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Abstract 
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but small, such that, in a finite sample, forecasts from the small model are 
expected to be as accurate as forecasts from the large model. Under that 
approximation, we derive the limiting distributions of pairwise tests of equal 
mean square error, and develop bootstrap methods for estimating critical 
values. Monte Carlo experiments show that our proposed procedures have 
good size and power properties for the null of equal finite-sample forecast 
accuracy. We illustrate the use of the procedures with applications to 
forecasting stock returns and inflation.   
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1 Introduction

In this paper we examine the asymptotic and finite-sample properties of bootstrap-based

tests of equal accuracy of out-of-sample forecasts from a baseline nested model and an

alternative nesting model. In our analysis, we address two forms of the null hypothesis of

equal predictive ability. One hypothesis, considered in Clark and McCracken (2001, 2005)

and McCracken (2007), is that the models have equal population-level predictive ability.

This situation arises when the coefficients associated with the additional predictors in the

nesting model are zero and hence at the population level, the forecast errors are identical

and thus the models have equal predictive ability.

However, this paper focuses on a different null hypothesis, one that arises when some of

the additional predictors have non-zero coefficients associated with them, but the marginal

predictive content is small. In this case, addressed in Trenkler and Toutenberg (1992),

Hjalmarsson (2006) and Clark and McCracken (2009), the two models can have equal pre-

dictive ability at a fixed forecast origin (say time T ) due to a bias-variance trade-off between

a more accurately estimated, but misspecified, nested model and a correctly specified, but

imprecisely estimated, nesting model. Building upon this insight, we derive the asymp-

totic distributions associated with standard out-of-sample tests of equal predictive ability

between estimated models with weak predictors. We then evaluate various bootstrap-

based methods for imposing the null of equal predictive ability upon these distributions

and conducting asymptotically valid inference. In our results, the forecast models may be

estimated either recursively or with a rolling sample. Giacomini and White (2006) use a

different asymptotic approximation to testing equal forecast accuracy in a given sample,

but their asymptotics apply only to models estimated with a rolling window of fixed and

finite width.

Our approach to modeling weak predictors is identical to the standard Pitman drift

used to analyze the power of in-sample tests against small deviations from the null of equal

population-level predictive ability. It has also been used by Inoue and Kilian (2004) in the

context of analyzing the power of out-of-sample tests. In that sense, some (though not all)

of our analytical results are quite similar to those in Inoue and Kilian (2004).

We differ, though, in our focus. While Inoue and Kilian (2004) are interested in exam-

ining the power of out-of-sample tests against the null of equal population-level predictive

ability, we are interested in using out-of-sample tests to test the null hypothesis of equal finite
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sample predictive ability. This seemingly minor distinction arises because the estimation

error associated with estimating unknown regression parameters can cause a misspecified,

restricted model to be as accurate or more accurate than a correctly specified unrestricted

model when the additional predictors are imprecisely estimated (or, in our terminology, are

“weak”). We use Pitman drift simply as a tool for constructing an asymptotic approxima-

tion to the finite sample problem associated with estimating a regression coefficient when

the marginal signal associated with it is small.

Although our results apply only to a setup that some might see as restrictive — direct,

multi–step (DMS) forecasts from nested models — the list of studies analyzing such forecasts

suggests our results should be useful to many researchers. Applications considering DMS

forecasts from nested linear models include, among others: many of the studies cited above;

Diebold and Rudebusch (1991); Mark (1995); Kilian (1999); Lettau and Ludvigson (2001);

Stock and Watson (2003); Bachmeier and Swanson (2005); Butler, Grullon and Weston

(2005); Cooper and Gulen (2006); Giacomini and Rossi (2006); Guo (2006); Rapach and

Wohar (2006); Bruneau, et al. (2007); Bordo and Haubrich (2008); Inoue and Rossi (2008);

and Molodtsova and Papell (2008).

The remainder proceeds as follows. Section 2 introduces the notation and assumptions

and presents our theoretical results. Section 3 characterizes the bootstrap-based methods

we consider for testing the joint hypothesis of equal forecast accuracy. Section 4 presents

Monte Carlo results on the finite–sample performance of the asymptotics and the bootstrap.

Section 5 applies our tests to evaluate the predictability of U.S. stock returns and core PCE

inflation. Section 6 concludes.

2 Theoretical results

We begin by laying out our testing framework when comparing the forecast accuracy of two

nested models in the presence of weak predictive ability.
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2.1 Environment

The possibility of weak predictors is modeled using a sequence of linear DGPs of the form

(Assumption 1)1

yT,t+τ = x′T,1,tβ
∗
1,T + uT,t+τ = x′T,0,tβ

∗
0 + x′T,12,t(T

−1/2β∗12) + uT,t+τ , (1)

ExT,1,tuT,t+τ ≡ EhT,1,t+τ = 0 for all t = 1, ..., T, ...T + P − τ .

Note that we allow the dependent variable yT,t+τ , the predictors xT,1,t and the error term

uT,t+τ to depend upon T , the initial forecasting origin. This dependence is necessitated by

the triangular array structure of the data. However, throughout much of the paper we

omit the additional subscript T for ease of presentation.

At each origin of forecasting t = T, ...T +P−τ , we observe the sequence {yT,s, x′T,1,s}t
s=1.

Forecasts of the scalar yT,t+τ , τ ≥ 1, are generated using a (k × 1, k = k0 + k1) vector of

covariates xT,1,t = (x′T,0,t, x
′
T,12,t)

′, and linear parametric models x′T,i,tβi, i = 0, 1. The

parameters are estimated using OLS (Assumption 2) under either the recursive or rolling

schemes. For the recursive scheme we have β̂i,t = arg minβi
t−1 ∑t−τ

s=1(yT,s+τ−x′T,i,sβi)2, i =

0, 1, for the restricted and unrestricted models, respectively. The rolling scheme is similar

but the number of observations used for estimation is held constant as we proceed forward

across forecast origins and hence β̂i,t = arg minβi
T−1 ∑t−τ

s=t−τ−T+1(yT,s+τ − x′T,i,sβi)2, i =

0, 1. We denote the loss associated with the τ -step ahead forecast errors as û2
i,t+τ = (yT,t+τ−

x′T,i,tβ̂i,t)2, i = 0, 1, for the restricted and unrestricted, respectively.

The following additional notation will be used. For the recursive scheme let HT,i(t) =

(t−1 ∑t−τ
s=1 xT,i,suT,s+τ ) = (t−1 ∑t−τ

s=1 hT,i,s+τ ) and Bi(t) = (t−1 ∑t−τ
s=1 xT,i,sx′T,i,s)

−1, and for

the rolling case let HT,i(t) = (T−1 ∑t−τ
s=t−τ−T+1 xT,i,suT,s+τ ) = (T−1 ∑t−τ

s=t−τ−T+1 hT,i,s+τ )

and Bi(t) = (T−1 ∑t−τ
s=t−τ−T+1 xT,i,sx′T,i,s)

−1. In either case, define, for i = 0, 1, Bi =

limT→∞(ExT,i,sx′T,i,s)
−1. For UT,t = (h′T,1,t+τ , vec(xT,1,tx′T,1,t)

′)′, V =
∑τ−1

j=−τ+1 Ω11,j ,

where Ω11,j is the upper block-diagonal element of Ωj defined below. For any (m × n)

matrix A let |A| denote the max norm and tr(A) denote the trace. For HT,1(t) defined

above, J the selection matrix (Ik0×k0 , 0k0×k1)′, σ2 = limT→∞Eu2
T,t+τ , and a (k1 × k)

matrix Ã satisfying Ã′Ã = B−1/2
1 (−J ′B0J + B1)B

−1/2
1 , let h̃T,1,t+τ = σ−1ÃB1/2

1 hT,1,t+τ

and H̃T,1(t) = σ−1ÃB1/2
1 HT,1(t). For the selection matrix J2 = (0k1×k0 , Ik1×k1)′ define

F1 = J ′2B1J2 and F1(t) = J ′2B1(t)J2. If we define γh̃h̃,1(i) = limT→∞Eh̃T,1,t+τ h̃′T,1,t+τ−i,

1The parameter β∗
1,T does not vary with the forecast horizon τ since, in our analysis, τ is treated as fixed.
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then Sh̃h̃,1 = γh̃h̃,1(0)+
∑τ−1

i=1 (γh̃h̃,1(i)+γ′
h̃h̃,1

(i)). Let W (s) denote a k1×1 vector standard

Brownian motion and define the vector of weak predictor coefficients as δ = (01×k0 , β
∗′
12)

′.

To derive our general results, we need three more assumptions (in addition to our as-

sumptions (1 and 2) of a DGP with weak predictability and OLS–estimated linear forecast-

ing models).

Assumption 3: (a) T−1 ∑[rT ]
t=1 UT,tU ′

T,t−j ⇒ rΩj where Ωj = limT→∞ T−1 ∑T
t=1 E(UT,tU ′

T,t−j)

for all j ≥ 0. (b) Ω11,j = 0 all j ≥ τ . (c) supT≥1,t≤T+P E|UT,t|2q < ∞ some q > 2. (d)

The zero mean triangular array UT,t − EUT,t = (h′T,1,t+τ , vec(xT,1,tx′T,1,t − ExT,1,tx′T,1,t)
′)′

satisfies Theorem 3.2 of de Jong and Davidson (2000).

Assumption 4: (a) Let K(x) be a continuous kernel such that for all real scalars x, |K(x)| ≤

1, K(x) = K(−x) and K(0) = 1. (b) For some bandwidth L and constant i ∈ (0, 0.5), L =

O(P i). (c) For all j > τ−1, EhT,1,t+τh′T,1,t+τ−j = 0. (d) The number of covariance terms j̄,

used to estimate the long–run covariance Sdd defined in Section 2.2, satisfies τ −1 ≤ j̄ <∞.

Assumption 5: limP,T→∞ P/T = λP ∈ (0,∞).

Assumption 3 imposes three types of conditions. First, in (a) and (c) we require that

the observables, while not necessarily covariance stationary, are asymptotically mean square

stationary with finite second moments. We do so in order to allow the observables to have

marginal distributions that vary as the weak predictive ability strengthens along with the

sample size but are ‘well-behaved’ enough that, for example, sample averages converge in

probability to the appropriate population means. Second, in (b) we impose the restriction

that the τ -step ahead forecast errors are MA(τ − 1). We do so in order to emphasize the

role that weak predictors have on forecasting without also introducing other forms of model

misspecification. Finally, in (d) we impose the high level assumption that, in particular,

hT,1,t+τ satisfies Theorem 3.2 of de Jong and Davidson (2000). By doing so we not only

insure that certain weighted partial sums converge weakly to standard Brownian motion,

but also allow ourselves to take advantage of various results pertaining to convergence in

distribution to stochastic integrals.

Assumption 4 is necessitated by the serial correlation in the multi-step (τ -step) forecast

errors — errors from even well-specified models exhibit serial correlation, of an MA(τ − 1)

form. Typically, researchers constructing a t-statistic utilizing the squares of these errors
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account for serial correlation of at least order τ − 1 in forming the necessary standard error

estimates. Meese and Rogoff (1988), Groen (1999), and Kilian and Taylor (2003), among

other applications to forecasts from nested models, use kernel-based methods to estimate the

relevant long-run covariance.2 We therefore impose conditions sufficient to cover applied

practices. Parts (a) and (b) are not particularly controversial. Part (c), however, imposes

the restriction that the orthogonality conditions used to identify the parameters form a

moving average of finite order τ − 1, while part (d) imposes the restriction that this fact

is taken into account when constructing the MSE-t statistic discussed later in Section 2.

Finally, in Assumption 5 we impose the requirement that limP,T→∞ P/T = λP ∈ (0,∞).

This assumption implies that the duration of forecasting is finite but non-trivial.

This last assumption, while standard in our previous work, differs importantly from

that in Giacomini and White (2006). In their approach to predictive inference for nested

models, they assume that a rolling window of fixed and finite width is used for estimation

of the model parameters (hence limP→∞ P/T = ∞). While we allow rolling windows, our

asymptotics assume that the window width is a non-trivial magnitude of the out-of-sample

period and hence limP,T→∞ P/T ∈ (0,∞). This difference in the assumed window width,

along with our assumption that the additional predictors in the nesting model are weak, is

fundamentally what drives the difference in our results from theirs and in particular, allows

us to derive results that permit the use of the recursive scheme.

2.2 Asymptotics for MSE-F, MSE-t with weak predictors

In the context of non-nested models, Diebold and Mariano (1995) propose a test for equal

MSE based upon the sequence of loss differentials d̂t+τ = û2
0,t+τ − û2

1,t+τ . If we define

MSEi = (P − τ + 1)−1 ∑T+P−τ
t=T û2

i,t+τ (i = 0, 1), d̄ = (P − τ + 1)−1 ∑T+P−τ
t=T d̂t+τ =

MSE0 −MSE1, γ̂dd(j) = (P − τ + 1)−1 ∑T+P−τ
t=T+j (d̂t+τ − d̄)(d̂t+τ−j − d̄), γ̂dd(−j) = γ̂dd(j),

and Ŝdd =
∑j̄

j=−j̄
K(j/M)γ̂dd(j), the statistic takes the form

MSE-t = (P − τ + 1)1/2 × d̄√
Ŝdd

. (2)

Under the null that x12,t has no population-level predictive power for yt+τ , the population

difference in MSEs, Eu2
0,t+τ−Eu2

1,t+τ , will equal 0 for all t. When x12,t has predictive power,

the population difference in MSEs will be positive. Even so, the finite sample difference
2For similar uses of kernel–based methods in analyses of non–nested forecasts, see, for example, Diebold

and Mariano (1995) and West (1996).
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need not be positive and in fact, for a given sample size (say, t = T ) the difference in finite

sample MSEs, Eû2
0,T+τ −Eû2

1,T+τ , may be zero, thus motivating a distinct null hypothesis

of equal finite-sample predictive ability. Regardless of which null hypothesis we consider

(equal population-level or equal finite-sample predictive ability), the MSE-t test and the

other equal MSE tests described below are one–sided to the right.

While West (1996) proves directly that the MSE-t statistic can be asymptotically stan-

dard normal when applied to non–nested forecasts, this is not the case when the models are

nested. In particular, the results in West (1996) require that under the null, the population-

level long run variance of d̂t+τ be positive. This requirement is violated with nested models

regardless of the presence of weak predictors. Intuitively, with nested models (and for the

moment ignoring the weak predictors), the null hypothesis that the restrictions imposed in

the benchmark model are true implies the population errors of the competing forecasting

models are exactly the same. As a result, in population dt+τ = 0 for all t, which makes the

corresponding variance also equal to 0. Because the sample analogues (for example, d̄ and

its variance) converge to zero at the same rate, the test statistics have non–degenerate null

distributions, but they are non–standard.

Motivated by (i) the degeneracy of the long-run variance of dt+τ and (ii) the functional

form of the standard in-sample F-test, McCracken (2007) develops an out–of–sample F–type

test of equal MSE, given by

MSE-F = (P − τ + 1)× MSE0 −MSE1

MSE1
= (P − τ + 1)× d̄

MSE1
. (3)

Like the MSE-t test, the limiting distribution of the MSE-F test is non–standard when

the forecasts are nested under the null. Clark and McCracken (2005) and McCracken (2007)

show that, for τ–step ahead forecasts, the MSE-F statistic converges in distribution to func-

tions of stochastic integrals of quadratics of Brownian motion, with limiting distributions

that depend on the sample split parameter λP , the number of exclusion restrictions k1, and

the unknown nuisance parameter Sh̃h̃. While this continues to hold in the presence of weak

predictors, the asymptotic distributions now depend not only upon the unknown coefficients

associated with the weak predictors but also upon other unknown second moments of the

data. In the following, for the recursive scheme define Γ1 =
∫ 1+λP

1 s−1W ′(s)Sh̃h̃dW (s),

Γ2 =
∫ 1+λP

1 s−2W ′(s)Sh̃h̃W (s)ds, Γ5 =
∫ 1+λP

1 s−2W ′(s)S2
h̃h̃

W (s)ds, and Γ6 =
∫ 1+λP

1 s−1×

(δ′B−1/2
1 Ã′/σ)S3/2

h̃h̃
W (s)ds. For the rolling scheme, define Γ1 =

∫ 1+λP

1 (W (s) − W (s −

1))′Sh̃h̃dW (s), Γ2 =
∫ 1+λP

1 (W (s)−W (s−1))′Sh̃h̃(W (s)−W (s−1))ds, Γ5 =
∫ 1+λP

1 (W (s)−
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W (s− 1))′S2
h̃h̃

(W (s)−W (s− 1))ds, and Γ6 =
∫ 1+λP

1 s−1(δ′B−1/2
1 Ã′/σ)S3/2

h̃h̃
(W (s)−W (s−

1))ds. For both schemes, define Γ3 =
∫ 1+λP

1 (δ′B−1/2
1 Ã′/σ)S1/2

h̃h̃
dW (s), Γ4 =

∫ 1+λP

1 δ′J2F
−1
1 J ′2δ/σ2ds =

λP δ′J2F
−1
1 J ′2δ/σ2 and Γ7 = λP (δ′B−1/2

1 Ã′/σ)Sh̃h̃(ÃB−1/2
1 δ/σ). The following two Theo-

rems provide the asymptotic distributions of the MSE-F and MSE-t statistics in the presence

of weak predictors.

Theorem 2.1: Maintain Assumptions 1, 2, 3, and 5. MSE-F →d {2Γ1 − Γ2} + 2{Γ3} +

{Γ4}.

Theorem 2.2: Maintain Assumptions 1 − 5. MSE-t →d ({Γ1 − .5Γ2} + {Γ3} +

{.5Γ4})/(Γ5 + Γ6 + Γ7).5.

Theorems 2.1 and 2.2 show that the limiting distributions of the MSE-t and MSE-F

tests are neither normal nor chi-square when the forecasts are nested, regardless of the

presence of weak predictors. Theorem 2.1 is very similar to Proposition 2 in Inoue and

Kilian (2004) while Theorem 2.2 is unique. And again, the limiting distributions are free

of nuisance parameters in only very special cases. In particular, the distributions here are

free of nuisance parameters only if there are no weak predictors and if Sh̃h̃ = I. If this is

the case — if, for example, τ = 1 and the forecast errors are conditionally homoskedastic

— both representations simplify to those in McCracken (2007) and hence his critical values

can be used for testing for equal population-level predictive ability. In the absence of weak

predictors alone, the representation simplifies to that in Clark and McCracken (2005) and

hence the asymptotic distributions still depend upon Sh̃h̃. In this case, and in the most

general case where weak predictors are present, we use bootstrap methods to estimate the

asymptotically valid critical values. Before describing our bootstrap approach, however, it

is necessary to clarify the null hypothesis of interest.

2.3 A null hypothesis with weak predictors

The noncentrality terms, especially those associated with the asymptotic distribution of

the MSE-F statistic (Γ4), give some indication of the power that the test statistics have

against deviations from the null hypothesis of equal population-level predictive ability H0 :

E(u2
0,t+τ − u2

1,t+τ ) = 0 for all t — for which it must be the case that β∗12 = 0. As noted

earlier, it is in that sense that our analytical results are closely related to those in Inoue and

Kilian (2004). Closer inspection, however, shows that the results provide opportunities for

testing another form of the null hypothesis of equal predictive ability when weak predictors
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are present.

For example, under the assumptions made earlier in this section it is straightforward to

show that the mean of the asymptotic distribution of the MSE-F statistic can be used to

approximate the mean difference in the average out-of-sample predictive ability of the two

models.3 For example, under the recursive scheme we have

E
∑T+P

t=T
(û2

0,t+τ − û2
1,t+τ ) ≈

∫ 1+λP

1
[−s−1tr((−JB0J

′ + B1)V ) + δ′J2F
−1
1 J ′2δ]ds

while under the rolling scheme we have

E
∑T+P

t=T
(û2

0,t+τ − û2
1,t+τ ) ≈

∫ 1+λP

1
[−tr((−JB0J

′ + B1)V ) + δ′J2F
−1
1 J ′2δ]ds.

Intuitively, one might consider using these expressions as a means of characterizing

when the two models have equal average finite-sample predictive ability over the out-of-

sample period. For example, having set these two expressions to zero, integrating and

solving for the marginal signal-to-noise ratio implies δ′J2F−1
1 J ′2δ

tr((−JB0J ′+B1)V ) equals ln(1+λP )
λP

and 1,

respectively, for the recursive and rolling schemes. This ratio simplifies further when τ = 1

and the forecast errors are conditionally homoskedastic, in which case tr((−JB0J ′+B1)V ) =

σ2k1.

This marginal signal-to-noise ratio forms the basis of our new approach to testing for

equal predictive ability. Rather than testing for equal population-level predictive ability

H0 : E(u2
0,t+τ−u2

1,t+τ ) = 0 for all t — for which it must be the case that β∗12 = 0 — we test for

equal average out-of-sample predictive ability H0 : E(P−1 ∑T+P
t=T (û2

0,t+τ − û2
1,t+τ )) = 0 – for

which it is approximately the case that β∗′12F
−1
1 β

∗
12 = d, where d equals ln(1+λP )

λP
tr((−JB0J ′+

B1)V ) or tr((−JB0J ′ + B1)V ), depending on whether the recursive or rolling scheme is

used.4

While we believe the result is intuitive, it is not immediately clear how such a restriction

on the regression parameters can be used to achieve asymptotically valid inference. If we

look back at the asymptotic distribution of the MSE-F statistic, we see that in general it

not only depends upon the unknown value of β∗12, but also the asymptotic distribution is
3By taking this approach we are using the fact that under our assumptions, notably the L2-boundedness

portion of Assumption 3,
PT+P

t=T (û2
0,t+τ − û2

1,t+τ ) is uniformly integrable and hence the expectation of its
limit is equal to the limit of its expectation.

4One could also derive a test for equal forecast accuracy at the end of the out-of-sample period. Using
similar arguments, this hypothesis implies that β∗′

12F
−1
1 β

∗
12 = d, where d equals 1

1+λP
tr((−JB0J

′ + B1)V )

or tr((−JB0J
′ + B1)V ), depending on whether the recursive or rolling scheme is used. Under this null

hypothesis, our proposed bootstrap is valid so long as d̂ (defined below) is modified appropriately.
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non-standard, thus requiring either extensive tables of critical values or simulation-based

methods for constructing the critical values. Rather than take either of these approaches,

in the following section we develop a new bootstrap-based method for constructing asymp-

totically valid critical values that can be used to test the null of equal average finite-sample

predictive ability.

2.4 Bootstrap-based critical values with weak predictors

Our new, bootstrap-based method of approximating the asymptotically valid critical values

for pairwise comparisons between nested models is different from that previously used in

Kilian (1999) and Clark and McCracken (2005). In those applications, an appropriately

dimensioned VAR was initially estimated by OLS imposing the restriction that β∗12 was

set to zero and the residuals saved for resampling. The recursive structure of the VAR

was then used to generate a large number of artificial samples, each of which was used to

construct one of the test statistics discussed above. The relevant sample percentile from

this large collection of artificial statistics was then used as the critical value. Simulations

show that this approach provides accurate inference for the null of equal population-level

predictive ability not only for one-step ahead forecasts but also for longer horizons (in our

direct multi-step framework).

However, there are two reasons we should not expect this bootstrap approach to provide

accurate inference in the presence of weak predictors. First, imposing the restriction that

β∗12 is set to zero implies a null of equal population — not finite-sample — predictive ability.

Second, by creating the artificial samples using the recursive structure of the VAR we are

imposing the restriction that equal one-step ahead predictive ability implies equal predictive

ability at longer horizons. Our present framework in no way imposes that restriction. We

therefore take an entirely different approach to imposing the relevant null hypothesis and

generating the artificial samples.

For example, suppose we are interested in testing whether, under the recursive scheme,

the two models have equal average predictive ability over the out-of-sample period and

hence δ′J2F
−1
1 J ′2δ equals ln(1+λP )

λP
tr((−JB0J ′ + B1)V ). While this restriction is infeasible

due to the various unknown moments and parameters, it suggests a closely related, feasible

restriction quite similar to that used in ridge regression. However, instead of imposing the

restriction that β∗
′

12β
∗
12 = c for some finite constant — as one would in a ridge regression

— we instead impose the restriction that δ′J2F
−1
1 (T )J ′2δ equals ln(1+bλP )

bλP
tr((−JB0(T )J ′ +
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B1(T ))V (T )), where the relevant unknowns are estimated using the obvious sample mo-

ments: λ̂P = P/T,Bi(T ) = (T−1 ∑T−τ
s=1 xi,sx′i,s)

−1 for i = 0, 1, F1(T ) = J ′2B1(T )J2, and

V (T ) = an estimate of the long-run variance of h1,t+τ .5 In addition, we estimate δ using

the approximation δ̂ = (01×k0 , T
1/2β̃

′
12,t)′ where β̃12,T denotes the restricted least squares

estimator of the parameters associated with the weak predictors satisfying

β̃1,T = (β̃
′
11,T , β̃

′
12,T )′ (4)

= arg min
b1

∑T−τ

s=1
(ys+τ − x′1,sb1)2 s.t. b′1J2F

−1
1 (T )J ′2b1 = d̂/T

where d̂ equals ln(1+bλP )
bλP

tr((−JB0(T )J ′ + B1(T ))V (T )). For a given sample size, this es-

timator is equivalent to a ridge regression if the weak predictors are orthonormal. More

generally though, it lies in the class of asymptotic shrinkage estimators discussed in Hansen

(2008).

Note that this approach to imposing the null hypothesis is consistent with the direct

multi-step forecasting approach we assume is used to construct the forecasts and hence the

restriction can vary with the forecast horizon τ . This approach therefore precludes using

a VAR and its recursive structure to generate the artificial samples. Instead we use a

variant of the wild fixed regressor bootstrap developed in Goncalves and Kilian (2007) that

accounts for the direct multi-step nature of the forecasts. Specifically, in our framework

the x’s are held fixed across the artificial samples and the dependent variable is generated

using the direct multi-step equation y∗s+τ = x′1,sβ̃1,T + v̂∗s+τ , s = 1, ..., T + P − τ , for a

suitably chosen artificial error term v̂∗s+τ designed to capture both the presence of conditional

heteroskedasticity and an assumed MA(τ−1) serial correlation structure in the τ -step ahead

forecasts. Specifically, we construct the artificial samples and bootstrap critical values using

the following algorithm.6

1. Estimate the parameter vector β∗1 associated with the unrestricted model using

the weighted ridge regression from equation (4) above. Note that the resulting pa-

rameter estimate will vary with the forecast horizon. If the recursive scheme is used,

set d̂ to ln(1+bλP )
bλP

tr((−JB0(T )J ′ + B1(T ))V (T )); if the rolling scheme is used, set d̂ to

tr((−JB0(T )J ′ + B1(T ))V (T )).

2. Using NLLS, estimate an MA(τ − 1) model for the OLS residuals v̂1,s+τ (from the
5In our Monte Carlo simulations and empirical work we use a Newey-West kernel with bandwidth 0 for

horizon = 1 and bandwidth 1.5*horizon otherwise.
6Our approach to generating artificial samples of multi-step forecast errors builds on a sampling approach

proposed in Hansen (1996).
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unrestricted model) such that v1,s+τ = ε1,s+τ + θ1ε1,s+τ−1 + ... + θτ−1ε1,s+1. Let ηs+τ ,

s = 1, ..., T +P − τ , denote an i.i.d N(0, 1) sequence of simulated random variables. Define

v̂∗1,s+τ = (ηs+τ ε̂1,s+τ+ θ̂1ηs−1+τ ε̂1,s+τ−1 + ... + θ̂τ−1ηs+1ε̂1,s+1), s = 1, ..., T + P − τ . Form

artificial samples of y∗s+τ using the fixed regressor structure, y∗s+τ = x′1,sβ̃1,T + v̂∗1,s+τ .

3. Using the artificial data, construct an estimate of the test statistics (e.g. MSE-F ,

MSE-t) as if this were the original data.

4. Repeat steps 2 and 3 a large number of times: j = 1, ..., N .

5. Reject the null hypothesis, at the α% level, if the test statistic is greater than the

(100− α)%-ile of the empirical distribution of the simulated test statistics.

By using the weighted ridge regression to estimate the model parameters we are able, in

large samples, to impose the restriction that the implied estimates (T 1/2β̃12,T ) of the local-

to-zero parameters β∗12 satisfy our approximation to the null hypothesis. This is despite the

fact that the estimates of β∗12 are not consistent. While this estimator, along with the fixed

regressor structure of the bootstrap, imposes the null hypothesis upon the artificial samples,

it is not necessarily the case that the bootstrap is asymptotically valid in the sense that the

estimated critical values are consistent for their population values. To see how this might

happen, note that the asymptotic distributions from Theorem 2.1 depend explicitly upon

the local-to-zero parameters β∗12 through the terms Γ3 and Γ4. In the case of Γ4, this is

not an issue because the null hypothesis imposes a restriction on the value of this term that

does not depend upon β∗12 explicitly, just an appropriately chosen weighted quadratic that

is known under the null. Γ3 is a different story. This term is asymptotically normal with

a zero mean and variance λP β′∗12J
′
2V J2β

∗
12 that, in general, need not have any relationship

to the restriction β′∗12F
−1
1 β∗12 = d implied by the null hypothesis. Hence, in general, the

asymptotic distribution is an explicit function of the value of β∗12 implying that the null

hypothesis itself does not imply a unique asymptotic distribution for either the MSE-F or

MSE-t statistics.

Even so, as we discuss below, the bootstrap is asymptotically valid in two empirically

relevant special cases. Before providing the result, however, we require a modest strength-

ening of the moment conditions on the model residuals.

Assumption 3′: (a) T−1 ∑[rT ]
j=1 UT,jU ′

T,j−l ⇒ rΩl where Ωl = limT→∞ T−1 ∑T
t=1 E(UT,jU ′

T,j−l )

for all l ≥ 0. (b) E(ε1,s+τ |ε1,s+τ−j , x1,s−j j ≥ 0) = 0. (c) Let γT = (β′1,T , θ1, ..., θτ−1)′,

γ̂T = (β̂
′
1,T , θ̂1, ..., θ̂τ−1)′, and define the function ε̂1,s+τ = ε̂1,s+τ (γ̂T ) such that ε̂1,s+τ (γT ) =
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ε1,s+τ . In an open neighborhood NT around γT , there exists a finite constant c such that

sup1≤s≤T,T≥1 || supγ∈NT
(ε̂1,s+τ (γ),∇ε̂′1,s+τ (γ), xT,1,s)′||4 ≤ c. (d) UT,j − EUT,j = (h′T,1,j+τ ,

vec(xT,1,jx′T,1,j −ExT,1,jx′T,1,j)
′)′ is a zero mean triangular array satisfying Theorem 3.2 of

de Jong and Davidson (2000).

Assumption 3′ differs from Assumption 3 in two ways. First, in (b) it emphasizes the

point that the forecast errors, and by implication h1,t+τ , form an MA(τ−1). Second, in (c)

it bounds the second moments not only of h1,t+τ = (ε1,s+τ +θ1ε1,s+τ−1+ ...+θτ−1ε1,s+1)x1,s

(as in Assumption 3) but also the functions ε̂1,s+τ (γ)xT,1,s, and ∇ε̂1,s+τ (γ)xT,1,s for all γ

in an open neighborhood of γT . These assumptions are primarily used to show that the

bootstrap-based artificial samples, which are a function of the estimated errors ε̂1,s+τ , ade-

quately replicate the time series properties of the original data in large samples. Specifically

we must insure that the bootstrap analog of h1,s+τ is not only zero mean but has the same

long-run variance V . Such an assumption is not needed for our earlier results since the

model forecast errors ûi,s+τ , i = 0, 1 are linear functions of β̂i,T and Assumption 3 already

imposes moment conditions on û1,s+τ via moment conditions on h1,s+τ .

In the following let MSE-F ∗ and MSE-t∗ denote statistics generated using the artificial

samples from our bootstrap. Similarly let Γ∗i , i = 1, ..., 7, denote random variables generated

using the artificial samples satisfying Γ∗i =d Γi, i = 1, ..., 7, for Γi defined in Theorems 2.1

and 2.2.

Theorem 2.3: Let β′∗12F
−1
1 β∗12 = d and assume either (i) τ = 1 and the forecast errors

from the unrestricted model are conditionally homoskedastic, or (ii) dim(β∗12) = 1. (a)

Given Assumptions 1, 2, 3′, and 5, MSE-F ∗ →d {2Γ∗1 − Γ∗2} + 2{Γ∗3} + {Γ∗4}. (b) Given

Assumptions 1, 2, 3′, 4, and 5, MSE-t∗ →d ({2Γ∗1 − Γ∗2} + 2{Γ∗3} + {Γ∗4})/(Γ∗5 + Γ∗6 + Γ∗7).5.

In Theorem 2.3 we show that our fixed-regressor bootstrap provides an asymptotically

valid method of estimating the critical values associated with the null of equal average finite

sample forecast accuracy. The result, however, is applicable in only two special cases. In the

first, we require that the forecast errors be one-step ahead and conditionally homoskedastic.

In the second, we allow serial correlation and conditional heteroskedasticity but require that

β∗12 is scalar. While neither case covers the broadest situation in which β∗12 is not scalar and

the forecast errors exhibit either serial correlation or conditional heteroskedasticity, these

two special cases cover a wide range of empirically relevant applications. Kilian (1999)
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argues that conditional homoskedasticity is a reasonable assumption for one-step ahead

forecasts of quarterly macroeconomic variables. Moreover, in many applications in which

a nested model comparison is made (Goyal and Welch (2008), Stock and Watson (2003),

etc.), the unrestricted forecasts are made by simply adding one lag of a single predictor to

the baseline restricted model.

By itself, however, Theorem 2.3 is insufficient for recommending the use of the boot-

strap: it does not tell us whether the proposed bootstrap is adequate for constructing

asymptotically valid critical values under the alternative that the unrestricted model fore-

casts more accurately than the restricted model. Unfortunately, there are any number

of ways to model the case in which β′∗12F
−1
1 β∗12 > d. For example, rather than modeling

the weak predictive ability in Assumption 1 as T−1/2β∗12 with β′∗12F
−1
1 β∗12 = d, one could

model the predictive content as T−aCβ∗12 for constants C < ∞ and a ∈ (0, 1/2] satisfying

β′∗12F
−1
1 β∗12 > d. While mathematically elegant, this approach does not allow us to analyze

the most intuitive alternative in which not only is the unrestricted model more accurate

but J ′2β̂1,T is also a consistent estimator of β∗12 -= 0. For this situation to hold we need the

additional restriction that a = 0 and hence β∗12 is no longer interpretable as a local-to-zero

parameter. With this modification (Assumption 1′) in hand, we address the validity of

the bootstrap under the alternative in the following Theorem.

Theorem 2.4: Let J ′2β̂1,T →p β∗12 -= 0 and assume either (i) τ = 1 and the forecast errors

from the unrestricted model are conditionally homoskedastic, or (ii) dim(β12) = 1. (a)

Given Assumptions 1′, 2, 3′, and 5, MSE-F ∗ →d {2Γ∗1 − Γ∗2} + 2{Γ∗3} + {Γ∗4}. (b) Given

Assumptions 1′, 2, 3′, 4, and 5, MSE-t∗ →d ({2Γ∗1 − Γ∗2} + 2{Γ∗3} + {Γ∗4})/(Γ∗5 + Γ∗6 + Γ∗7).5.

In Theorem 2.4 we see that indeed, the bootstrap-based test is consistent for testing

the null hypothesis of equal finite sample predictive accuracy (that β′∗12F
−1
1 β∗12 = d) against

the alternative that the unrestricted model is more accurate (that J ′2β̂1,T →p β∗12 -= 0).

This follows since under this alternative, the data-based statistics MSE-F and MSE-t each

diverge to +∞ while the the bootstrap-based statistics MSE-F ∗ and MSE-t∗ each retain

the same asymptotic distribution as they did under the null.

As we will show in section 3, our fixed regressor bootstrap provides reasonably sized

tests in our Monte Carlo simulations, outperforming other bootstrap-based methods for

estimating the asymptotically valid critical values necessary to test the null of equal average
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finite sample predictive ability.

3 Bootstrap approaches

Drawing on the preceeding theoretical results, in our Monte Carlo and empirical analyses

we will evaluate the efficacy of our proposed fixed regressor bootstrap of tests of equal

forecast accuracy. As part of this evaluation, we also consider other approaches to inference

— that is, sources of critical values and tests. These other approaches to inference, detailed

below, include a non–parametric bootstrap procedure and a different version of our proposed

fixed regressor bootstrap. In addition to the MSE-F and MSE-t tests, we also consider an

adjusted t-test of equal MSE developed in Clark and West (2006, 2007), denoted here as

CW-t. In the interest of obtaining a normally-distributed or nearly-normal test of equal

MSE, Clark and West propose a simple adjustment to the MSE differential to account for

the additional parameter estimation error of the larger model. When applied to a pair of

rolling sample forecasts under a random walk null model, the adjusted test statistic has a

standard normal distribution (asymptotically). With a null model that involves parameter

estimation (as is the case in this paper), Clark and West (2007) argue that the limiting

null distribution is approximately normal. Note, however, that in either case, the null

hypothesis is that the smaller model is true, not that the null and alternative forecasts are

equally accurate over the sample of interest.

We should also note that for further comparison to our proposed fixed regressor boot-

strap, we include in our Monte Carlo section results for the MSE-t and CW-t tests compared

against standard normal critical values.

3.1 Non-parametric bootstrap

Our non–parametric approach is patterned on White’s (2000) method: we create bootstrap

samples of forecast errors by sampling (with replacement) from the time series of sample

forecast errors, and construct test statistics for each sample draw. However, as noted above

and in White (2000), this procedure is not, in general, asymptotically valid when applied

to nested models. We include the method in part for its computational simplicity and in

part to examine the potential pitfalls of using the approach.

In our non-parametric implementation, we follow the approach of White (2000) in us-

ing the stationary bootstrap of Politis and Romano (1994) and centering the bootstrap
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distributions around the sample values of the test statistics. The stationary bootstrap is

parameterized to make the average block length equal to twice the forecast horizon. As to

centering of test statistics, under the non–parametric approach, the relevant null hypothesis

is that the MSE difference (benchmark MSE less alternative model MSE) is at most 0, and

the MSE ratio (benchmark MSE/alternative model MSE) is at most 1. Following White

(2000), each bootstrap draw of a given test statistic is re-centered around the corresponding

sample test statistic. Bootstrapped critical values are computed as percentiles of the result-

ing distributions of re–centered test statistics. We report empirical rejection rates using a

nominal size of 10%. Results using a nominal size of 5% are qualitatively similar.

3.2 Fixed regressor bootstrap

As outlined in section 2.4, we also consider a fixed regressor bootstrap under the null of

equal forecast accuracy. Under this procedure, we re-estimate the alternative forecasting

model subject to the constraint that implies the null and alternative model forecasts to be

equally accurate. After taking the fitted values (x′1,tβ̃1,T ) from this model, we construct

the residuals from the OLS estimate of the unrestricted model (v̂1,t+τ ). Following the

algorithm outlined in section 2.4, we create artificial replicas of the residuals v̂∗1,t+τ and add

them to the fitted value to form artificial samples of y∗t+τ : y∗t+τ = x′1,tβ̃1,T + v̂∗1,t+τ . Using

the artificial samples of data on y, we estimate the forecasting models (using actual data on

all the variables on the right-hand side, rather than simulated data), generate samples of

forecasts and forecast errors, and finally compute samples of test statistics. In particular,

we use the fixed regressor bootstrap to construct critical values for the MSE-F and MSE-t

tests. We compare the sample test statistics against the bootstrap draws, without any

re-centering of the bootstrapped statistics.

3.3 No-predictability fixed regressor bootstrap

For comparison to existing work in the nested model literature (such as Clark and Mc-

Cracken (2001, 2005), Clark and West (2006, 2007), and McCracken (2007)), we consider

results of tests of the null of equal accuracy at the population level, which is equivalent

to a null hypothesis of β12 = 0. Appropriate critical values could be obtained from a re-

stricted VAR bootstrap as in Kilian (1999) and Clark and McCracken (2005), among others.

Prior work has shown such an approach to be effective for the null of equal accuracy at

the population level. Under this approach, vector autoregressive equations for yt and xt
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are estimated using the full sample of observations, with the residuals stored for sampling.

Bootstrapped time series on yt and xt are generated by drawing with replacement from the

sample residuals and using the autoregressive structures of the estimated VAR to iteratively

construct data. Each sample of artificial data is used to estimate forecasting models and

generate forecasts and test statistics.

In this paper, though, we instead consider a fixed regressor bootstrap that imposes the

null of equal population-level accuracy by restricting β12 to equal 0. This bootstrap takes

the same form as described in sections 2.4 and 3.2, with the sole difference being that

in step 1, d̂ = 0, which is equivalent to simply estimating the null forecasting model by

OLS (model 0, which includes only the variables x0,t) rather than the alternative model

(model 1, which includes the variables x0,t and x12,t). In the results below, we refer to

this as the no-predictability fixed regressor bootstrap. We use the no-predictability fixed

regressor bootstrap to construct critical values for tests of equal forecast accuracy based on

the MSE-F , MSE-t, and CW-t tests. For all tests, because the null hypothesis of β12 = 0

is imposed in the data generation process, no adjustment of the sample test statistics is

needed for inference. We simply compare the sample test statistics against the bootstrap

draws, without any re-centering.

While we omit the theoretical proofs in the interest of brevity, it is straightforward to use

the more general results of section 2 to prove the asymptotic validity of the no-predictability

fixed regressor bootstrap for the null of equal forecast accuracy in population (including

consistency under the alternative that model 1 is more accurate in population).7 In Clark

and McCracken (2001, 2005), we presented Monte Carlo evidence to show that a restricted

VAR bootstrap works well for the null of equal accuracy in population, but did not prove the

validity of the bootstrap. This paper suffices to establish the asymptotic validity of a fixed

regressor bootstrap based on the null forecasting model. Some researchers may also find

the fixed regressor bootstrap to be simpler to use than the restricted VAR. While we omit

the results in the interest of brevity, in this paper’s Monte Carlo experiments the restricted

VAR bootstrap yields results very similar to those from the no-predictability fixed regressor

bootstrap.
7The validity of the no-predictability fixed regressor bootstrap does not require that k2 = 1 or that the

forecast errors be 1-step ahead and conditionally homoskedastic if k2 > 1. The extra terms in the asymptotic
distributions that require these restrictions in the case of the null of equal accuracy in a finite sample drop
out in the case of the null of equal accuracy in population, making the restrictions unnecessary for the
validity of the no-predictability fixed regressor bootstrap (for testing equal accuracy in population).
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4 Monte Carlo evidence

We use simulations of bivariate and multivariate DGPs based on common macroeconomic

applications to evaluate the finite sample properties of the above approaches to testing

for equal forecast accuracy. In these simulations, the benchmark forecasting model is a

univariate model of the predictand y; the alternative models add lags of various other

variables of interest. The general null hypothesis is that the forecast from the alternative

model is no more accurate than the benchmark forecast. This general null, however, can

take different specific forms: either the variables in the alternative model have no predictive

content, in that their coefficients are 0; or the variables have non–zero coefficients, but the

coefficients are small enough that the benchmark and alternative models are expected to be

equally accurate over the forecast sample. We focus our presentation on recursive forecasts,

but include some results for rolling forecasts.

4.1 Monte Carlo design

For all DGPs, we generate data using independent draws of innovations from the normal

distribution and the autoregressive structure of the DGP. The initial observations necessi-

tated by the lag structure of each DGP are generated with draws from the unconditional

normal distribution implied by the DGP. We consider forecast horizons of one and four

steps. With quarterly data in mind, we also consider a range of sample sizes (T, P ), reflect-

ing those commonly available in practice: 40,80; 40,120; 80,40; 80,80; 80,120; 120,40; and

120,80.

All of the DGPs are based on empirical relationships among U.S. inflation and a range

of predictors, estimated with 1968-2008 data. In all cases, our reported results are based

on 5000 Monte Carlo draws and 499 bootstrap replications.

4.1.1 DGPs

DGP 1 is based on the empirical relationship between the change in core PCE inflation

(yt) and the Chicago Fed’s index of the business cycle (x1,t, the CFNAI):

yt+1 = −0.4yt − 0.1yt−1 + b11x1,t + ut+1

x1,t+1 = 0.7x1,t + v1,t+1 (5)

var
(

ut+1

v1,t+1

)
=

(
0.8
0.0 0.3

)
.
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In the DGP 1 experiments, which focus on a forecast horizon of 1 step, the alternative

(unrestricted) forecasting model takes the form of the DGP equation for yt+1 (with constant

added); the null or benchmark (restricted) model drops x1,t:

null: yt+1 = β0 + β1yt + β2yt−1 + u0,t+1. (6)

alternative: yt+1 = β0 + β1yt + β2yt−1 + β3x1,t + u1,t+1. (7)

We consider various experiments with different settings of b11, the coefficient on x1,t,

which corresponds to the elements of our theoretical construct β∗12/
√

T . In one set of

simulations (Table 1), the coefficient is set to 0, such that the null forecasting model is

expected to be more accurate than the alternative. In others (Tables 2 and 3), the coefficient

is set to a value that makes the models equally accurate (in expectation) on average over

the forecast sample. We determined the appropriate value on the basis of the population

moments implied by the model and our asymptotic approximations given in section 2.3.

For example, with recursive forecasts and T and P both equal to 80 (this coefficient value

changes with T and P ), this value is 0.11, about 1/2 of the empirical estimate. In another

set of experiments (Table 4), the coefficient is set to 0.3, such that the alternative model is

expected to be more accurate than the null.

DGP 2 is based on the empirical relationship of the change in core PCE inflation (yt)

to the CFNAI (x1,t), PCE food price inflation less core inflation (x2,t), and import price

inflation less core inflation (x3,t). To simplify the lag structure necessary for reasonable

forecasting models, the inflation rates used in forming variables x2,t and x3,t are computed

as two-quarter averages. Based on these data, DGP 2 takes the form

yt+1 = −0.4yt − 0.1yt−1 + b11x1,t + b21x2,t + b31x3,t + ut+1

x1,t+1 = 0.7x1,t + v1,t+1

x2,t+1 = 0.9x2,t − 0.2x2,t−1 + v2,t+1 (8)

x3,t+1 = 1.1x3,t − 0.3x3,t−1 + v3,t+1

var





ut

v1,t+1

v2,t+1

v3,t+1



 =





0.8
0.0 0.3
−0.1 0.0 2.2
0.5 0.1 0.8 9.0



 .

In DGP 2 experiments, which also focus on a forecast horizon of 1 step, the null (re-

stricted) and alternative (unrestricted) forecasting models take the following forms, respec-
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tively:

yt+1 = β0 + β1yt + β1yt−1 + u0,t+1. (9)

yt+1 = β0 + β1yt + β1yt−1 + β3x1,t + β4x2,t + β5x3,t + u1,t+1. (10)

As with DGP 1, we consider experiments with three different settings of the set of bij

coefficients. In one set of experiments (Table 1), all of the bij coefficients are set to zero,

such that the null forecasting model is expected to be more accurate than the alternative.

In another set of experiments (Table 4), the coefficients are set at b11 = 0.3, b12 = 0.1,

and b13 = .015 (roughly their empirical values). With these values, the alternative model is

expected to be more accurate than the null. In others (Tables 2 and 3), the values of the bij

coefficients from the Table 4 experiments are multiplied by a constant less than one, such

that, in population, the null and alternative models are expected to be equally accurate,

on average, over the forecast sample (we computed the scaling factor using the population

moments implied by the model and section 2.3’s asymptotic approximations). With T and

P at 80, this multiplying constant is 0.41.

DGP 3, which incorporates a forecast horizon of four periods, is also based on the

empirical relationship between the change in core PCE inflation (yt) and the Chicago Fed’s

index of the business cycle. In this case, though, the model is based on empirical estimates

using the four-quarter rate of inflation:8

yt+4 = b11x1,t + et+4

et+4 = ut+4 + .95ut+3 + .9ut+2 + .8ut+1

x1,t+4 = 0.7x1,t+3 + v1,t+4 (11)

var
(

ut+4

v1,t+4

)
=

(
0.2
0.0 0.3

)
.

In these experiments, the forecasting models are:

null: yt+4 = β0 + u0,t+4. (12)

alternative: yt+4 = β0 + β1x1,t + u1,t+4. (13)

Again, we consider experiments with different settings of b11, the coefficient on x1,t. In

Table 1’s simulations, the coefficient is set to 0. In Tables 2 and 3 experiments, the coefficient
8Specifically, in the empirical estimates underlying the DGP settings, we defined yt+4 = 100 ln(pt+4/pt)−

100 ln(pt/pt−4), where p denotes the core PCE price index.
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is set to a value that makes the models equally accurate (in expectation) on average over the

forecast sample (again, on the basis of the model-implied population moments and section

2.3’s asymptotic approximations). For example, with recursive forecasts and T and P both

equal to 80, this value is 0.16. In Table 4’s simulations, the coefficient is set to its empirical

value of 0.4, such that the alternative model is expected to be more accurate than the null.

4.2 Results

Our interest lays in identifying those testing approaches that yield reasonably accurate

inferences on the forecast performance of models. At the outset, then, it may be useful

to broadly summarize the forecast performance of competing models under our various

alternatives. Accordingly, Figure 1 shows estimated densities of the MSE ratio statistic

(the ratio of the null model’s MSE to the alternative model’s MSE), based on experiments

with DGP 2, using T = P = 80. We provide three densities, for the cases in which the

bij coefficients of the DGP (8) are: (i) set to 0, such that the null model should be more

accurate; (ii) set to non–zero values so as to make the null and alternative models (9) and

(10) equally accurate over the forecast sample, according to our local–to–zero asymptotic

results; and (iii) set at larger values, such that the alternative model is expected to be more

accurate.

As the figure shows, for the DGP which implies the null model should be best, the

MSE ratio distribution mostly lays below 1.0. For the DGP that implies the models can

be expected to be equally accurate, the distribution is centered at about 1.0. Finally, for

the DGP that implies the alternative model can be expected to be best, the distribution

mostly lays above 1.0. Among our bootstrap procedures, the no-predictability fixed regres-

sor approach yields, by design, a distribution like that shown for the null best DGP. The

fixed regressor bootstrap is intended to estimate a null distribution like that shown for the

equally good models DGP. In most of our results, the null will be rejected when the sample

MSE ratio lays in the right tail of the bootstrapped distribution.

What, then, might we expect test rejection rates to look like across experiments and

bootstraps? For DGPs in which the null model is best, tests compared against the no-

predictability fixed regressor bootstrap should have rejection rates of about 10%, the nom-

inal size. However, the same tests compared against the other bootstraps should have

rejection rates below 10%, because given the DGP, the models should not be expected to

be equally accurate. For DGPs with coefficients scaled such that the null and alternative
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models can be expected to be equally accurate, we want the tests compared against the

non–parametric and fixed regressor bootstraps to have size of about 10%. That said, as

indicated above, we shouldn’t expect the non–parametric approach to perform well when ap-

plied to recursive forecasts from our nested models (based on the asymptotics of Giacomini

and White (2006), the non-parametric bootstrap may perform better for rolling forecasts).

We should expect the same tests compared to no-predictability fixed regressor bootstrap

critical values to yield rejection rates greater than 10%, because the no-predictability fixed

regressor bootstrap distribution should lay to the left of the equal accuracy distribution.

Finally, with DGPs that imply the alternative model to be more accurate than the null,

we should look for rejection rates that exceed 10%. Again, though, rejection rates based

on the no-predictability fixed regressor bootstrap should generally be higher than rejection

rates based on the other approaches.

4.2.1 Null model most accurate

Table 1 presents Monte Carlo results for DGPs in which the x variables considered have no

predictive content for y, such that the null forecasting model should be expected to be best

in finite samples. These results generally line up with the expectations described above.

Comparing the MSE-F , MSE-t and CW-t statistics against no-predictability fixed regressor

bootstrap critical values consistently yields rejection rates of about the nominal size of 10%.

For example, across all the experiments, no-predictability fixed regressor bootstrap rejection

rates for the MSE-F test range from 9.6% to 11.6%, with rejection rates at about 10% for

both the 1-step and 4-step forecast horizons.

Comparing the test statistics to other bootstrap distributions typically yields rejection

rates well below 10%, and often close to 0, although with some sensitivity to the forecast

horizon. Rejection rates for the MSE-F test based on the fixed regressor bootstrap range

from 0.4% to 3.0% at the 1-step horizon and from 2.0% to 4.5% at the 4-step horizon. In

most settings, rejection rates based on the non-parametric bootstrap are similar. However,

with the non-parametric bootstrap, empirical rejection rates rise as P/T falls. As a re-

sult, for the experiments with P/T less than 1/2 (specifically, with (T, P ) = (80,40) and

(120,40)), size based on the non-parametric bootstrap exceeds size based on the fixed re-

gressor bootstrap. At the extreme, in DGP 3 experiments with 4-step ahead forecasts and

(T, P ) = (120,40), the MSE-F rejection rate is 9.8% under the non-parametric bootstrap

and 4.5% under the fixed regressor bootstrap.
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Under any bootstrap approach, results are qualitatively similar for the MSE-F and

MSE-t tests. In addition, with the MSE-t test, comparing the test statistic against standard

normal critical values (with a one-sided testing approach) yields results very similar to those

obtained by comparing the test statistic against critical values from the non-parametric

bootstrap. For example, at the 1-step horizon, MSE-t rejection rates range from 0.3% to

4.6% under the non-parametric bootstrap and 0.2% to 4.6% under standard normal critical

values.9 Studies such as Clark and McCracken (2005) have reported similar behavior of the

MSE-t test based on standard normal critical values.

4.2.2 Null and alternative models equally accurate: recursive forecasts

Table 2 presents results for DGPs in which the bij coefficients on some x variables are non–

zero but small enough that, under our asymptotic approximation, the null and alternative

forecasting models are expected to be equally accurate over the sample considered. These

results also generally line up with the expectations described above, and show that, for

testing the null of equal forecast accuracy, our proposed fixed regressor procedure is quite

reliable.

Tests based on the fixed regressor bootstrap generally have rejection rates of about 10%

(the nominal size). For example, in the case of the MSE-F test applied to 1-step ahead

forecasts, rejection rates range from 8.3% to 10.3%. Admittedly, rejection rates for 4-step

ahead forecast tests are modestly higher, ranging from 12.4% to 14.9% percent.10 For

multi-step horizons, using the fixed regressor bootstrap works better (yielding rates closer

to nominal size) when T is relatively large than when T is relatively small. Rejection rates

for the MSE-t test compared against critical values from the fixed regressor bootstrap are

similar, although a bit lower, ranging from 7.7% to 9.3% at the 1-step horizon and from

11.2% to 13.6% at the 4-step horizon.

Tests based on the other bootstrap intended to test the null of equal accuracy, the non–

parametric bootstrap, are somewhat — although not entirely — less reliable indicators of

equal accuracy. With critical values from the non-parametric bootstrap, the MSE-F test is

somewhat undersized at the 1-step horizon but correctly sized or somewhat oversized at the
9However, using a two-sided MSE-t test with standard normal critical values yields a rejection rate in

excess of the nominal size, reflecting rejections of the (larger) alternative model in favor of the (smaller) null.
10The over-sizing of the fixed regressor bootstrap at the 4-step horizon most likely has to do with the

HAC estimation of the variance matrix V that determines the coefficient rescaling factor. Table 1 shows
that, when the small model is the true one, the no-predictability fixed regressor bootstrap (which doesn’t
involve computing V and rescaling coefficients) is correctly sized at even the 4-step horizon.

22



4-step horizon. As shown in Table 2, the MSE-F test’s rejection rate ranges from 4.1% to

8.3% at the 1-step horizon and from 9.1% to 16.2% at the 4-step horizon. As noted above,

with the non-parametric approach, empirical rejection rates generally rise as P/T falls. For

example, with 4-step ahead forecasts (for DGP 3) and T = 80, the MSE-F rejection rate is

9.4% when P = 120 and 15.6% when P = 40. Rejection rates for the MSE-t test compared

against critical values from the non-parametric bootstrap are similar, although typically a

bit higher, ranging from 5.0% to 10.0% at the 1-step horizon and from 9.4% to 15.2% at

the 4-step horizon.

In addition, comparing the MSE-t test against standard normal critical values (with

a one-sided testing approach) yields results similar to those obtained by comparing the

test statistic against critical values from the non-parametric bootstrap. For instance, at

the 1-step horizon, MSE-t rejection rates range from 4.7% to 8.6% under standard normal

critical values, compared to a range of 5.0% to 10.0% under the non-parametric bootstrap.

Accordingly, the MSE-t test compared against standard normal critical values is somewhat

undersized at the 1-step horizon but correctly or somewhat oversized at the 4-step horizon.

Tests based on the no-predictability fixed regressor bootstrap may be seen as unreliable

indicators of equal forecast accuracy — in that they overstate the likelihood of two models

being equally accurate in a finite sample. Comparing test statistics against critical values

from the no-predictability fixed regressor bootstrap generally yields rejection rates far in

excess of 10%. As in prior studies such as Clark and McCracken (2005) using a restricted

VAR bootstrap, rejection rates rise as P increases. In the case of the MSE-F test, rejection

rates range from 22.5% to 46.3% (Table 2). Similarly, rejection rates for the CW-t test based

on critical values from the no-predictability fixed regressor bootstrap range from 18.9% to

51.6%.

4.2.3 Null and alternative models equally accurate: rolling forecasts

Table 3 provides results for experiments using a rolling forecast scheme instead of the

baseline recursive scheme, for models parameterized to make the null and alternative models

equally accurate (the necessary scaling factor is a bit different in the rolling case than the

recursive). In general, the results for the rolling scheme are very similar to those for the

recursive. Under both schemes, tests based on the no-predictability fixed regressor bootstrap

reject too often. Tests based on our fixed regressor bootstrap have size of about 10% (the

nominal size), although with some slight to modest oversizing at the 4-step horizon. Tests
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based on the non-parametric bootstrap or standard normal critical values continue to be

undersized at the 1-step horizon, although the problem is a bit worse under the rolling

scheme than the recursive.11 For example, with DGP 1, T = 40, and P = 80, comparing

the MSE-t test against critical values estimated with the non-parametric bootstrap yields a

rejection rate of 6.5% for recursive forecasts (Table 2) and 4.9% for rolling forecasts (Table

3); comparing the test against fixed regressor bootstrap critical values yields corresponding

rejection rates of 8.8% (recursive) and 8.6% (rolling). At the 4-step horizon, tests based

on the non-parametric bootstrap or standard normal critical values continue to range from

correctly sized to oversized, with oversizing that is sharpest when P is small.

Our rolling scheme results on the behavior of the MSE-t test compared against non-

parametric bootstrap and standard normal critical values are somewhat at odds with the

behavior of the test in Giacomini and White (2006). Giacomini and White (2006) compare

the MSE-t test against standard normal critical values, and find a two-sided test to be

roughly correctly sized at the one-step forecast horizon, with small-to-modest undersizing

for some sample sizes and comparable oversizing for others. One source of differences in

results is our treatment of the test as one-sided rather than two-sided. Giacomini and

White (2006) permit rejections of the alternative model in favor of the null and conduct

two-sided tests; we prefer to take the small model as the null and only consider rejections of

the null in favor of the alternative, or one-sided tests. When we use a two-sided MSE-t and

standard normal critical values (while not shown in the interest of brevity, the same applies

with critical values from the non-parametric bootstrap), the test is roughly correctly sized

at the 1-step horizon and correctly sized to somewhat oversized at the 4-step horizon (the

same applies in the recursive forecast results of Table 2). The increase in rejection rates

that occurs with the move from a one-sided to two-sided test likely reflects an empirical

distribution that is shifted to the left relative to the standard normal.

Admittedly, though, other aspects of our Monte Carlo results seem to be at odds with

the asymptotic results of Giacomini and White (2006), if not their Monte Carlo results.

Their asymptotics imply the MSE-t test has an asymptotic distribution that is standard

normal for rolling forecasts but not recursive forecasts, suggesting the test should have

better size properties in the rolling case than the recursive. But in our Monte Carlo results,
11The rise in rejection rates that occurs as P/T falls is a bit sharper in the rolling case than the recursive.

As a consequence, the differences in rejection rates (based on the non-parametric bootstrap or standard
normal critical values) across the recursive and rolling forecasting schemes are larger when P/T is relatively
big than when it is relatively small.
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the standard normal approximation for MSE-t seems to work better with recursive forecasts

than rolling, yielding 1-step ahead rejection rates closer to nominal in the former case than

the latter. In addition, their theory rests on asymptotics that treat T as fixed and P as

limiting to infinity, which suggests the test should behave better when P is large relative to

T than when P is relatively small. In fact, in our Monte Carlo results, rejection rates based

on the non-parametric bootstrap and standard normal critical values tend to be farther

from nominal size when P is large than when it is small. In the case of the second issue, the

Monte Carlo results in Giacomini and White (2006) seem to yield a similar pattern, with

rejection rates falling as the forecast sample increases relative to the estimation sample,

often to levels consistent with the undersizing we have reported.

4.2.4 Alternative model most accurate

Table 4 provides results for DGPs in which the bij coefficients on some x variables are large

enough that, under our asymptotics, the alternative model is expected to be more accurate

than the null model in the finite sample.

As anticipated, comparing the test statistics against critical values estimated with the

no-predictability fixed regressor bootstrap yields the highest rejection rate. In the case of

the MSE-F test, rejection rates range from 57.0% to 93.4%. Comparing the test statistics

against critical values estimated with the fixed regressor bootstrap yields modestly lower

rejection rates. For the MSE-F test, rejection rates range from 42.8% to 82.1%. Comparing

tests against distributions estimated with the non–parametric bootstrap yields materially

lower power. In Table 4’s results, using the non–parametric bootstrap for the MSE-F test

yields a rejection rate between 25.0% and 56.9%.

Rejection rates for the MSE-t test are broadly similar to those for the MSE-F test,

although with some noticeable differences. In most cases in Table 4’s results, the MSE-

t test is less powerful than the MSE-F test (as with the fixed regressor bootstrap), but

in some cases (as with the non–parametric bootstrap), the MSE-t test is more powerful.

Finally, as noted above in other experiment settings, the power of the C-W t-test is broadly

comparable to that of the MSE-F test compared against no-predictability fixed regressor

bootstrap critical values.
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4.2.5 Results summary

Overall, the Monte Carlo results show that, for testing equal forecast accuracy over a given

sample, our proposed fixed regressor bootstrap works well. When the null of equal accuracy

in the finite sample is true, the testing procedures yield approximately correctly sized tests.

When an alternative model is, in truth, more accurate than the null, the testing procedures

have reasonable power. The non–parametric bootstrap procedure, which just re–samples

the data without imposing the equal accuracy null in the data generation, tends to be less

reliable when applied to nested forecasting models. Finally, in line with prior research, for

the purpose of testing the null that certain coefficients are 0, a bootstrap imposing the

null of 0 coefficients — here, the no-predictability fixed regressor bootstrap — is reliable.

However, the null of 0 coefficients is not the same as the null of equal forecast accuracy.

5 Applications

In this section we use the tests and inference approaches described above in forecasting

excess stock returns and core inflation, both for the U.S. Some recent examples from the

long literature on stock return forecasting include Rapach and Wohar (2006), Goyal and

Welch (2008), and Campbell and Thompson (2008). Some recent inflation examples include

Atkeson and Ohanian (2001) and Stock and Watson (2003).

More specifically, in the stock return application, we use the data of Goyal and Welch

(2008), and examine forecasts of monthly excess stock returns (CRSP excess returns mea-

sured on a log basis) from a total of 17 models. The null model includes just a constant.

The alternative models add in one lag of a common predictor, taken from the set of vari-

ables in the Goyal-Welch data set available over all of our sample.12 These include, among

others, the dividend-price ratio, the earnings-price ratio, and the cross-sectional premium.

The full set of 16 predictive variables is listed in Table 5, with details provided in Goyal and

Welch (2008). Following studies such as Pesaran and Timmermann (1995), we focus on the

post-war period. Our model estimation sample begins with January 1954, and we examine

recursive 1-month ahead forecasts (that is, our estimation sample expands as forecasting

moves forward in time) for 1970 through 2002.

In the inflation application, we examine 1-quarter ahead and 4-quarter (1-year) ahead

forecasts of core PCE inflation obtained from a few models, over a sample of 1985:Q1+horizon-
12We obtained the data from Amit Goyal’s website.
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1 to 2008:Q2. The null model includes a constant and lags of the change in inflation. One

alternative model adds one lag of the CFNAI to the baseline model. Another includes one

lag of the CFNAI, PCE food price inflation less core inflation, and import price inflation less

core inflation.13 We specify the models in terms of the change in inflation, following, among

others, Stock and Watson (1999, 2003) and Clark and McCracken (2006). In one applica-

tion, we consider one-quarter ahead forecasts of inflation defined as πt = 400 ln(Pt/Pt−1),

using models relating ∆πt+1 to a constant, ∆πt, ∆πt−1, and the period t values of the

CFNAI, relative food price inflation, and relative import price inflation. In another, we

consider one-year ahead forecasts of inflation defined as π(4)
t = 100 ln(Pt/Pt−4), using mod-

els relating π(4)
t+4 − π(4)

t to a constant, π(4)
t − π(4)

t−4, and the period t values of the CFNAI,

relative food price inflation, and relative import price inflation. To simplify the lag structure

necessary for reasonable forecasting models, the (relative) food and import price inflation

variables are computed as two-period averages of quarterly (relative) inflation rates. For

both inflation forecast horizons, our model estimation sample uses a start date of 1968:Q3.

Results for the stock return and inflation forecast applications are reported in Tables 5

and 6. The tables provide, for each alternative model, the ratio of the MSE of forecasts from

the benchmark model to the alternative model’s forecast MSE. The tables include p-values

for the null that the benchmark model is true (no-predictability fixed regressor bootstrap)

or that the models are equally accurate in the finite sample (the non–parametric and fixed

regressor bootstraps). In the interest of brevity, results are only presented for the MSE-F

test. We use 9999 replications in computing the bootstrap p-values.

In the case of excess stock returns, the evidence in Table 5 is consistent with much of

the literature: return predictability is limited. Of the 16 alternative forecasting models,

only two — the first two in the table — have MSEs lower than the benchmark (that is,

MSE ratios greater than 1). The no-predictability fixed regressor bootstrap p-values reject

the null model in favor of the alternative for each of these two models. These test results

indicate the predictor coefficients on the cross-sectional premium and return on long-term

Treasuries are non–zero. However, p-values based on the fixed regressor bootstrap imply

weaker evidence of forecastability, with the null of equal forecast accuracy rejected for the

cross-sectional premium, but not the Treasury return (at a 10% significance level). This

pattern suggests that, while the coefficient on the Treasury return may differ from zero, the
13We obtained the CFNAI data from the Chicago Fed’s website and the rest of the data from the FAME

database of the Federal Reserve Board of Governors.
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coefficient is not large enough that a model including the Treasury return would be expected

to forecast better than the null model over a sample of the size considered. Critical values

based on the non-parametric bootstrap yield no rejections, presumably (given our Monte

Carlo evidence) reflecting lower power.

The inflation results reported in Table 6 yield similarly mixed evidence of predictability.

By itself, the CFNAI improves the accuracy of 1-quarter ahead forecasts but not 4-quarter

ahead forecasts. At the 1-step horizon, the no-predictability fixed regressor bootstrap p-

values reject the null model in favor of the alternative — indicating the predictor coefficients

on the CFNAI to be non–zero. However, p-values based on the fixed regressor bootstrap

fail to reject the null of equal accuracy. So while the coefficient on the CFNAI may differ

from zero, it is not large enough that a model including the CFNAI would be expected to

forecast better than the null model in a sample of the size considered. Including not only

the CFNAI but also relative food and import price inflation yields larger gains in forecast

accuracy, at both horizons. In this case, critical values from both the no-predictability fixed

regressor and fixed regressor bootstrap reject the null (at a 10% significance level). This

suggests the relevant coefficients are non-zero and large enough to make the alternative

model more accurate than the null. Here, too, critical values based on the non-parametric

bootstrap yield fewer rejections.

6 Conclusion

This paper develops bootstrap methods for testing, whether, in a finite sample, competing

out-of-sample forecasts from nested models are equally accurate. Most prior work on fore-

cast tests for nested models has focused on a null hypothesis of equal accuracy in population

— basically, whether coefficients on the extra variables in the larger, nesting model are zero.

We instead use an asymptotic approximation that treats the coefficients as non-zero but

small, such that, in a finite sample, forecasts from the small model are expected to be as

accurate as forecasts from the large model. While an unrestricted, correctly specified model

might have better population-level predictive ability than a misspecified restricted model,

it need not do so in finite samples due to imprecision in the additional parameter estimates.

In the presence of these “weak” predictors, we show how to test the null of equal average

predictive ability over a given sample size.

Under our asymptotic approximation of weak predictive ability, we first derive the
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asymptotic distributions of two tests for equal out-of-sample predictive ability. We then

develop a parametric bootstrap procedure — a fixed regressor bootstrap — for testing the

null of equal finite-sample forecast accuracy. We next conduct a range of Monte Carlo sim-

ulations to examine the finite–sample properties of the tests and bootstrap procedures. For

tests of equal population-level predictive ability, we find that a no-predictability fixed re-

gressor bootstrap (like the restricted VAR bootstrap used in prior work) provides accurately

sized tests. However, this does not continue to hold when we consider tests of equal finite-

sample predictive ability in the presence of weak predictors. Instead, our proposed fixed

regressor bootstrap works reasonably well: When the null of equal finite-sample predictive

ability is true, the testing procedure yields approximately correctly sized tests. Moreover

when an alternative model is, in truth, more accurate than the null, the testing procedure

has reasonable power. In contrast, when applied to nested models, the non-parametric

method of White (2000) does not work so well, in a size or power sense.

In the final part of our analysis, we apply our proposed methods for testing equal pre-

dictive ability to forecasts of excess stock returns and core inflation, using U.S. data. In

both applications, our methods for testing equal finite sample accuracy yield weaker evi-

dence of predictability than do methods for testing equal population-level accuracy. There

remains some evidence, but only modest. Using non-parametric bootstrap methods that

are technically invalid with nested models — methods that have relatively poor size and

power properties — yields much less evidence of predictability.
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7 Appendix: Theory Details

In the following, in addition to the notation from Section 2, define h∗T,1,s+τ = xT,1,sv∗1,s+τ and

ĥ∗T,1,s+τ = xT,1,sv̂∗1,s+τ . For the recursive scheme define H∗
T,1(t) = t−1

∑t−τ
s=1 h∗T,1,s+τ and Ĥ∗

T,1(t) =

t−1
∑t−τ

s=1 ĥ∗T,1,s+τ while for the rolling scheme define H∗
T,1(t) = T−1

∑t−τ
s=t−T−τ+1 h∗T,1,s+τ and

Ĥ∗
T,1(t) = T−1

∑t−τ
s=t−T−τ+1 ĥ∗T,1,s+τ Moreover let supt |.| denote supT≤t≤T+P−τ |.|.

Proof of Theorem 2.1: (a) The result is a special case of Theorem 1 of Clark and McCracken

(2009) and as a result, we provide only an outline of the proof here. The proof consists of two steps.

In the first we provide an asymptotic expansion. In the second we apply a functional central limit

theorem and a weak convergence to stochastic integrals result, both from de Jong and Davidson

(2000). Throughout we ignore the finite sample difference between P and P − τ + 1.

For the first step, straightforward algebra reveals that

∑T+P−τ

t=T
(û2

0,t+τ − û2
1,t+τ ) (14)

= {2
∑T+P−τ

t=T
(T−1/2h′T,1,t+τ )(−JB0(t)J ′ + B1(t))(T 1/2HT,1(t))

−T−1
∑T+P−τ

t=T
(T 1/2H ′

T,1(t))(−JB0(t)xT,0,tx
′
T,0,tB0(t)J ′

+B1(t)xT,1,tx
′
T,1,tB1(t))(T 1/2HT,1(t))}

+2{
∑T+P−τ

t=T
δ′B−1

1 (t)(−JB0(t)J ′ + B1(t))(T−1/2hT,1,t+τ )}

+{T−1
∑T+P−τ

t=T
δ′(xT,1,tx

′
T,1,t − 2xT,1,tx

′
T,1,tJB0(t)J ′B−1

1 (t)

+B−1
1 (t)JB0(t)xT,0,tx

′
T,0,tB0(t)J ′B−1

1 (t))δ}

+2{T−1
∑T+P−τ

t=T
δ′(B−1

1 (t)JB0(t)xT,0,tx
′
T,0,tB0(t)J ′

−xT,1,tx
′
T,1,tJB0(t)J ′)(T 1/2HT,1(t))}.

Given Assumptions 3 (c) and 5, straightforward moment-based bounding arguments, along with
the definitions of Ã, h̃T,1,t+τ , and H̃T,1(t) imply

∑T+P−τ

t=T
(û2

0,t+τ − û2
1,t+τ ) = σ2{2

∑T+P−τ

t=T
(T−1/2h̃T,1,t+τ )(T 1/2H̃T,1(t))

−T−1
∑T+P−τ

t=T
(T 1/2H̃T,1(t))(T 1/2H̃T,1(t))} + σ2{2

∑T+P−τ

t=T
(δ′B−1/2

1 Ã/σ)(T−1/2h̃T,1,t+τ )}

+σ2{(P/T )(δ′J2F
−1
1 J ′2δ/σ2)} + op(1).

For the second step we apply weak convergence results from de Jong and Davidson (2000),
notably Theorem 3.2. Taking limits, and noting that T 1/2H̃T,1(t) ⇒ s−1S1/2

h̃h̃
W (s) we obtain the
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stochastic integrals presented in the statement of the Theorem.

∑T+P−τ

t=T
(û2

0,t+τ − û2
1,t+τ ) =

σ2{2
∫ 1+λP

1
s−1W ′(s)Sh̃h̃dW (s)−

∫ 1+λP

1
s−2W ′(s)Sh̃h̃W (s)ds}

+σ2{
∫ 1+λP

1
(δ′B−1/2

1 Ã′/σ)S1/2

h̃h̃
dW (s)} + σ2{λP δ′J2F

−1
1 J ′2δ/σ2}.

That MSE2 →p σ2 then provides the desired result.

(b) The proof is largely the same as for the recursive scheme. The only important difference

is that instead of HT,1(t) = (t−1
∑t−τ

s=1 hT,1,s+τ ) for the recursive scheme we now have HT,1(t) =

(T−1
∑t−τ

s=t−τ−T+1 hT,1,s+τ ) for the rolling scheme. Hence in the final step of the proof for the

recursive scheme we have T 1/2H̃T,1(t)⇒ s
−1

S1/2

h̃h̃
W (s) whereas for the rolling scheme we have

T 1/2H̃T,1(t)⇒ S1/2

h̃h̃
(W (s)−W (s− 1)). Other differences are minor and omitted for brevity.

Proof of Theorem 2.2: (a) Given Theorem 2.1(a) and the Continuous Mapping Theorem it
suffices to show that P

∑j̄
j=−j̄ K(j/M)γ̂dd(j)→d 4σ4(Γ5+Γ6+Γ7). Before doing so it is convenient

to redefine the bracketed terms from (11) used in the primary decomposition of the loss differential
in the proof of Theorem 2.1(absent the summations, but keeping the brackets) as

(û2
0,t+τ − û2

1,t+τ ) = {2A1,t −A2,t} + 2{Bt} + {Ct} + 2{Dt}. (15)

With this in mind, if we ignore the finite sample difference between P and P − τ + 1, we obtain

P
j̄∑

j=−j̄

K(j/M)γ̂dd(j) =
j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T+j
(û2

0,t+τ − û2
1,t+τ )(û2

0,t−j+τ − û2
1,t−j+τ )(16)

= 4{
j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T+j
A1,tA1,t−j} + 4{

j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T+j
A1,tBt−j}

+4{
j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T+j
BtBt−j}

+ other cross products of A1,t, A2,t, Bt, Ct, Dt with A1,t−j , A2,t−j , Bt−j , Ct−j , Dt−j .

In the remainder we show that each of the 3 bracketed terms in (13) converges to σ4 times Γ5, Γ6,

and Γ7 respectively and that the other cross product terms are each op(1).
For the first bracketed term in (13), if we recall the definition of h̃T,1,t+τ and that j̄ is finite,
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algebra along the lines of Clark and McCracken (2005) gives us

j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T+j
A1,tA1,t−j

= σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T+j
(T 1/2H ′

T,1(t)B
1/2
1 /σ)B−1/2

1 (−JB0(t)J ′ + B1(t))B
−1/2
1 ×

(B1/2
1 hT,1,t+τh′T,1,t−j+τB1/2

1 /σ2)B−1/2
1 (−JB0(t− j)J ′ + B1(t− j))B−1/2

1 (T 1/2B1/2
1 HT,1(t− j)/σ)

= σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T
(T 1/2H ′

T,1(t)B
1/2
1 /σ)B−1/2

1 (−JB0J
′ + B1)B

−1/2
1 ×

(B1/2
1 EhT,1,t+τh′T,1,t−j+τB1/2

1 /σ2)B−1/2
1 (−JB0J

′ + B1)B
−1/2
1 (T 1/2B1/2

1 HT,1(t)/σ) + op(1)

= σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T
(T 1/2H̃T,1(t))(Eh̃T,1,t+τ h̃′T,1,t−j+τ )(T 1/2H̃T,1(t)) + op(1)

= σ4(T−1
∑T+P−τ

t=T
[T 1/2H̃ ′

T,1(t)⊗ T 1/2H̃ ′
T,1(t)])vec[

j̄∑

j=−j̄

K(j/M)(Eh̃T,1,t+τ h̃′T,1,t−j+τ )] + op(1).

Given Assumptions 3 and 4,
∑j̄

j=−j̄ K(j/M)(Eh̃T,1,t+τ h̃′T,1,t−j+τ ) → Sh̃h̃. Since Assumption

3 and Theorem 3.2 of de Jong and Davidson (2000) suffice for T 1/2H̃T,1(t) ⇒ s−1S1/2

h̃h̃
W (s), the

Continuous Mapping Theorem implies

T−1
∑T+P−τ

t=T
T 1/2H̃ ′

T,1(t)⊗ T 1/2H̃ ′
T,1(t)→d

∫ 1+λP

1
s−2[W ′(s)S1/2

h̃h̃
⊗W ′(s)S1/2

h̃h̃
]ds.

Since (
∫ 1+λP

1 s−2[W ′(s)S1/2

h̃h̃
⊗W ′(s)S1/2

h̃h̃
]ds)vec[Sh̃h̃] = Γ5, we obtain the desired result.

For the second bracketed term in (13), similar arguments give us

j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T+j
A1,tB1,t−j =

σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T+j
(T 1/2H ′

T,1(t)B
1/2
1 /σ)B−1/2

1 (−JB0(t)J ′ + B1(t))B
−1/2
1 ×

(B1/2
1 hT,1,t+τh′T,1,t−j+τB1/2

1 /σ2)B−1/2
1 (−JB0(t− j)J ′ + B1(t− j))B−1/2

1 (t− j)(B1/2
1 (t− j)δ/σ)

= σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T
(T 1/2H ′

T,1(t)B
1/2
1 /σ)B−1/2

1 (−JB0J
′ + B1)B

−1/2
1 ×

(B1/2
1 EhT,1,t+τh′T,1,t−j+τB1/2

1 /σ2)B−1/2
1 (−JB0J

′ + B1)B
−1/2
1 (B1/2

1 δ/σ) + op(1)

= σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T
(T 1/2H̃T,1(t))(Eh̃T,1,t+τ h̃′T,1,t−j+τ )(ÃB1/2

1 δ/σ) + op(1)

= σ4(T−1
∑T+P−τ

t=T
[(ÃB1/2

1 δ/σ)
′
⊗ T 1/2H̃ ′

T,1(t)])vec[
j̄∑

j=−j̄

K(j/M)(Eh̃T,1,t+τ h̃′T,1,t−j+τ )] + op(1).

32



Given Assumptions 3 and 4,
∑j̄

j=−j̄ K(j/M)(Eh̃T,1,t+τ h̃′T,1,t−j+τ ) → Sh̃h̃. Since Assumption

3 and Theorem 3.2 of de Jong and Davidson (2000) suffice for T 1/2H̃T,1(t) ⇒ s−1S1/2

h̃h̃
W (s), the

Continuous Mapping Theorem implies

T−1
∑T+P−τ

t=T
[(ÃB1/2

1 δ/σ)
′
⊗ T 1/2H̃ ′

T,1(t)]→d

∫ 1+λP

1
s−1[(ÃB1/2

1 δ/σ)
′
⊗W ′(s)S1/2

h̃h̃
]ds.

Since (
∫ 1+λP

1 s−1[(ÃB1/2
1 δ/σ)

′
⊗W ′(s)S1/2

h̃h̃
]ds)vec[Sh̃h̃] = Γ6, we obtain the desired result.

For the third bracketed term in (13), similar arguments give us

j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T+j
B1,tB1,t−j =

σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T
(δ′B1/2

1 (t)/σ)B−1/2
1 (t)(−JB0(t)J ′ + B1(t))B

−1/2
1 ×

(B1/2
1 hT,1,t+τh′T,1,t−j+τB1/2

1 /σ2)B−1/2
1 (−JB0(t− j)J ′ + B0(t− j))B−1/2

1 (t− j)(B1/2
1 (t− j)δ/σ)

= σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T
(δ′B1/2

1 /σ)B−1/2
1 (−JB0J

′ + B1)B
−1/2
1 ×

(B1/2
1 EhT,1,t+τh′T,1,t−j+τB1/2

1 /σ2)B−1/2
1 (−JB0J

′ + B1)B
−1/2
1 (B1/2

1 δ/σ) + op(1)

= σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T
(δ′B1/2

1 Ã′/σ)(Eh̃T,1,t+τ h̃′T,1,t−j+τ )(ÃB1/2
1 δ/σ) + op(1)

= σ4((P/T )[(δ′B1/2
1 Ã′/σ)⊗ (δ′B1/2

1 Ã′/σ)])vec[
j̄∑

j=−j̄

K(j/M)(Eh̃T,1,t+τ h̃′T,1,t−j+τ )] + op(1).

Given Assumptions 3 and 4,
∑j̄

j=−j̄ K(j/M)(Eh̃T,1,t+τ h̃′T,1,t−j+τ ) → Sh̃h̃. Since Assumption

5 implies P/T → λP and (λP [(δ′B1/2
1 Ã′/σ)⊗ (δ′B1/2

1 Ã′/σ)])vec[Sh̃h̃] = Γ7, we obtain the desired

result.

There are twelve remaining terms in (13) that are cross products of A1,t, A2,t, Bt, Ct, and

Dt with A1,t−j , A2,t−j , Bt−j , Ct−j , and Dt−j for each j. That each are op(1) follow comparable

arguments. For brevity we show this for the term comprised of A1,t and A2,t−j . For this term we

have

|
j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T
A1,tA2,t−j | =

|
j̄∑

j=−j̄

K(j/M)T−3/2
∑T+P−τ

t=T
(T 1/2H ′

T,1(t))(−JB0(t)J ′ + B1(t))×

(hT,1,t+τvec[−JB0(t)xT,0,tx
′
T,0,tB0(t)J ′ + B1(t)xT,1,tx

′
T,1,tB1(t)]

′(T 1/2HT,1(t− j)⊗ T 1/2HT,1(t− j))|

≤ 2j̄k4T−1/2(T−1
∑T+P−τ

t=T
|hT,1,t+τvec[−JB0(t)xT,0,tx

′
T,0,tB0(t)J ′ + B1(t)xT,1,tx

′
T,1,tB1(t)]

′|)×

(supT≤t≤T+P−1|T
1/2HT,1(t)|)

3
(supT≤t≤T+P−1|− JB0(t)J ′ + B1(t)|).
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Assumptions 3 and 5, along with de Jong and Davidson (2000) suffice for supT≤t≤T+P−1|T 1/2HT,1(t)| = Op(1).
Assumption 3 along with Markov’s inequality imply both

T−1
∑T+P−1

t=T
|hT,1,t+τvec[−JB1(t)xT,0,tx

′
T,0,tB0(t)J ′ + B1(t)xT,1,tx

′
T,1,tB1(t)]

′| = Op(1)

and supT≤t≤T+P−1|− JB0(t)J ′ + B1(t)| =Op(1). Since j̄ and k are finite and T−1/2 = op(1), the

proof is complete.

(b) The proof is largely the same as for the recursive scheme. And as was the case for Theorem

2.1, the primary difference is that instead of HT,1(t) = (t−1
∑t−τ

s=1 hT,1,s+τ ) for the recursive scheme

we now have HT,1(t) = (T−1
∑t−τ

s=t−τ−T+1 hT,1,s+τ ) for the rolling scheme. Hence in each step of the

proof for the recursive scheme where the fact that T 1/2H̃T,1(t)⇒ s
−1

S1/2

h̃h̃
W (s) is used, we instead

use the fact that for the rolling scheme T 1/2H̃T,1(t)⇒ S1/2

h̃h̃
(W (s)−W (s− 1)). Other differences

are minor and omitted for brevity.

Lemma 1: Maintain Assumptions 2, 3′, 4, and 5 as well as either Assumption 1 or 1′. (a)

T 1/2J ′2β̃1,T = Op(1). (b) supT≤t≤T+P−τ |T 1/2(Ĥ∗
T,1(t)−H∗

T,1(t))| = op(1).

Proof of Lemma 1: (a) Let ζ̂ denote the Lagrange multiplier14 associated with the ridge

regression and define C12(T ) = J ′B−1
1 (T )J2 and C12 = limT→∞E(xT,0,tx′T,12,t).

(a-i) Maintain Assumption 1. The definition of the ridge estimator implies that for 1
1+ζ̂

=
√

d̂
(T 1/2β̂1,T )′J2F−1

1 (T )J′2(T
1/2β̂1,T )

, the ridge estimator takes the form

β̃1,T =

(
I ζ̂

1+ζ̂
B0(T )C12(T )

0 1
1+ζ̂

I

)
β̂1,T =

(
I ζ̂

1+ζ̂
B0(T )C12(T )

0 1
1+ζ̂

I

)
(β∗+T−1/2δ+B1(T )HT,1(T )).

Hence

T 1/2J ′2β̃1,T = J ′2

(
I ζ̂

1+ζ̂
B0(T )C12(T )

0 1
1+ζ̂

I

)
[δ + B1(T )(T 1/2HT,1(T ))]

→d J ′2

(
I ζ∗

1+ζ∗B0C12

0 1
1+ζ∗ I

)
N(δ, B1V B1)

where

ζ∗ =d (N(δ, B1V B1))
′J2F

−1
1 J ′2(N(δ, B1V B1)) a mixed non-central chi-square variate, and the

proof is complete.
(a-ii) Maintain Assumption 1′. The ridge estimator takes the form

β̃1,T =

(
I ζ̂

1+ζ̂
B0(T )C12(T )

0 1
1+ζ̂

I

)
β̂1,T =

(
I ζ̂

1+ζ̂
B0(T )C12(T )

0 1
1+ζ̂

I

)
(β∗1 + B1(T )HT,1(T )).

14This multiplier satisfies ( 1
1+ζ̂

)2 = d̂

(T1/2β̂1,T )′J2F−1
1 (T )J′2(T1/2β̂1,T )

and hence ζ̂ is unique only up to its’

sign. In all aspects of this paper we use the value satisfying 1
1+ζ̂

=

r
d̂

(T1/2β̂1,T )′J2F−1
1 (T )J′2(T1/2β̂1,T )

.

Choosing the opposite sign is irrelevant since, in every case, what matters is not the value of 1
1+ζ̂

but it’s
square.
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Hence
T 1/2J ′2β̃1,T =

√
d̂

β̂
′
1,T J2F−1

1 (T )J′2β̂1,T

J ′2[β
∗
1 + B1(T )HT,1(T )]

→p

√
d

β∗′12F−1
1 β∗12

β∗12

and the proof is complete.

(b) For ease of presentation, we show the result for the recursive scheme and assuming τ = 2

and hence v̂∗T,1,s+2 = ηs+2ε̂T,1,s+2+ θ̂ηs+1ε̂T,1,s+1 and v∗T,1,s+2 = ηs+2εT,1,s+2 + θηs+1εT,1,s+1. (a)

Rearranging terms gives us,

T 1/2(Ĥ∗
T,1(t)−H∗

T,1(t)) = T−1/2
∑t−τ

s=1
(v̂∗T,1,s+2 − vT,1,s+2)xT,1,s =

T−1/2
∑t−τ

s=1
(ηs+2(ε̂T,1,s+2 − εT,1,s+2) + θηs+1(ε̂T,1,s+1 − εT,1,s+1) +

(θ̂ − θ)ηs+1(ε̂T,1,s+1 − εT,1,s+1) + (θ̂ − θ)ηs+1εT,1,s+1)xT,1,s.

If we take a first order Taylor expansion of both ε̂T,1,s+2 and ε̂T,1,s+1, then for some γT in the

closed cube with opposing vertices γ̂T and γT we obtain

T 1/2(Ĥ∗
T,1(t)−H∗

T,1(t)) =

T−1/2
∑t−τ

s=1
(ηs+2∇ε̂T,1,s+2(γT )(γ̂T − γT ) + θηs+1∇ε̂T,1,s+1(γT )(γ̂T − γT )

+(θ̂ − θ)ηs+1∇ε̂T,1,s+1(γT )(γ̂T − γT ) + (θ̂ − θ)ηs+1εT,1,s+1)xT,1,s

and hence

sup
t

|T 1/2(Ĥ∗
T,1(t)−H∗

T,1(t))| ≤

2k1 sup
t

|T−1
∑t−τ

s=1
ηs+2∇ε̂T,1,s+2(γT )xT,1,s||T 1/2(γ̂T − γT )|

+θ2k1 sup
t

|T−1
∑t−τ

s=1
ηs+1∇ε̂T,1,s+1(γT )xT,1,s||T 1/2(γ̂T − γT )|

+(θ̂ − θ)2k1 sup
t

|T−1
∑t−τ

s=1
ηs+1∇ε̂T,1,s+1(γT )xT,1,s||T 1/2(γ̂T − γT )|

+(T 1/2(θ̂ − θ)) sup
t

|T−1
∑t−τ

s=1
ηs+1εT,1,s+1xT,1,s|.

Assumptions 1 or 1′, along with 3′ suffice for both T 1/2(γ̂T − γT ) and T 1/2(θ̂ − θ) to be

Op(1). In addition since, for large enough samples, Assumption 6 bounds the second moments

of ∇ε̂T,1,s+2(γT ) and ∇ε̂T,1,s+1(γT ) as well as xT,1,s, the fact that the ηs+τ are i.i.d. N(0, 1) then im-

plies T−1
∑T−τ

s=1 ηs+2∇ε̂T,1,s+2(γT )xT,1,s, T−1
∑T−τ

s=1 ηs+1∇ε̂T,1,s+1(γT )xT,1,s, and T−1
∑T−τ

s=1 ηs+1×
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εT,1,s+1xT,1,s are all oa.s.(1). This in turn, (along with Assumption 5) implies that supt|.| of each

of the partial sums is op(1) and the proof is complete.
Proof of Theorem 2.3: We provide details for the recursive scheme noting differences for the

rolling later. Straightforward algebra implies that
∑T+P−τ

t=T (û∗20,t+τ − û∗21,t+τ ) =
∑T+P−τ

t=T {2h′∗T,1,t+τ (−JB0(t)J ′ + B1(t))H∗
T,1(t)

−H ′∗
T,1(t)(−JB0(t)J ′xT,1,tx′T,1,tJB0(t)J ′ + B1(t)xT,1,tx′T,1,tB1(t))H∗

T,1(t)}
+T−1/2

∑T+P−τ
t=T {2h′∗T,1,t+τ (−JB0(t)J ′ + B1(t))B−1

1 (t)(T 1/2β̃1,T )}
+T−1

∑T+P−τ
t=T {(T 1/2β̃1,T )′B−1

1 (t)(−JB0(t)J ′ + B1(t))xT,1,tx′T,1,t(−JB0(t)J ′ + B1(t))B−1
1 (t)(T 1/2β̃1,T )}

+2
∑T+P−τ

t=T {h′∗T,1,t+τ (−JB0(t)J ′ + B1(t))(Ĥ∗
T,1(t)−H∗

T,1(t))
+(ĥ∗T,1,t+τ − h∗T,1,t+τ )′(−JB0(t)J ′ + B1(t))H∗

T,1(t)
−H ′∗

T,1(t)(−JB0(t)J ′xT,1,tx′T,1,tJB0(t)J ′ + B1(t)xT,1,tx′T,1,tB1(t))(Ĥ∗
T,1(t)−H∗

T,1(t))
+(ĥ∗T,1,t+τ − h∗T,1,t+τ )′(−JB0(t)J ′ + B1(t))(Ĥ∗

T,1(t)−H∗
T,1(t))

−(0.5)(Ĥ∗
T,1(t)−H∗

T,1(t))
′(−JB0(t)J ′xT,1,tx′T,1,tJB0(t)J ′ + B1(t)xT,1,tx′T,1,tB1(t))(Ĥ∗

T,1(t)−H∗
T,1(t))

−β̃
′
1,T B−1

1 (t)(−JB0(t)J ′ + B1(t))xT,1,tx′T,1,tJB0(t)J ′H∗
T,1(t)

+β̃
′
1,T B−1

1 (t)(−JB0(t)J ′ + B1(t))(ĥ∗T,1,t+τ − h∗T,1,t+τ )
−β̃

′
1,T B−1

1 (t)(−JB0(t)J ′ + B1(t))xT,1,tx′T,1,tJB0(t)J ′(Ĥ∗
T,1(t)−H∗

T,1(t))}
(17)

Note that there are 4 bracketed {.} terms in (14). The first three are directly analogous to the three

bracketed terms in (11) from the proof of Theorem 2.1. We will show that these three terms have

limits Γ∗i =d Γi, for Γi i = 1− 4 defined in the text. The additional assumption of either conditional

homoskedasticity or k1 = 1 are needed only in the proof for Γ∗3 =d Γ3. Finally, we then show that

the remaining fourth bracketed term is op(1).
Proof of bracket 1: The sole difference between this term and that in the proof of Theorem 2.1

is that they are defined in terms of h∗1,t+τ rather than h1,t+τ . Since these terms have the same first
and second moments, as well as the same mixing properties, the exact same proof is applicable and
hence we have

∑T+P−τ
t=T {2h′∗T,1,t+τ (−JB0(t)J ′ + B1(t))H∗

T,1(t)
−H ′∗

T,1(t)(−JB0(t)J ′xT,1,tx′T,1,tJB0(t)J ′ + B1(t)xT,1,tx′T,1,tB1(t))H∗
T,1(t)}→d 2Γ∗1 − Γ∗2

where Γ∗1 and Γ∗2 denote independent replicas of Γ1 and Γ2 respectively. Independence follows from

the fact that the ηt+τ are i.i.d. N(0, 1).
Proof of bracket 2: Rearranging terms gives us

T−1/22
∑T+P−τ

t=T h′∗T,1,t+τ (−JB0(t)J ′ + B1(t))B−1
1 (t)(T 1/2β̃1,T )

= T−1/22
∑T+P−τ

t=T h′∗T,1,t+τB1(t)J2F
−1
1 (t)(T 1/2J ′2β̃1,T )

.

From Lemma 1 we know T 1/2J ′2β̃1,T = Op(1). Algebra along the lines of Clark and McCracken
(2005) then gives us

T−1/22
∑T+P−τ

t=T
h′∗T,1,t+τB1(t)J2F

−1
1 (t)(T 1/2J ′2β̃1,T ) = T−1/22

∑T+P−τ

t=T
h′∗T,1,t+τB1J2F

−1
1 (T 1/2J ′2β̃1,T )+op(1).

This term is a bit different from that for the second bracketed term in Theorem 2.1. There, the

second bracketed term takes the form T−1/22
∑T+P−τ

t=T h′T,1,t+τB1J2F
−1
1 β∗12+op(1). What makes
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them different here is that since T 1/2J ′2β̃1,T is not consistent for β∗12, it is not the case that

T−1/22
∑T+P−τ

t=T h′∗T,1,t+τB1J2F
−1
1 (T 1/2J ′2β̃1,T ) equals T−1/22

∑T+P−τ
t=T h′∗T,1,t+τB1J2F

−1
1 β∗12+op(1).

However, it is true that both terms are asymptotically normal. For the former, clearly

T−1/22
∑T+P−τ

t=T
h′T,1,t+τB1J2F

−1
1 β∗12 →d Γ2 ∼ N(0, 4Ω)

where Ω = λP β∗
′

12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12. But for the latter, due to the i.i.d. N(0, 1) (and strictly

exogenous) nature of the ηt+τ , we have

T−1/22
∑T+P−τ

t=T
h′∗T,1,t+τB1J2F

−1
1 J ′2(T

1/2β̃1,T )→d Γ∗3 ∼ N(0, 4W )

where

W = limV ar{T−1/2
∑T+P−τ

t=T h′∗T,1,t+τB1J2F
−1
1 J ′2(T 1/2β̃1,T )}

= λP lim E{(T 1/2β̃1,T )′J2F
−1
1 J ′2B1{lim V ar(P−1/2

∑T+P−τ
t=T h′∗T,1,t+τ )}B1J2F

−1
1 J ′2(T 1/2β̃1,T )}

= λP lim E{(T 1/2β̃1,T )′J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2(T 1/2β̃1,T )}

.

The precise relationship between Γ∗3 and Γ3 depends on the relationship between Ω and W . This in

turn depends upon the additional restrictions in the statement of the Theorem.
(a) If we let V = σ2B−1

1 , W simplifies to

W = σ2λP lim E{(T 1/2β̃1,T )′J2F
−1
1 J ′2(T 1/2β̃1,T )}

= σ2λP lim E{(T 1/2β̃1,T )′J2F
−1
1 (T )J ′2(T 1/2β̃1,T )}

= σ2λP lim E{d̂} = σ2λP d

.

The result follows since under the null hypothesis, Ω = λP β∗
′

12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12 = σ2λP β∗

′

12F
−1
1 β∗12 =

σ2λP d.
(b) If we let dim(β∗12) = 1, W simplifies to

W = λP lim E{(T 1/2β̃1,T )′J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2(T 1/2β̃1,T )}

= λP lim E{(T 1/2β̂12,T )2(F−1
1 )2J ′2B1V B1J2}

.

But β̂12,T was estimated satisfying the restriction that (T 1/2β̂12,T )2 = F1(T )d̂ and hence W =

λP lim E{F1(T )d̂(F−1
1 )2J ′2B1V B1J2} = λP F−1

1 dJ ′2B1V B1J2. Following similar arguments, we also

have Ω = λP (β∗12)2(F
−1
1 )2J ′2B1V B1J2. But under the null, (β∗12)2 = dF1 and the proof is complete.

Proof of bracket 3: Rearranging terms gives us

T−1
∑T+P−τ

t=T (T 1/2β̃1,T )′B−1
1 (t)(−JB0(t)J ′ + B1(t))xT,1,tx′T,1,t(−JB0(t)J ′ + B1(t))B−1

1 (t)(T 1/2β̃1,T )
= T−1

∑T+P−τ
t=T (T 1/2β̃1,T )′J2F

−1
1 (t)J ′2B1(t)xT,1,tx′T,1,tB1(t)J2F

−1
1 (t)J ′2(T 1/2β̃1,T )

.

From Lemma 1 we know T 1/2J ′2β̃1,T = Op(1). From there, algebra long the lines of Clark and
McCracken (2005) gives us

T−1
∑T+P−τ

t=T (T 1/2β̃1,T )′J2F
−1
1 (t)J ′2B1(t)xT,1,tx′T,1,tB1(t)J2F

−1
1 (t)J ′2(T 1/2β̃1,T )

= T−1
∑T+P−τ

t=T (T 1/2β̃1,T )′J2F
−1
1 (t)J ′2B1(t)B−1

1 B1(t)J2F
−1
1 (t)J ′2(T 1/2β̃1,T ) + op(1)

= T−1
∑T+P−τ

t=T (T 1/2β̃1,T )′J2F
−1
1 J ′2(T 1/2β̃1,T ) + op(1)

= (P − τ + 1/T )d̂ + op(1)→p λP d ≡ Γ∗4

.

37



The result follows since under the null hypothesis, Γ4 ≡ β∗
′

12F
−1
1 β∗12 = λP d.

Proof of bracket 4: We must show that each of the eight components of the fourth bracketed
term in (14) are op(1). The proofs of each are similar and as such we show the results only for the
fourth and seventh components. If we take absolute value of the former we find that

|
∑T+P−τ

t=T (ĥ∗T,1,t+τ − h∗T,1,t+τ )′(−JB0(t)J ′ + B1(t))(Ĥ∗
T,1(t)−H∗

T,1(t))|
≤ k2

1(T−1/2
∑T+P−τ

t=T |ĥ∗T,1,t+τ − h∗T,1,t+τ |)(supt |− JB0(t)J ′ + B1(t)|)(supt T 1/2|Ĥ∗
T,1(t)−H∗

T,1(t)|)

while straightforward algebra along the lines of Clark and McCracken (2005) gives us

∑T+P−τ
t=T β̃

′
1,T B−1

1 (t)(−JB0(t)J ′ + B1(t))(ĥ∗T,1,t+τ − h∗T,1,t+τ )
= (T 1/2J ′2β̃1,T )′F−1

1 J ′2B1(T−1/2
∑T+P−τ

t=T (ĥ∗T,1,t+τ − h∗T,1,t+τ )) + op(1).

Lemma 1 implies both supt T 1/2|Ĥ∗
T,1(t) − H∗

T,1(t)| = op(1) and T 1/2J ′2β̃1,T = Op(1) while

Assumption 3′ suffices for supt | − JB0(t)J ′ + B1(t)| = Op(1). That T−1/2
∑T+P−τ

t=T (ĥ∗T,1,t+τ −

h∗T,1,t+τ ) = op(1) follows an almost identical line of proof to that in Lemma 1b (without the supt |.|

component) but with a different range of summation.

The result will follow if T−1/2
∑T+P−τ

t=T |ĥ∗T,1,t+τ − h∗T,1,t+τ | = op(1). For simplicity we assume,

as in the proof of Lemma 1, that τ = 2 and hence the forecast errors form an MA(1). If we then

take a Taylor expansion in precisely the same fashion as in the proof of Lemma 1 we have

T−1/2
∑T+P−τ

t=T
|ĥ∗T,1,t+τ − h∗T,1,t+τ | ≤

2k1T
−1

∑T+P−τ

t=T
|ηt+2∇ε̂T,1,t+2(γT )xT,1,t||T 1/2(γ̂T − γT )|

+θ2k1T
−1

∑T+P−τ

t=T
|ηs+1∇ε̂T,1,t+1(γT )xT,1,t||T 1/2(γ̂T − γT )|

+(θ̂ − θ)2k1T
−1

∑T+P−τ

t=T
|ηt+1∇ε̂T,1,t+1(γT )xT,1,t||T 1/2(γ̂T − γT )|

+(T 1/2(θ̂ − θ))T−1
∑T+P−τ

t=T
|ηt+1εT,1,t+1xT,1,t|.

Assumptions 1 or 1′ and 3′ suffice for both T 1/2(γ̂T − γT ) and T 1/2(θ̂ − θ) to be Op(1).

Since, for large enough samples, Assumption 3′ bounds the second moments of ∇ε̂T,1,s+2(γT ) and

∇ε̂T,1,s+1(γT ) as well as xT,1,s; with ηs+τ distributed i.i.d.N(0, 1), T−1
∑T−τ

s=1 |ηs+2∇ε̂T,1,s+2(γT )xT,1,s|,

T−1
∑T−τ

s=1 |ηs+1∇ε̂T,1,s+1(γT )xT,1,s|, and T−1
∑T−τ

s=1 |ηs+1εT,1,s+1xT,1,s| are all Op(1), and the proof

is complete.

Proof for the rolling scheme: Results for the rolling scheme differ only in the definition of H∗
T,1(t) =

T−1
∑t

s=t−T+1 h∗T,1,s+τ (and to a lesser extent Ĥ∗
T,1(t) = T−1

∑t
s=t−T+1 ĥ∗T,1,s+τ ). In particular, if

we substitute T 1/2H∗
T,1(t) ⇒ V 1/2(W ∗(s) −W ∗(s − 1)) for T 1/2H∗

T,1(t) ⇒ V 1/2s−1W ∗(s) as used

above and in the proof of Theorem 2.1, we obtain the desired conclusion.
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Proof of Theorem 2.4: Given Theorem 2.3 and the Continuous Mapping Theorem it suffices
to show that P

∑j
j=−j

K(j/M)γ̂∗dd(j)→d 4σ4
u(Γ∗5 +Γ∗6 +Γ∗7) where Γ∗i =d Γi for Γi i = 5−7 defined

in the text. Before doing so it is convenient to redefine the four bracketed terms terms from (14)
used in the main decomposition of the loss differential in Theorem 2.3 (absent the summations, but
keeping the brackets) as

(û∗20,t+τ − û∗21,t+τ ) = {2A∗1,t −A∗2,t} + 2{B∗1,t} + {C∗t } + {D∗
t }.

With this in mind, if we ignore the finite sample difference between P and P − τ + 1, we obtain

P
∑j

j=−j
K(j/M)γ̂∗dd(j) =

∑j
j=−j

K(j/M)
∑T+P−τ

t=T+j (û∗20,t+τ − û∗21,t+τ )(û∗20,t−j+τ − û∗21,t−j+τ )

= 4{
∑j

j=−j
K(j/M)

∑T+P−τ
t=T+j A∗1,tA

∗
1,t−j} + 4{

∑j
j=−j

K(j/M)
∑T+P−τ

t=T+j A∗1,tB
∗
1,t−j}

+4{
∑j

j=−j
K(j/M)

∑T+P−τ
t=T+j B∗1,tB

∗
1,t−j}

+ other cross products of A∗1,t, A
∗
2,t, B

∗
1,t, C

∗
t , D∗

t with A∗1,t−j , A
∗
2,t−j , B

∗
1,t−j , C

∗
t−j , D

∗
t−j

.

In the remainder we show that each of the three bracketed terms converges to σ4 times Γ∗i =d Γi

i = 5− 7 respectively and that each of the cross product terms are each op(1).
Proof of bracket 1: As was the case in the proof of Theorem 2.3, the sole difference between this

term and that in the proof of Theorem 2.2 is that they are defined in terms of h∗T,1,t+τ rather than
hT,1,t+τ . Since these terms have the same first and second moments, as well as the same mixing
properties, the exact same proof is applicable and hence we have
∑j

j=−j
K(j/M)

∑T+P−τ
t=T+j A∗1,tA

∗
1,t−j =

σ4
∑j

j=−j
K(j/M)

∑T+P−τ
t=T+j (T 1/2H ′∗

T,1(t)B
1/2
1 /σ2)B−1/2

1 (−JB0(t)J ′ + B1(t))×
B−1/2

1 (B1/2
1 h∗T,1,t+τh′∗T,1,t−j+τB1/2

1 /σ2)B−1/2
1 (−JB0(t− j)J ′ + B1(t− j))B−1/2

1 (T 1/2B1/2
1 H∗

T,1(t− j)/σ2)
→d σ4Γ∗5

where Γ∗5 denotes an independent replica of Γ5. Independence follows from the fact that the ηt+τ

are i.i.d. N(0, 1).
Proof of bracket 2: After rearranging terms, the second bracketed term is

∑j

j=−j
K(j/M)

∑T+P−τ
t=T+j A∗1,tB

∗
1,t−j

=
∑j

j=−j
K(j/M)T−1

∑T+P−τ
t=T+j (T 1/2H∗

T,1(t))
′
(−JB0(t)J ′ + B1(t))×

h∗T,1,t+τh′∗T,1,t−j+τ (−JB0(t− j)J ′ + B1(t− j))B−1
1 (t− j)(T 1/2β̃1,T )

=
∑j

j=−j
K(j/M)T−1

∑T+P−τ
t=T+j (T 1/2H∗

T,1(t))
′
(−JB0(t)J ′ + B1(t))×

h∗T,1,t+τh′∗T,1,t−j+τB1(t− j)J2F
−1
11 (t− j)J ′2(T 1/2β̃1,T )

.

This term is a bit different from that for the second bracketed term in Theorem 2.2. As in the proof
of Theorem 2.3, it differs because J ′2(T 1/2β̃1,T ) is not consistent for β∗12. However, it is true that
both terms are asymptotically normal. To see this note that

∑j
j=−j

K(j/M)T−1
∑T+P−τ

t=T+j (T 1/2H∗
T,1(t))

′
(−JB0(t)J ′ + B1(t))×

h∗T,1,t+τh′∗T,1,t−j+τB1(t− j)J2F
−1
1 (t− j)J ′2(T 1/2β̃1,T )

=
∑j

j=−j
K(j/M)T−1

∑T+P−τ
t=T+j (T 1/2H∗

T,1(t))
′
(−JB0J ′ + B1)×

(Eh∗T,1,t+τh′∗T,1,t−j+τ )B1J2F
−1
1 J ′2(T 1/2β̃1,T ) + op(1)

= T−1
∑T+P−τ

t=T+j (T 1/2H∗
T,1(t))

′
(−JB0J ′ + B1)V B1J2F

−1
1 J ′2(T 1/2β̃1,T ) + op(1)

→d σ4Γ∗6 ∼ N(0, W )

where W = ln(1+λP )σ−8 lim E{(T 1/2β̃1,T )′J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2(T 1/2β̃1,T )}.

The asymptotic normality follows from the fact that H∗
T,1(t) is independent of T 1/2β̃1,T and moreover
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that T−1
∑T+P−τ

t=T+j (T 1/2H∗
T,1(t))→d

∫ 1+λP

1 s−1V 1/2W ∗(s)ds ∼ N(0, ln(1 + λP )V ). As in the proof

of Theorem 2.3, the exact relationship between Γ∗6 and Γ6 depends upon the additional assumptions

stated in the Theorem.
(a) If we let V = σ2B−1

1 , W simplifies to

W = σ6 ln(1 + λP ) limE{(T 1/2β̃1,T )′J2F
−1
1 J ′2(T 1/2β̃1,T )}

= σ6 ln(1 + λP ) limE{(T 1/2β̃1,T )′J2F
−1
1 (T )J ′2(T 1/2β̃1,T )}

= σ6 ln(1 + λP ) limE(d̂) = σ6 ln(1 + λP )d
.

But from Theorem 2.2, the definition of Γ6 gives us

σ4Γ6 = (
∫ 1+λP

1
s−1W (s)ds)′V 1/2B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2δ ∼ N(0,Ω)

where
Ω = ln(1 + λP )δ′J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2δ.

Assuming conditional homoskedasticity this simplifies to Ω = σ6 ln(1 + λP )β∗
′

12F
−1
1 β∗12. The result

then follows since under the null, β∗
′

12F
−1
1 β∗12 = d.

(b) If β∗12 is scalar we find that

W = ln(1 + λP ) limE{(T 1/2β̃12,T )2(F−1
1 )2J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2}

= ln(1 + λP ) limE{d̂F1(T )(F−1
11 )4(J ′2B1V B1J2)3}

= ln(1 + λP )d(F−1
1 )3(J ′2B1V B1J2)3

.

But from Theorem 2.2, the definition of Γ6 gives us

σ4
uΓ6 = (

∫ 1+λP

1
s−1W ′(s)V 1/2

ds)B1J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2δ ∼ N(0,Ω)

where
Ω = ln(1 + λP )(β∗12)

2(F−1
1 )4(J ′2B1V B1J2)3.

The result then follows since under the null, (β∗12)2F
−1
1 = d.

Proof of bracket 3: After rearranging terms, the third bracketed term is

∑j

j=−j
K(j/M)

∑T+P−τ
t=T+j B∗1,tB

∗
1,t−j =

∑j

j=−j
K(j/M)T−1

∑T+P−τ
t=T+j (T 1/2β̃1,T )

′
B−1

1 (t)(−JB0(t)J ′ + B1(t))×
h∗T,1,t+τh′∗T,1,t−j+τ (−JB0(t− j)J ′ + B1(t− j))B−1

1 (t− j)(T 1/2β̃1,T )
=

∑j
j=−j

K(j/M)T−1
∑T+P−τ

t=T+j (T 1/2β̃1,T )J2F
−1
1 (t)J ′2B1(t)h∗1,t+τh′∗1,t−j+τB1(t− j)J2F

−1
1 (t− j)J ′2(T 1/2β̃1,T )

.

This term is also different from that for the third bracketed term in Theorem 2.2. As in the proof of
Lemma 2, it differs because T 1/2J ′2β̃1,T is not consistent for β∗12. Even so, since T 1/2J ′2β̃1,T = Op(1),
the above term is also Op(1). To see this, algebra along the lines of Clark and McCracken (2005)
gives us

∑j
j=−j

K(j/M)T−1
∑T+P−τ

t=T+j (T 1/2β̃1,T )
′
J2F

−1
1 (t)J ′2B1(t)h∗T,1,t+τh′∗T,1,t−j+τB1(t− j)J2F

−1
1 (t− j)J ′2(T 1/2β̃1,T )

=
∑j

j=−j
K(j/M)T−1

∑T+P−τ
t=T+j (T 1/2β̃1,T )

′
J2F

−1
1 (t)J ′2B1(t)(Eh∗T,1,t+τh′∗T,1,t−j+τ )B1(t)J2F

−1
1 (t)J ′2(T 1/2β̃1,T ) + op(1)

=
∑j

j=−j
K(j/M)T−1

∑T+P−τ
t=T+j (T 1/2β̃1,T )

′
J2F

−1
1 J ′2B1(Eh∗T,1,t+τh′∗T,1,t−j+τ )B1J2F

−1
1 J ′2(T 1/2β̃1,T ) + op(1)

= T−1
∑T+P−τ

t=T+j (T 1/2β̃1,T )
′
J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2(T 1/2β̃1,T ) + op(1)

= σ4Γ∗7 ≡ lim λP (T 1/2β̃1,T )
′
J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2(T 1/2β̃1,T )
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As in the proof for bracket 2 above, the exact relationship between Γ∗7 and Γ7 depends upon the

additional assumptions stated in the the Theorem.
(a) If we let V = σ2B−1

2 , we immediately see that

Γ∗7 ≡ λP σ−4 lim{(T 1/2β̃1,T )′J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2(T 1/2β̃1,T )}

= λP σ−2 lim{(T 1/2β̃1,T )J2F
−1
1 J ′2(T 1/2β̃1,T )} = λP σ−2 lim d̂ = σ−2λP d

.

But under the null, and with the additional assumption of conditional homoskedasticity, from The-
orem 2.2 we know that

Γ7 ≡ σ−4λP β∗
′

12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12 = σ−2λP β∗

′

12F
−1
1 β∗12 = σ−2λP d = Γ∗7

and the proof is complete.
(b) If we let β∗12 be scalar we find that

σ4Γ∗7 ≡ lim λP (T 1/2β̃1,T )′J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2(T 1/2β̃1,T )

= λP lim(T 1/2β̃12,T )2(F−1
1 )2J ′2B1V B1J2

= λP lim d̂F−1
1 (T )(F−1

1 )2J ′2B1V B1J2

= λP dF−1
1 J ′2B1V B1J2 + op(1)

.

But under the null, and with the additional assumption of that β∗12 is scalar, from Theorem 2.2 we
know that

σ4Γ7 ≡ λP β∗
′

12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12 = λP (β∗12)2(F

−1
1 )2J ′2B1V B1J2

= λP dF−1
1 J ′2B1V B1J2 = σ4Γ∗7

and the proof is complete.

Proof of bracket 4: We must show each of the remaining cross-products of A∗1,t, A∗2,t, B∗t , C∗t ,

and D∗
t with A∗1,t−j , A∗2,t−j , B∗t−j , C∗t−j , and D∗

t−j are op(1). The proof is nearly identical to that

for the fourth bracketed term from the proof of Theorem 2.2. The primary difference is that the

relevant moment conditions are all defined in terms of h∗T,1,t+τ rather than hT,1,t+τ . But since these

terms have the same first and second moments, as well as the same mixing properties, nearly the

same proof is applicable and hence for brevity we do not repeat the details.

Proof for the rolling scheme: Results for the rolling scheme differ only in the definition of H∗
T,1(t) =

T−1
∑t

s=t−T+1 h∗T,1,s+τ (and to a lesser extent Ĥ∗
T,1(t) = T−1

∑t
s=t−T+1 ĥ∗T,1,s+τ ). In particular, if

we substitute T 1/2H∗
T,1(t) ⇒ V 1/2(W ∗(s) −W ∗(s − 1)) for T 1/2H∗

T,1(t) ⇒ V 1/2s−1W ∗(s) as used

above, we obtain the desired conclusion.

Proof of Theorem 2.5: Regardless of whether the recursive or rolling scheme is used, the proof

follows very similar arguments to those used in Theorems 2.3 and 2.4. Any differences that arise

come from differences in the asymptotic behavior of T 1/2J ′2β̃1,T under Assumption 1′ as compared

to Assumption 1. Therefore, since the decomposition at the beginning of the proof of Theorem 2.3 is

unaffected by whether Assumption 1 or 1′ holds, and the first bracketed term does not depend upon

the value of either β∗12 or T 1/2J ′2β̃1,T the same proof can be applied to show 2Γ∗1 − Γ∗2 =d 2Γ1 − Γ2
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and Γ∗5 =d Γ5 under Assumption 1′. For the third bracketed term, the asymptotic behavior of

T 1/2J ′2β̃1,T is also irrelevant – all that matters is that the ridge constraint is still imposed whether

working under Assumption 1 or 1′.

Differences arise for the second, and fourth bracketed terms. For the fourth bracketed term,

the differences remain minor since we need only show that the relevant components are all op(1)

and the corresponding proofs only make use of the fact that, under Assumption 1, Lemma 1 implies

T 1/2J ′2β̃1,T = Op(1). These arguments continue to hold since under Assumption 1′, T 1/2J ′2β̃1,T

remains Op(1) – despite also having the property that T 1/2J ′2β̃1,T →p
√

d
β∗

′
12F−1

1 β∗12
β∗12.

We therefore focus attention on showing that Γ∗i =d Γi for i = 3, 6, 7. In each case, the different

asymptotic behavior of T 1/2J ′2β̃1,T under Assumption 1′ does impact the proofs directly. And as

we saw earlier, in each case the proof also requires additional assumptions as noted in the statement

of the theorem.
Proof that Γ∗3 =d Γ3: As in the proof for Theorem 2.3, the second bracketed term satisfies

T−1/22
∑T+P−τ

t=T
h′∗T,1,t+τB1(t)J2F

−1
1 (t)J ′2(T

1/2β̃1,T ) = T−1/22
∑T+P−τ

t=T
h′∗T,1,t+τB1J2F

−1
1 J ′2(T

1/2β̃1,T )+op(1).

What makes this different under Assumption 1′ is that since T 1/2J ′2β̃1,T →p
√

d
β∗

′
12F−1

1 β∗12
β∗12 we also

have

T−1/22
∑T+P−τ

t=T
h′∗T,1,t+τB1(t)J2F

−1
1 (t)J ′2(T

1/2β̃1,T )

= T−1/22

√
d

β∗
′

12F
−1
1 β∗12

∑T+P−τ

t=T
h′∗T,1,t+τB1J2F

−1
1 β∗12 + op(1)

→ dN(0, 4W )

where
W = ( d

β∗
′

12F−1
1 β∗12

)λP β∗
′

12F
−1
1 J

′
2B1V B1J2F

−1
1 β∗12 .

Since Γ3˜N(0, 4Ω),Ω = λP β∗
′

12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12, the precise relationship between Γ∗3 and Γ3

depends on the relationship between Ω and W . This in turn depends upon the additional restrictions

in the statement of the Theorem.
(a) If we let V = σ2B−1

1 , W simplifies to

W = σ2(
d

β∗
′

12F
−1
1 β∗12

)λP β∗
′

12F
−1
1 β∗12 = σ2λP d.

The result follows since under the null hypothesis, Ω = λP β∗
′

12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12 = σ2λP β∗

′

12F
−1
1 β∗12 =

σ2λP d.
(b) If we let dim(β∗12) = 1 and note that in this case J ′2B1V B1J2 = F1 · tr((−JB0J ′ + B1)V ),

W simplifies to
W = dλP tr((−JB0J

′ + B1)V ).
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The result follows since under the null hypothesis, Ω = dλP tr((−JB0J ′ + B1)V ) and the proof

is complete.
Proof that Γ∗6 =d Γ6: As in the proof for Theorem 2.4, the second bracketed term satisfies

∑j

j=−j
K(j/M)

∑T+P−τ
t=T+j A∗1,tB

∗
1,t−j

=
∑j

j=−j
K(j/M)T−1

∑T+P−τ
t=T+j (T 1/2H∗

T,1(t))
′
(−JB0(t)J ′ + B1(t))×

h∗T,1,t+τh′∗T,1,t−j+τ (−JB0(t− j)J ′ + B1(t− j))B−1
1 (t− j)(T 1/2β̃1,T )

= T−1
∑T+P−τ

t=T+j (T 1/2H∗
T,1(t))

′
B1J2F

−1
1 J ′2B1V B1J2F

−1
1 (T 1/2J ′2β̃1,T ) + op(1)

.

What makes this different under Assumption 1′ is that since T 1/2J ′2β̃1,T →p
√

d
β∗

′
12F−1

1 β∗12
β∗12 we also

have

T−1
∑T+P−τ

t=T+j (T 1/2H∗
T,1(t))

′
B1J2F

−1
1 J ′2B1V B1J2F

−1
1 (T 1/2J ′2β̃1,T )

= (
√

d
β∗

′
12F−1

1 β∗12
)T−1

∑T+P−τ
t=T+j (T 1/2H∗

T,1(t))
′
B1J2F

−1
1 J ′2B1V B1J2F

−1
1 β∗12 + op(1)

→d N(0, W )

where W = ln(1 + λP )( d
β∗

′
12F−1

1 β∗12
){β∗′12F−1

1 J ′2B1V B1J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 β∗12}.

The asymptotic normality follows from the fact that T−1
∑T+P−τ

t=T+j (T 1/2H∗
T,1(t))→d

∫ 1+λP

1 s−1V 1/2W ∗(s)ds ∼

N(0, ln(1+λP )V ). Since Γ6˜N(0,Ω),Ω = ln(1+λP )δ′J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2δ,

the precise relationship between Γ∗6 and Γ6 depends on the relationship between Ω and W . This in

turn depends upon the additional restrictions in the statement of the Theorem.
(a) If we let V = σ2B−1

1 , W simplifies to

W = σ6 ln(1 + λP )d .

The result follows since under the null hypothesis,

Ω = ln(1 + λP )δ′J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2δ

= σ6 ln(1 + λP )β∗
′

12F
−1
1 β∗12 = σ6 ln(1 + λP )d.

.

(b) If we let dim(β∗12) = 1 and note that in this case J ′2B1V B1J2 = F1 · tr((−JB0J ′ + B1)V ),
W simplifies to

W = ln(1 + λP )d · tr((−JB0J ′ + B1)V )3 .

The result follows since under the null hypothesis, Ω = ln(1 + λP )d · tr((−JB0J ′ + B1)V )3 and the

proof is complete.
Proof that Γ∗7 =d Γ7: As in the proof for Theorem 2.4, the third bracketed term satisfies

∑j
j=−j

K(j/M)
∑T+P−τ

t=T+j B∗1,tB
∗
1,t−j =

∑j
j=−j

K(j/M)T−1
∑T+P−τ

t=T+j (T 1/2β̃1,T )
′
B−1

1 (t)(−JB0(t)J ′ + B1(t))×
h∗T,1,t+τh′∗T,1,t−j+τ (−JB0(t− j)J ′ + B1(t− j))B−1

1 (t− j)(T 1/2β̃1,T )
= T−1

∑T+P−τ
t=T+j (T 1/2β̃1,T )

′
J2F

−1
1 J ′2B1V B1J2F

−1
1 (T 1/2J ′2β̃1,T ) + op(1)

.

What makes this different under Assumption 1′ is that since T 1/2J ′2β̃1,T →p
√

d
β∗

′
12F−1

1 β∗12
β∗12 we also

have
T−1

∑T+P−τ
t=T+j (T 1/2β̃1,T )

′
J2F

−1
1 J ′2B1V B1J2F

−1
1 (T 1/2J ′2β̃1,T )

= λP ( d
β∗

′
12F−1

1 β∗12
)β∗′12F

−1
1 J ′2B1V B1J2F

−1
1 β∗12 ≡ Γ∗7

.
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In contrast, the associated term from Theorem 2.2 takes the value Γ7 = λP β∗′12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12.

The exact relationship between these two terms depends upon the additional assumptions stated in

the Theorem.

(a) If we let V = σ2B−1
1 , Γ∗7 simplifies to λP σ2d. The result follows since under the null

hypothesis,Γ7 = λP β∗′12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12 = λP σ2d and the proof is complete.

(b) If we let dim(β∗12) = 1 and note that in this case J ′2B1V B1J2 = F1 · tr((−JB0J ′ + B1)V ),

Γ∗7 simplifies to λP dtr((−JB0J ′ + B1)V ). The result follows since under the null hypothesis,

Γ7 = λP β∗′12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12 = λP dtr((−JB0J ′ + B1)V ) and the proof is complete.
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Figure 1:  Densities of MSE(null model)/MSE(alt. model), R = 80, P = 80
DGP 2 experiments
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Table 1: Monte Carlo Rejection Rates, Null Model Best
(nominal size = 10%)

DGP 1, 1-step forecasts
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F non-parametric .011 .005 .034 .021 .012 .041 .030
MSE-F no-predict. fixed regr. .107 .102 .106 .105 .109 .106 .109
MSE-F fixed regressor .018 .011 .027 .020 .017 .030 .028
MSE-t non-parametric .013 .006 .040 .023 .015 .046 .032
MSE-t no-predict. fixed regr. .102 .097 .095 .100 .101 .097 .102
MSE-t fixed regressor .020 .011 .036 .028 .021 .045 .036
MSE-t normal .013 .005 .034 .021 .012 .046 .031
MSE-t, 2-sided normal .146 .158 .132 .136 .139 .123 .130
CW-t no-predict. fixed regr. .103 .094 .088 .092 .100 .093 .098
CW-t normal .066 .059 .074 .067 .064 .078 .072

DGP 2, 1-step forecasts
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F non-parametric .002 .002 .024 .009 .006 .031 .014
MSE-F no-predict. fixed regr. .099 .096 .116 .105 .107 .112 .108
MSE-F fixed regressor .005 .004 .014 .007 .006 .017 .012
MSE-t non-parametric .005 .003 .027 .011 .007 .034 .016
MSE-t no-predict. fixed regr. .100 .105 .112 .103 .106 .106 .107
MSE-t fixed regressor .007 .005 .025 .013 .011 .033 .019
MSE-t normal .004 .002 .025 .009 .006 .031 .016
MSE-t, 2-sided normal .273 .322 .168 .204 .243 .151 .178
CW-t no-predict. fixed regr. .094 .099 .097 .093 .102 .097 .097
CW-t normal .078 .079 .090 .080 .084 .094 .085

DGP 3, 4-step forecasts
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F non-parametric .030 .015 .077 .039 .023 .098 .048
MSE-F no-predict. fixed regr. .114 .098 .111 .110 .100 .106 .105
MSE-F fixed regressor .035 .020 .041 .032 .030 .045 .033
MSE-t non-parametric .030 .016 .073 .040 .024 .089 .045
MSE-t no-predict. fixed regr. .104 .096 .105 .105 .096 .105 .098
MSE-t fixed regressor .042 .025 .060 .044 .031 .066 .044
MSE-t normal .030 .014 .086 .042 .025 .095 .047
MSE-t, 2-sided normal .191 .186 .207 .187 .173 .207 .171
CW-t no-predict. fixed regr. .102 .086 .100 .102 .095 .104 .096
CW-t normal .107 .078 .140 .109 .090 .147 .105

Notes:
1. The data generating processes are defined in equations (5), (8), and (11). In these experiments, the coefficients bij = 0
for all i, j, such that the null forecasting model is expected to be most accurate.
2. For each artificial data set, forecasts of yt+τ (where τ denotes the forecast horizon) are formed recursively using estimates
of equations (6) and (7) in the case of the DGP 1 experiments, equations (9) and (10) in the case of the DGP 2 experiments,and
equations (12) and (13) in the case of the DGP 3 experiments. These forecasts are then used to form the indicated test
statistics, defined in Section 2.2. T and P refer to the number of in–sample observations and 1-step ahead forecasts,
respectively.
3. In each Monte Carlo replication, the simulated test statistics are compared against bootstrapped critical values, using a
significance level of 10%. Section 3 describes the bootstrap procedures.
4. The number of Monte Carlo simulations is 5000; the number of bootstrap draws is 499.
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Table 2: Monte Carlo Rejection Rates, Equally Accurate Models
(nominal size = 10%)

DGP 1, 1-step forecasts
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F non-parametric .054 .048 .080 .062 .057 .083 .070
MSE-F no-predict. fixed regr. .312 .340 .233 .263 .283 .233 .253
MSE-F fixed regressor .101 .096 .101 .102 .096 .099 .103
MSE-t non-parametric .065 .055 .094 .074 .064 .097 .079
MSE-t no-predict. fixed regr. .292 .327 .192 .229 .262 .175 .214
MSE-t fixed regressor .088 .088 .092 .089 .085 .091 .093
MSE-t normal .059 .053 .085 .068 .058 .086 .076
MSE-t, 2-sided normal .098 .100 .113 .114 .099 .115 .112
CW-t no-predict. fixed regr. .308 .344 .204 .250 .279 .190 .233
CW-t normal .243 .269 .177 .197 .218 .165 .188

DGP 2, 1-step forecasts
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F non-parametric .041 .044 .068 .060 .055 .080 .072
MSE-F no-predict. fixed regr. .414 .463 .303 .357 .400 .276 .329
MSE-F fixed regressor .083 .094 .089 .097 .090 .084 .093
MSE-t non-parametric .055 .050 .092 .075 .064 .100 .084
MSE-t no-predict. fixed regr. .425 .491 .269 .339 .394 .231 .293
MSE-t fixed regressor .077 .087 .086 .089 .082 .088 .088
MSE-t normal .047 .049 .081 .070 .061 .085 .078
MSE-t, 2-sided normal .093 .098 .108 .094 .093 .102 .099
CW-t no-predict. fixed regr. .460 .516 .297 .377 .440 .255 .341
CW-t normal .420 .467 .285 .343 .394 .249 .312

DGP 3, 4-step forecasts
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F non-parametric .102 .091 .156 .111 .094 .162 .114
MSE-F no-predict. fixed regr. .317 .339 .245 .272 .292 .225 .250
MSE-F fixed regressor .149 .143 .131 .132 .131 .127 .124
MSE-t non-parametric .110 .094 .152 .114 .097 .152 .115
MSE-t no-predict. fixed regr. .282 .316 .197 .226 .261 .174 .201
MSE-t fixed regressor .133 .136 .122 .117 .123 .117 .112
MSE-t normal .115 .103 .158 .115 .105 .162 .119
MSE-t, 2-sided normal .154 .150 .209 .161 .152 .209 .165
CW-t no-predict. fixed regr. .311 .347 .214 .259 .288 .189 .225
CW-t normal .320 .332 .282 .276 .279 .260 .248

Notes:
1. See the notes to Table 1.
2. In these experiments, the coefficients bij = 0 are scaled such that the null and alternative models are expected to be
equally accurate (on average) over the forecast sample.
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Table 3: Monte Carlo Rejection Rates, Equally Accurate Models
Rolling Forecasts

(nominal size = 10%)
DGP 1, 1-step forecasts

source of T=40 T=40 T=80 T=80 T=80 T=120 T=120
statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F non-parametric .036 .032 .078 .052 .039 .080 .065
MSE-F no-predict. fixed regr. .353 .406 .246 .285 .326 .239 .265
MSE-F fixed regressor .097 .099 .103 .097 .098 .102 .103
MSE-t non-parametric .049 .041 .092 .063 .049 .096 .076
MSE-t no-predict. fixed regr. .351 .417 .205 .257 .311 .177 .222
MSE-t fixed regressor .086 .088 .092 .089 .088 .092 .093
MSE-t normal .044 .036 .083 .060 .043 .086 .067
MSE-t, 2-sided normal .100 .105 .112 .108 .091 .123 .110
CW-t no-predict. fixed regr. .356 .422 .216 .277 .336 .201 .250
CW-t normal .317 .378 .197 .230 .270 .175 .204

DGP 2, 1-step forecasts
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F non-parametric .020 .018 .062 .044 .034 .080 .060
MSE-F no-predict. fixed regr. .485 .566 .319 .399 .466 .275 .346
MSE-F fixed regressor .074 .080 .087 .090 .088 .084 .094
MSE-t non-parametric .030 .027 .086 .058 .044 .098 .076
MSE-t no-predict. fixed regr. .532 .627 .285 .400 .488 .236 .322
MSE-t fixed regressor .068 .076 .084 .087 .080 .086 .091
MSE-t normal .028 .023 .076 .053 .039 .085 .070
MSE-t, 2-sided normal .124 .141 .103 .093 .095 .107 .099
CW-t no-predict. fixed regr. .540 .648 .318 .436 .519 .261 .372
CW-t normal .522 .629 .305 .406 .484 .257 .337

DGP 3, 4-step forecasts
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F non-parametric .112 .103 .146 .104 .091 .165 .110
MSE-F no-predict. fixed regr. .376 .422 .247 .293 .331 .235 .264
MSE-F fixed regressor .160 .162 .132 .136 .140 .128 .125
MSE-t non-parametric .132 .127 .151 .114 .101 .162 .118
MSE-t no-predict. fixed regr. .345 .407 .194 .250 .303 .184 .215
MSE-t fixed regressor .142 .148 .119 .126 .131 .116 .114
MSE-t normal .128 .123 .156 .115 .102 .165 .115
MSE-t, 2-sided normal .158 .147 .198 .166 .143 .208 .153
CW-t no-predict. fixed regr. .393 .450 .227 .299 .346 .203 .247
CW-t normal .421 .477 .296 .316 .344 .269 .269

Notes:
1. See the notes to Table 1.
2. In these experiments, the coefficients bij = 0 are scaled such that the null and alternative models are expected to be
equally accurate (on average) over the forecast sample.
3. In these experiments, the forecasting scheme is rolling, rather than recursive.
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Table 4: Monte Carlo Rejection Rates, Alternative Model Best
(nominal size = 10%)

DGP 1, 1-step forecasts
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F non-parametric .263 .351 .250 .335 .422 .269 .363
MSE-F no-predict. fixed regr. .748 .850 .627 .782 .871 .660 .799
MSE-F fixed regressor .481 .609 .445 .593 .715 .518 .659
MSE-t non-parametric .296 .385 .295 .372 .457 .311 .397
MSE-t no-predict. fixed regr. .703 .827 .470 .679 .812 .461 .657
MSE-t fixed regressor .360 .487 .280 .412 .534 .294 .425
MSE-t normal .282 .374 .270 .352 .448 .285 .380
MSE-t, 2-sided normal .178 .233 .172 .232 .300 .184 .251
CW-t no-predict. fixed regr. .780 .892 .610 .829 .928 .618 .837
CW-t normal .728 .847 .563 .775 .887 .585 .792

DGP 2, 1-step forecasts
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F non-parametric .282 .434 .268 .429 .569 .319 .484
MSE-F no-predict. fixed regr. .852 .934 .721 .877 .951 .749 .894
MSE-F fixed regressor .527 .697 .491 .685 .821 .579 .763
MSE-t non-parametric .349 .485 .346 .497 .616 .396 .547
MSE-t no-predict. fixed regr. .860 .949 .618 .848 .946 .605 .837
MSE-t fixed regressor .426 .601 .329 .533 .680 .366 .568
MSE-t normal .331 .474 .319 .476 .606 .368 .527
MSE-t, 2-sided normal .200 .322 .207 .320 .451 .241 .370
CW-t no-predict. fixed regr. .920 .974 .788 .954 .988 .802 .961
CW-t normal .903 .968 .777 .943 .986 .796 .955

DGP 3, 4-step forecasts
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F non-parametric .290 .349 .315 .347 .421 .342 .383
MSE-F no-predict. fixed regr. .669 .774 .570 .713 .803 .622 .737
MSE-F fixed regressor .467 .563 .428 .557 .649 .509 .611
MSE-t non-parametric .324 .379 .328 .375 .442 .366 .406
MSE-t no-predict. fixed regr. .592 .728 .387 .583 .711 .399 .565
MSE-t fixed regressor .360 .440 .270 .380 .487 .286 .399
MSE-t normal .332 .393 .339 .385 .460 .373 .419
MSE-t, 2-sided normal .244 .279 .281 .284 .336 .299 .302
CW-t no-predict. fixed regr. .697 .820 .511 .738 .851 .527 .747
CW-t normal .710 .805 .609 .754 .845 .636 .769

Notes:
1. See the notes to Table 1.
2. In these experiments, the coefficients bij = 0 are set to values (given in section 4.1) large enough that the alternative
model is expected to be more accurate than the null model.
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Table 5: Tests of Equal Accuracy for Monthly Stock Returns
MSE-F Bootstrap p–values

alternative model MSE(null)/ non- no predictability fixed
variable MSE(altern.) param. fixed regressor regressor
cross-sectional premium 1.009 .136 .001 .071
return on long-term Treasury 1.005 .381 .024 .177
BAA-AAA yield spread .996 .688 .828 .487
BAA-AAA return spread .995 .824 .933 .779
net equity expansion .994 .648 .358 .659
CPI inflation .993 .646 .587 .776
stock variance .992 .773 .512 .230
dividend-payout ratio .991 .681 .572 .724
term (yield) spread .987 .724 .939 .984
earnings-price ratio .985 .938 .383 .933
10-year earnings-price ratio .983 .876 .985 .984
3-month T-bill rate .982 .739 .952 .993
dividend-price ratio .981 .843 .550 .993
dividend yield .981 .836 .436 .996
yield on long-term Treasury .978 .796 .988 .995
book-market ratio .965 .996 .967 .994

Notes:
1. As described in section 5, monthly forecasts of excess stock returns in period t + 1 are generated recursively from a null
model that includes just a constant and 15 alternative models that include a constant and the period t (t− 1 in the case of
CPI inflation) value of each of the variables listed in the first column. Forecasts from January 1970 to December 2002 are
obtained from models estimated with a data sample starting in January 1954.
2. For each alternative model, the table reports the ratio of the null model’s forecast MSE to the alternative model’s MSE
and bootstrapped p-values for the null hypothesis of equal accuracy, based on the MSE-F statistic. Section 3 details the
bootstrap methods. The RMSE of the null model is 0.046.
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Table 6: Tests of Equal Accuracy for Core Inflation
MSE-F Bootstrap p–values

alternative model MSE(null)/ non- no predictability fixed
variables MSE(altern.) param. fixed regressor regressor

1-quarter horizon
CFNAI 1.016 .343 .092 .293
CFNAI, food, imports 1.098 .100 .001 .062

4-quarter horizon
CFNAI .921 .675 .881 .915
CFNAI, food, imports 1.279 .317 .000 .031

Notes:
1. As described in section 5, 1-quarter and 4-quarter ahead forecasts of core PCE inflation (specified as a period t + τ
predictand) are generated recursively from a null model that includes a constant and lags of inflation (from period t and
earlier) and alternative models that include one lag (period t values) of the variables indicated in the table (defined further
in section 5). The 1-quarter forecasts are of quarterly inflation; the 4-quarter forecasts are of 4-quarter inflation. Forecasts
from 1985:Q1 + τ − 1 through 2008:Q2 are obtained from models estimated with a data sample starting in 1968:Q3.
2. For each of the alternative models, the table reports the ratio of the null model’s forecast MSE to the alternative model’s
MSE and bootstrapped p-values for the null hypothesis of equal accuracy, based on the MSE-F statistic. Section 3 details
the bootstrap methods. The RMSE of the null model is 0.613 at the 1-quarter horizon and 0.444 at the 4-quarter horizon.
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