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1 Introduction

Vector autoregressions (VARs) are useful as a concise speci�cation of the dynamics of an

economic system. In some applications, however, this usefulness is limited without a simple

method for calculating expectations involving the system. For example, iterative methods

for solving a Bellman equation with a VAR speci�cation for the state transitions require

computing the expected future values of the states. The implied integration can quickly

hinder the solution process.

In this general context, Tauchen (1986) proposes a tractable method for approximating

a VAR using a Markov chain over a �nite grid. The resulting probabilities allow for simple

computation of expectations without integration. The paper makes use of transformed VARs

under the assumption of a diagonal covariance structure in the reduced-form error term. This

permits the integration of well known univariate distributions.

In this paper, we show that one can treat the problem more conveniently. While other

generalizations of Markov-approximation techniques have been introduced, these are some-

times set within a much extended environment, such as the treatment of non-linear mod-

els with quadrature methods in Tauchen and Hussey (1991). Instead, we focus on simple

techniques for the calculation of multivariate probabilities with arbitrary positive-de�nite

covariance structures that allow economists to deal directly with VAR processes without

the need to modify their forms to satisfy diagonality assumptions. In addition, researchers

can use recent techniques for the calculation of probabilities involving positive semi-de�nite

systems to directly treat processes with singular error covariance. While these types of sim-

pli�cations are not necessary in theory, in practice and in the context of the solution of a
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broader economic model they can be quite useful. We present two example VAR-process

approximations with non-diagonal and singular non-diagonal error covariance matrices and

show that our procedure admirably recovers the traits of the original structural processes.

2 Approximation

In the discussion that follows, we consider a VAR of the form

A0Zt = A1 + A2Zt�1 + "t; "t � N(0;�);

with Zt an mx1 vector and � an arbitrary positive-semide�nite error covariance matrix. The

reduced form speci�cation is

Zt = A1 + A2Zt�1 + "t; "t � N(0;�);

where Ai = A�10 Ai, "t = A
�1
0 "t, and � = A

�1
0 �A

�10
0 . A stationarity assumption for Zt yields

the process covariance �� after iteration on ��  A2�
�A

0

2 + �. This VAR structure for Zt

substantially di¤ers from that considered by Tauchen (1986) only in the practical treatment

of the error covariance matrix �; Tauchen (1986) had required that � be diagonal and

positive-de�nite. The general positive-semide�niteness of � also allows for arbitrary positive-

semide�nite structure in �. Non-diagonal and singular covariance matrices are present in

this class.

To approximate the process Zt, one sets up a �nite grid S consisting of Q possible states,

denoted S1; :::; SQ 2 Rm. The Markov-chain approximation, Mt, varies over this grid S. By

de�nition, the dynamic properties of Mt are completely determined by the associated QxQ

transition matrix P such that Pi;j = P (Mt+1 = SjjMt = Si). These transition probabilities

are de�ned in this approximation as Pi;j = P (Zt+1 2 VjjZt = Si), where the Vi�s are non-
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overlapping m-dimensional intervals such that Si 2 Vi and
SQ
i=1 Vi = R

m.

Given the autoregressive structure of Zt, this de�nition can be rewritten as

Pi;j = P (A1 + A2Si + "t+1 2 Vj) = P ("t+1 2 V 0j );

where V 0j = Vj � (A1 +A2Si). Recall that "t+1 � N(0;�). This implies that the probability

above can be expressed as the m-dimensional integral

Pi;j =

Z
V 0j

f�(k)dk

with f�(k) equal to the multivariate density for N(0;�) (when such a density exists).

Integrals of the above form are well understood. Genz (1992) presents a Monte Carlo-

type algorithm that can be used in the case of arbitrary positive-de�nite �. Genz and Kwong

(2000) provide a technique for the case of singular �. With these integration methods, quite

general covariance structures are tractable within the framework of Tauchen (1986). As a

comparison, note that this general multivariate integration is avoided in practice in that

work under the assumption of a diagonal error covariance structure by the decomposition of

the integral above into

mQ
i=1

Z
V i0j

fi(ki)dki

where fi is the univariate normal density of the i-th component of "t+1 and V i0j is the i-th

univariate component of V 0j .

Although the notation and integration techniques apply to an arbitrary selection of

the location and number of the points Si and the integration bounds Vi, these choices are

important because they constrain the possible behavior of the approximation Mt. While

larger grids with �ner grid points allow in principle for more complex and accurate dynamics,
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they require greater computational time. Tauchen�s (1986) uniformly spaced scheme is used

in the examples below, but this is not the only available technique; e.g., Adda and Cooper

(2003) use equal probability weights to construct a univariate grid.

3 Examples and Simulation

This section approximates a trivariate VAR Zt for two cases: (1) a non-diagonal error co-

variance matrix, and (2) a singular non-diagonal error covariance matrix. As a check of the

reliability of the approximations, we run 1000 simulations for both the original process Zt

and the approximation Mt for each covariance structure. We then compare mean estimated

OLS coe¢ cients for each 100-period simulated data set. Calculations were performed in

MATLAB, with the required Monte Carlo-type multivariate integration carried out using

the function qscmvnv.m (available on the website of Alan Genz) with 1000 random draws.1

The speci�cation of the grid is the same across both examples and follows Tauchen

(1986). Let qi be the number of unique i-th dimensional states in S which can be visited

by the i-th component Mit of the Markov-chain approximation, with the total number of

states Q =
Q3
i=1 qi. We set qi = 5 for each i, yielding 125 total states in the approximation

grid S. After iteration, the unconditional standard deviation of each component Zit can be

found from the diagonal of the process covariance ��. Given the unconditional mean of Zt,

� = (I�A2)�1A1, we space the components of the grid points S1;::: ; S125 equally around the

components �i so that two unconditional standard deviations of Zit are spanned in either

direction around �i.

Each simulation of the process Zt itself requires draws from N(0;�) and initialization,

1The MATLAB code used to produce all the results contained in this paper is available upon request
from the authors.
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chosen here as the mean �. Simulation of the approximate Markov process Mt follows Adda

and Cooper (2003) via draws u from the uniform [0; 1] distribution. After calculating the

transition probabilities Pi;j, consider the matrix P with P i;j =
Pj

k=1 Pi;k. Given Mt = Si,

the uniform draw ut+1 2 (P i;j�1; P i;j] implies Mt+1 = Sj (and Mt+1 = S1 if ut+1 � P i;1).

The simulation of Mt is also initialized at �, noting that � 2 S in our grid speci�cation.

3.1 Non-diagonal and Non-singular

The �rst example considers a non-diagonal error covariance matrix. Using the reduced-

form notation for Zt, the parameters of the VAR are

A1 =

24�0:50:9
0:6

35 , A2 =
240:25 0:1 0:5
�0:5 0:09 �0:75
0:6 0 0:15

35 , � =
24 0:4 0:18 0:3
0:18 0:2 0:1
0:3 0:1 0:7

35 :
The mean estimates using OLS on the directly simulated data Zt are

A
D

1 =

24�0:510:90
0:60

35 , AD2 =
24 0:23 0:11 0:50
�0:51 0:09 �0:75
0:59 0:01 0:13

35 , �D =
240:38 0:17 0:28
0:17 0:19 0:09
0:28 0:09 0:67

35 :
The mean OLS estimates from the simulation of the Markov approximation Mt are

A
M

1 =

24�0:500:91
0:60

35 , AM2 =

24 0:23 0:10 0:48
�0:49 0:09 �0:76
0:57 0:01 0:14

35 , �M =

240:43 0:15 0:27
0:15 0:32 0:08
0:27 0:08 0:73

35 .
3.2 Non-diagonal and Singular

The second example uses a non-diagonal and singular error covariance matrix.2 We

assume the same grid S and coe¢ cients A1 and A2. We change � to the singular matrix,

� =

240:01 0:01 0
0:01 0:1 �0:09
0 �0:09 0:09

35 .
2In results not presented here, we also consider the case of a singular diagonal error covariance matrix.

The Markov approximation also performs well in this case.
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Such singular non-diagonal covariance structures can arise when converting a VAR to its

reduced-form representation, since � = A�10 �A
�10
0 .3 In our case, we consider the singular

� =

240:01 0 0
0 0 0
0 0 0:09

35
and the non-diagonal

A�10 =

241 0 0
1 �1 �1
0 0 1

35 :
The mean OLS estimates from direct simulation are

A
D

1 =

24�0:490:93
0:57

35 , AD2 =
24 0:23 0:09 0:49
�0:49 0:06 �0:77
0:57 0:03 0:16

35 , �D =
240:01 0:01 0:00
0:01 0:10 �0:09
0:00 �0:09 0:09

35 .
Simulation from the Markov approximation produces

A
M

1 =

24�0:490:91
0:59

35 , AM2 =

24 0:23 0:10 0:48
�0:48 0:06 �0:73
0:55 0:02 0:14

35 , �M =

240:01 0:01 0:00
0:01 0:11 �0:08
0:00 �0:08 0:09

35 .
3.3 Recovery of System Properties

The examples above demonstrate that Markov-chain approximations to VARs with rel-

atively complicated error covariance matrices can be constructed with reasonable con�dence

in their ability to recover the dynamics of the underlying process. A simple way to measure

this ability is the duplication of system parameters after simulation and OLS estimation. The

processes considered here have distinctive error covariance structures, but the sign and mag-

nitude of system parameters recovered from simulation of the Markov-chain approximations

3Of course, singular covariance implies that some components of the error term are redundant. Such
a speci�cation can be useful in applied work because it allows for exact equations to be incorporated into
the larger dynamic structure of the process. In results not reported, we compared the performance of a
non-singular bivariate VAR with a singular trivariate VAR di¤ering only by the inclusion of an identity. The
transition probabilities obtained were equivalent, as expected.
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are very comparable to the results obtained from direct simulation of the VAR.

4 Conclusion

Tauchen (1986) presents a useful and simple method of approximating VAR processes via

Markov chains, under the assumption that the reduced-form error term�s covariance matrix

is diagonal. While this method is general in theory, we show that arbitrary error covariance

structures can be considered in practice within the original framework proposed by Tauchen

(1986) without initial modi�cation of the underlying process. Doing so simply requires the

use of general, readily available multivariate integration methods. We provide two examples

of VAR approximation and simulation using this technique that recover dynamic properties

of the underlying process virtually as well as direct simulation of the process.

References

[1] Adda, J., Cooper, R., 2003. Dynamic Economics. MIT Press, Cambridge.

[2] Genz, A., 1992. Numerical computation of multivariate normal probabilities. Journal of

Computational and Graphical Statistics 1, 141�149.

[3] Genz, A., Kwong, K.S., 2000. Numerical evaluation of singular multivariate normal dis-

tributions. Journal of Statistical Computation and Simulation 68, 1�21.

[4] Tauchen, G., 1986. Finite state Markov-chain approximations to univariate and vector

autoregressions. Economics Letters 20, 177�181.

[5] Tauchen, G., Hussey, R., 1991. Quadrature-based methods for obtaining approximate

solutions to nonlinear asset pricing models. Econometrica 59, 371�396.

8


