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Abstract

This paper develops bootstrap methods for testing whether, in a finite
sample, competing out-of-sample forecasts from nested models are equally
accurate. Most prior work on forecast tests for nested models has focused on a
null hypothesis of equal accuracy in population — basically, whether
coefficients on the extra variables in the larger, nesting model are zero. We
instead use an asymptotic approximation that treats the coefficients as non-zero
but small, such that, in a finite sample, forecasts from the small model are
expected to be as accurate as forecasts from the large model. Under that
approximation, we derive the limiting distributions of pairwise tests of equal
mean square error, and develop bootstrap methods for estimating critical
values. Monte Carlo experiments show that our proposed procedures have
good size and power properties for the null of equal finite-sample forecast
accuracy. We illustrate the use of the procedures with applications to
forecasting stock returns and inflation.
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1 Introduction

In this paper we examine the asymptotic and finite-sample properties of bootstrap-based
tests of equal accuracy of out-of-sample forecasts from a baseline nested model and an
alternative nesting model. In our analysis, we address two forms of the null hypothesis of
equal predictive ability. One hypothesis, considered in Clark and McCracken (2001, 2005)
and McCracken (2007), is that the models have equal population-level predictive ability.
This situation arises when the coefficients associated with the additional predictors in the
nesting model are zero and hence at the population level, the forecast errors are identical
and thus the models have equal predictive ability.

However, this paper focuses on a different null hypothesis, one that arises when some of
the additional predictors have non-zero coefficients associated with them, but the marginal
predictive content is small. In this case, addressed in Trenkler and Toutenberg (1992),
Hjalmarsson (2006) and Clark and McCracken (2009), the two models can have equal pre-
dictive ability at a fixed forecast origin (say time 7") due to a bias-variance trade-off between
a more accurately estimated, but misspecified, nested model and a correctly specified, but
imprecisely estimated, nesting model. Building upon this insight, we derive the asymp-
totic distributions associated with standard out-of-sample tests of equal predictive ability
between estimated models with weak predictors. We then evaluate various bootstrap-
based methods for imposing the null of equal predictive ability upon these distributions
and conducting asymptotically valid inference. In our results, the forecast models may be
estimated either recursively or with a rolling sample. Giacomini and White (2006) use a
different asymptotic approximation to testing equal forecast accuracy in a given sample,
but their asymptotics apply only to models estimated with a rolling window of fixed and
finite width.

Our approach to modeling weak predictors is identical to the standard Pitman drift
used to analyze the power of in-sample tests against small deviations from the null of equal
population-level predictive ability. It has also been used by Inoue and Kilian (2004) in the
context of analyzing the power of out-of-sample tests. In that sense, some (though not all)
of our analytical results are quite similar to those in Inoue and Kilian (2004).

We differ, though, in our focus. While Inoue and Kilian (2004) are interested in exam-
ining the power of out-of-sample tests against the null of equal population-level predictive

ability, we are interested in using out-of-sample tests to test the null hypothesis of equal finite



sample predictive ability. This seemingly minor distinction arises because the estimation
error associated with estimating unknown regression parameters can cause a misspecified,
restricted model to be as accurate or more accurate than a correctly specified unrestricted
model when the additional predictors are imprecisely estimated (or, in our terminology, are
“weak”). We use Pitman drift simply as a tool for constructing an asymptotic approxima-
tion to the finite sample problem associated with estimating a regression coefficient when
the marginal signal associated with it is small.

Although our results apply only to a setup that some might see as restrictive — direct,
multi-step (DMS) forecasts from nested models — the list of studies analyzing such forecasts
suggests our results should be useful to many researchers. Applications considering DMS
forecasts from nested linear models include, among others: many of the studies cited above;
Diebold and Rudebusch (1991); Mark (1995); Kilian (1999); Lettau and Ludvigson (2001);
Stock and Watson (2003); Bachmeier and Swanson (2005); Butler, Grullon and Weston
(2005); Cooper and Gulen (2006); Giacomini and Rossi (2006); Guo (2006); Rapach and
Wohar (2006); Bruneau, et al. (2007); Bordo and Haubrich (2008); Inoue and Rossi (2008);
and Molodtsova and Papell (2008).

The remainder proceeds as follows. Section 2 introduces the notation and assumptions
and presents our theoretical results. Section 3 characterizes the bootstrap-based methods
we consider for testing the joint hypothesis of equal forecast accuracy. Section 4 presents
Monte Carlo results on the finite—sample performance of the asymptotics and the bootstrap.
Section 5 applies our tests to evaluate the predictability of U.S. stock returns and core PCE

inflation. Section 6 concludes.

2 Theoretical results

We begin by laying out our testing framework when comparing the forecast accuracy of two

nested models in the presence of weak predictive ability.



2.1 Environment

The possibility of weak predictors is modeled using a sequence of linear DGPs of the form

(Assumption 1)}

~1/2
Yrirr = i Bir +UuTirr = 0,80 + 2 10,(T 2B35) + urtir, (1)

Exriiurgsr = FEhriip4r=0forallt=1,...7T,. T+ P —r.

Note that we allow the dependent variable yr 4., the predictors x71; and the error term
ur 4+ to depend upon T, the initial forecasting origin. This dependence is necessitated by
the triangular array structure of the data. However, throughout much of the paper we
omit the additional subscript 1" for ease of presentation.

At each origin of forecasting t = T, ...T'+ P —7, we observe the sequence {yrs, x’T’L s t,.
Forecasts of the scalar y7y,, 7 > 1, are generated using a (k x 1,k = ko + k1) vector of
covariates xp1; = (wér,(]’t,xl[’m’t)/, and linear parametric models a:im-’tﬁi, 1 = 0,1. The
parameters are estimated using OLS (Assumption 2) under either the recursive or rolling
schemes. For the recursive scheme we have Bi,t = argming t~1 3177 (YT,str =27 40:)% 1 =
0,1, for the restricted and unrestricted models, respectively. The rolling scheme is similar
but the number of observations used for estimation is held constant as we proceed forward
across forecast origins and hence Bi,t = argming, T ST 71 (YT str — x’T7i7Sﬂi)2, i =
0,1. We denote the loss associated with the 7-step ahead forecast errors as um = (YT 47—
x’T7i7tBi7t)2, 1 = 0,1, for the restricted and unrestricted, respectively.

The following additional notation will be used. For the recursive scheme let Hr ;(t) =
(Y aristunssr) = (071 02] hrissr) and By(t) = (671 3027 ap et ) 7!, and for
the rolling case let Hr;(t) = (T IZS t—r—T41 TTi,sUT s4r) = (T 125 tr1 M s )
and Bi(t) = (T7'307 T41TTyi,sT TZS)_l. In either case, define, for i = 0,1, B; =

~. For Upy = (hT,l,t—&-T?vec(xT,th,T,l,t)/)/v V = ZF—TH Q115

limTﬁoo(ExT,i,sxﬁ[’ivs)
where €1 ; is the upper block-diagonal element of €; defined below. For any (m x n)
matrix A let |A| denote the max norm and ¢r(A) denote the trace. For Hrp(t) defined
above, J the selection matrix (It,xko, Okoxky), 02 = limr_ oo EU%H_T, and a (k1 x k)
matrix A satisfying A’A = B1_1/2( J'ByJ + B1)B; 1/2 , let hT1t+T = U_lAB 1/2 11 4r
and I:ITJ(t) = J_lleiﬂHT,l(t). For the selection matrix Jo = (Ok, xko, [kyxk,) define

Fy = JyB1Jy and Fi(t) = JyBy(t)Jz. If we define yj7 () = imy oo Ehrpirhlyy or i)

!The parameter 37 ;. does not vary with the forecast horizon 7 since, in our analysis, 7 is treated as fixed.



then Sy | = ;5.1 (0) +y7] (Vama () +7li;ﬁ,1(i)>‘ Let W (s) denote a k1 x 1 vector standard

Brownian motion and define the vector of weak predictor coefficients as § = (01xx,, ﬁ’{lz)/.
To derive our general results, we need three more assumptions (in addition to our as-

sumptions (1 and 2) of a DGP with weak predictability and OLS—-estimated linear forecast-

ing models).

Assumption 3: (a) 71 ZETZTI} UT,tUé’,t—j = rQ; where Q; = limp_,o 771 Zthl E(UT’tU:’,:tij)
for all j > 0. (b) Qu1; =0all j > 7. (¢) suprsy<ryp E|Ur:?? < oo some ¢ > 2. (d)
The zero mean triangular array Ury — EUry = (h/T,l,tJr7-7Uec($T717tx,T,1,t — ExTth:n’T’Lt)')/

satisfies Theorem 3.2 of de Jong and Davidson (2000).

Assumption 4: (a) Let K (x) be a continuous kernel such that for all real scalars z, | K (z)| <
1, K(z) = K(—z) and K(0) = 1. (b) For some bandwidth L and constant i € (0,0.5), L =
O(P"). (c) Forall j > 7—1, Ehritvrhpy 4y ; = 0. (d) The number of covariance terms 7,

used to estimate the long—run covariance Sgq defined in Section 2.2, satisfies 7 —1 < j < oo.

Assumption 5: limp 7o P/T = Ap € (0, 00).

Assumption 3 imposes three types of conditions. First, in (a) and (c) we require that
the observables, while not necessarily covariance stationary, are asymptotically mean square
stationary with finite second moments. We do so in order to allow the observables to have
marginal distributions that vary as the weak predictive ability strengthens along with the
sample size but are ‘well-behaved’ enough that, for example, sample averages converge in
probability to the appropriate population means. Second, in (b) we impose the restriction
that the 7-step ahead forecast errors are MA(7 — 1). We do so in order to emphasize the
role that weak predictors have on forecasting without also introducing other forms of model
misspecification. Finally, in (d) we impose the high level assumption that, in particular,
h7144, satisfies Theorem 3.2 of de Jong and Davidson (2000). By doing so we not only
insure that certain weighted partial sums converge weakly to standard Brownian motion,
but also allow ourselves to take advantage of various results pertaining to convergence in
distribution to stochastic integrals.

Assumption 4 is necessitated by the serial correlation in the multi-step (7-step) forecast
errors — errors from even well-specified models exhibit serial correlation, of an MA(7 — 1)

form. Typically, researchers constructing a t-statistic utilizing the squares of these errors



account for serial correlation of at least order 7 — 1 in forming the necessary standard error
estimates. Meese and Rogoff (1988), Groen (1999), and Kilian and Taylor (2003), among
other applications to forecasts from nested models, use kernel-based methods to estimate the

2 We therefore impose conditions sufficient to cover applied

relevant long-run covariance.
practices. Parts (a) and (b) are not particularly controversial. Part (c), however, imposes
the restriction that the orthogonality conditions used to identify the parameters form a
moving average of finite order 7 — 1, while part (d) imposes the restriction that this fact
is taken into account when constructing the MSE-t statistic discussed later in Section 2.
Finally, in Assumption 5 we impose the requirement that limpr_.oc P/T = Ap € (0, 00).
This assumption implies that the duration of forecasting is finite but non-trivial.

This last assumption, while standard in our previous work, differs importantly from
that in Giacomini and White (2006). In their approach to predictive inference for nested
models, they assume that a rolling window of fixed and finite width is used for estimation
of the model parameters (hence limp_,, P/T = 00). While we allow rolling windows, our
asymptotics assume that the window width is a non-trivial magnitude of the out-of-sample
period and hence limpr_.o P/T € (0,00). This difference in the assumed window width,
along with our assumption that the additional predictors in the nesting model are weak, is
fundamentally what drives the difference in our results from theirs and in particular, allows

us to derive results that permit the use of the recursive scheme.

2.2 Asymptotics for MSE-F, MSE-t with weak predictors

In the context of non-nested models, Diebold and Mariano (1995) propose a test for equal
MSE based upon the sequence of loss differentials dyy, = ﬁat = ﬁit 4r-  1f we define
MSE; = (P—7+ 1)ty Ta2,, (i =01),d= P -7+ 1) ' Tdyr =
MSEy = MSEy, 34q(j) = (P =7+ 1) 3027 (dier = d)(dir—5 = d), Faa( =) = Faalh),
and Syg = Z?:g K(j/M)744(7), the statistic takes the form

d

Under the null that x12; has no population-level predictive power for 4., the population

MSE-t = (P — 7 +1)Y/2 x (2)

difference in MSEs, EU(Q),t +T—Eu%’t 4 will equal O for all . When z12; has predictive power,

the population difference in MSEs will be positive. Even so, the finite sample difference

2For similar uses of kernel-based methods in analyses of non-nested forecasts, see, for example, Diebold
and Mariano (1995) and West (1996).



need not be positive and in fact, for a given sample size (say, t = T') the difference in finite
sample MSEs, Eﬁg,T+T - EﬂiTJrT, may be zero, thus motivating a distinct null hypothesis
of equal finite-sample predictive ability. Regardless of which null hypothesis we consider
(equal population-level or equal finite-sample predictive ability), the MSE-t test and the
other equal MSE tests described below are one—sided to the right.

While West (1996) proves directly that the MSE-¢ statistic can be asymptotically stan-
dard normal when applied to non—nested forecasts, this is not the case when the models are
nested. In particular, the results in West (1996) require that under the null, the population-
level long run variance of czt+7 be positive. This requirement is violated with nested models
regardless of the presence of weak predictors. Intuitively, with nested models (and for the
moment ignoring the weak predictors), the null hypothesis that the restrictions imposed in
the benchmark model are true implies the population errors of the competing forecasting
models are exactly the same. As a result, in population dy4, = 0 for all ¢, which makes the
corresponding variance also equal to 0. Because the sample analogues (for example, d and
its variance) converge to zero at the same rate, the test statistics have non—degenerate null
distributions, but they are non—standard.

Motivated by (i) the degeneracy of the long-run variance of dy;, and (ii) the functional
form of the standard in-sample F-test, McCracken (2007) develops an out—of-sample F—type
test of equal MSE, given by

MSEy — MSE; _ d
MSE = (P T—l—l)xMSEl. (3)

MSE-F = (P — 74 1) x

Like the MSE-t test, the limiting distribution of the MSE-F' test is non—standard when
the forecasts are nested under the null. Clark and McCracken (2005) and McCracken (2007)
show that, for 7—step ahead forecasts, the MSE-F statistic converges in distribution to func-
tions of stochastic integrals of quadratics of Brownian motion, with limiting distributions
that depend on the sample split parameter A\p, the number of exclusion restrictions ki, and
the unknown nuisance parameter S;;. While this continues to hold in the presence of weak
predictors, the asymptotic distributions now depend not only upon the unknown coefficients
associated with the weak predictors but also upon other unknown second moments of the
data. In the following, for the recursive scheme define Iy = 11+)‘P sTIW(8) S5 dW (s),
Iy = 11+)‘P sT2W'(5) S5 W (s)ds, T's = 11+)‘P S_QW’(S)S%BW(s)ds, and I'g = 11+)‘P s71x
(5/31_1/2;1,/0)52£2W(8)d5. For the rolling scheme, define I'y = 11+/\P(W(s) - Wi(s —
1))/ S5 dW (s), Ty = [P (W (s) =W (s —1))'S;7: (W (s) =W (s —1))ds, Ts = [P (W (s) -



W (s —1))'S2 (W (s) — W (s —1))ds, and T = [} s71(8'By 2 A /o) ST (W (5) — W (s —
1))ds. For both schemes, define I's = 11+>‘P(5'31_1/2;1//0)5%%1/1/(3), Iy = f11+AP &' JoF IS Jo%ds =
ApS JoF I35 /0% and T = Ap(8'By />4 /0)S;: (AB; /*5/0). The following two Theo-
rems provide the asymptotic distributions of the MSE-F" and MSE-t statistics in the presence

of weak predictors.

Theorem 2.1: Maintain Assumptions 1,2,3, and 5. MSE-F —,; {2I'y — s} +2{['s} +
{Ta}.

Theorem 2.2: Maintain Assumptions 1 — 5. MSE-t —; ({I'1 — .52} + {T's} +
{.5T4})/(T5 + T + T'7)°.

Theorems 2.1 and 2.2 show that the limiting distributions of the MSE-t and MSE-F
tests are neither normal nor chi-square when the forecasts are nested, regardless of the
presence of weak predictors. Theorem 2.1 is very similar to Proposition 2 in Inoue and
Kilian (2004) while Theorem 2.2 is unique. And again, the limiting distributions are free
of nuisance parameters in only very special cases. In particular, the distributions here are
free of nuisance parameters only if there are no weak predictors and if S;; = I. If this is
the case — if, for example, 7 = 1 and the forecast errors are conditionally homoskedastic
— both representations simplify to those in McCracken (2007) and hence his critical values
can be used for testing for equal population-level predictive ability. In the absence of weak
predictors alone, the representation simplifies to that in Clark and McCracken (2005) and
hence the asymptotic distributions still depend upon Sj;. In this case, and in the most
general case where weak predictors are present, we use bootstrap methods to estimate the
asymptotically valid critical values. Before describing our bootstrap approach, however, it

is necessary to clarify the null hypothesis of interest.

2.3 A null hypothesis with weak predictors

The noncentrality terms, especially those associated with the asymptotic distribution of
the MSE-F statistic (I'y), give some indication of the power that the test statistics have
against deviations from the null hypothesis of equal population-level predictive ability Hy :
E(uf,,, —ui,,,) =0 for all t — for which it must be the case that 37, = 0. As noted
earlier, it is in that sense that our analytical results are closely related to those in Inoue and
Kilian (2004). Closer inspection, however, shows that the results provide opportunities for

testing another form of the null hypothesis of equal predictive ability when weak predictors



are present.

For example, under the assumptions made earlier in this section it is straightforward to
show that the mean of the asymptotic distribution of the MSE-F' statistic can be used to
approximate the mean difference in the average out-of-sample predictive ability of the two

models.? For example, under the recursive scheme we have

S @2 2 vm [ (T B S 4 BOV) 4 8 Sy F-LT8ld
Zt:T (U pyr — UT gr) N ! [—s7 tr((=JBoJ' + B1)V) + & Jo |~ J56]ds

while under the rolling scheme we have

T+P, o 9 1+Ap ) / e
EZt:T (U0,047 — U1 p47) & /1 [—tr((—=JBoJ" + B1)V) 4 0" Jo Fy * Jy0]ds.

Intuitively, one might consider using these expressions as a means of characterizing
when the two models have equal average finite-sample predictive ability over the out-of-
sample period. For example, having set these two expressions to zero, integrating and

8 Jo P58
—JBoJ +B1)V)

equals W and 1,

solving for the marginal signal-to-noise ratio implies 7
respectively, for the recursive and rolling schemes. This ratio simplifies further when 7 =1
and the forecast errors are conditionally homoskedastic, in which case tr((—JByJ'+B1)V) =
o?k;.

This marginal signal-to-noise ratio forms the basis of our new approach to testing for
equal predictive ability. Rather than testing for equal population-level predictive ability
Hy : E(U(Z),HT_“%HT) = 0 for all ¢t — for which it must be the case that 575 = 0 — we test for
equal average out-of-sample predictive ability Hy : E(P~! ZtT:JFTP(ﬁg,t vy — U740 ,)) =0 for
which it is approximately the case that 315 F; ' 8}, = d, where d equals Wtr((—ﬂ?@ J'+
By)V) or tr((=JByJ + B1)V), depending on whether the recursive or rolling scheme is
used.*

While we believe the result is intuitive, it is not immediately clear how such a restriction
on the regression parameters can be used to achieve asymptotically valid inference. If we

look back at the asymptotic distribution of the MSE-F' statistic, we see that in general it

not only depends upon the unknown value of 375, but also the asymptotic distribution is

3By taking this approach we are using the fact that under our assumptions, notably the L?-boundedness
portion of Assumption 3, Z?:TP (ﬁg,t-w — @%,t-w) is uniformly integrable and hence the expectation of its
limit is equal to the limit of its expectation.

4One could also derive a test for equal forecast accuracy at the end of the out-of-sample period. Using
similar arguments, this hypothesis implies that ﬂ{;Fflﬂ; = d, where d equals ﬁtr((fJBoJ’ + B1)V)
or tr((—JBoJ' + B1)V), depending on whether the recursive or rolling scheme is used. Under this null

hypothesis, our proposed bootstrap is valid so long as d (defined below) is modified appropriately.



non-standard, thus requiring either extensive tables of critical values or simulation-based
methods for constructing the critical values. Rather than take either of these approaches,
in the following section we develop a new bootstrap-based method for constructing asymp-
totically valid critical values that can be used to test the null of equal average finite-sample

predictive ability.
2.4 Bootstrap-based critical values with weak predictors

Our new, bootstrap-based method of approximating the asymptotically valid critical values
for pairwise comparisons between nested models is different from that previously used in
Kilian (1999) and Clark and McCracken (2005). In those applications, an appropriately
dimensioned VAR was initially estimated by OLS imposing the restriction that (], was
set to zero and the residuals saved for resampling. The recursive structure of the VAR
was then used to generate a large number of artificial samples, each of which was used to
construct one of the test statistics discussed above. The relevant sample percentile from
this large collection of artificial statistics was then used as the critical value. Simulations
show that this approach provides accurate inference for the null of equal population-level
predictive ability not only for one-step ahead forecasts but also for longer horizons (in our
direct multi-step framework).

However, there are two reasons we should not expect this bootstrap approach to provide
accurate inference in the presence of weak predictors. First, imposing the restriction that
[714 is set to zero implies a null of equal population — not finite-sample — predictive ability.
Second, by creating the artificial samples using the recursive structure of the VAR we are
imposing the restriction that equal one-step ahead predictive ability implies equal predictive
ability at longer horizons. Our present framework in no way imposes that restriction. We
therefore take an entirely different approach to imposing the relevant null hypothesis and
generating the artificial samples.

For example, suppose we are interested in testing whether, under the recursive scheme,
the two models have equal average predictive ability over the out-of-sample period and
hence &' JyFy T30 equals A2 ((— 7 ByJ' + B1)V). While this restriction is infeasible
due to the various unknown moments and parameters, it suggests a closely related, feasible
restriction quite similar to that used in ridge regression. However, instead of imposing the
restriction that 353%, = ¢ for some finite constant — as one would in a ridge regression

— we instead impose the restriction that &' JoFy ' (T)J5d equals ln(lxﬁtr((—JBo(T)J’ +
P



B(T'))V(T)), where the relevant unknowns are estimated using the obvious sample mo-
ments: A\p = P/T, By(T) = (T~' 1wy eaf )" for i = 0,1, Fy(T) = J4B1(T)Ja, and
V(T) = an estimate of the long-run variance of hjty..% In addition, we estimate & using
the approximation 5 = (01 xkg s T/ QBllg,t)’ where BIZT denotes the restricted least squares

estimator of the parameters associated with the weak predictors satisfying

~ ~/ ~/
ﬁl,T = (511,%512,1’)/ (4)
T—1 -~
= argmin Y (Yspr — 74 ,b01)? st By (T)J5by = dfT
by s=1 ’

where d equals %tr((—JBO(T)J’ + B1(T))V(T)). For a given sample size, this es-
timator is equivalent to a ridge regression if the weak predictors are orthonormal. More
generally though, it lies in the class of asymptotic shrinkage estimators discussed in Hansen
(2008).

Note that this approach to imposing the null hypothesis is consistent with the direct
multi-step forecasting approach we assume is used to construct the forecasts and hence the
restriction can vary with the forecast horizon 7. This approach therefore precludes using
a VAR and its recursive structure to generate the artificial samples. Instead we use a
variant of the wild fixed regressor bootstrap developed in Goncalves and Kilian (2007) that
accounts for the direct multi-step nature of the forecasts. Specifically, in our framework
the x’s are held fixed across the artificial samples and the dependent variable is generated
using the direct multi-step equation y;,, = x’LSELT +v,,s=1.,T+P—r, for a
suitably chosen artificial error term v}, , designed to capture both the presence of conditional
heteroskedasticity and an assumed M A(7—1) serial correlation structure in the 7-step ahead
forecasts. Specifically, we construct the artificial samples and bootstrap critical values using
the following algorithm.®

1. Estimate the parameter vector (] associated with the unrestricted model using
the weighted ridge regression from equation (4) above.  Note that the resulting pa-
rameter estimate will vary with the forecast horizon. If the recursive scheme is used,
set d to %tr((—JBO(T)J’ + By(T))V(T)); if the rolling scheme is used, set d to
tr((=JBo(T)J + B1(T))V(T)).

2. Using NLLS, estimate an M A(7 — 1) model for the OLS residuals v} 41, (from the

°In our Monte Carlo simulations and empirical work we use a Newey-West kernel with bandwidth 0 for
horizon = 1 and bandwidth 1.5*horizon otherwise.

50ur approach to generating artificial samples of multi-step forecast errors builds on a sampling approach
proposed in Hansen (1996).
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unrestricted model) such that visyr = €154r + 0161,647—1 + ... + 0r_161,641. Let n .,
s=1,..,T+ P—r,denote an i.i.d N(0,1) sequence of simulated random variables. Define
vA*LSJrT = (NoprE1 547+ 51773—1—&—7'/5\1,8-‘!-7—1 + .. +5T_1n5+1€175+1), s=1,..., T+ P—7. Form
artificial samples of y7, , using the fixed regressor structure, y;,, = $/1,3B1,T + 07 gyr

3. Using the artificial data, construct an estimate of the test statistics (e.g. MSE-F,
MSE-t) as if this were the original data.

4. Repeat steps 2 and 3 a large number of times: j =1,..., N.

5. Reject the null hypothesis, at the a% level, if the test statistic is greater than the
(100 — o) %-ile of the empirical distribution of the simulated test statistics.

By using the weighted ridge regression to estimate the model parameters we are able, in
large samples, to impose the restriction that the implied estimates (Tl/ 25121) of the local-
to-zero parameters (375 satisfy our approximation to the null hypothesis. This is despite the
fact that the estimates of 37, are not consistent. While this estimator, along with the fixed
regressor structure of the bootstrap, imposes the null hypothesis upon the artificial samples,
it is not necessarily the case that the bootstrap is asymptotically valid in the sense that the
estimated critical values are consistent for their population values. To see how this might
happen, note that the asymptotic distributions from Theorem 2.1 depend explicitly upon
the local-to-zero parameters (37, through the terms I's and I'y. In the case of T'y, this is
not an issue because the null hypothesis imposes a restriction on the value of this term that
does not depend upon (37, explicitly, just an appropriately chosen weighted quadratic that
is known under the null. T's is a different story. This term is asymptotically normal with
a zero mean and variance Ap375J5V Jo 375 that, in general, need not have any relationship
to the restriction B75F; 18%, = d implied by the null hypothesis. Hence, in general, the
asymptotic distribution is an explicit function of the value of (375 implying that the null
hypothesis itself does not imply a unique asymptotic distribution for either the MSE-F" or
MSE-t statistics.

Even so, as we discuss below, the bootstrap is asymptotically valid in two empirically
relevant special cases. Before providing the result, however, we require a modest strength-

ening of the moment conditions on the model residuals.

[rT]

Assumption 3": (a) T~1 > j=1 Ur,jUr ;) = 6 where ; = limp_.o YD i E(Ur;Ur ;)

for all I > 0. (b) E(e1 sirlet,stry>T1,s—5 § = 0) = 0. (c) Let vy = (B17,01,--,07-1),

~

o~ /\/ - . ~ ~ ~ ~
r = (B11,01;--,0,—1)", and define the function €1 sy = €1 54+ () such that €1 sy (y7) =
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€1,s+7r- In an open neighborhood N7 around ~yr, there exists a finite constant ¢ such that
SUP1<s<T,T>1 HSUP«/ENT(El,erT(’Y)aV/g\,l,s+r(’7)a$T,1,s)/H4 <c (d) Ur; — EUr; = (h/T,l,jJrﬂ
vec(rr,;87 ; — E$T717]~:L"T71,j)/)' is a zero mean triangular array satisfying Theorem 3.2 of
de Jong and Davidson (2000).

Assumption 3’ differs from Assumption 3 in two ways. First, in (b) it emphasizes the
point that the forecast errors, and by implication hj 4., form an M A(7—1). Second, in (c)
it bounds the second moments not only of hi 14+ = (€1,s4r +0161,547—1+ -+ 0r—161,541)T1.s
(as in Assumption 3) but also the functions €1 s1+(v)z7,1,s, and Ve s (y)x7,1,s for all v
in an open neighborhood of v;. These assumptions are primarily used to show that the
bootstrap-based artificial samples, which are a function of the estimated errors €1 44, ade-
quately replicate the time series properties of the original data in large samples. Specifically
we must insure that the bootstrap analog of h1 51, is not only zero mean but has the same
long-run variance V. Such an assumption is not needed for our earlier results since the
model forecast errors u; sy, ¢ = 0,1 are linear functions of ﬁ@T and Assumption 3 already
imposes moment conditions on 41, via moment conditions on hq 4.

In the following let MSE-F* and MSE-t* denote statistics generated using the artificial

samples from our bootstrap. Similarly let I'}

,i=1,...,7, denote random variables generated
using the artificial samples satisfying I'} =471y, i=1,...,7, for T; defined in Theorems 2.1

and 2.2.

Theorem 2.3: Let B75F, 18%, = d and assume either (i) 7 = 1 and the forecast errors
from the unrestricted model are conditionally homoskedastic, or (ii) dim(f]y) = 1. (a)
Given Assumptions 1,2,3', and 5, MSE-F* —; {2I'f — T'5} + 2{I'5} + {I';}. (b) Given
Assumptions 1,2,3', 4, and 5, MSE-t* —4 ({2I'% — T5} + 2{T%} + {I'3})/(T% + Tf + T%)5.

In Theorem 2.3 we show that our fixed-regressor bootstrap provides an asymptotically
valid method of estimating the critical values associated with the null of equal average finite
sample forecast accuracy. The result, however, is applicable in only two special cases. In the
first, we require that the forecast errors be one-step ahead and conditionally homoskedastic.
In the second, we allow serial correlation and conditional heteroskedasticity but require that
P15 is scalar. While neither case covers the broadest situation in which 37, is not scalar and
the forecast errors exhibit either serial correlation or conditional heteroskedasticity, these

two special cases cover a wide range of empirically relevant applications. Kilian (1999)
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argues that conditional homoskedasticity is a reasonable assumption for one-step ahead
forecasts of quarterly macroeconomic variables. Moreover, in many applications in which
a nested model comparison is made (Goyal and Welch (2008), Stock and Watson (2003),
etc.), the unrestricted forecasts are made by simply adding one lag of a single predictor to
the baseline restricted model.

By itself, however, Theorem 2.3 is insufficient for recommending the use of the boot-
strap: it does not tell us whether the proposed bootstrap is adequate for constructing
asymptotically valid critical values under the alternative that the unrestricted model fore-
casts more accurately than the restricted model. Unfortunately, there are any number
of ways to model the case in which B5F, '8}, > d. For example, rather than modeling
the weak predictive ability in Assumption 1 as T~/23%, with 375F '8}, = d, one could
model the predictive content as T~%C/3], for constants C' < co and a € (0, 1/2] satisfying

TS 187, > d. While mathematically elegant, this approach does not allow us to analyze
the most intuitive alternative in which not only is the unrestricted model more accurate
but JéﬁLT is also a consistent estimator of 37, # 0. For this situation to hold we need the
additional restriction that @ = 0 and hence (375 is no longer interpretable as a local-to-zero
parameter. With this modification (Assumption 1’) in hand, we address the validity of

the bootstrap under the alternative in the following Theorem.

Theorem 2.4: Let JéBLT —P 75 # 0 and assume either (i) 7 = 1 and the forecast errors
from the unrestricted model are conditionally homoskedastic, or (ii) dim(f5) = 1. (a)
Given Assumptions 1/,2,3’, and 5, MSE-F* —; {2I'f — 5} + 2{T'5} + {I';}. (b) Given
Assumptions 1/,2,3" 4, and 5, MSE-t* —, ({2I'f — '3} + 2{T5} + {T5}) /(T + Tg + T'%)5.

In Theorem 2.4 we see that indeed, the bootstrap-based test is consistent for testing
the null hypothesis of equal finite sample predictive accuracy (that By F; ' 3%, = d) against
the alternative that the unrestricted model is more accurate (that JﬁBLT —P (1, # 0).
This follows since under this alternative, the data-based statistics MSE-F and MSE-t each
diverge to +oo while the the bootstrap-based statistics MSE-F* and MSE-t* each retain
the same asymptotic distribution as they did under the null.

As we will show in section 3, our fixed regressor bootstrap provides reasonably sized
tests in our Monte Carlo simulations, outperforming other bootstrap-based methods for

estimating the asymptotically valid critical values necessary to test the null of equal average
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finite sample predictive ability.

3 Bootstrap approaches

Drawing on the preceeding theoretical results, in our Monte Carlo and empirical analyses
we will evaluate the efficacy of our proposed fixed regressor bootstrap of tests of equal
forecast accuracy. As part of this evaluation, we also consider other approaches to inference
— that is, sources of critical values and tests. These other approaches to inference, detailed
below, include a non—parametric bootstrap procedure and a different version of our proposed
fixed regressor bootstrap. In addition to the MSE-F and MSE-t tests, we also consider an
adjusted t-test of equal MSE developed in Clark and West (2006, 2007), denoted here as
CW-t. In the interest of obtaining a normally-distributed or nearly-normal test of equal
MSE, Clark and West propose a simple adjustment to the MSE differential to account for
the additional parameter estimation error of the larger model. When applied to a pair of
rolling sample forecasts under a random walk null model, the adjusted test statistic has a
standard normal distribution (asymptotically). With a null model that involves parameter
estimation (as is the case in this paper), Clark and West (2007) argue that the limiting
null distribution is approximately normal. Note, however, that in either case, the null
hypothesis is that the smaller model is true, not that the null and alternative forecasts are
equally accurate over the sample of interest.

We should also note that for further comparison to our proposed fixed regressor boot-
strap, we include in our Monte Carlo section results for the MSE-t and CW-t tests compared

against standard normal critical values.

3.1 Non-parametric bootstrap

Our non—parametric approach is patterned on White’s (2000) method: we create bootstrap
samples of forecast errors by sampling (with replacement) from the time series of sample
forecast errors, and construct test statistics for each sample draw. However, as noted above
and in White (2000), this procedure is not, in general, asymptotically valid when applied
to nested models. We include the method in part for its computational simplicity and in
part to examine the potential pitfalls of using the approach.

In our non-parametric implementation, we follow the approach of White (2000) in us-

ing the stationary bootstrap of Politis and Romano (1994) and centering the bootstrap
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distributions around the sample values of the test statistics. The stationary bootstrap is
parameterized to make the average block length equal to twice the forecast horizon. As to
centering of test statistics, under the non—parametric approach, the relevant null hypothesis
is that the MSE difference (benchmark MSE less alternative model MSE) is at most 0, and
the MSE ratio (benchmark MSE/alternative model MSE) is at most 1. Following White
(2000), each bootstrap draw of a given test statistic is re-centered around the corresponding
sample test statistic. Bootstrapped critical values are computed as percentiles of the result-
ing distributions of re—centered test statistics. We report empirical rejection rates using a

nominal size of 10%. Results using a nominal size of 5% are qualitatively similar.

3.2 Fixed regressor bootstrap

As outlined in section 2.4, we also consider a fixed regressor bootstrap under the null of
equal forecast accuracy. Under this procedure, we re-estimate the alternative forecasting
model subject to the constraint that implies the null and alternative model forecasts to be
equally accurate. After taking the fitted values (az’uﬁlj) from this model, we construct
the residuals from the OLS estimate of the unrestricted model (v;;4,). Following the
algorithm outlined in section 2.4, we create artificial replicas of the residuals v7 ;. and add
them to the fitted value to form artificial samples of ¥/, .1 y; , = $’17tB17T + 07 44, Using
the artificial samples of data on y, we estimate the forecasting models (using actual data on
all the variables on the right-hand side, rather than simulated data), generate samples of
forecasts and forecast errors, and finally compute samples of test statistics. In particular,
we use the fixed regressor bootstrap to construct critical values for the MSE-F' and MSE-¢
tests. We compare the sample test statistics against the bootstrap draws, without any

re-centering of the bootstrapped statistics.

3.3 No-predictability fixed regressor bootstrap

For comparison to existing work in the nested model literature (such as Clark and Mec-
Cracken (2001, 2005), Clark and West (2006, 2007), and McCracken (2007)), we consider
results of tests of the null of equal accuracy at the population level, which is equivalent
to a null hypothesis of 8,5, = 0. Appropriate critical values could be obtained from a re-
stricted VAR bootstrap as in Kilian (1999) and Clark and McCracken (2005), among others.
Prior work has shown such an approach to be effective for the null of equal accuracy at

the population level. Under this approach, vector autoregressive equations for y; and x;
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are estimated using the full sample of observations, with the residuals stored for sampling.
Bootstrapped time series on y; and x; are generated by drawing with replacement from the
sample residuals and using the autoregressive structures of the estimated VAR to iteratively
construct data. Each sample of artificial data is used to estimate forecasting models and
generate forecasts and test statistics.

In this paper, though, we instead consider a fixed regressor bootstrap that imposes the
null of equal population-level accuracy by restricting 3,5 to equal 0. This bootstrap takes
the same form as described in sections 2.4 and 3.2, with the sole difference being that
in step 1, d= 0, which is equivalent to simply estimating the null forecasting model by
OLS (model 0, which includes only the variables x;) rather than the alternative model
(model 1, which includes the variables zo; and z124). In the results below, we refer to
this as the no-predictability fixed regressor bootstrap. We use the no-predictability fixed
regressor bootstrap to construct critical values for tests of equal forecast accuracy based on
the MSE-F, MSE-t, and CW-t tests. For all tests, because the null hypothesis of 3,5 = 0
is imposed in the data generation process, no adjustment of the sample test statistics is
needed for inference. We simply compare the sample test statistics against the bootstrap
draws, without any re-centering.

While we omit the theoretical proofs in the interest of brevity, it is straightforward to use
the more general results of section 2 to prove the asymptotic validity of the no-predictability
fixed regressor bootstrap for the null of equal forecast accuracy in population (including
consistency under the alternative that model 1 is more accurate in population).” In Clark
and McCracken (2001, 2005), we presented Monte Carlo evidence to show that a restricted
VAR bootstrap works well for the null of equal accuracy in population, but did not prove the
validity of the bootstrap. This paper suffices to establish the asymptotic validity of a fixed
regressor bootstrap based on the null forecasting model. Some researchers may also find
the fixed regressor bootstrap to be simpler to use than the restricted VAR. While we omit
the results in the interest of brevity, in this paper’s Monte Carlo experiments the restricted
VAR bootstrap yields results very similar to those from the no-predictability fixed regressor

bootstrap.

"The validity of the no-predictability fixed regressor bootstrap does not require that ko = 1 or that the
forecast errors be 1-step ahead and conditionally homoskedastic if k2 > 1. The extra terms in the asymptotic
distributions that require these restrictions in the case of the null of equal accuracy in a finite sample drop
out in the case of the null of equal accuracy in population, making the restrictions unnecessary for the
validity of the no-predictability fixed regressor bootstrap (for testing equal accuracy in population).
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4 Monte Carlo evidence

We use simulations of bivariate and multivariate DGPs based on common macroeconomic
applications to evaluate the finite sample properties of the above approaches to testing
for equal forecast accuracy. In these simulations, the benchmark forecasting model is a
univariate model of the predictand y; the alternative models add lags of various other
variables of interest. The general null hypothesis is that the forecast from the alternative
model is no more accurate than the benchmark forecast. This general null, however, can
take different specific forms: either the variables in the alternative model have no predictive
content, in that their coefficients are 0; or the variables have non-zero coefficients, but the
coefficients are small enough that the benchmark and alternative models are expected to be
equally accurate over the forecast sample. We focus our presentation on recursive forecasts,

but include some results for rolling forecasts.

4.1 Monte Carlo design

For all DGPs, we generate data using independent draws of innovations from the normal
distribution and the autoregressive structure of the DGP. The initial observations necessi-
tated by the lag structure of each DGP are generated with draws from the unconditional
normal distribution implied by the DGP. We consider forecast horizons of one and four
steps. With quarterly data in mind, we also consider a range of sample sizes (T, P), reflect-
ing those commonly available in practice: 40,80; 40,120; 80,40; 80,80; 80,120; 120,40; and
120,80.

All of the DGPs are based on empirical relationships among U.S. inflation and a range
of predictors, estimated with 1968-2008 data. In all cases, our reported results are based

on 5000 Monte Carlo draws and 499 bootstrap replications.

4.1.1 DGPs

DGP 1 is based on the empirical relationship between the change in core PCE inflation

(y+) and the Chicago Fed’s index of the business cycle (21, the CENAI):

yer1 = —0.4y; — 0.1y 1 + briwre + U

Tige1r = 0.7 + v (5)
Ut41 o 0.8
var (vl,m) - (0.0 0.3> '
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In the DGP 1 experiments, which focus on a forecast horizon of 1 step, the alternative
(unrestricted) forecasting model takes the form of the DGP equation for ;4 (with constant

added); the null or benchmark (restricted) model drops x4

null: yi1 = By + By + Boyr—1 + uo41- (6)

alternative: yrr1 = By + Byt + Bayi—1 + Bax1t + U1 (7)

We consider various experiments with different settings of b1, the coefficient on x4,
which corresponds to the elements of our theoretical construct 35,/+/7. In one set of
simulations (Table 1), the coefficient is set to 0, such that the null forecasting model is
expected to be more accurate than the alternative. In others (Tables 2 and 3), the coefficient
is set to a value that makes the models equally accurate (in expectation) on average over
the forecast sample. We determined the appropriate value on the basis of the population
moments implied by the model and our asymptotic approximations given in section 2.3.
For example, with recursive forecasts and 7' and P both equal to 80 (this coefficient value
changes with 7" and P), this value is 0.11, about 1/2 of the empirical estimate. In another
set of experiments (Table 4), the coefficient is set to 0.3, such that the alternative model is
expected to be more accurate than the null.

DGP 2 is based on the empirical relationship of the change in core PCE inflation (y;)
to the CFNAI (z;;), PCE food price inflation less core inflation (z3,), and import price
inflation less core inflation (x3:). To simplify the lag structure necessary for reasonable
forecasting models, the inflation rates used in forming variables x9; and x3; are computed

as two-quarter averages. Based on these data, DGP 2 takes the form

Y1 = —04y; — 0.1y, 1+ brixrs + barxo s + b3123 ¢ + Uy
Tipe1 = 0721+ v
o1 = 0.9x0; —0.2x0; 1+ v2441 (8)
x34+1 = Llwgy — 032341 +v3441
Ut 0.8
U1,t41 o 0.0 0.3
VW vy | T =01 0.0 22
V3,441 0.5 0.1 0.8 9.0

In DGP 2 experiments, which also focus on a forecast horizon of 1 step, the null (re-

stricted) and alternative (unrestricted) forecasting models take the following forms, respec-
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tively:

Yer1 = Bo+ By + Bryi—1 + uot1. 9)

Yyl = Bo+ By + Bryi—1 + Bswip + Baxas + By + Ut 41 (10)

As with DGP 1, we consider experiments with three different settings of the set of b;;
coefficients. In one set of experiments (Table 1), all of the b;; coefficients are set to zero,
such that the null forecasting model is expected to be more accurate than the alternative.
In another set of experiments (Table 4), the coefficients are set at by; = 0.3, by = 0.1,
and by3 = .015 (roughly their empirical values). With these values, the alternative model is
expected to be more accurate than the null. In others (Tables 2 and 3), the values of the b;;
coefficients from the Table 4 experiments are multiplied by a constant less than one, such
that, in population, the null and alternative models are expected to be equally accurate,
on average, over the forecast sample (we computed the scaling factor using the population
moments implied by the model and section 2.3’s asymptotic approximations). With 7" and
P at 80, this multiplying constant is 0.41.

DGP 3, which incorporates a forecast horizon of four periods, is also based on the
empirical relationship between the change in core PCE inflation (y;) and the Chicago Fed’s

index of the business cycle. In this case, though, the model is based on empirical estimates

using the four-quarter rate of inflation:®
Yira = brixip+eipqa
€t+d = Uppa t+ -95Ut+3 + .9Ut+2 + .8ut+1
Tipra = 0701443 + V144 (11)

var Ut+4 o 0.2
vigra)  \0.0 0.3/)°
In these experiments, the forecasting models are:

null: yiqa = By + uott4- (12)

alternative: yia = Bo+ G121t + Ul t44. (13)

Again, we consider experiments with different settings of b11, the coefficient on z1;. In

Table 1’s simulations, the coefficient is set to 0. In Tables 2 and 3 experiments, the coefficient

8Specifically, in the empirical estimates underlying the DGP settings, we defined y;4+4 = 1001In(pa/pe) —
100 1n(p¢/pi—a), where p denotes the core PCE price index.
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is set to a value that makes the models equally accurate (in expectation) on average over the
forecast sample (again, on the basis of the model-implied population moments and section
2.3’s asymptotic approximations). For example, with recursive forecasts and T and P both
equal to 80, this value is 0.16. In Table 4’s simulations, the coeflicient is set to its empirical

value of 0.4, such that the alternative model is expected to be more accurate than the null.

4.2 Results

Our interest lays in identifying those testing approaches that yield reasonably accurate
inferences on the forecast performance of models. At the outset, then, it may be useful
to broadly summarize the forecast performance of competing models under our various
alternatives. Accordingly, Figure 1 shows estimated densities of the MSE ratio statistic
(the ratio of the null model’s MSE to the alternative model’s MSE), based on experiments
with DGP 2, using T = P = 80. We provide three densities, for the cases in which the
b;j coefficients of the DGP (8) are: (i) set to 0, such that the null model should be more
accurate; (ii) set to non-—zero values so as to make the null and alternative models (9) and
(10) equally accurate over the forecast sample, according to our local-to—zero asymptotic
results; and (iii) set at larger values, such that the alternative model is expected to be more
accurate.

As the figure shows, for the DGP which implies the null model should be best, the
MSE ratio distribution mostly lays below 1.0. For the DGP that implies the models can
be expected to be equally accurate, the distribution is centered at about 1.0. Finally, for
the DGP that implies the alternative model can be expected to be best, the distribution
mostly lays above 1.0. Among our bootstrap procedures, the no-predictability fixed regres-
sor approach yields, by design, a distribution like that shown for the null best DGP. The
fixed regressor bootstrap is intended to estimate a null distribution like that shown for the
equally good models DGP. In most of our results, the null will be rejected when the sample
MSE ratio lays in the right tail of the bootstrapped distribution.

What, then, might we expect test rejection rates to look like across experiments and
bootstraps? For DGPs in which the null model is best, tests compared against the no-
predictability fixed regressor bootstrap should have rejection rates of about 10%, the nom-
inal size. However, the same tests compared against the other bootstraps should have
rejection rates below 10%, because given the DGP, the models should not be expected to

be equally accurate. For DGPs with coefficients scaled such that the null and alternative
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models can be expected to be equally accurate, we want the tests compared against the
non—parametric and fixed regressor bootstraps to have size of about 10%. That said, as
indicated above, we shouldn’t expect the non—parametric approach to perform well when ap-
plied to recursive forecasts from our nested models (based on the asymptotics of Giacomini
and White (2006), the non-parametric bootstrap may perform better for rolling forecasts).
We should expect the same tests compared to no-predictability fixed regressor bootstrap
critical values to yield rejection rates greater than 10%, because the no-predictability fixed
regressor bootstrap distribution should lay to the left of the equal accuracy distribution.
Finally, with DGPs that imply the alternative model to be more accurate than the null,
we should look for rejection rates that exceed 10%. Again, though, rejection rates based
on the no-predictability fixed regressor bootstrap should generally be higher than rejection

rates based on the other approaches.

4.2.1 Null model most accurate

Table 1 presents Monte Carlo results for DGPs in which the x variables considered have no
predictive content for y, such that the null forecasting model should be expected to be best
in finite samples. These results generally line up with the expectations described above.
Comparing the MSE-F', MSE-t and CW-t statistics against no-predictability fixed regressor
bootstrap critical values consistently yields rejection rates of about the nominal size of 10%.
For example, across all the experiments, no-predictability fixed regressor bootstrap rejection
rates for the MSE-F test range from 9.6% to 11.6%, with rejection rates at about 10% for
both the 1-step and 4-step forecast horizons.

Comparing the test statistics to other bootstrap distributions typically yields rejection
rates well below 10%, and often close to 0, although with some sensitivity to the forecast
horizon. Rejection rates for the MSE-F test based on the fixed regressor bootstrap range
from 0.4% to 3.0% at the 1-step horizon and from 2.0% to 4.5% at the 4-step horizon. In
most settings, rejection rates based on the non-parametric bootstrap are similar. However,
with the non-parametric bootstrap, empirical rejection rates rise as P/T falls. As a re-
sult, for the experiments with P/T less than 1/2 (specifically, with (T, P) = (80,40) and
(120,40)), size based on the non-parametric bootstrap exceeds size based on the fixed re-
gressor bootstrap. At the extreme, in DGP 3 experiments with 4-step ahead forecasts and
(T, P) = (120,40), the MSE-F rejection rate is 9.8% under the non-parametric bootstrap

and 4.5% under the fixed regressor bootstrap.
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Under any bootstrap approach, results are qualitatively similar for the MSE-F' and
MSE-t tests. In addition, with the MSE-t test, comparing the test statistic against standard
normal critical values (with a one-sided testing approach) yields results very similar to those
obtained by comparing the test statistic against critical values from the non-parametric
bootstrap. For example, at the 1-step horizon, MSE-t rejection rates range from 0.3% to
4.6% under the non-parametric bootstrap and 0.2% to 4.6% under standard normal critical
values.” Studies such as Clark and McCracken (2005) have reported similar behavior of the

MSE-t test based on standard normal critical values.

4.2.2 Null and alternative models equally accurate: recursive forecasts

Table 2 presents results for DGPs in which the b;; coefficients on some x variables are non—
zero but small enough that, under our asymptotic approximation, the null and alternative
forecasting models are expected to be equally accurate over the sample considered. These
results also generally line up with the expectations described above, and show that, for
testing the null of equal forecast accuracy, our proposed fixed regressor procedure is quite
reliable.

Tests based on the fixed regressor bootstrap generally have rejection rates of about 10%
(the nominal size). For example, in the case of the MSE-F test applied to 1-step ahead
forecasts, rejection rates range from 8.3% to 10.3%. Admittedly, rejection rates for 4-step
ahead forecast tests are modestly higher, ranging from 12.4% to 14.9% percent.! For
multi-step horizons, using the fixed regressor bootstrap works better (yielding rates closer
to nominal size) when T is relatively large than when 7' is relatively small. Rejection rates
for the MSE-t test compared against critical values from the fixed regressor bootstrap are
similar, although a bit lower, ranging from 7.7% to 9.3% at the 1-step horizon and from
11.2% to 13.6% at the 4-step horizon.

Tests based on the other bootstrap intended to test the null of equal accuracy, the non—
parametric bootstrap, are somewhat — although not entirely — less reliable indicators of
equal accuracy. With critical values from the non-parametric bootstrap, the MSE-F’ test is

somewhat undersized at the 1-step horizon but correctly sized or somewhat oversized at the

9However, using a two-sided MSE-t test with standard normal critical values yields a rejection rate in
excess of the nominal size, reflecting rejections of the (larger) alternative model in favor of the (smaller) null.

0The over-sizing of the fixed regressor bootstrap at the 4-step horizon most likely has to do with the
HAC estimation of the variance matrix V that determines the coefficient rescaling factor. Table 1 shows
that, when the small model is the true one, the no-predictability fixed regressor bootstrap (which doesn’t
involve computing V' and rescaling coefficients) is correctly sized at even the 4-step horizon.
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4-step horizon. As shown in Table 2, the MSE-F test’s rejection rate ranges from 4.1% to
8.3% at the 1-step horizon and from 9.1% to 16.2% at the 4-step horizon. As noted above,
with the non-parametric approach, empirical rejection rates generally rise as P/T falls. For
example, with 4-step ahead forecasts (for DGP 3) and T = 80, the MSE-F rejection rate is
9.4% when P = 120 and 15.6% when P = 40. Rejection rates for the MSE-t test compared
against critical values from the non-parametric bootstrap are similar, although typically a
bit higher, ranging from 5.0% to 10.0% at the 1-step horizon and from 9.4% to 15.2% at
the 4-step horizon.

In addition, comparing the MSE-¢ test against standard normal critical values (with
a one-sided testing approach) yields results similar to those obtained by comparing the
test statistic against critical values from the non-parametric bootstrap. For instance, at
the 1-step horizon, MSE-t rejection rates range from 4.7% to 8.6% under standard normal
critical values, compared to a range of 5.0% to 10.0% under the non-parametric bootstrap.
Accordingly, the MSE-t test compared against standard normal critical values is somewhat
undersized at the 1-step horizon but correctly or somewhat oversized at the 4-step horizon.

Tests based on the no-predictability fixed regressor bootstrap may be seen as unreliable
indicators of equal forecast accuracy — in that they overstate the likelihood of two models
being equally accurate in a finite sample. Comparing test statistics against critical values
from the no-predictability fixed regressor bootstrap generally yields rejection rates far in
excess of 10%. As in prior studies such as Clark and McCracken (2005) using a restricted
VAR bootstrap, rejection rates rise as P increases. In the case of the MSE-F' test, rejection
rates range from 22.5% to 46.3% (Table 2). Similarly, rejection rates for the CW-¢ test based
on critical values from the no-predictability fixed regressor bootstrap range from 18.9% to

51.6%.

4.2.3 Null and alternative models equally accurate: rolling forecasts

Table 3 provides results for experiments using a rolling forecast scheme instead of the
baseline recursive scheme, for models parameterized to make the null and alternative models
equally accurate (the necessary scaling factor is a bit different in the rolling case than the
recursive). In general, the results for the rolling scheme are very similar to those for the
recursive. Under both schemes, tests based on the no-predictability fixed regressor bootstrap
reject too often. Tests based on our fixed regressor bootstrap have size of about 10% (the

nominal size), although with some slight to modest oversizing at the 4-step horizon. Tests
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based on the non-parametric bootstrap or standard normal critical values continue to be
undersized at the 1-step horizon, although the problem is a bit worse under the rolling
scheme than the recursive.!’ For example, with DGP 1, T = 40, and P = 80, comparing
the MSE-t test against critical values estimated with the non-parametric bootstrap yields a
rejection rate of 6.5% for recursive forecasts (Table 2) and 4.9% for rolling forecasts (Table
3); comparing the test against fixed regressor bootstrap critical values yields corresponding
rejection rates of 8.8% (recursive) and 8.6% (rolling). At the 4-step horizon, tests based
on the non-parametric bootstrap or standard normal critical values continue to range from
correctly sized to oversized, with oversizing that is sharpest when P is small.

Our rolling scheme results on the behavior of the MSE-f test compared against non-
parametric bootstrap and standard normal critical values are somewhat at odds with the
behavior of the test in Giacomini and White (2006). Giacomini and White (2006) compare
the MSE-t test against standard normal critical values, and find a two-sided test to be
roughly correctly sized at the one-step forecast horizon, with small-to-modest undersizing
for some sample sizes and comparable oversizing for others. One source of differences in
results is our treatment of the test as one-sided rather than two-sided. Giacomini and
White (2006) permit rejections of the alternative model in favor of the null and conduct
two-sided tests; we prefer to take the small model as the null and only consider rejections of
the null in favor of the alternative, or one-sided tests. When we use a two-sided MSE-t and
standard normal critical values (while not shown in the interest of brevity, the same applies
with critical values from the non-parametric bootstrap), the test is roughly correctly sized
at the 1-step horizon and correctly sized to somewhat oversized at the 4-step horizon (the
same applies in the recursive forecast results of Table 2). The increase in rejection rates
that occurs with the move from a one-sided to two-sided test likely reflects an empirical
distribution that is shifted to the left relative to the standard normal.

Admittedly, though, other aspects of our Monte Carlo results seem to be at odds with
the asymptotic results of Giacomini and White (2006), if not their Monte Carlo results.
Their asymptotics imply the MSE-t test has an asymptotic distribution that is standard
normal for rolling forecasts but not recursive forecasts, suggesting the test should have

better size properties in the rolling case than the recursive. But in our Monte Carlo results,

"' The rise in rejection rates that occurs as P/T falls is a bit sharper in the rolling case than the recursive.
As a consequence, the differences in rejection rates (based on the non-parametric bootstrap or standard
normal critical values) across the recursive and rolling forecasting schemes are larger when P/T is relatively
big than when it is relatively small.
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the standard normal approximation for MSE-t seems to work better with recursive forecasts
than rolling, yielding 1-step ahead rejection rates closer to nominal in the former case than
the latter. In addition, their theory rests on asymptotics that treat 7' as fixed and P as
limiting to infinity, which suggests the test should behave better when P is large relative to
T than when P is relatively small. In fact, in our Monte Carlo results, rejection rates based
on the non-parametric bootstrap and standard normal critical values tend to be farther
from nominal size when P is large than when it is small. In the case of the second issue, the
Monte Carlo results in Giacomini and White (2006) seem to yield a similar pattern, with
rejection rates falling as the forecast sample increases relative to the estimation sample,

often to levels consistent with the undersizing we have reported.

4.2.4 Alternative model most accurate

Table 4 provides results for DGPs in which the b;; coefficients on some x variables are large
enough that, under our asymptotics, the alternative model is expected to be more accurate
than the null model in the finite sample.

As anticipated, comparing the test statistics against critical values estimated with the
no-predictability fixed regressor bootstrap yields the highest rejection rate. In the case of
the MSE-F test, rejection rates range from 57.0% to 93.4%. Comparing the test statistics
against critical values estimated with the fixed regressor bootstrap yields modestly lower
rejection rates. For the MSE-F test, rejection rates range from 42.8% to 82.1%. Comparing
tests against distributions estimated with the non—parametric bootstrap yields materially
lower power. In Table 4’s results, using the non—parametric bootstrap for the MSE-F test
yields a rejection rate between 25.0% and 56.9%.

Rejection rates for the MSE-t test are broadly similar to those for the MSE-F test,
although with some noticeable differences. In most cases in Table 4’s results, the MSE-
t test is less powerful than the MSE-F test (as with the fixed regressor bootstrap), but
in some cases (as with the non—parametric bootstrap), the MSE-¢ test is more powerful.
Finally, as noted above in other experiment settings, the power of the C-W t-test is broadly
comparable to that of the MSE-F' test compared against no-predictability fixed regressor

bootstrap critical values.
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4.2.5 Results summary

Overall, the Monte Carlo results show that, for testing equal forecast accuracy over a given
sample, our proposed fixed regressor bootstrap works well. When the null of equal accuracy
in the finite sample is true, the testing procedures yield approximately correctly sized tests.
When an alternative model is, in truth, more accurate than the null, the testing procedures
have reasonable power. The non—parametric bootstrap procedure, which just re—samples
the data without imposing the equal accuracy null in the data generation, tends to be less
reliable when applied to nested forecasting models. Finally, in line with prior research, for
the purpose of testing the null that certain coefficients are 0, a bootstrap imposing the
null of 0 coefficients — here, the no-predictability fixed regressor bootstrap — is reliable.

However, the null of 0 coefficients is not the same as the null of equal forecast accuracy.

5 Applications

In this section we use the tests and inference approaches described above in forecasting
excess stock returns and core inflation, both for the U.S. Some recent examples from the
long literature on stock return forecasting include Rapach and Wohar (2006), Goyal and
Welch (2008), and Campbell and Thompson (2008). Some recent inflation examples include
Atkeson and Ohanian (2001) and Stock and Watson (2003).

More specifically, in the stock return application, we use the data of Goyal and Welch
(2008), and examine forecasts of monthly excess stock returns (CRSP excess returns mea-
sured on a log basis) from a total of 17 models. The null model includes just a constant.
The alternative models add in one lag of a common predictor, taken from the set of vari-
ables in the Goyal-Welch data set available over all of our sample.'? These include, among
others, the dividend-price ratio, the earnings-price ratio, and the cross-sectional premium.
The full set of 16 predictive variables is listed in Table 5, with details provided in Goyal and
Welch (2008). Following studies such as Pesaran and Timmermann (1995), we focus on the
post-war period. Our model estimation sample begins with January 1954, and we examine
recursive 1-month ahead forecasts (that is, our estimation sample expands as forecasting
moves forward in time) for 1970 through 2002.

In the inflation application, we examine 1-quarter ahead and 4-quarter (1-year) ahead

forecasts of core PCE inflation obtained from a few models, over a sample of 1985:Q1+horizon-

12We obtained the data from Amit Goyal’s website.
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1 to 2008:Q2. The null model includes a constant and lags of the change in inflation. One
alternative model adds one lag of the CFNAI to the baseline model. Another includes one
lag of the CFNAI, PCE food price inflation less core inflation, and import price inflation less
core inflation.'®> We specify the models in terms of the change in inflation, following, among
others, Stock and Watson (1999, 2003) and Clark and McCracken (2006). In one applica-
tion, we consider one-quarter ahead forecasts of inflation defined as m; = 4001In(P;/P;—1),
using models relating Ams, 1 to a constant, Ams, Am;_q, and the period ¢ values of the
CFEFNALI relative food price inflation, and relative import price inflation. In another, we

consider one-year ahead forecasts of inflation defined as 7r§4) = 1001n(P;/P;—4), using mod-

els relating wgﬂ — 7r§4) to a constant, 7r§4) — 77,@4, and the period t values of the CFNAI,
relative food price inflation, and relative import price inflation. To simplify the lag structure
necessary for reasonable forecasting models, the (relative) food and import price inflation
variables are computed as two-period averages of quarterly (relative) inflation rates. For
both inflation forecast horizons, our model estimation sample uses a start date of 1968:Q3.

Results for the stock return and inflation forecast applications are reported in Tables 5
and 6. The tables provide, for each alternative model, the ratio of the MSE of forecasts from
the benchmark model to the alternative model’s forecast MSE. The tables include p-values
for the null that the benchmark model is true (no-predictability fixed regressor bootstrap)
or that the models are equally accurate in the finite sample (the non—parametric and fixed
regressor bootstraps). In the interest of brevity, results are only presented for the MSE-F
test. We use 9999 replications in computing the bootstrap p-values.

In the case of excess stock returns, the evidence in Table 5 is consistent with much of
the literature: return predictability is limited. Of the 16 alternative forecasting models,
only two — the first two in the table — have MSEs lower than the benchmark (that is,
MSE ratios greater than 1). The no-predictability fixed regressor bootstrap p-values reject
the null model in favor of the alternative for each of these two models. These test results
indicate the predictor coefficients on the cross-sectional premium and return on long-term
Treasuries are non—zero. However, p-values based on the fixed regressor bootstrap imply
weaker evidence of forecastability, with the null of equal forecast accuracy rejected for the
cross-sectional premium, but not the Treasury return (at a 10% significance level). This

pattern suggests that, while the coefficient on the Treasury return may differ from zero, the

13We obtained the CFNAI data from the Chicago Fed’s website and the rest of the data from the FAME
database of the Federal Reserve Board of Governors.
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coefficient is not large enough that a model including the Treasury return would be expected
to forecast better than the null model over a sample of the size considered. Critical values
based on the non-parametric bootstrap yield no rejections, presumably (given our Monte
Carlo evidence) reflecting lower power.

The inflation results reported in Table 6 yield similarly mixed evidence of predictability.
By itself, the CFNAI improves the accuracy of 1-quarter ahead forecasts but not 4-quarter
ahead forecasts. At the 1-step horizon, the no-predictability fixed regressor bootstrap p-
values reject the null model in favor of the alternative — indicating the predictor coefficients
on the CFNAI to be non—zero. However, p-values based on the fixed regressor bootstrap
fail to reject the null of equal accuracy. So while the coefficient on the CFNAI may differ
from zero, it is not large enough that a model including the CFNAI would be expected to
forecast better than the null model in a sample of the size considered. Including not only
the CFNAI but also relative food and import price inflation yields larger gains in forecast
accuracy, at both horizons. In this case, critical values from both the no-predictability fixed
regressor and fixed regressor bootstrap reject the null (at a 10% significance level). This
suggests the relevant coefficients are non-zero and large enough to make the alternative
model more accurate than the null. Here, too, critical values based on the non-parametric

bootstrap yield fewer rejections.

6 Conclusion

This paper develops bootstrap methods for testing, whether, in a finite sample, competing
out-of-sample forecasts from nested models are equally accurate. Most prior work on fore-
cast tests for nested models has focused on a null hypothesis of equal accuracy in population
— basically, whether coefficients on the extra variables in the larger, nesting model are zero.
We instead use an asymptotic approximation that treats the coefficients as non-zero but
small, such that, in a finite sample, forecasts from the small model are expected to be as
accurate as forecasts from the large model. While an unrestricted, correctly specified model
might have better population-level predictive ability than a misspecified restricted model,
it need not do so in finite samples due to imprecision in the additional parameter estimates.
In the presence of these “weak” predictors, we show how to test the null of equal average
predictive ability over a given sample size.

Under our asymptotic approximation of weak predictive ability, we first derive the
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asymptotic distributions of two tests for equal out-of-sample predictive ability. We then
develop a parametric bootstrap procedure — a fixed regressor bootstrap — for testing the
null of equal finite-sample forecast accuracy. We next conduct a range of Monte Carlo sim-
ulations to examine the finite-sample properties of the tests and bootstrap procedures. For
tests of equal population-level predictive ability, we find that a no-predictability fixed re-
gressor bootstrap (like the restricted VAR bootstrap used in prior work) provides accurately
sized tests. However, this does not continue to hold when we consider tests of equal finite-
sample predictive ability in the presence of weak predictors. Instead, our proposed fixed
regressor bootstrap works reasonably well: When the null of equal finite-sample predictive
ability is true, the testing procedure yields approximately correctly sized tests. Moreover
when an alternative model is, in truth, more accurate than the null, the testing procedure
has reasonable power. In contrast, when applied to nested models, the non-parametric
method of White (2000) does not work so well, in a size or power sense.

In the final part of our analysis, we apply our proposed methods for testing equal pre-
dictive ability to forecasts of excess stock returns and core inflation, using U.S. data. In
both applications, our methods for testing equal finite sample accuracy yield weaker evi-
dence of predictability than do methods for testing equal population-level accuracy. There
remains some evidence, but only modest. Using non-parametric bootstrap methods that
are technically invalid with nested models — methods that have relatively poor size and

power properties — yields much less evidence of predictability.
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7 Appendix: Theory Details

In the following, in addition to the notation from Section 2, define hi; ., = z7,1,507 o4, and
fAL},LSJrT = 271,50} 4, For the recursive scheme define Hy,  (t) = ¢! ST hi 1 ey, and ﬁ}l(t) =
D D il}l st while for the rolling scheme define Hf ,(t) = T~ D P Wiy err and
H% (O =Tr' 41 h*T,1,s+r Moreover let sup, |.| denote supy<;<rip_ [-|-

Proof of Theorem 2.1: (a) The result is a special case of Theorem 1 of Clark and McCracken
(2009) and as a result, we provide only an outline of the proof here. The proof consists of two steps.
In the first we provide an asymptotic expansion. In the second we apply a functional central limit
theorem and a weak convergence to stochastic integrals result, both from de Jong and Davidson

(2000). Throughout we ignore the finite sample difference between P and P — 7 + 1.

For the first step, straightforward algebra reveals that

T+P—1

Zt:T (123¢+T U%t+r) (19)
- {QZ”P_T (07204 B0 + BT 0)

- 12 Tl/QHT 1)) (=T Bo(t)xr,0,627,0 4 Bo(t)J'
+By(t )IT 1 tlET 1.4B1(t (T2 Hy (1))}

+2{Z 8B (—TBo(t) T + By () (T 2hry 140)}

T+P 7'
HT~ 1Zt_ &' (21,40 1 4 — 271,401 T Bo(t)J' By (t)

+B1 ' (t)JBo(t) w704 o Bo(t)J By ' (1))}

_ T+P—T1 _
+2{T 1Zt:T &' (By ' (£)J Bo(t)w1,0,42 9 4 Bo(t)J'
—2r1,0@ 4 1 JBo ()T ) (T Hy 1 (t))}.

Given Assumptions 3 (c) and 5, straightforward moment-based bounding arguments, along with
the definitions of A, hr 1 ¢4, and Hp1(t) imply

T+P—71 T+P— ‘r
Zt:T ( 0t+T ul AT —02{22
NPT 2 g 1/2 ) T+P—

Ty TP O) T ) + 02

+02{(P/T)(8' JoFy ' T8 /a?)} + 0,(1).

T 2hy 400 ) (T2 Hy o (1))

"By Y2A o) (T PR iy}

For the second step we apply weak convergence results from de Jong and Davidson (2000),

notably Theorem 3.2. Taking limits, and noting that TV/2Hr (t) = 5_151/2 W (s) we obtain the
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stochastic integrals presented in the statement of the Theorem.
T+P—1

Zt:T (’&g,t-l-T u% t+7’) =
1+Ap 1+Ap
(2 / U (5)S,5 AW (5)— / ST2W(5)S;; W (s)ds)

1 1
1+Ap N
+0*{ ('By P A o) S12AW ()} + 0* {Apd JoFy L J56 /o).
1

That MSEs —,, 02 then provides the desired result.

(b) The proof is largely the same as for the recursive scheme. The only important difference
is that instead of Hpy(t) = (¢t} ZZ;I hr1,s+7) for the recursive scheme we now have Hpi(t) =
(r-1 ZS t—r_rp1 b s+7) for the rolling scheme. Hence in the final step of the proof for the
recursive scheme we have TV2Hrp (t) = s S;LéQW(s) whereas for the rolling scheme we have

TY2Hp o (t) = }%Z(W(s) — W(s—1)). Other differences are minor and omitted for brevity.

Proof of Theorem 2.2: (a) Given Theorem 2.1(a) and the Continuous Mapping Theorem it
suffices to show that P E?:_j K(j/M)q44(5) —a 40*(T5+T+T7). Before doing so it is convenient
to redefine the bracketed terms from (11) used in the primary decomposition of the loss differential

in the proof of Theorem 2.1(absent the summations, but keeping the brackets) as

(@51 4r = 01 44 7) = {2410 — Ao} +2{B,} + {C,} +2{D,}. (15)

With this in mind, if we ignore the finite sample difference between P and P — 7 + 1, we obtain

J j T+P—-7 R R R
P Z K(j/M)~gq(J Z Zt:Tﬂ (ug,t+‘r _“%,t+r)(ug,t7j+r _u%,t7j+r)(16)
j==J j==J
. T+P—1 J . T+P—71
= 4 Z K(j/M) Zt:Tﬂ ArpAre—j )+ 4 Z K(j/M) Zt:T+j A1:Be_j}
j—fi j==J
+P—7
+4{ Z K(j/M) Zt s BiB:_;}
j==J

+ other cross products of A17t, Ag,t, Bt, Ct, Dt with Al,t—j7 A2,t—j7 Bt—j; Ct—j; Dt—j~

In the remainder we show that each of the 3 bracketed terms in (13) converges to o times I's, g,

and I'7 respectively and that the other cross product terms are each o,(1).
For the first bracketed term in (13), if we recall the definition of hy 1 4, and that j is finite,
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algebra along the lines of Clark and McCracken (2005) gives us

= o ij KG/MT™ Y0 (TP H, (0B /o) By (< Bo(6)' + By (1) By

(BY*hry sy i By 2 J02) By (—Bo(t — )0 + Ba(t — §))By *(TY2By* Hr o (t — §) /o)
j

T+P—1
= o' Y KGMOT Y. (V2 H, (4B o) By (=T BoJ + Bi)B; P x

J——3

(BY 2Bl erlip oo Br?/0%) BT P (=T Bod ' + B1) By (T By  Hea (1) /o) + 0,(1)
J THP=T )27 7 7/ 1/2 7
= Z ]/M Zt:T (T HT71(t))(EhT71,t+Th‘T,1,t—j+T)(T HT,l(t)) + Op(l)

T+P—1

= AT,

J
[TV Hy, (t) @ TV? Hip (1)) vec Z (/M) (Ehr P14 j1r)] + 0p(1)-

Jj=-J

Given Assumptions 3 and 4, ZL?; K(j/M)(EfLTJ,HTﬁép’Lt_ﬂT) — S;;. Since Assumption

3 and Theorem 3.2 of de Jong and Davidson (2000) suffice for TV/2Hp i (t) = 5_181/2 W(s), the
Continuous Mapping Theorem implies

NPT 2 s 1/2 1 S P 1/2 1/2
YT e T HTyl(t)Hd/l S2UW ()82 @ W (5)S1 ] ds.

Since ([, AP =2 (s )S: 1/2 @ W'(s) }(2]ds)vec[5ﬁ,~l] I's, we obtain the desired result.
For the second bracketed term in (13), sumlar arguments give us

T+P—1

j
Z K( Zt:T+j A14Bis—j =

Jj=-J

.

T+P—1 _ _
Z G/MT™ Y0 (TP H (0B o) By (< Bo(6). + B (1) By

i==J

(B)/? Bl 1B Ja) B YA (< Bo(t = §)J' + Bu(t — §)) By 2 (t = 5)(BY*(t - §)6/0)

_ T+P—1
= o Z KG/MT' Y (T2 Hy, (60)B? )o) BT (=B’ + Bi) BT x

J==J

<B/Ehm+mm WB”% ) By 2(—JBoJ' + B1)By V*(B/%6/0) + 0, (1)

= Z K(/M)T Z (T2 Hry () (Bhr, 47 W1 o) (ABY5/0) + 0,(1)

Jj=-J

= 12

T+P—r1 J
ABll/Q(s/a')/ T1/2H/ ’UeC Z ]/M Etht+ThT1t J+T)] +0p(].)

j=—j
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Given Assumptions 3 and 4, 252_3 K(j/M)(EBTJ,HTB’T’LFJ»JFT) — S;;. Since Assumption

3 and Theorem 3.2 of de Jong and Davidson (2000) suffice for TV/2Hp i (t) = 5_131/2 W (s), the
Continuous Mapping Theorem implies

~ +Ap ~
TS T ABY 5 /0) © TV H o (1) / sY(AB}?6/0) © W'(s)S}/)ds.

Since (f, 1HAr _1[(ABll/26/a) @ W'(s )S%gZ]ds)vec[Sﬁﬁ] = T's, we obtain the desired result.
For the third bracketed term in (13), similar arguments give us

J . T+P—T1
Z K(j/M) Zt:Tﬂ_ By Bi—j =

jz—i

A K GAT ST @B (0)/0) BT A0 (- Bolt) + By(0) By

Jj=—7
<B/hm+ThT1t ier B2 12 BY YR (=T Bo(t — §)J" + Bo(t — ) By V2 (t — 5)(BY*(t — 5)d/0)

T+P—1
_ 4ZKJ/M N @B o) B A (B + BBy

Jj==J
<B/Ehm+7hm WB”Z/ By A (=T BoJ' + By) By VA(By*6/0) + 0p(1)

= Z GANT ST B Jo) (Bl pir by 1) (AB25/0) 4 0,(1)

= o((P/T)|(¢'B*AJo) @ (8'Bi* A Jo)] vecz /M) Bl e by i) + 0p(1).

Given Assumptions 3 and 4, Z§=_3 K(j/M)(EiLT,LHJL’T’LFjJFT) — S;;. Since Assumption
5 implies P/T — Ap and ()\P[((S/Bi/QAI/O') ® ((5'Bi/2/~1’/0)])vec[5’m] = TI'7, we obtain the desired
result.

There are twelve remaining terms in (13) that are cross products of Ay, Aay, B, Ci, and
D, with Ay ;_j, Asy_j, Bi—j, Cy—;, and D,_; for each j. That each are o,(1) follow comparable
arguments. For brevity we show this for the term comprised of A;; and Ay ,_;. For this term we

have

S KA Y A e -

j==J

T+P—T1
|ZKJ/M Ry (TVPHR () (=TBo(t) ) + Bi(t) x
szj
(I 1 14-vecl =T Bo(8)wr,0,4107,0,, Bo () + Bi()wr i@ B (1) (T Hry (t = §) © T Hra (t — 5)))|
T+P—1
ap=1/2(p-1
< kT Zt .

3
(SupT§t§T+P—1|T1 Hra(t)]) (SUPT§t§T+P—1| — JBo(t)J" + Bi(t)]).

\h,1,447vecl—J Bo(t)w1,0.42% 0 4 Bo(t)J' + Bi(t)ar1,2% 4 1 Bi(t)]']) x
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Assumptions 3 and 5, along with de Jong and Davidson (2000) suffice for supy<;<rip_1 |TY2Hp 1 (t)] = O,y(1).
Assumption 3 along with Markov’s inequality imply both

1 T+P—1 / ’ / 4
T Zt:T |hr1,t+rvecl—J Bi(t)xr,0,:27,0 . Bo(t))" + Bi(t)xr1027 1 1 B1(t)]'| = Op(1)

and suppcy<pyp_1| — JBo(t)J' + Bi(t)] =0,(1). Since j and k are finite and T—/% = 0,(1), the
proof is complete.

(b) The proof is largely the same as for the recursive scheme. And as was the case for Theorem

t—
s=

2.1, the primary difference is that instead of Hr1(t) = (t71 > 1 hr1,s++) for the recursive scheme

we now have Hr 1 (t) = (T~} ZZ;I_T_TH hr1,s++) for the rolling scheme. Hence in each step of the

~ —1
proof for the recursive scheme where the fact that T'/2Hrp(t) = s S%}(LQW(S) is used, we instead

use the fact that for the rolling scheme TV2Hyp (t) = S;L,{f(W(s) —W(s—1)). Other differences

are minor and omitted for brevity.

Lemma 1: Maintain Assumptions 2, 3', 4, and 5 as well as either Assumption 1 or 1. (a)
TY2158, 7 = Op(1). (b) suppeyerspr (T2 (Hy () =Hy o ()] = 0,(1).

Proof of Lemma 1: (a) Let 6 denote the Lagrange multiplier'* associated with the ridge

regression and define C12(T") = J’Bfl(T)Jg and Cio = limy_, o E(SUT,O,M/TJQ,J
(a-i) Maintain Assumption 1. The definition of the ridge estimator implies that for —- =

1+¢
\/(Tl/zﬁl,T)/JzFl({ IRk the ridge estimator takes the form
~ I S By(T)Cra(T) - I~ By(T)Cha(T
5o ( I o(T)Cha( ))MZ ( 0 EIO( )Cia( >)(5*+T_1/25+BI(T)HTJ(T)>.
1+¢ 14¢
Hence .
~ I = By(T)C12(T
A >>[6+81<T><T1/2HT,1<T>>1
- 1+4¢
I —==BC
—d Jg<0 ST NG BV B
e
where

¢* =4 (N(8,B,VBy)) JoF; ' J5(N (8, B1V B;)) a mixed non-central chi-square variate, and the

proof is complete.
a-i1) Maintain Assumption 1’. e ridge estimator takes the form
ii) Maintain A tion 1’. The rid timator takes the f

¢
5= (1 DGO,
1+¢

1,7 —

)

¢
< I @BO(T)CM(T)
0 m[

) (81 + Bi(T)Hr 1 (T)).

d

= - ~ and hence ¢ is unique only up to its’
(T72B, 1) I Fy (D)5 (T/23, 1) ¢ d v up

4 This multiplier satisfies (ig)2

d
(TY/2By 1) JoFy (T)J4(TV/2B 1)

sign. In all aspects of this paper we use the value satisfying Flc = \/

Choosing the opposite sign is irrelevant since, in every case, what matters is not the value of ﬁ but it’s
square.

34



Hence

T2 056, ¢ = \/51 TF d(T)J By J31B1 + Bu(T)Hr,1 (T)]

__d_
P, T 1
and the proof is complete.

(b) For ease of presentation, we show the result for the recursive scheme and assuming 7 = 2

and hence V7 oo = Ny 08r 1,512+ 0N 1€ 1541 and V] 1o = Nep0ET 1542 + O 18T 1,511- ()

Rearranging terms gives us,

= t— ‘r
TI/Q(H:?J( ) — Hr, (1) 1/22 (V7,152 — VT,1,542)2T,1,5 =
(e SN C TR )+
a1 Ns12\ET 1,542 — ET,1,542 Ns+1\ET1,s4+1 — €ET,1,54+1

(0 —0ne 1 Era,s41 —er1,s41) + (0 = O)g116T,1,541)TT 1,5

If we take a first order Taylor expansion of both €71 542 and €71 541, then for some J4 in the

closed cube with opposing vertices 7 and vy, we obtain

T2 (Hy (1) — Hy (1) =
7-1/2 Zs (NssaVer 1 se2(Fr)Ar — Y1) + 0051 Ver1,s41 () O — V1)

+(0 = 0)ne 1 Ver1,st1(Vr) r — v7) + (0 — O)ng1671,611) 27,15

and hence

sup [ T2(Hy () — Hy (1)) <

2k, sup |71 Z 775+2V€T vst2(Tp)zr s [TV 2 A — 1))

+02k; sup |71 Z T]S+1V5T Ls+1(Fr)xr,s||T 1/2 Yz — 7))l
(0 0)2k1 sup [ Z 775+1V5T1 s+1 (V)T sHT ( — 7))l

HTO-0)sup T Y grersaiaral

Assumptions 1 or 1’, along with 3’ suffice for both TY/2(3,; — v;) and TY/2( — 6) to be
O,(1). In addition since, for large enough samples, Assumption 6 bounds the second moments
of Ver1,s42(Fr) and VEr 1 s41(77) as well as 27,1 5, the fact that the n, . arei.i.d. N(0, 1) then im-

phes T ! Z =1 ns+2ng,1,S+2(7T)xT,1,s7 T Z =1 775+1VET,1,S+1(’YT)37T 1,55 and T~ ! Z 1 Nst1 X
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€r1,s+127,1,5 are all o, 5 (1). This in turn, (along with Assumption 5) implies that sup,|.| of each

of the partial sums is 0,(1) and the proof is complete.
Proof of Theorem 2.3: We provide details for the recursive scheme noting differences for the
rolling later. Straightforward algebra implies that

S Tk, — i) = S T {2k (=T Bo(t)J' + By (t) Hy, (t)

—Hz,(t)(=JBo(t)J zr 1 127 l,tJBU( )J' + Bi(t )xT,l,thl «B1(t)Hy 1 ()}

FTYE ST {2 (- JBo(t)J' + Bu(t) By 6)(TY25, 1)} B
+T~ 12” T{TV2B, 1) BT (E)(= T Bo(0) + By (0)ar,y .y (=T Bo(t)' + By (1)) By (H)(T/2B, 1)}

T+P—T1 * YT % *
230,00 g, ar (=T Bo()" + Bi(8) (Hr,, (1) = Hi, (1))
(h*T,l,t+r - h*T,1,t+r) (*JBO(t)J/ + Bl(t))H;“,l(t) R
—Hz (t)(=J Bo(t)J w11 027 1 1 J Bo(t)J" + Bi(t)rr vy Bi(t))(Hp y (t) — Hy 1 (1))
7 % * / T % *
+(hT,17tJ[r P er) (_‘/]BO(t)J/ + B1(t))(Hr 1 () — Hp (1) R
_(0-5)(HT () — H;1(t)) (_JBO(t)Jle,l,tx/T,LtJBO(t)J, + Bi (t)xT,l,tx/T,LtBl(t))(H;u(t) - H;1(t))
~1
—h, 7By (t)(=J Bo(t)J' + By(t))wr 421 ] Bo(t)J Hy 4 (t)
+51 BT (O(=TBo() " + Bi()(hgy p4r — Wiy 4r)
By (4)(= T Bo(8)' + Bu(8)wr1,42% 1 Bo(t)J' (Hf (1) — Hipy (£)}
(17)
Note that there are 4 bracketed {.} terms in (14). The first three are directly analogous to the three
bracketed terms in (11) from the proof of Theorem 2.1. We will show that these three terms have
limits Iy =9 T';, for T; i = 1 — 4 defined in the text. The additional assumption of either conditional

homoskedasticity or k; = 1 are needed only in the proof for T'% = I';. Finally, we then show that

the remaining fourth bracketed term is o,(1).

Proof of bracket 1: The sole difference between this term and that in the proof of Theorem 2.1
is that they are defined in terms of hj ;. rather than hj ;1. Since these terms have the same first
and second moments, as well as the same mixing properties, the exact same proof is applicable and
hence we have

T+P ! {2hT 1 t+T< JBO(t>J/ + By (t)>Hik“,1<t)
H%( )(—J Bo(t)J’ x4 4] Bo(t)J + Bi(t)ar1 a7y B1(t) Hy 1 (1)} —a 27 — T3

where I'T and I'; denote independent replicas of I'; and I'y respectively. Independence follows from

the fact that the n,, . are i.i.d. N(0,1).
Proof of bracket 2: Rearranging terms gives us

T-1/22 E”f R TBo(t) T’ + By (1)) By ()(T"?B1 1)
=T1-129% /] "B () TP (T2 58, 1)

From Lemma 1 we know Tl/zJéﬁLT = Op(1). Algebra along the lines of Clark and McCracken
(2005) then gives us

T+P—7 T+P-—
T2 T R Bu R FT O3B, ) = T2 W B (T35, ) 4oy(1),

This term is a bit different from that for the second bracketed term in Theorem 2.1. There, the

second bracketed term takes the form 7-1/22 5077 Wiy 4 BrJoFy ' Biy+0p(1). What makes
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them different here is that since T/ QJQET is not consistent for 37,, it is not the case that

T2y WP Bro By (T1/2J251 7) equals T-1/22 Y H07 Wiy o BiJaFt Bratop(1).

However, it is true that both terms are asymptotically normal. For the former, clearly

T+P—1
1/222 T 1LeyrBila L B2 —a T2 ~ N(0,49)

where Q = )\PﬁT;FfljéBlvBlj2Ff16T2. But for the latter, due to the i.i.d. N(0,1) (and strictly
exogenous) nature of the 7, ., we have

T+P—
T_1/22Z T LirrBrlaly 1J2(T1/2/61 r) —a s ~ N(0,4W)

where

W = lim Var{T~"/? T+P TR Bl Fy CLIy(TY2B, 1)}
= Aplim E{(Tl/Qﬂ1 ) Jg 1J2B1{hm Var(P‘l/2 tT+TP TR )Y BidoFy 1J2(T1/2ﬂ1 r)} -
= \plim E{(Tl/Qﬂl 7) o F Iy BV By Jo F; 1J2(T1/251 r)}

The precise relationship between I'; and I's depends on the relationship between 2 and W. This in

turn depends upon the additional restrictions in the statement of the Theorem.
(a) If we let V = o2 By !, W simplifies to

W = o?\p lim B{(T"/23, 1)’ JaFy LIS (TY? 6, 1))
=0o?\p hmE{(Tl/Qﬁl,T) Jo Fy ( )Jz(Tl/QﬁLT)} :
= o?\plim E{d} = 0% \pd
The result follows since under the null hypothesis, 2 = )\P/B12F B VB o B =0 )\pﬂuF 187, =

O'2>\pd.
(b) If we let dim(8]5) = 1, W simplifies to

W = \plim B{(TY/23, 1) JoFy ' J5 BV By JoFyH J5(TV? 6, 1)}
=Ap hmE{(Tl/Zﬂu,T) (Fr ) JyB1V By Ja} .

But 31, 7 was estimated satisfying the restriction that (723, )2 = Fi(T)d and hence W =
Ap lim E{F\(T)d(F;")2J5B,V B1Jo} = ApF; 'dJ5 B,V B, Jy. Following similar arguments, we also

have Q = Ap(B55)2(Fy1)2J5B1V By Js. But under the null, (83,)? = dF; and the proof is complete.
Proof of bracket 3: Rearranging terms gives us

SO (T8, ) B (6)(= T Bo(8)' + Bu(8) w1 0wy (—T Bo()J' + Ba(8) By (8)(TV2B, 1)
=T LS TTTYRBy ) T F () 3By (a1 @y B () J2F () T (T2 B, 1)

From Lemma 1 we know T1/2J§5’17T = O,(1). From there, algebra long the lines of Clark and
McCracken (2005) gives us

U T 2B ) o F VI3 Bu(ar e Bt TP (O 5(T12B, 1)
= TUST T (Y25, 1) B F () BB () By By () e Fy (0 15(TY2 By 1) + 0,(1)
=T 1ET+P T(T1/2ﬁ1 1) JoFy 1J2(T1/251 7) +0p(1) '
=(P—741/T)d+ 0,(1) —, Apdfnl
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The result follows since under the null hypothesis, I'y = QT;Ffl By = Apd.

Proof of bracket 4: We must show that each of the eight components of the fourth bracketed
term in (14) are o,(1). The proofs of each are similar and as such we show the results only for the
fourth and seventh components. If we take absolute value of the former we find that

| (g t+1;r — W1 4e0) (= Bo(8) ' + Bi(0) (H, () — H 1 (1))] )
< KT 20 T IR er = B e ) (5upy | = T Bo()J' + Bu(t)]) (sup, T2 Hy 1 (1) — Hy 1 (4)])

while straightforward algebra along the lines of Clark and McCracken (2005) gives us

By BT () (— T Bo(t) + BuO) (01 e = D)
(T1/2J261,T) 1J§BI(T_1/2 t:+T _T(h%,l,wr o h;“,l,t«kr)) +0p(1).

Lemma 1 implies both sup, T1/2|ﬁ;’1(t) — Hi (t)] = o0p(1) and T1/2J§E1)T = O,(1) while
Assumption 3’ suffices for sup, | — JBo(t)J' + By(t)] = O,(1). That T-1/2 ?:T}LT(;L*T,LHT -
h71.41.) = 0p(1) follows an almost identical line of proof to that in Lemma 1b (without the sup, |.|
component) but with a different range of summation.

The result will follow if 7-1/2 3 F~7 \hT Litr — PT1 4.l = 0,(1). For simplicity we assume,

as in the proof of Lemma 1, that 7 = 2 and hence the forecast errors form an M A(1). If we then

take a Taylor expansion in precisely the same fashion as in the proof of Lemma 1 we have

T+P—1 «
-1/ E | T,1,t+1 h;"lt+7'| <
t T Rt Rt ] -

T+P—T1 . - .
2k T Z D42 Ve 142 () ol T G — 1))
_ T+P-1 ~ _ ~
2Ty e Veren (Vr)er T2 Gy — e
T+P—71 . _ N
+(0 — 0)2k; T Z M1 Ver oo (V) wr [T Fr = vr))|

T+P T
(T1/29 0)) Z 1Mt 416T1, 0412718

Assumptions 1 or 1/ and 3’ suffice for both TY/2(5; — v7) and TY2(6 — 6) to be O,(1).
Since, for large enough samples, Assumption 3’ bounds the second moments of Vér 1 s12(F7) and
Ver,s+1(r) as well as x71 o5 with - distributed 4.i.d.N(0,1), T—! Z L N2 Vera sy2(Vr)2ra sl

-1 Z L e 1 Vera s41 () zra,s|, and T4 Z L Nsi1€11,s+127,1,5] are all O,(1), and the proof

is complete.

Proof for the rolling scheme: Results for the rolling scheme differ only in the definition of H7. | (t) =

T i Py, (and to a lesser extent H  (£) =T~ 130, ., hT 1.s+-)- In particular, if
we substitute TY/2H3 | (t) = V/2(W*(s) — W*(s — 1)) for T1/2H§,‘1,1(t) = V25~ 1W*(s) as used

above and in the proof of Theorem 2.1, we obtain the desired conclusion.
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Proof of Theorem 2.4: Given Theorem 2.3 and the Continuous Mapping Theorem it suffices

to show that PZ; 7K(3/M)7dd(’) —4 404 (Tt +T§ +T%) where T’}

=47, forT; i = 5—7 defined

in the text. Before domg so it is convenient to redefine the four bracketed terms terms from (14)

used in the main decomposition of the loss differential in Theorem 2.3 (absent
keeping the brackets) as

(

A~ %D

A~ %2
U, t47

E3
— U t+T = {2A1,t

— Ay + 2Bl H{CTH D}

the summations, but

).

With this in mind, if we ignore the finite sample difference between P and P — 7 + 1, we obtain

T+P—T1
t=T+j

A

*2
0,t+71

KG/M)Y.

~ %2

~x2
UL tgr

ST KG/M)Y

J==7

P K(i/M)Aiali) =
ST KG/M)Y

(4 )

T+P— TA* A*

U‘Ot J+T
T+P— TA* B*

%2
—ay 1,t—

}

+T)

4j=—7 t=T+j 1,t—3 j=—7 t=T+j 1,t—j
T+P—7 px
AT KGAM) ST BB, )
+ other cross products of Al)t,A“,BLt,C’t*,Df with A7, A5, .. Bi, ;,Ci ;. Dy

In the remainder we show that each of the three bracketed terms converges to o times I'f =¢

I;

i =5 — 7 respectively and that each of the cross product terms are each o,(1).
Proof of bracket 1: As was the case in the proof of Theorem 2.3, the sole difference between this
term and that in the proof of Theorem 2.2 is that they are defined in terms of h; ;. . rather than

hr1,t+-. Since these terms have the same first and second moments, as wel
properties, the exact same proof is applicable and hence we have

S KM ST AL AL, =

‘777]
ot Z?— 7 K(j/M) ZZ+TP+JT

/2 gl/2 . 1/2
By /4( /thtJr'rthlt g+rB//U)
1_‘*

(= IBo(t = )+ Bi(t - )

where I'} denotes an independent replica of I's. Independence follows from t

are i.i.d. N(0,1).
Proof of bracket 2: After rearranging terms, the second bracketed term is

ST KM ST ALBL
= Z;:,EK(]/M) ZZ;TP.;_J'T
h;“ 1 t+7h/7f1 t— j+T(_JBO(t —§)J + Bi(t — .7))
=Y KG/MT T (2 (1)

1

j==7 t=T"+j
t*j)J2F11 (t* ) (T /zﬂlT)

Ix
hT,l,t+rhT,1,t—j+7—Bl(

1 as the same mixing

(TY2Hy (0)By? Jo*) By V2 (—JBo(t)J' + By (t)) %
B (1V2B P Hy (¢ — §)/0?)

he fact that the n,, .

(TY/2Hj,, (1)) (— T Bo(t)J' + Bu(t)) x
Nt = )15y,
(=JBo(t)J" + Bu(t))x

7)

This term is a bit different from that for the second bracketed term in Theorem 2.2. As in the proof
of Theorem 2.3, it differs because J} (Tl/zﬁl,T) is not consistent for 87,. However, it is true that

both terms are asymptotically normal.
-K(G/M)T~

> - 'y
h} 1 t+¢h/T* 1,6— j+'rBl(

=Y KG/MTY
(ERp s M0 4 jyr ) Bro Fy

To see this note that
T+P—1

oy, (TY2H;, L (1) (I Bo(t)J' + By(t))x
P2 Fy (=) é(T1/251T)

S (T2 HG L (1) (< BoJ' + B)x

1J2(T1/251T)+ p(1)

=T ZtT=+TP+jT (T2 Hy,, (1)) (= BoJ' + By)V By Jo Fy ' J5(TV? 5,
—4 oiTs ~ N(0,W)
where W = In(1+Ap)o— lim E{(T"/?3, ;) Jo Fy ' J, BV By Jo Fy ' J5 BV By Jo F;

)+ op(1)

T LBV By P IL(TY2 By 1))

The asymptotic normality follows from the fact that Hy ; (¢) is independent of 7/2 617T and moreover
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that T-1 S 50T (TV2HE (1) =2 [ s V2 W (s)ds ~ N(0,In(1+ Ap)V). As in the proof
of Theorem 2.3, the exact relationship between I'y and I'¢ depends upon the additional assumptions
stated in the Theorem.

(a) If we let V = o2 By !, W simplifies to

W=o° 1n(1—|—)\p)hmE{(T1/261 ) J2 (T8, )}
= oS In(1+ Ap) lim E{(T'/25, 1) ) F; ( )JQ(T1/2/61,T)} :
=0%In(1+ A\p) limE(d) =0%In(1+ )\p)d

But from Theorem 2.2, the definition of I'g gives us
1+Ap
o'l = (/ sTYW (s)ds)' VY2 By Jy Fy LTy BV By Jo Fy L 58 ~ N(0,9)
1

where
Q=1n(1+ \p)§' JoFy ' J,BIV B Jo Fy P J5BIV By Jo F IS BV By Jo 46,

Assuming conditional homoskedasticity this simplifies to Q = o%In(1 + X p)ﬁT;Ff 13%,. The result

then follows since under the null, ﬁ*{;Ffl By =d.
(b) If 37, is scalar we find that

W =In(1+ Ap) lim B{(T"/235 1)*(F; )2 J5BiV By Jo Fy ' J3 BV By Jo Fy ' J3 B,V By Jo}
=In(1+ Ap) lim E{dF\(T)(F3})*(J,B1V B1.J5)?}
=In(1+ Ap)d(F; )3 (J5B1V By Jp)?

But from Theorem 2.2, the definition of I'g gives us

1+A\p
girﬁz(/ s*IW()V 2ds) By Jo F VI BLV By Jo F L J45 ~ N(0,9)
1

where
Q =In(1+XAp)(B72)*(Fy ) (JaB1V B1J2)*.

The result then follows since under the null, (3},)?F;* = d.
Proof of bracket 3: After rearranging terms, the third bracketed term is
T D T+P—7 = -
S KGM) S BBl = Y S KGMT TSI (126, 1) By (4)(=TBo() ' + Bu(#)x
W s WE e jar (T Bo(t = 5)7" + Bu(t = ) By (t = 5)(T?B 1)
= Ej - K( J/M) T ZZ;TPJ;T (T1/2ﬁ1,T)J2F1_1(t)J§Bl (t)hf,tJrrh/ft—j-s-TB (t - J)J2 (t - J)J/ (T1/251 7)

J==J

This term is also different from that for the third bracketed term in Theorem 2.2. As in the proof of
Lemma 2, it differs because T1/2J2ﬁ1 7 1s not consistent for 875. Even so, since T1/2J261 = 0,(1),
the above term is also Op(1). To see this, algebra along the lines of Clark and McCracken (2005)
gives us

Zz 7K(j/M)T_1 ZZFTPJ:J’T (T1/2g1»T)/J2F1_1(t)J§Bl (t)h;,l,t-i-'rh%l,t—j—i-rB (t = j)JoFy (t = )3 (T1/251 T)
= Zj_ SKG/MT ST (T8, T>'J2Ffl< ) T3B1 () (BR W 14— jr) B (O T2 (0 5(T2 5y 1) + 0p(1)
- E;:*j K(j/M)T Tt EtT+TP+_JT (Tl/Qﬂl T) Jo 1JzBl(EhT 1 t+7h’/T 1,t— J+T)Bl']2 1J2(T1/251 T) + Op(l)

=4 tTJFTIjr (125, T) J2 TL BV By o P T (TY 25y ) + 0,(1)

= 4F7 = lim Ap(T"/?f; 1) Jo P T3 By V By o F; TLIL(TY?B, 1)
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As in the proof for bracket 2 above, the exact relationship between I'; and I'y depends upon the

additional assumptions stated in the the Theorem.
(a) If we let V = 02B; !, we immediately see that

Tt = Apo im{(TY/23, 1) Jo Fy Iy BV B Jo FT L TR(TY2 By 1)}
= \po 2 Him{(TY/2B3, 1) o Fy P J(TY2 B, 1)} = Apo—2limd = 0~ 2Apd

But under the null, and with the additional assumption of conditional homoskedasticity, from The-
orem 2.2 we know that

;= a*4Ap5’{;F;1JngBlJQF;lﬂ;Q = U*QAPﬂ;;Fl—lmQ =0 2 \pd=T4%

and the proof is complete.
(b) If we let 875 be scalar we find that
o' = W \p (T2, 1) JoFy ' J5 BV By Jo FT (T2, 1)
= Ap im(TV/? By 1) (Fy )2 J,B,V By J
= Ap lim dFH(T)(F7Y)204BV By Jy
= \pdF; ' J5B1V By Js + 0,(1)

But under the null, and with the additional assumption of that 7, is scalar, from Theorem 2.2 we
know that

04T7 = ApBiyFy VLBV By Jo F By = Ap(BLy) 2 (Fy )20, BV By Js
= A\pdF; ' J5B1V By Jy = 0T

and the proof is complete.

Proof of bracket 4: We must show each of the remaining cross-products of A7, A3, B}, CY,

and Dj with A}, ., A}, ., By ¥

t—jr Yt—j>

and D

i, are op(1). The proof is nearly identical to that
for the fourth bracketed term from the proof of Theorem 2.2. The primary difference is that the
relevant moment conditions are all defined in terms of 7., ;. rather than hr 1 4. But since these
terms have the same first and second moments, as well as the same mixing properties, nearly the

same proof is applicable and hence for brevity we do not repeat the details.

Proof for the rolling scheme: Results for the rolling scheme differ only in the definition of H;J(t) =

Ty i1 Wy err (and to a lesser extent Hy (£) =T 130, ., 3}7173_”). In particular, if
we substitute TY/2Hj, | (t) = V/2(W*(s) — W*(s — 1)) for TY2Hj | (t) = V'/2s71IW*(s) as used
above, we obtain the desired conclusion.

Proof of Theorem 2.5: Regardless of whether the recursive or rolling scheme is used, the proof
follows very similar arguments to those used in Theorems 2.3 and 2.4. Any differences that arise
come from differences in the asymptotic behavior of T/ 2J§B1,T under Assumption 1’ as compared
to Assumption 1. Therefore, since the decomposition at the beginning of the proof of Theorem 2.3 is
unaffected by whether Assumption 1 or 1’ holds, and the first bracketed term does not depend upon

the value of either 37, or T1/2J§E17T the same proof can be applied to show 2I'f — 'y =2 2"y — Ty
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and T} =9 I's under Assumption 1. For the third bracketed term, the asymptotic behavior of
TV QJQBLT is also irrelevant — all that matters is that the ridge constraint is still imposed whether
working under Assumption 1 or 1’.

Differences arise for the second, and fourth bracketed terms. For the fourth bracketed term,
the differences remain minor since we need only show that the relevant components are all o,(1)
and the corresponding proofs only make use of the fact that, under Assumption 1, Lemma 1 implies
T1/2J§BLT = O,(1). These arguments continue to hold since under Assumption 1/, T1/2J§B17T
remains O,(1) — despite also having the property that T1/2J§E1)T —P /5121’?1 o Bia-

We therefore focus attention on showing that T = T; for i = 3,6,7. In each case, the different
asymptotic behavior of T/ QJQBLT under Assumption 1’ does impact the proofs directly. And as
we saw earlier, in each case the proof also requires additional assumptions as noted in the statement

of the theorem.
Proof that I'; =7 I's: As in the proof for Theorem 2.3, the second bracketed term satisfies

T+P—7 T+P—

1/222 /T*,l,t+rBl(t)J2 ( )J2(T1/2ﬂ1 1/222 T1t+¢BlJ2 1J2(T1/261 T)"‘Op(l)
What makes this different under Assumption 1’ is that since 7'/ 2J§[~31,T —P /ﬁ 315 we also
have

T+P—1 ~
1/222 ljf,l,tJr'rBl(t)JZFfl(t)Jé(Tl/Qﬁl,T)
T+P—71
T2, | — B1JoFy ' Bty + 0p(1
/BTQF 15122 T1t+7' 142 ﬂ12 p( )
— dN(O, 4W)
where
W= (T%)AP%F LI,BV By o F By

Since I's"N(0,49Q),Q = /\pﬁf;FflJéBlVBngFflﬁfz, the precise relationship between I'; and I's
depends on the relationship between €2 and W. This in turn depends upon the additional restrictions

in the statement of the Theorem.
(a) If we let V = o2 By !, W simplifies to

4
BioF By

The result follows since under the null hypothesis, Q = ApBi, Fy VLBV By Jo Fy 1 Bty = 02 ApBia T 8Ly =

W = o%( AP Bly = 0*Apd.

0'2)\pd.
(b) If we let dim(037,) = 1 and note that in this case J5B1V B1Jy = Fy - tr((—=JBoJ' + B1)V),
W simplifies to
W = d\ptr((—J By’ + By)V).
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The result follows since under the null hypothesis, Q = dAptr((—JByJ' + B1)V) and the proof

is complete.
Proof that I'; =2 I'4: As in the proof for Theorem 2.4, the second bracketed term satisfies

ST KG/M) ST ALBL
=1 S K(j/M)T™ VSIS (TR () (<TBolt)T + Ba(t)x

W1 wr 71— (= Bo(t — j)Jl + By (t —§))By ' (t — ')(Tl/zﬁl 7)
=T ST (T2 HG (8) BuJoFy L JL BV Byl Fy Hrv2 8, 1) +op(1)

What makes this different under Assumption 1’ is that since T/ 2J£B1,T —f \ Wﬂiz we also
1271 12

have
S (TP Hiy (0) Buk BV BB F (T, 1)
- (\/ m) ZtTJrTPJro (T1/2HT,1( )) By Jo F ' 3BV By Jo Fy B + 0p(1)
—q N0, W)
where W = In(1 + Ap)(ﬁ){m;F LI BV By JoFy Ty BV By Jo F) 1J2B1V31J2F 1gi,.
The asymptotic normality follows from the fact that 7! EtT+TP+ T (T1/2H* —d fHAP sTYW2WH (s5)ds ~

N(0,In(14+Ap)V). Since Tg " N(0,Q),Q = In(14+Ap)d' JoF; LIy BV By Jo F; 1J231V31J2 LI BV By Jo F LS,
the precise relationship between I'j and I's depends on the relationship between 2 and W. This in

turn depends upon the additional restrictions in the statement of the Theorem.
(a) If we let V = o2 By !, W simplifies to

W =0o%In(1 + A\p)d
The result follows since under the null hypothesis,

Q=1In(1+Xp)d T2 Fy T JLBYV By Jo T IS BV By Jo T IS BV By Jo Fy L I4S
=0%In(1 + Ap)ﬁuFl 12 = 0% In(1 + Ap)d. '

(b) If we let dim(037,) = 1 and note that in this case J5B1V B1Jy = Fy - tr((—=JBoJ' + B1)V),
W simplifies to
W =1In(l + Ap)d - tr((—=JBoJ' + B1)V)?

The result follows since under the null hypothesis, Q@ = In(1 + Ap)d - tr((—J BoJ' + B1)V)?3 and the

proof is complete.
Proof that I'i =2 I'7: As in the proof for Theorem 2.4, the third bracketed term satisfies

S KG/M) S BB = S KG/M)T ST (T2, 1) BE (0(=T Bo() T + B (8) %
Wi 11 4 jr (=T Bo(t = j)J' + Bi(t — )BTt = )26, p)
=Tty T (T1/2B1,T)/J2Ff1J£31V31J2Ff1(T1/2J§§1,T) +op(1)

What makes this different under Assumption 1’ is that since 7'/ QJéﬁl,T —P /W B15 we also

have

S (@B, 1) BF B BuL (T )

t T+j v {
= Ap(Grpteg )0 Fy BBV B Fy B, = T3
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In contrast, the associated term from Theorem 2.2 takes the value I'y = A\p B35 Fy ' J5B1V By Jo F ' 57,
The exact relationship between these two terms depends upon the additional assumptions stated in
the Theorem.

(a) If we let V = o2By!, I's simplifies to Apo?d. The result follows since under the null
hypothesis,I'y = Ap B F; ' J5B1V By Jy Fy ' 55 = Apo?d and the proof is complete.

(b) If we let dim(37,) = 1 and note that in this case J5B1V B1Jy = Fy - tr((—JBoJ' + B1)V),
I'* simplifies to Apdtr((—JBoJ' + B1)V). The result follows since under the null hypothesis,
T7 = A\pBiFT Iy BV By Jo F By = Apdtr((—JBoJ' + B1)V) and the proof is complete.
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Table 1: Monte Carlo Rejection Rates, Null Model Best
(nominal size =

10%)

DGP 1, 1-step forecasts

source of T=40 | T=40 | T=80 | T=80 | T=80 | T=120 | T=120
statistic critical values P=80 | P=120 | P=40 | P=80 | P=120 | P=40 | P=80
MSE-F non-parametric .011 .005 .034 .021 .012 .041 .030
MSE-F' no-predict. fixed regr. | .107 102 .106 .105 109 .106 .109
MSE-F fixed regressor .018 .011 .027 .020 .017 .030 .028
MSE-t non-parametric .013 .006 .040 .023 .015 .046 .032
MSE-t no-predict. fixed regr. | .102 .097 .095 .100 101 .097 .102
MSE-t fixed regressor .020 .011 .036 .028 .021 .045 .036
MSE-t normal .013 .005 .034 .021 .012 .046 .031
MSE-t, 2-sided | normal .146 158 132 136 139 123 130
CW-t no-predict. fixed regr. | .103 .094 .088 .092 .100 .093 .098
CW-t normal .066 .059 074 .067 .064 .078 .072

DGP 2, 1-step forecasts

source of T=40 | T=40 | T=80 | T=80 | T=80 | T=120 | T=120
statistic critical values P=80 | P=120 | P=40 | P=80 | P=120 | P=40 | P=80
MSE-F non-parametric .002 .002 .024 .009 .006 .031 .014
MSE-F no-predict. fixed regr. | .099 .096 116 105 107 112 .108
MSE-F fixed regressor .005 .004 .014 .007 .006 .017 .012
MSE-t non-parametric .005 .003 .027 .011 .007 .034 .016
MSE-t no-predict. fixed regr. | .100 .105 112 103 .106 .106 107
MSE-t fixed regressor .007 .005 .025 .013 .011 .033 .019
MSE-t normal .004 .002 .025 .009 .006 .031 .016
MSE-t, 2-sided | normal 273 .322 .168 .204 .243 151 178
CW-t no-predict. fixed regr. | .094 .099 .097 .093 102 .097 .097
CW-t normal .078 .079 .090 .080 .084 .094 .085

DGP 3, 4-step forecasts

source of T=40 | T=40 | T=80 | T=80 | T=80 | T=120 | T=120
statistic critical values P=80 | P=120 | P=40 | P=80 | P=120 | P=40 | P=80
MSE-F non-parametric .030 .015 077 .039 .023 .098 .048
MSE-F no-predict. fixed regr. | .114 .098 111 110 .100 .106 .105
MSE-F fixed regressor .035 .020 .041 .032 .030 .045 .033
MSE-t non-parametric .030 .016 073 .040 .024 .089 .045
MSE-t no-predict. fixed regr. | .104 .096 105 105 .096 105 .098
MSE-t fixed regressor .042 .025 .060 .044 .031 .066 .044
MSE-t normal .030 .014 .086 .042 .025 .095 .047
MSE-t, 2-sided | normal 191 .186 .207 187 173 .207 171
CW-t no-predict. fixed regr. | .102 .086 .100 .102 .095 104 .096
CW-t normal 107 .078 .140 .109 .090 147 .105

Notes:

1. The data generating processes are defined in equations (5), (8), and (11). In these experiments, the coefficients b;; = 0
for all 7, j, such that the null forecasting model is expected to be most accurate.
2. For each artificial data set, forecasts of y;4+, (where 7 denotes the forecast horizon) are formed recursively using estimates
of equations (6) and (7) in the case of the DGP 1 experiments, equations (9) and (10) in the case of the DGP 2 experiments,and
equations (12) and (13) in the case of the DGP 3 experiments. These forecasts are then used to form the indicated test

statistics, defined in Section 2.2.

respectively.

T and P refer to the number of in—sample observations and 1-step ahead forecasts,

3. In each Monte Carlo replication, the simulated test statistics are compared against bootstrapped critical values, using a
significance level of 10%. Section 3 describes the bootstrap procedures.
4. The number of Monte Carlo simulations is 5000; the number of bootstrap draws is 499.
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Table 2: Monte Carlo Rejection Rates, Equally Accurate Models
(nominal size = 10%)

DGP 1, 1-step forecasts

source of T=40 | T=40 | T=80 | T=80 | T=80 | T=120 | T=120
statistic critical values P=80 | P=120 | P=40 | P=80 | P=120 | P=40 | P=80
MSE-F non-parametric .054 .048 .080 .062 .057 .083 .070
MSE-F no-predict. fixed regr. | .312 .340 233 .263 .283 233 .253
MSE-F' fixed regressor 101 .096 101 102 .096 .099 .103
MSE-t non-parametric .065 .055 .094 .074 .064 .097 .079
MSE-t no-predict. fixed regr. | .292 327 192 .229 .262 175 214
MSE-t fixed regressor .088 .088 .092 .089 .085 .091 .093
MSE-t normal .059 .053 .085 .068 .058 .086 .076
MSE-t, 2-sided | normal .098 .100 113 114 .099 115 112
CW-t no-predict. fixed regr. | .308 .344 .204 .250 279 190 .233
CW-t normal .243 .269 77 197 218 165 .188

DGP 2, 1-step forecasts

source of T=40 | T=40 | T=80 | T=80 | T=80 | T=120 | T=120
statistic critical values P=80 | P=120 | P=40 | P=80 | P=120 | P=40 | P=80
MSE-F non-parametric .041 .044 .068 .060 .055 .080 .072
MSE-F no-predict. fixed regr. | .414 463 .303 .357 .400 276 .329
MSE-F fixed regressor .083 .094 .089 .097 .090 .084 .093
MSE-t non-parametric .055 .050 .092 .075 .064 .100 .084
MSE-t no-predict. fixed regr. | .425 491 .269 .339 .394 231 .293
MSE-t fixed regressor 077 .087 .086 .089 .082 .088 .088
MSE-t normal .047 .049 .081 .070 .061 .085 .078
MSE-t, 2-sided | normal .093 .098 .108 .094 .093 102 .099
CW-t no-predict. fixed regr. | .460 .516 297 377 .440 .255 341
CW-t normal .420 467 .285 .343 .394 .249 312

DGP 3, 4-step forecasts

source of T=40 | T=40 | T=80 | T=80 | T=80 | T=120 | T=120
statistic critical values P=80 | P=120 | P=40 | P=80 | P=120 | P=40 | P=80
MSE-F' non-parametric 102 .091 156 A11 .094 162 114
MSE-F no-predict. fixed regr. | .317 .339 .245 272 .292 .225 .250
MSE-F fixed regressor 149 143 131 132 131 127 124
MSE-t non-parametric 110 .094 152 114 .097 .152 115
MSE-t no-predict. fixed regr. | .282 316 197 .226 .261 174 201
MSE-t fixed regressor 133 136 122 A17 123 17 112
MSE-t normal 115 103 158 115 105 162 119
MSE-t, 2-sided | normal 154 150 .209 161 152 .209 165
CW-t no-predict. fixed regr. | .311 347 214 .259 .288 189 .225
CW-t normal .320 .332 .282 276 279 .260 .248

Notes:

1. See the notes to Table 1.
2. In these experiments, the coefficients b;; = 0 are scaled such that the null and alternative models are expected to be
equally accurate (on average) over the forecast sample.
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Table 3: Monte Carlo Rejection Rates, Equally Accurate Models
Rolling Forecasts
(nominal size = 10%)

DGP 1, 1-step forecasts

source of T=40 | T=40 | T=80 | T=80 | T=80 | T=120 | T=120
statistic critical values P=80 | P=120 | P=40 | P=80 | P=120 | P=40 | P=80
MSE-F non-parametric .036 .032 .078 .052 .039 .080 .065
MSE-F no-predict. fixed regr. | .353 .406 .246 .285 .326 .239 .265
MSE-F fixed regressor .097 .099 .103 .097 .098 102 .103
MSE-t non-parametric .049 .041 .092 .063 .049 .096 .076
MSE-t no-predict. fixed regr. | .351 A17 .205 257 311 77 .222
MSE-t fixed regressor .086 .088 .092 .089 .088 .092 .093
MSE-t normal .044 .036 .083 .060 .043 .086 .067
MSE-t, 2-sided | normal .100 105 112 .108 .091 123 110
CW-t no-predict. fixed regr. | .356 422 216 277 .336 201 .250
CW-t normal 317 378 197 .230 .270 175 .204

DGP 2, 1-step forecasts

source of T=40 | T=40 | T=80 | T=80 | T=80 | T=120 | T=120
statistic critical values P=80 | P=120 | P=40 | P=80 | P=120 | P=40 | P=80
MSE-F non-parametric .020 .018 .062 .044 .034 .080 .060
MSE-F no-predict. fixed regr. | .485 .H66 319 .399 .466 275 .346
MSE-F fixed regressor .074 .080 .087 .090 .088 .084 .094
MSE-t non-parametric .030 .027 .086 .058 .044 .098 .076
MSE-t no-predict. fixed regr. | .532 627 .285 .400 .488 .236 .322
MSE-t fixed regressor .068 .076 .084 .087 .080 .086 .091
MSE-t normal .028 .023 076 .053 .039 .085 .070
MSE-t, 2-sided | normal 124 141 .103 .093 .095 107 .099
CW-t no-predict. fixed regr. | .540 .648 318 .436 519 .261 372
CW-t normal .522 .629 305 406 484 257 337

DGP 3, 4-step forecasts

source of T=40 | T=40 | T=80 | T=80 | T=80 | T=120 | T=120
statistic critical values P=80 | P=120 | P=40 | P=80 | P=120 | P=40 | P=80
MSE-F non-parametric 112 103 .146 .104 .091 .165 110
MSE-F no-predict. fixed regr. | .376 422 .247 .293 331 .235 .264
MSE-F fixed regressor .160 162 132 .136 .140 128 125
MSE-t non-parametric 132 127 151 114 101 .162 118
MSE-t no-predict. fixed regr. | .345 407 194 .250 .303 184 215
MSE-t fixed regressor 142 148 119 126 131 116 114
MSE-t normal 128 123 156 115 102 .165 115
MSE-t, 2-sided | normal .158 147 .198 .166 143 .208 .153
CW-t no-predict. fixed regr. | .393 .450 227 .299 .346 .203 247
CW-t normal 421 ATT7 .296 .316 .344 .269 .269

Notes:

1. See the notes to Table 1.
2. In these experiments, the coefficients b;; = 0 are scaled such that the null and alternative models are expected to be
equally accurate (on average) over the forecast sample.
3. In these experiments, the forecasting scheme is rolling, rather than recursive.
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Table 4: Monte Carlo Rejection Rates, Alternative Model Best
(nominal size = 10%)

DGP 1, 1-step forecasts

source of T=40 | T=40 | T=80 | T=80 | T=80 | T=120 | T=120
statistic critical values P=80 | P=120 | P=40 | P=80 | P=120 | P=40 | P=80
MSE-F non-parametric .263 .351 .250 .335 422 .269 .363
MSE-F no-predict. fixed regr. | .748 .850 .627 782 .871 .660 .799
MSE-F' fixed regressor 481 .609 .445 .593 715 518 .659
MSE-t non-parametric .296 .385 295 372 A57 311 397
MSE-t no-predict. fixed regr. | .703 827 470 679 .812 461 .657
MSE-t fixed regressor .360 487 .280 412 .b34 .294 .425
MSE-t normal .282 374 270 .352 .448 .285 .380
MSE-t, 2-sided | normal 178 .233 172 .232 .300 .184 .251
CW-t no-predict. fixed regr. | .780 .892 .610 .829 .928 .618 .837
CW-t normal 728 .847 .563 775 .887 .585 792

DGP 2, 1-step forecasts

source of T=40 | T=40 | T=80 | T=80 | T=80 | T=120 | T=120
statistic critical values P=80 | P=120 | P=40 | P=80 | P=120 | P=40 | P=80
MSE-F non-parametric .282 434 .268 429 .569 319 484
MSE-F no-predict. fixed regr. | .852 934 721 877 951 .749 .894
MSE-F fixed regressor 527 .697 491 .685 .821 .b79 .763
MSE-t non-parametric .349 .485 .346 497 .616 .396 547
MSE-t no-predict. fixed regr. | .860 .949 .618 .848 .946 .605 .837
MSE-t fixed regressor 426 .601 .329 533 .680 .366 .568
MSE-t normal 331 A74 319 AT6 .606 .368 527
MSE-t, 2-sided | normal .200 322 .207 .320 451 241 370
CW-t no-predict. fixed regr. | .920 974 788 .954 .988 .802 961
CW-t normal 903 .968 Ve .943 .986 .796 .955

DGP 3, 4-step forecasts

source of T=40 | T=40 | T=80 | T=80 | T=80 | T=120 | T=120
statistic critical values P=80 | P=120 | P=40 | P=80 | P=120 | P=40 | P=80
MSE-F' non-parametric .290 .349 315 .347 421 .342 .383
MSE-F no-predict. fixed regr. | .669 174 570 713 .803 .622 737
MSE-F fixed regressor 467 .563 428 b7 .649 .509 611
MSE-t non-parametric .324 379 .328 375 442 .366 .406
MSE-t no-predict. fixed regr. | .592 728 .387 .583 11 .399 .565
MSE-t fixed regressor .360 .440 270 .380 487 .286 .399
MSE-t normal .332 .393 .339 .385 .460 373 419
MSE-t, 2-sided | normal .244 279 281 .284 .336 .299 .302
CW-t no-predict. fixed regr. | .697 .820 511 .738 .851 527 747
CW-t normal .710 .805 .609 754 .845 .636 .769

Notes:

1. See the notes to Table 1.
2. In these experiments, the coefficients b;; = 0 are set to values (given in section 4.1) large enough that the alternative
model is expected to be more accurate than the null model.
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Table 5: Tests of Equal Accuracy for Monthly Stock Returns

MSE-F Bootstrap p—values
alternative model MSE(null)/ non- | no predictability fized
variable MSE(altern.) | param. | fized regressor | regressor
cross-sectional premium 1.009 .136 .001 .071
return on long-term Treasury 1.005 .381 .024 177
BAA-AAA yield spread .996 .688 .828 487
BAA-AAA return spread .995 .824 933 779
net equity expansion .994 .648 .358 .659
CPI inflation .993 .646 .b87 776
stock variance .992 173 .012 .230
dividend-payout ratio 991 .681 572 724
term (yield) spread .987 7124 .939 .984
earnings-price ratio .985 938 .383 933
10-year earnings-price ratio .983 .876 .985 .984
3-month T-bill rate .982 739 .952 993
dividend-price ratio 981 .843 .550 .993
dividend yield .981 .836 436 .996
yield on long-term Treasury 978 .796 .988 995
book-market ratio .965 .996 967 .994

Notes:

1. As described in section 5, monthly forecasts of excess stock returns in period ¢ + 1 are generated recursively from a null
model that includes just a constant and 15 alternative models that include a constant and the period ¢ (¢t — 1 in the case of
CPI inflation) value of each of the variables listed in the first column. Forecasts from January 1970 to December 2002 are
obtained from models estimated with a data sample starting in January 1954.

2. For each alternative model, the table reports the ratio of the null model’s forecast MSE to the alternative model’s MSE
and bootstrapped p-values for the null hypothesis of equal accuracy, based on the MSE-F statistic. Section 3 details the
bootstrap methods. The RMSE of the null model is 0.046.
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Table 6: Tests of Equal Accuracy for Core Inflation

MSE-F Bootstrap p—values
alternative model MSE(null)/ non- | no predictability fized
variables MSE(altern.) | param. | fized regressor | regressor

1-quarter horizon
CFNAI 1.016 .343 .092 .293
CFNALI food, imports 1.098 .100 .001 .062
4-quarter horizon
CFNAI 921 .675 .881 915
CFEFNALI food, imports 1.279 317 .000 .031

Notes:

1. As described in section 5, l-quarter and 4-quarter ahead forecasts of core PCE inflation (specified as a period ¢ + T
predictand) are generated recursively from a null model that includes a constant and lags of inflation (from period ¢t and
earlier) and alternative models that include one lag (period ¢ values) of the variables indicated in the table (defined further
in section 5). The 1-quarter forecasts are of quarterly inflation; the 4-quarter forecasts are of 4-quarter inflation. Forecasts
from 1985:Q1 + 7 — 1 through 2008:QQ2 are obtained from models estimated with a data sample starting in 1968:Q3.

2. For each of the alternative models, the table reports the ratio of the null model’s forecast MSE to the alternative model’s
MSE and bootstrapped p-values for the null hypothesis of equal accuracy, based on the MSE-F' statistic. Section 3 details
the bootstrap methods. The RMSE of the null model is 0.613 at the 1-quarter horizon and 0.444 at the 4-quarter horizon.
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