significantly steepen in both the repre-

sentative and high-TFP metros and the high-TFP metro population decreases to 5.8 million.

Allowing individuals’ to choose their own work hours (nm,j = n∗m,j) leaves the gradients in

the representative metro unchanged and modestly flattens the gradient in the high-TFP metro

at further distances. Especially for individuals living at these further distances, partly offsetting

long commutes by decreasing work hours is more efficient than bearing the cost through decreased

leisure alone. With freely chosen work hours, high-TFP metro population increases to 7.8 million.

7.4 Alternative Commuting Technology

Gradients and high-TFP metro populations under variations in the commuting technology are

shown in Figure 15. The first alternative assumes no traffic congestion. Instead, highway commute

speed is constant at 37 mph, its mean value in the representative metro under the baseline cali-

bration and assumptions (blue lines).26 The second alternative assumes highway capacity is less

elastic with respect to commute volume (σV = 0.65 rather than 0.80; red lines). As in the baseline

setup, capacity is assumed to equal volume when the latter is 750 thousand. (Figure 4 above illus-

trates the implied relationship between commute speed and volume under both the baseline and

this alternative.) The third alternative assumes that highway capacity is less elastic with respect

to volume only in the high-productivity metro (magenta lines).

Commuting without traffic congestion has only a small effect on representative-metro outcomes

25The explicit weight on leisure in utility, η`, actually decreases. But this is dominated by the realignment of
marginal utilities so that on net, variations in leisure exert more “leverage” on utility than they do under the
baseline.

26The representative mean speed is constructed as follows: For each ring, total travel distance is divided by total
variable travel time to determine average highway speed (reported in Table 5). The mean average highway speed is
the populated-weighted mean over the ring average highway speeds.
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Figure 15: Population Density and House Prices with Alternative Commuting Tech-
nology. Population and gradients enumerated in parentheses are for the high-productivity open metro.

For the alternative in which the elasticity of highway capacity is lowered only in the high-TFP metro, the

representative metro gradients are the same as under the baseline and so are not shown.

both because it causes the calibrated weight on leisure, η`, to be adjusted downward and because

traffic congestion in the representative metro was in any case relatively moderate. But removing

congestion has a huge effect on outcomes in the high-productivity metro. As is intuitive, gradients

at short commute distances are considerably flattened because commute speeds are now much faster

than under the baseline. Conversely, gradients at far commute distances are modestly steepened

because commute speeds are now slower than under the baseline. The faster near-in commute speeds

easily dominate. High-TFP metro population increases to 19.2 million. The furthest commute

increases to 46 miles and high-TFP metro area increases to 2000 square miles (versus 32 miles and

1100 square miles).

Decreasing the elasticity of highway capacity in both metros counterintuitively increases the

population of the high-TFP metro (to 8.6 million versus 6.9 million under the baseline). One

reason is an implied decrease in the weight on leisure in order to continue to hit the targeted mean

desired work hours. Equally important, is that the lower elasticity of capacity disproportionately

decreases speed in the representative metro. In particular, highway speed through the innermost

residential ring of the representative metro falls to its assumed minimum of 10 mph (versus 28
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mph under the baseline). As a result, there is no longer a leisure cost to living in the innermost

ring of the high-TFP metro compared to living in the innermost ring of the representative metro.

The compensation for the higher numeraire wage in the former must be accomplished solely by an

increase in house prices which in turn requires an increase in population density to be supported.

For this reason, the density and price gradients shift upward at near distances. Population density

in the innermost residential ring increases by more than a third from its baseline value.

At intermediate distances, the high-TFP gradient slopes steepen relative to the baseline be-

cause of slower commute speeds. At further distances, the high-TFP slopes flatten again because

commute speeds at traffic volumes below the assumed benchmark capacity (V̂ = 750 thousand) are

unchanged from the baseline.27

By assumption, decreasing the assumed elasticity of highway capacity volume in the open-

metro only does not affect representative-metro outcomes and so no representative-metro gradients

are shown for this altenative. In the high-TFP metro, population decreases to 5.9 million and there

is no upward shift in the density and price gradients at near distances. Consistent with Duranton

and Turner (2011), a change in highway capacity in one or a few metros primarily affects population

while leaving average commute speeds largely unchanged.

7.5 Alternative Commuting Leisure Content

Based on estimates of commuters’ willingness to pay to marginally shorten their commutes, the

baseline calibration assumes that commuting time includes a 50 percent leisure component. But

scores of anecdotes and surveys suggest that commuting is often a source of negative rather than

positive leisure. A Google search on the duplet, {‘road rage’ , ’commuting’}, brings up more than

one million links.

Figure 16 shows outcomes under two alternative assumptions on the leisure content of com-

muting. Under the first, commuting lacks any consumption component (green line). Under the

second, the leisure component is assumed to be an increasing function of speed, λ(s) with λ′(·)
positive (blue lines).28 More specifically, λ is assumed to be 0.50 at speeds of 55 mph or higher.

As speed falls from 55 to 10, λ is assumed to fall linearly to zero.

Unsurprisingly, removing the leisure content to commuting significantly steepens the density

and price gradients in both the representative and high-TFP metros. To keep desired work hours

in the representative metro at its target, the calibrated weight on leisure decreases. In the high-

productivity metro, the gradients are characterized by pronounced negative second derivatives.

These reflects the sharply rising marginal of utility at longer commutes. Correspondingly, the

high-TFP outermost commute distance decreases to 27 miles and and the high-TFP population

27Just as capacity adjusts upward proportionally less than increases in volume above the benchmark, it adjusts
down proportionally less than decreases in volume below the benchmark. At the benchmark capacity, speed is already
near its maximum value and so essentially speed at further distances is the same as under the baseline.

28Empirical evidence that the valuation of commute time increases as congestion worsens is reported in Abrantes
and Wardman (2011), Hensher and Greene (2011), and Rizzi, Limonado, and Steimetz (2012).
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Figure 16: Population Density and House Prices with Alternative Commuting Leisure
Content. Population and gradients enumerated in parentheses are for the high-productivity open metro.

λ is the leisure content of commute time. In the second alternative scenario, λ is assumed to decrease linearly

from 0.50 to 0 as commute speed decreases from 55 mph to 10 mph.

decreases to 5.4 million (versus, respectively, 32 miles and 6.9 million under the baseline).

Assuming that leisure content is a decreasing function of speed leaves representative-metro

gradients essentially unchanged. In the high-TFP metro, gradients significantly steepen at near

distances and then flatten at further distances. This pattern reflects that at further distances,

commute speeds are higher and so the leisure content of commute time is closer or equal to its

constant baseline value. High-TFP outermost commute distance decreases moderately to 29 miles.

High-TFP population falls to to 4.9 million, which is below its level when the commute time leisure

content was zero at all speeds. The explanation is that commute speeds are considerably faster in

the representative metro and so residents there continue to enjoy significant leisure content to their

commutes. This boosts the reservation utility that must be matched in the high-TFP metro, where

commute speeds are slower. The decrease in high-TFP metro population relative to the baseline

keeps speeds from being even slower.
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Figure 17: Population Density and House Prices with Telecommuting. Population and

gradients enumerated in parentheses are for the high-productivity open metro. For the alternative scenario

in which only high-TFP metro residents telecommute, the representative metro gradients are the same as

under the baseline and so are not shown.

7.6 Telecommuting

A final set of alternative outcomes varies the number of weekly commutes (Figure 17). The first

alternative assumes that individuals in both the representative and high-TFP metros telecommute

one day per week. On any given workday, one fifth of individuals do so, and hence only 80

percent of residents in each metro will physically commute to work (green lines). The second

alternative assumes that only individuals in the high-TFP metro telecommute, again with one fifth

of them doing so on any given workday (blue lines). In this case, the calibrated parameters and

representative-metro outcomes are identical to those under the baseline and so not shown. Under

both scenarios, individuals continue to be required to work 40 hours per week.

When the weekly telecommute applies to both the representative and the open metros, the

representative-metro gradients are essentially unchanged from those under the baseline. The high-

productivity gradients are moderately flatter than under the baseline and the outermost commute

increases to 35 miles (versus 32 miles with no telecommuting). In consequence, high-TFP metro

population increases to 7.8 million (versus 6.9 million under the baseline).

When the weekly telecommute takes place only in the high-TFP metro, the high-TFP gradients
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shift moderately up in addition to flattening. High-TFP metro population increases to 9.4 million.

The ability to telecommute in metros that are especially crowded but not in other metros potentially

increases the population of the crowded ones by more than one third.

8 Conclusions

A quantitative system of monocentric metros is comprised of a closed representative metro and

an indefinite number of open metros. The representative metro serves to calibrate the model

parameters and establish a reservation level of utility that must be matched across and within

the open metros as well as the outermost-ring land price that must be matched across metros. By

assuming moderate exogenous differences in total factor productivity across open metros, the model

is able to approximately replicate the observed distribution of population, population density, and

commute times across and within a number of intermediate and large U.S. metros. The model can

similarly match a number of other moments such as the elasticity of housing supply with respect

to price and the compensated elasticity of demand of labor supply with respect to the wage. The

latter, “Frisch” elasticity is shown to vary moderately across homogeneous workers living at different

locations within large metro areas.

The calibration of the the representative metro to hit exogenously-specified targets such as

the average land share of factor income and the average housing share of consumption expenditure

causes gradients and other outcomes in the representative metro to be somewhat insensitive to deep

structural parameters. But the same deep structural parameters typically have first-order effects

on open-metro outcomes.

Metro land area is shown to asymptote to a maximum as total factor productivity increases

moderately above that in the representative metro. For a metro to have a perimeter land price

above its alternative agricultural value, its total factor productivity can be only moderately below

that of the representative metro. The requirement that individuals supply a fixed number of work

hours tempers the effect of productivity on metro size. Fixed work hours also cause individuals

with long commutes to have a marginal value of leisure time that is far above their wage.

More generally the framework developed herein gives significant quantitative and qualitative

insight into the determination of quantity and price outcomes across and within metro areas. The

framework can be easily extended to capture a number of other characteristics such as variations

across and within metros in consumption amenities, taxes, land-use regulation, and increasing

returns to scale in production. Less easily, it can also be extended to allow for fixed highway loca-

tions, monopolistic competition, heterogeneous households, and exogenously-specified polycentric

work locations. Enriching (but complicating) the framework in these ways should deliver further

insight into the determination of outcomes across and within metro areas.
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