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1 Introduction

Economists, policymakers, and the public agree that high in�ation is costly for the economy because it

ultimately reduces standards of living.1 For a number of reasons, however, in�ation can also be too low.

In practice, policymakers aim for low, positive rates of in�ation rather than zero in�ation. However,

rigorous estimates of the �optimal in�ation rate�which maximizes the economic well-being of the public

are not available.

1.1 The Case for Low, Positive Rates of In�ation

One reason for keeping in�ation above zero stems from the fact that nominal interest rates cannot fall

below zero under normal circumstances.2 Nominal interest rates are low when in�ation is expected to

remain low. Since monetary policy counteracts slowing economic activity by lowering short-term interest

rates, very low in�ation limits the extent policymakers can respond to an economic slowdown. Vick-

rey (1954), Phelps (1972), Okun (1981), Summers (1991), Fischer (1996), Fuhrer and Madigan (1997),

Krugman (1998), McCallum (2000), Orphanides and Wieland (2000), Svensson (2003), Bernanke, Rein-

hart and Sack (2004), Kato and Nishiyama (2005), Wolman (2005), and others, argue in favor of low,

positive rates of in�ation as to leave room to ease policy in response to economic weakness.3

There are a number of other reasons, however, for which in�ation can be too low:

Measurement error in in�ation. Available measures of in�ation tend to be biased upward. Recent

estimates place the measurement bias for the personal consumption expenditure (PCE) price index, the

Federal Reserve�s preferred measure of in�ation, at about 0.5 percentage point per year.4

Downward wage rigidity. Nominal wages may be downwardly rigid if �rms are unable to make

nominal wage cuts because workers are unwilling to accept them. Tobin (1972) conjectures that a little

in�ation may make it easier for �rms to lower real wages and maintain employment in response to

declining demand.

Debt�De�ation. A negative in�ation rate� de�ation� may be a more serious problem than in�ation

because de�ation causes a decreases in the value of collateral used to secure a loan, or another form of

debt. Fisher (1933) argues that falling prices could create a vicious cycle of �nancial distress for banks

and other lenders which would lead to more downward pressure on prices.5 Thus, a little in�ation may

be desirable to insure against collateral de�ation.

The possibility of hitting the zero lower bound on nominal interest rates, along with measurement

error in in�ation, are the key reasons policymakers aim for rates of in�ation above zero. By addressing

1See Fischer (1996) for a discussion of the costs of in�ation.
2 In theory, achieving negative nominal interest rates is feasible by levying a tax on money holdings or giving up free

convertibility of �nancial assets into cash� Buiter and Panigirtzoglou (2003), and Goodfriend (2000) discuss this idea.
3However, Friedman (1969) argues that the opportunity cost of holding money is zero when nominal interest rates are

zero. Nominal interest rate are equal to real interest rates plus expected in�ation (the Fisher identity). Since real interest
rates are usually positive, in�ation is expected to be negative when nominal interest rates are zero.

4Former Federal Reserve Governor Gramlich (2003) discusses the measurement bias in in�ation.
5See Bernanke (2004) for a recent study of the debt-de�ation problem in the Great Depression.
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the zero bound problem through a low and positive in�ation objective, policymakers may simultane-

ously insure against downward wage rigidity and debt-de�ation. Central banks tend not to emphasize

downward wage rigidity in their monetary policy frameworks since its relevance is not clear.6 Although

policymakers recognize the risks associated with collateral de�ation, most macro models do not incor-

porate a debt-de�ation channel.

1.2 Contribution

This paper estimates the optimal in�ation rate in a small New-Keynesian sticky-price model often used

for monetary policy analysis. In addition, the model accounts for an occasionally-binding zero lower

bound on nominal interest rates and model uncertainty. Unlike previous studies, which impose an

arbitrary in�ation objective and analyze its e¤ects, policymakers aim for the rate of in�ation which

maximizes the economic well-being of the public.

Besides providing estimates of the optimal in�ation rate which account for the zero bound and

model uncertainty, this paper uni�es two separate strands of economics literature. First, studies of

optimal policy and the zero bound in the New-Keynesian model, such as the studies by Eggertsson and

Woodford (2003), Jung, Teranishi and Watanabe (2005), Adam and Billi (2006, 2007), do not estimate

the optimal in�ation rate under model uncertainty.7 Second, as Sims (2001) points out, studies of

model uncertainty and monetary policy, such as Giannoni (2002), Onatski and Stock (2002), Onatski

and Williams (2003), Giordani and Söderlind (2004), Walsh (2004), Woodford (2005), Cateau (2007),

Dennis (2007), Hansen and Sargent (2008), do not explain the long-run tradeo¤s between the levels and

variability of in�ation and output.

This paper also makes a technical contribution. The numerical procedure in this paper is more

e¢ cient and more general than previous numerical procedures. The problem in this paper is more

di¢ cult to solve, compared for example to the studies by Billi (2005) and Adam and Billi (2006, 2007),

because the number of state variables is unusually high for a problem with an occasionally-binding

constraint on policy. The problem has �ve continuos state variables. Despite the use of a state-of-the-

art computing environment, algorithms from previous studies are not suitable for solving the problem

in this paper.8

In�ation is costly in the New-Keynesian framework because it distorts relative prices and leads

consumers and �rms to make suboptimal decisions. In absence of other factors of in�uence such as the
6Akerlof and Dickens (2007) argue whether downward wage rigidity is relevant for monetary policy.
7The model in this paper has some important di¤erences relative to speci�cations used before. Adam and Billi (2006)

solve a model that di¤ers from the one in this paper by not including lagged in�ation in the Phillips Curve. Adam and
Billi (2007) analyze the case with lagged in�ation but they drop the shock to the Phillips Curve. Yet lagged in�ation and
the shock to the Phillips Curve are both important determinants of the optimal in�ation rate (Tables 4 and 6).

8The algorithms of Billi (2005) and Adam and Billi (2006, 2007) are based on a value function approach, which evaluates
the Jacobian of the value function. The algorithm in this paper is a Euler-equation method, which bypasses the calculation
of the Jacobian and is less prone to memory limitations. Another di¤erence is that the previous algorithms employ
high-order polynomials and obtain a �smooth�approximation of the value function. Yet functions with �kinks�are more
accurately approximated by a low-order polynomial. This paper employs a piecewise-linear to approximate the response
function. Indeed, any algorithm designed for solving models with smooth response functions, as for example the method
of Krueger and Kubler (2004), is not designed for solving models with occasionally-binding constraints.
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Scenario of Extreme
Baseline Model Uncertainty

Optimal in�ation rate:
With no measurement bias 0:2 0:9
With 0.5% measurement bias (PCE Price Index) 0:7 1:4

Percent of time federal funds rate is zero 3:7 7:0
Number of consecutive quarters funds rate is zero 1:8 2:4

Standard deviation of:
Output Gap 1:2 1:6
In�ation 1:9 2:9
Federal funds rate 2:4 3:2

Table 1: Optimal In�ation in the small New-Keynesian Model (Annual Percent)

zero bound, zero in�ation appears optimal as it o¤sets these distortions. In addition to concern about

in�ation, policymakers in the New-Keynesian model care also about output stability. Thus, they face a

dual mandate similar to the Federal Reserve. Concern about in�ation and output stability and the zero

bound on nominal interest rates implies that literal price stability, or zero in�ation, is not the optimal

goal for monetary policy.

Table 1 summarizes the results from the small New-Keynesian model. To obtain estimates of the

optimal in�ation rate which maximizes the economic well-being of the public, the private sector in

the model perceives policy as perfectly credible. The baseline estimate is constructed as to bu¤er the

economy from the zero bound given adverse shocks comparable in size to shocks that have hit the U.S.

economy in recent decades. Assuming the model provides a correct description of the economy, the

optimal rate of in�ation as measured by the PCE price index (after accounting for 0.5 percentage point

per year measurement bias) is 0.7 percent per year. At that rate of in�ation, the federal funds rate hits

the zero bound just under 4 percent of the time and stays there for only about two consecutive quarters.

The standard deviation of the output gap is 1.2 percent and the standard deviation of in�ation is just

below 2 percent per year.

With greater uncertainty surrounding the parameters of the model, uncertainty about the actual

response of the economy to shocks increases. This uncertainty about the structure of the economy leads

to uncertainty about the e¤ects of monetary policy on the economy. Thus, higher in�ation is required

to bu¤er the economy from the zero bound when there is model uncertainty.

Table 1 shows that under the scenario of extreme model uncertainty the federal funds rate reaches

the zero bound 7 percent of the time and stays there for only about two consecutive quarters. In

this context, extreme model uncertainty is the greatest uncertainty surrounding the parameters of the

model for which in�ation expectations remain anchored. Macroeconomic performance may deteriorate

signi�cantly under model uncertainty. With extreme model uncertainty, the standard deviation of

output and in�ation is as much as 50 percent higher than experienced in recent decades. Yet the
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In�ation Objective (PCE Price Index)
0 1 2 3 4

Percent of time federal funds rate is zero 14 9 5 1 < 1
Number of consecutive quarters funds rate is zero 6 5 4 3 2

Standard deviation of:
Output Gap (CBO estimate) 3:6 3:2 3:0 2:9 2:9
In�ation 2:0 1:9 1:9 1:9 1:9
Federal funds rate 2:3 2:4 2:5 2:5 2:5

Table 2: Alternative In�ation Objectives in the FRB/US Model (Annual Percent)

optimal in�ation rate rises only to 1.4 percent per year.

The results of Table 1 suggest that previous studies overstate the consequences of the zero lower

bound on nominal interest rates. The range of estimates for the optimal in�ation rate in the small

New-Keynesian model, 0.7 to 1.4 percent per year for the PCE price index, falls below the 2 percent

threshold identi�ed in the FRB/US model and other macro models.

1.3 Previous Studies of the Zero Bound and In�ation

Previous work simulates a variety of macro models under alternative scenarios for the central bank�s

in�ation objective in order to examine the severity of the zero bound problem. In one such study,

Reifschneider and Williams (2000) simulate the FRB/US model, which is a large-scale structural model

the Federal Reserve Board uses for forecasting and policy analysis.9

Table 2 illustrates the results from the FRB/US model. With an in�ation objective of 4 percent

per year, the federal funds rate reaches the zero bound less than 1 percent of the time and stays there

for only two consecutive quarters. As the in�ation objective is lowered and the funds rate is on average

closer to zero, however, policy becomes more constrained. For a zero-in�ation objective, the funds rate

hits the zero bound 14 percent of the time and remains at zero for six consecutive quarters.

Table 2 shows that an increased incidence of hitting the zero bound is associated with worse macro-

economic performance. In particular, output stabilization is problematic since monetary policy is less

e¤ective at stabilizing the economy in a very low-in�ation regime. If the in�ation objective is lowered

from 4 to 0 percent, the standard deviation of the output gap rises more than 20 percent.10

Estimates of the e¤ects of the zero bound in the FRB/US model, and also other macro models,

suggest that policymakers should be cautious in pursuing rates of in�ation much below 2 percent per

year. Such studies estimate the tradeo¤ between the in�ation objective, the frequency of hitting the

zero bound and macroeconomic performance; however, they do not provide a method to determine
9As most macro models, the FRB/US model does not incorporate downward wage rigidity or a debt-de�ation channel.
10Other studies using di¤erent models and di¤erent data, but the same approach, reached very similar conclusions.

Coenen, Orphanides, and Wieland (2004) were among the �rst to quantify the impact of the zero bound in a structural
model of the U.S. economy. The model they use has about a dozen equations and thereby less sectoral detail than
the FRB/US model, which comprises a few hundred equations. Despite di¤erences in size and complexity, the Coenen,
Orphanides, and Wieland model shares the same basic features of the FRB/US model.
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what point along the tradeo¤ represents the optimal in�ation rate.11 As the in�ation objective rises,

the variability of both output and in�ation falls (Table 2). As a result, higher in�ation objectives

appear unambiguously better.

The remainder of this paper is structured as follows. Section 2 introduces the model, then Section 3

illustrates the solution strategy and the equilibrium de�nition under the assumption of no model uncer-

tainty. In Section 4, the model is calibrated to recent U.S. data. Section 5 discusses the determinants

of optimal in�ation for the case of no model uncertainty. Then, Section 6 quanti�es optimal in�ation

for worst-case scenarios of model uncertainty. Section 7 brie�y concludes. The Appendix describes

the numerical algorithm, the derivation of the permanent consumption loss, and the calculation of the

detection error probability for calibrating scenarios of model uncertainty.

2 Model

The setting adopts the well-known sticky-price version of the small New-Keynesian model, which is dis-

cussed in-depth by Clarida, Galí and Gertler (1999), Woodford (2003a), Galí (2008), and others.12 The

model consists of a representative consumer and �rms in monopolistic competition facing restrictions

on the frequency of price adjustments à la Calvo (1983). The policymaker commits to the objective of

maximizing welfare for the consumer.13 Thus, the optimal policy problem is

max
f�t;xt;itg

� E0
1X
t=0

�t
h
(�t � 
�t�1)2 + �x2t

i
(1)

s.t.

�t � 
�t�1 = �Et (�t+1 � 
�t) + �xt + ut (2)

xt = Etxt+1 � ' (it � Et�t+1 � rnt ) (3)

ut = �uut�1 + �"u"ut (4)

rnt = (1� �r) rss + �rrnt�1 + �"r"rt (5)

it � 0 (6)

where Et denotes the expectations operator conditional on all information available at time t. Expecta-

tions are rational with no uncertainty surrounding the true model of the economy. (The assumption of

no model uncertainty is relaxed in Section 6.) �t denotes the in�ation rate, and xt is the output gap or

11The results from the small New-Keynesian model suggest lower output and in�ation variability than in the FRB/US
model. However, the model-based measure of the output gap is not directly comparable to the CBO estimate of the output
gap. Moreover, Reifschneider and Williams show the incorporating interest rate inertia in the policy rule would lower the
variability of output and in�ation in the FRB/US model.
12To save space, the complete derivation of the small New-Keynesian model is not shown here.
13The setting is a social planning problem, whereby the policymaker can implement time-zero optimal policy by selecting

the equilibrium paths of in�ation, the output gap, and the nominal interest rate: f�t; xt; itg1t=0.
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the deviation of output from its �exible-price equilibrium.14 And it is the nominal interest rate under

the control of monetary policy.15

The small New-Keynesian model is developed from explicit micro-foundations. As a result, the

policymaker�s objective can be derived by taking a second-order Taylor series approximation to the

expected life-time utility of the consumer. The resulting welfare-theoretic objective (1) is quadratic in

deviations of output from the socially e¢ cient level and deviations of the unanticipated component of

in�ation from zero.16 The subjective discount factor is denoted by � 2 (0; 1). The weight assigned to
the goal of output stability, relative to price stability,

� � �
�
> 0 (7)

is a function of the structure of the model economy. � > 1 represents the price elasticity of demand

substitution among di¤erentiated goods produced by �rms operating in monopolistic competition.

Equation (2) is a log-linear approximation to the aggregate-supply relation, which describes the

optimal price-setting behavior of �rms under staggered price setting. The slope parameter

� � (1� �) (1� ��)
�

'�1 + !

1 + !�
> 0 (8)

depends on the structure of the model economy. ! > 0 denotes the elasticity of a �rm�s real marginal

cost with respect to its own output level. Each period, a share � 2 (0; 1) of randomly picked �rms
cannot adjust their prices and the remaining (1� �) �rms get to choose prices optimally. Prices that
are not optimized are indexed to the most recent aggregate price index, and 
 2 [0; 1) denotes the degree
of indexation. The shifter of the aggregate-supply curve, ut, is interpreted as a �mark-up�shock or the

variation over time in the degree of monopolistic competition between �rms.

Equation (3) is a log-linear approximation to the intertemporal Euler equation describing the rep-

resentative consumer�s private expenditure decisions. ' > 0 denotes the intertemporal elasticity of

substitution or the real-rate elasticity of output. Shifting the Euler equation is the �natural�real-rate

of interest shock, rnt .
17

Equations (4) and (5) describe the evolution of the exogenous mark-up shock (ut) and the real-rate

shock (rnt ). The shocks follow AR(1) stochastic processes with autoregressive coe¢ cients denoted by

�j 2 (�1; 1) for j = u; r. The steady state real interest rate is rss � 1=� � 1, such that rss 2 (0;+1).
The innovations (�"j"jt for j = u; r) are independent across time and cross-sectionally, and normally

distributed with mean zero and standard deviations denoted by �"j � 0 for j = u; r.
Equation (6) represents the zero lower bound on the nominal interest rate. Mainly for reasons of

14Output is assumed to be e¢ cient at its deterministic steady state level thanks to an output subsidy that neutralizes
the distortions from monopolistic competition.
15By abstracting from money-demand distortions associated with positive nominal interest rates, the model can be

interpreted as the �cashless limit�of a model with money holdings.
16The unanticipated component of price changes (�t � 
�t�1), not the anticipated component from indexation (
�t�1),

matters for social welfare.
17The real-rate shock summarizes all shocks that under �exible prices generate variation in the real interest rate; it

captures the combined e¤ects of preference shocks, productivity shocks, and exogenous changes in government expenditure.
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analytical tractability, however, the economics literature often forgets the zero bound. By assuming that

the policymaker can achieve negative nominal interest rates, studies based on the small New-Keynesian

model typically solve the simpler problem (1)-(5) with standard linear-quadratic methods.18 Solving

the nonlinear problem (1)-(6) is far more di¢ cult.

3 Solving the Model

The in�nite-horizon Lagrangian of the time-zero optimal policy problem (1)-(6) in recursive form is

max
f�t;xt;itg

min
fm1t;m2tg

L � E0
1X
t=0

�t
n
� (�t � 
�t�1)2 � �x2t (9)

+m1t [(1 + �
)�t � 
�t�1 � �xt � ut]�m1t�1�t

+m2t [�xt � ' (it � rnt )] +m2t�1�
�1 (xt + '�t)

	
s.t.

Equations (4)-(6) for all t

where m1t and m2t denote the Lagrange multiplier for the aggregate-supply relation (2) and the in-

tertemporal Euler equation (3).

The Kuhn-Tucker conditions of the Lagrangian (9) are equations (2), (3) and the marginal conditions

@L=@�t =� 2 (�t � 
�t�1) + (1 + �
)m1t �m1t�1 + �
�1'm2t�1 = 0 (10)

@L=@xt =� 2�xt � �m1t �m2t + �
�1m2t�1 = 0 (11)

@L=@it � it =� 'm2t � it = 0; m2t � 0; it � 0 (12)

where the last equation imposes that either the Lagrange multiplier on the Euler equation (m2t � 0)
or the nominal interest rate (it � 0) must be zero, at each state and for all periods. When the nominal
interest rate reaches zero (it = 0), the Euler equation is binding (m2t > 0).

Equations (2), (3) and (10)-(12) form a nonlinear system of �ve equations with �ve unknowns,

which must be satis�ed by optimal policy in equilibrium. Solving the system delivers a �ve-dimensional

nonlinear equilibrium response function

y (st) � (�t; xt; it � 0;m1t;m2t � 0) � R5

over a �ve-dimensional state space

st � (ut; rnt ; �t�1;m1t�1;m2t�1 � 0) � R5

Besides the three natural state variables (ut; rnt ; �t�1), there are two endogenous co-state variables

18See for example Woodford (2003a) or Galí (2008), and references therein.
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given by the lagged values of the Lagrange multipliers (m1t�1;m2t�1 � 0). The co-state variables rep-
resent �promises�kept from past policy commitments, which lead to deviations from purely forward-

looking policy whenever their value di¤ers from zero.19 The state in period t+ 1 depends on the state

and equilibrium response in period t and the shock innovations that are unknown in period t,

st+1 = g(st; y (st) ; "t+1) (13)

Associated with the equilibrium response function, the expectations function is

Etyt+1 (st) =

Z
y (g(st; y (st) ; "t+1)) f ("jt+1) d ("t+1) (14)

where f (�) is the probability density function of the shock innovations, "t � ("ut; "rt) 2 R2.20 The

following de�nition of a stochastic rational expectations equilibrium is proposed.

De�nition 1 (SREE) Assume �"j � 0 for j = u; r. A �stochastic rational expectations equilibrium�of
the optimal policy problem (1)-(6) is a nonlinear policy response function, y (st), over the state of the

model economy, st, with law of motion (13), such that the nonlinear system of equilibrium conditions

(2), (3) and (10)-(12) is satis�ed.

Importantly, the nonlinear system in De�nition 1 does not have a closed-form solution. A numerical

procedure must be used to �nd a �xed-point in the space of nonlinear response functions. Since the

number of state variables is unusually high for a model with an occasionally-binding constraint on policy,

the algorithm must be highly e¢ cient. Appendix A.1 illustrates the numerical procedure.

4 Calibration

The model is calibrated to the U.S. economy and the time period is one quarter. Table 3 summarizes

the baseline parameter values, which are expressed in quarters unless otherwise noted.

The values for the main structural parameters, ('; �; �; !) and the resulting (�; �), are from Tables

5.1 and 6.1 of Woodford (2003a). The degree of in�ation indexation is 
 = 0.9, which is consistent with

the estimates of Giannoni and Woodford (2005) and Milani (2007) under the assumption of rational

expectations.21

19Woodford (2003b) argues that it is desirable for policy to respond to the co-state variables: The dependence of current
policy actions on past commitments allows the policymaker to steer private-sector expectations of future policy which
makes policy more e¤ective.
20However, when agents have �perfect foresight�(�"j ! 0 for j = u; r), the state in period t+ 1 is completely described

by the state and equilibrium response in period t, st+1 = g(st; y (st)). Since agents can anticipate future variables with
certainty, the expectations function (14) is not integrated over the probability density function of the shock innovations,
Etyt+1 (st) = y (g(st; y (st))).
21Christiano, Eichenbaum and Evans (2005) assume full in�ation indexation (
 = 1) in a model that does not impose

the zero lower bound on nominal interest rates. However, it is easily veri�ed that under full indexation the optimal policy
problem is not well de�ned because the nonlinear system in De�nition 1 does not have a determinate steady state for
in�ation and the nominal interest rate. If there is full indexation, the change in in�ation (�t � �t�1) matters for the
welfare objective (1) and thus in�ation is nonstationary.
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Parameter De�nition Assigned Value
Subjective discount factor � = 0.9913
Real-rate elasticity of output ' = 6.25
Share of �rms keeping prices �xed � = 0.66
Price elasticity of demand � = 7.66
Elasticity of �rms�marginal cost ! = 0.47
Slope of the Phillips curve � = 0.024
Weight on output in the loss function � = 0.003
Degree of in�ation indexation 
 = 0.9
Steady state real interest rate rss = 3.5% per year
s.d. real-rate shock innovation �"r = 0.24%
s.d. mark-up shock innovation �"u = 0.30%
AR(1)-coe¢ cient of real-rate shock �r = 0.8
AR(1)-coe¢ cient of mark-up shock �u = 0

Table 3: Baseline Calibration (Quarterly Model)

The parameters describing the two shock processes, (rss; �"r; �r) and (�"u; �u), are estimated over

the period 1983:1-2002:4, with the same approach of Rotemberg and Woodford (1997) and Adam and

Billi (2006). The expectations of in�ation and the output gap are constructed from the predictions of an

unconstrained VAR in in�ation, the output gap, and the federal funds rate. The estimated expectations

are then plugged into the intertemporal equilibrium conditions, (2) and (3), along with the actual data.

The historical shock processes, ut and rnt , are identi�ed with the equation residuals. Fitting AR(1)

processes to the identi�ed historical shocks justi�es the estimates for the shock processes reported in

Table 3.22 The quarterly subjective discount factor is � = (1 + rss)
�1 � 0.9913, as implied by the

estimate for the steady state real interest rate rss = 3.5 percent per year.

5 Stochastic Rational Expectations Equilibrium

This section presents results for the stochastic rational expectations equilibrium under the baseline

calibration in Table 3. For readability, all results are presented as annualized percentage values.

5.1 Stationary Distribution

Figure 1 shows the stationary distribution, presented in terms of probability density, for the in�ation

rate (top panel), the output gap (middle panel) and the nominal interest rate (bottom panel).23 In the

various panels, the dashed-vertical lines indicate the unconditional mean of the endogenous variables.

The left-hand panel (�Without Lower Bound�) displays the stationary distribution for the standard

22Adam and Billi (2006) estimate, over the same period 1983:1�2002:4, a model with no in�ation indexation (
 = 0).
However, the standard deviation of the mark-up shock is almost double the size with indexation (
 = 0:9).
23The distribution is computed by assembling 105 stochastic simulations at a speci�c time period. The simulations are

initialized to the deterministic steady state of the model. By tracking the time-evolution of the mean, standard deviation,
skewness, and kurtosis, it is ascertained that the distribution did reach its stationary con�guration.
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linear-quadratic solution of the model, which fails to consider the zero lower bound on the nominal inter-

est rate. As expected, the linear-quadratic solution delivers a stationary distribution that is symmetric

and normally distributed around the unconditional mean.24

Instead, the right-hand panel (�With Lower Bound�) shows the stationary distribution for the nonlin-

ear solution of the model that does take the zero lower bound into consideration. With the lower bound,

the stationary distribution remains almost normal and symmetric around the unconditional mean for

in�ation and the output gap; however, the stationary distribution is truncated at zero and positively

skewed for the nominal interest rate.25

[Figure 1 about here]

Figure 2 shows the stationary distribution for an alternative scenario of far greater uncertainty about

the future state of the model. The standard deviation of the shock innovations is 50 percent larger than

the baseline calibration, while other parameters take the baseline values. Although the stationary

distribution remains almost normal and symmetric around the unconditional mean for in�ation and the

output gap, the mean in�ation rate and the mean nominal interest rate are higher for the model with

the zero lower bound.26

[Figure 2 about here]

All else equal, higher in�ation allows the policymaker to support a higher nominal interest rate and

protects the economy against frequent episodes of zero nominal interest rates. In�ation, however, is

costly to the economy. The next section investigates how optimal policy resolves the long-run tradeo¤

between the bene�ts of a more �exible stabilization policy and the cost of higher in�ation.

5.2 Optimal In�ation and Welfare Cost from the Zero Bound

Table 4 reports statistics describing the stationary distribution for in�ation and the nominal interest

rate. The table compares results for the baseline level of uncertainty to alternative scenarios for the

shock processes.

Without the zero lower bound in the model (top panel), the in�ation rate and the nominal interest

rate are constant at their steady state values, and the economy is half the time in de�ation, for any

level of uncertainty. With the zero lower bound (bottom panel), the mean in�ation rate is 0.2 percent

per year for the baseline, 0.3 percent per year if real-rate shocks are 50 percent larger, and 0.5 percent

per year if mark-up shocks are 50 percent larger. The mean in�ation rate rises further to 0.7 percent

per year for the scenario of both type of shocks larger.
24 In a linearized model the endogenous variables inherit the properties of the exogenous shock processes. Since mark-up

shocks and real-rate shocks are normally distributed, the in�ation rate, the output gap, and the nominal rate are also
normally distributed.
25For the baseline, the coe¢ cient of skewness for the nominal interest rate is 0.4 and the kurtosis is not signi�cantly

di¤erent from that of a normal distribution.
26For the scenario of much larger shocks, the coe¢ cient of skewness for the nominal interest rate rises to 0.6 but the

kurtosis remains not signi�cantly di¤erent from that of a normal distribution.
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1 � �" 1:5 � �"u 1:5 � �"r 1:5 � �"
Without Lower Bound:

E (�) 0 0 0 0
s.d.(�) 2:1 3:1 2:1 3:1

Freq(� < 0) 50 50 50 50
E (i) 3:5 3:5 3:5 3:5
s.d.(i) 2:6 3:5 3:2 4:0

Freq(i � 0) 9:2 16:0 13:7 18:8

With Lower Bound:
E (�) 0:2 0:5 0:3 0:7
s.d.(�) 1:9 2:8 1:9 2:8

Freq(� < 0) 47 45 44 41
E (i) 3:6 3:9 3:8 4:1
s.d.(i) 2:4 3:0 2:8 3:3

Freq(i = 0) 3:7 8:1 6:0 8:9

Table 4: Optimal In�ation and Nominal Interest Rate (Annual Percent)

Table 4 also shows that the variability of in�ation and the nominal interest rate are both lower in the

model with the zero lower bound relative to the one without. The positive mean bias for in�ation and

the nominal interest rate stems from a long-run policy tension between the level and the variability of

in�ation. Higher in�ation provides the monetary policymaker more room for the conduct of stabilization

policy since without higher in�ation the frequency of zero nominal interest rates would be higher. But

higher in�ation is costly to the economy and it is optimal to occasionally hit the zero bound. With the

zero bound, the frequency of zero nominal interest rates is 3.7 percent for the baseline, and rises to 8.9

percent if both type of shocks are larger.

The long-run tradeo¤ between the bene�ts of a more �exible stabilization policy and the cost of

higher in�ation can be interpreted in terms of an �insurance�policy. The level of in�ation can be seen as

the amount of insurance taken by the policymaker to avoid hitting the zero bound. At the same time,

the variability of in�ation is the cost of insurance. If there is greater uncertainty about the future, it

is optimal for the policymaker to take more insurance but the cost of insurance is higher. So, it is not

optimal to fully insure against the occurrence of zero nominal interest rates.

Table 5 reports the welfare cost under alternative scenarios for the shock processes. The welfare cost

is measured in terms of the permanent reduction in consumption for the representative agent, which is

derived via a transformation of the unconditional loss in the objective function (1).27 Appendix A.2

explains the computation of the permanent consumption loss. Table 5 shows the permanent consumption

loss for the model with the zero lower bound, �, as well as the loss for the model without the lower

bound, �
LQ
. The welfare cost from the lower bound is measured by the additional loss for the model

with the lower bound relative to the one without, �(�) � �� �
LQ
� 0.

27The unconditional loss is computed as the average discounted loss across 5 �103 stochastic simulations, each 103 periods
long after discarding several pre-simulated periods in order to ascertain that the distribution did reach its stationary
con�guration prior to the computation of the loss.
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1 � �" 1:5 � �"u 1 � �"r 1:5 � �"
+ Consumption Loss With Lower Bound: � �0:28 �0:63 �0:29 �0:64
� Consumption Loss Without Lower Bound: �

LQ
�0:28 �0:62 �0:28 �0:62

= Additional Loss With Lower Bound: �(�) �0:00 �0:01 �0:01 �0:02

Table 5: Welfare Cost from the Zero Lower Bound (Annual Percent)

The welfare cost from the zero lower bound increases if either type of shocks is larger. However, the

welfare cost is not very large under optimal policy.28 Even allowing for real-rate shocks and mark-up

shocks 50 percent larger than the baseline, the welfare cost from the zero lower bound amounts to a

permanent reduction in consumption of less than 0:02 percent per year.

5.3 Robustness of Results to Extreme Calibrations

Table 6 shows the results for a wide range of changes to each structural parameter of the model. As is

customary in the calibration literature, only one parameter is changed for each scenario.

Parameter changes can a¤ect the results via two main channels in the model. The parameter change

modi�es the equilibrium conditions describing the behavior of the economy and alters the �slope�(8) of

the aggregate-supply relation. The parameter change also modi�es the welfare �weight�(7) assigned to

output stability relative to price stability.

The real-rate elasticity of output (' > 0) determines the leverage of nominal-interest-rate policy

on consumption. Higher elasticity implies stronger leverage and thereby lowers the frequency of zero

nominal interest rates. With higher elasticity, the slope of the aggregate-supply relation falls which

makes it optimal to tolerate more variability of in�ation. Yet the weight on output stability also falls

which implies that lower variability of in�ation is desirable instead. Depending on which of these two

opposing e¤ects dominates, the variability of in�ation can turn out either higher or lower. Thus, it is

not obvious whether the optimal in�ation rate should rise or fall. With a very high real-rate elasticity

of output� ' equal to 10� the optimal in�ation rate rises to 0.3 percent per year.

The optimal in�ation rate goes down for both very low and very high degrees of price stickiness

(0 < � < 1). If prices are more �exible, the variability of in�ation is lower and the zero lower bound

is reached less often, so there is less incentive for policy to support high in�ation. Conversely, if prices

are more sticky, the variability of in�ation is higher and the zero bound is reached more often, so

high in�ation is more costly. The results show that for both very low and very high degrees of price

stickiness� � equal to 0.1 and 0.9� the optimal in�ation rate falls to 0.1 percent per year.

The price elasticity of demand substitution among di¤erentiated goods produced by �rms (� > 1)

determines the degree of monopolistic competition. The less competition among �rms, the stronger the

incentive for policy to support high in�ation, which restrains the frequency of zero nominal interest

rates. With very low competition� � equal to 3� the optimal in�ation rate rises to 0.5 percent per year.

28The welfare cost of �suboptimally�high in�ation is expected to be greater than the cost under optimal policy. Lucas
(2000) surveys research on the welfare cost of suboptimal in�ation in a monetary economy.
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Alternative Calibrations E (�) s.d.(�) Fr(� < 0) E (i) s.d.(i) Fr(i = 0) � (�)

Baseline 0:2 1:9 47 3:6 2:4 3:7 �0:00
Very low elasticity of output (' = 1) 0:0 1:5 50 3:5 3:1 11:6 �0:01
Very high elasticity of output (' = 10) 0:3 2:0 45 3:8 2:3 2:9 �0:00
Very �exible prices (� = 0:1) 0:1 0:3 43 3:6 1:6 0:0 �0:00
More �exible prices (� = 0:3) 0:2 0:8 43 3:6 1:7 0:1 �0:00
More sticky prices (� = 0:5) 0:2 1:4 47 3:6 2:1 1:7 �0:00
Very sticky prices (� = 0:9) 0:1 2:6 49 3:5 2:9 9:7 �0:04
Very low competition (� = 3) 0:5 2:0 41 4:0 2:3 1:5 �0:00
Very high competition (� = 15) 0:0 1:9 50 3:5 2:6 5:1 �0:02
Very inelastic marginal cost (! = 0:1) 0:2 1:9 47 3:6 2:4 3:6 �0:00
Very elastic marginal cost (! = 10) 0:2 2:0 47 3:6 2:4 3:7 �0:06
No in�ation indexation (
 = 0) 0:0 0:9 50 3:5 1:6 1:3 �0:00
Less in�ation indexation (
 = 0:85) 0:1 1:7 48 3:6 2:2 3:0 �0:00
More in�ation indexation (
 = 0:95) 0:4 2:4 46 3:8 2:8 5:3 �0:01
Almost full indexation (
 = 0:99) 0:7 3:0 44 4:2 3:3 6:8 �0:01
Very low steady state rate (rss = 2%) 0:6 1:8 38 2:5 2:1 9:2 �0:01
Very high steady state rate (rss = 5%) 0:1 2:0 49 5:0 2:5 0:4 �0:00

Table 6: Robustness of Results to Extreme Calibrations (Annual Percent)

The elasticity of a �rm�s real marginal cost with respect to its own output level (! > 0) has little

e¤ect on the results. Less elastic marginal cost produces stronger incentives for policy to avoid zero

nominal interest rates. However, such incentives are not strong enough to generate any noticeable

change in the optimal in�ation rate.

The ability of the policymaker to steer private-sector expectations depends on the degree of in�ation

indexation (0 � 
 < 1). In particular, the expectations channel of monetary policy is less e¤ective when
private-sector expectations are less forward-looking. If there is more in�ation indexation, and thus

private-sector expectations are less forward-looking, the optimal in�ation rate and the frequency of zero

nominal interest rates are higher. With almost full in�ation indexation� 
 equal to 0.99� the optimal

in�ation rate rises to 0.7 percent per year.29

Lower steady state real interest rates (0 < rss < +1) imply lower steady state nominal interest
rates, and thereby the zero lower bound is reached more often. When interest rates are lower, the

policymaker has a stronger incentive to support higher in�ation. With a very low steady state real

interest rate� rss equal to 2 percent per year� the optimal in�ation rate rises to 0.6 percent per year.

The �ndings overall are robust to a wide range of changes to each structural parameter. Although

changing one parameter at a time helps understand the role of a particular dimension of the model in

generating the results, there may be uncertainty along multiple dimensions of the model. As a result,

changing only one parameter may understate the extent of the model misspeci�cation.

The researcher may assess the extent of the model misspeci�cation by changing all the parameters

29For the reasons explained earlier in footnote 21, the scenario of full indexation is not well de�ned because the in�ation
rate would be nonstationary.
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of the model at once, each in the direction that gives rise to the worst scenario. Yet, it is not clear

whether the worst scenario is towards the boundary of the joint parameter space. In fact, as can be

seen in Table 6, the worst scenario for the optimal in�ation rate occurs for intermediate values of the

degrees of price stickiness (0 < � < 1) rather than at the boundary.

6 Model Uncertainty

This section discusses the �ndings for worst-case scenarios of model uncertainty. Following the approach

of Hansen and Sargent (2008), the optimal policy problem is generalized to a robust control problem.

6.1 Robust Control Model

In the robust control approach, the model is viewed as an approximation of the true model of the econ-

omy which is surrounded by unmeasurable uncertainty. The true model is unknown to the policymaker,

but is known to be in a neighborhood around its approximating model. The robust control problem can

be viewed as a game played between the policymaker who aims to maximize its objective function, and

a �ctitious adversary agent (or nature) who at the same time seeks to minimize the objective function

of the policymaker.

Thus, the robust control version of the optimal policy problem is

max
f�t;xt;itg

min
fw1t;w2tg

� Ê0
1X
t=0

�t
h
(�t � 
�t�1)2 + �x2t ��

�
w21t + w

2
2t

�i
(15)

s.t.

�t � 
�t�1 = �Êt (�t+1 � 
�t) + �xt + ut (16)

xt = Êtxt+1 � '
�
it � Êt�t+1 � rnt

�
(17)

ut = �uut�1 + �"u ("ut + w1t) (18)

rnt = (1� �r) rss + �rrnt�1 + �"r ("rt + w2t) (19)

it � 0 (20)

where Êt denotes the expectations operator conditional on information available at time t. The accent

is added above the expectations operator to indicate that expectations are formed under the worst-case

scenario of model uncertainty. As in the standard rational expectations framework, the policymaker

and the private sector share the same model of the economy because the policymaker aims to maximize

welfare for the representative consumer.

However, the policymaker faces model uncertainty and the adversary agent is able to hamper the

policymaker�s ability to shape private-sector expectations. The adversary agent seeks to minimize the

objective function (15) of the policymaker by choosing the variables w1t and w2t and manipulating the
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evolution of the exogenous shock processes (18) and (19). The variables w1t and w2t are interpreted in

the literature as �wort-case shocks�and represent unmeasurable uncertainty surrounding the true model

of the economy. By manipulating the (expected) evolution of the economy, the adversary agent at the

same time can directly a¤ect the formation of expectations.

The parameter � � 0 in the objective function (15) determines the degree of misspeci�cation or
the distance between the approximating model and the worst-case scenario. Intuitively, when � is

small a more severe modeling misspeci�cation can arise. When � ! +1, however, there is no model
uncertainty and the robust control problem simpli�es to the standard rational expectations case, already

analyzed in the previous sections of this paper.

6.2 Solving the Robust Control Model

The in�nite-horizon Lagrangian of the time-zero optimal policy problem (15)-(20) is

max
f�t;xt;itg

min
fm1t;m2t;w1t;w2tg

L̂ � Ê0
1X
t=0

�t
n
� (�t � 
�t�1)2 � �x2t +�

�
w21t + w

2
2t

�
(21)

+m1t [(1 + �
)�t � 
�t�1 � �xt � ut]�m1t�1�t

+m2t [�xt � ' (it � rnt )] +m2t�1�
�1 (xt + '�t)

	
s.t.

Equations (18)-(20) for all t

where m1t and m2t denote the Lagrange multipliers for the equilibrium conditions (16) and (17).

The Kuhn-Tucker conditions are equations (16), (17) and the marginal conditions

@L̂=@�t = �2 (�t � 
�t�1) + (1 + �
)m1t �m1t�1 + �
�1'm2t�1 = 0 (22)

@L̂=@xt = �2�xt � �m1t �m2t + �
�1m2t�1 = 0 (23)

@L̂=@it � it = �'m2t � it = 0; m2t � 0; it � 0 (24)

@L̂=@w1t = 2�w1t � �"um1t = 0 (25)

@L̂=@w2t = 2�w2t + �"r'm2t = 0 (26)

where equation (24) imposes that either the Lagrange multiplier on the Euler equation (m2t � 0) or
the nominal interest rate (it � 0) is zero, at all states and for each period. The adversary agent

chooses the variables w1t and w2t � 0 so to constrain, through the marginal conditions (25) and (26),
the policymaker�s ability to make commitments through the endogenous co-state variables m1t and

m2t � 0.30 As a result of such constraints on the use of policy commitments, model uncertainty can
30Equation (26), m2t � 0, �"r � 0, ' > 0 and � � 0 implies w2t � 0.
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make policy less e¤ective.

Solving the nonlinear system of equilibrium conditions (16), (17) and (22)-(26) delivers a seven-

dimensional nonlinear equilibrium response function

ŷ (st) � (�t; xt; it � 0;m1t;m2t � 0; w1t; w2t � 0) � R7

where the variables w1t and w2t represent the policymaker�s uncertainty surrounding the true model of

the economy. The equilibrium response function has a �ve-dimensional state space

st � (ut; rnt ; �t�1;m1t�1;m2t�1 � 0) � R5

The state in period t + 1 depends on the state and equilibrium response in period t and the shock

innovations that are unknown in period t,

st+1 = g(st; ŷ (st) ; "t+1) (27)

Associated with the equilibrium response function, the expectations function is

Êtŷt+1 =

Z
ŷ (g(st; ŷ (st) ; "t+1)) f ("jt+1) d ("t+1) (28)

where f (�) is the probability density function of the shock innovations, "t � ("ut; "rt) 2 R2.31 Since the
variables w1t and w2t enter directly the equilibrium expectations function, model uncertainty hampers

the policymaker�s ability to shape expectations. The following de�nition of a stochastic robust control

equilibrium is advanced.

De�nition 2 (SRCE) Assume �"j � 0 for j = u; r and � � 0. A �stochastic robust control equilib-

rium�of the optimal policy problem (15)-(20) is a nonlinear policy response function, ŷ (st), over the

state space, st, with law of motion (27), such that the nonlinear system of equilibrium conditions (16),

(17) and (22)-(26) is satis�ed.

When �! +1, however, the robust control problem simpli�es to the standard rational expectations
case. With no model uncertainty, a stochastic robust control equilibrium (SRCE) coincides in the limit

with a standard stochastic rational expectations equilibrium (SREE). This observation justi�es the

following corollary.

Corollary 3 Assume �"j � 0 for j = u; r and � � 0. Given ŷ (st) solving a SRCE and y (st) solving
a SREE, ŷ (st)! y (st) for �! +1.
31As in the standard rational expectations framework, the expectations function is not integrated over the probability

density function of shock innovations when agents have perfect foresight for the reasons explained in footnote 20.
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Proof. When �! +1 equations (25) and (26) imply w1t = w2t = 0. Thus, the system of equilibrium

conditions (16), (17) and (22)-(26) in De�nition 2 (SRCE) coincides in the limit with the system of

equilibrium conditions (2), (3) and (10)-(12) in De�nition 1 (SREE).

6.3 Stochastic Robust Control Equilibrium

This section presents results for the stochastic robust control equilibrium under the baseline calibration

in Table 3. For readability, all results are presented as annualized percentage values.

With respect to the standard rational expectations case, there is one additional parameter that

must be calibrated, � � 0, which determines the degree of model uncertainty. Hansen and Sargent

(2008) propose a statistical theory of model selection to determine a context-speci�c value for �. They

propose choosing a reasonable probability of making a detection error, p (�), about whether observed

equilibrium outcomes may have originated from the approximating model with or without a worst-case

shock.

When � ! +1, and there is no model uncertainty, the probability of making a detection error is
50 percent because in the limit there is no di¤erence between the approximating model with or without

a worst-case shock. When � is smaller, however, the model misspeci�cation is more severe and more

easily detected. Appendix A.3 explains the computation of the detection error probability.

6.3.1 Stationary Distribution

Figure 3 shows the stationary distribution for the worst-case equilibrium with an extreme degree of

model uncertainty, which corresponds to the lowest detection error probability, 29 percent, for which

the algorithm can identify an equilibrium with the zero lower bound in the model.32 The stationary

distribution is almost normal and symmetric around the unconditional mean for in�ation and the output

gap. However, the mean in�ation rate and the mean nominal interest rate are higher for the model with

the zero lower bound.33

Figure 4 shows the stationary distribution for the approximating equilibrium without a worst-case

shock. Since the approximating equilibrium is an �intermediate�case between the worst-case equilibrium

and the standard rational expectations equilibrium, as expected the mean in�ation rate and the mean

nominal interest rate are not as high as under the worst-case equilibrium of the model with the zero

lower bound (Figure 3).

6.3.2 Robustly Optimal In�ation and Welfare Cost from the Zero Bound

Figure 5 depicts average in�ation (top panel), the standard deviation of in�ation (middle panel) and

the frequency of de�ation (bottom panel) over the range of feasible detection error probabilities for the

32The detection error probability is computed by averaging across 104 stochastic simulations. The sample size for the
simulations is set to 80 periods, which is equal to number of observations over the estimation period 1983:1�2002:4 used
to calibrate the quarterly model in Section 4.
33For the worst-case equilibrium with extreme model uncertainty, the coe¢ cient of skewness for the nominal interest

rate is 0.6 and the kurtosis is not signi�cantly di¤erent from that of a normal distribution.
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model with the zero lower bound. The left-hand panel shows the results for the worst-case equilibrium�

for completeness the right-hand panel shows the results for the approximating equilibrium. The optimal

in�ation rate after accounting for the zero lower bound is increasing in a nonlinear fashion with the

degree of model uncertainty.

Although the detection error probability ranges 29 to 50 percent for the model with the zero lower

bound, a detection error probability even as low as 10 percent� not shown in the �gures� is feasible if

the zero lower bound is ignored. As a result, models without the zero lower bound will overstate the

e¤ectiveness of monetary policy and exaggerate the feasible degree of model uncertainty.

Figure 5 shows that the optimal in�ation rate for the worst-case equilibrium rises from 0:2 percent

per year with no model uncertainty to 0:5 percent per year when the detection error probability is

30 percent. The optimal in�ation rate then jumps to 0:9 percent per year when the detection error

probability is 29 percent. Thus, results from the robust control model encompass all the scenarios for

the optimal in�ation rate under the extreme calibrations (Table 6). The standard deviation of in�ation

rises from 1:9 per year with no model uncertainty to 2:9 per year with extreme model uncertainty, and

the frequency of de�ation falls from 47 to 40 percent.

The model provides estimates of the optimal in�ation rate based on a hypothetical measure of

in�ation with no measurement error. As a result, the model-based estimates are independent of any

speci�c measure of in�ation (PCE price index, or others). As explained in section 1, however, available

measures of in�ation tend to be biased upward. Thus, to convert the model-based estimate of in�ation

into an actual measure of in�ation, an estimate of the bias has to be added.

Figure 6 compares in�ation correctly measured (left-hand panel) to in�ation in terms of the PCE

price index (right-hand panel), for which the bias is roughly 0.5 percentage point per year, under the

worst-case equilibrium. The optimal rate of in�ation as measured by the PCE price index ranges 0:7

to 1:4 percent per year depending on the degree of model uncertainty. At the same time, the frequency

of de�ation for the PCE price index ranges 33 to 37 percent. The frequency of de�ation for the PCE

price index is lower, than for a hypothetical measure of in�ation with no measurement bias, because

the stationary distribution for in�ation is shifted by the estimate of the bias.

Figure 7 depicts the average nominal interest rate (top panel), the standard deviation of the nominal

interest rate (middle panel) and the frequency of zero nominal interest rates (bottom panel). With more

severe model uncertainty, higher nominal interest rates are required to protect the economy against

frequent episodes of zero nominal interest rates. The optimal nominal interest rate for the worst-case

equilibrium rises from 3:6 percent per year with no model uncertainty to 4:3 percent per year with an

extreme degree of model uncertainty. The standard deviation of the nominal interest rate rises from 2:4

to 3:2 percent per year, and the frequency of zero nominal interest rates rises from 3:7 to 7:0 percent.

Figure 8 shows the welfare cost for the worst-case equilibrium (top panel) and the approximating

equilibrium (bottom panel). The welfare cost is measured in terms of the permanent reduction in

consumption for the representative agent. The welfare cost from the zero lower bound is given by the

additional loss for the model with the zero lower bound (line with circles) relative to the one without
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(line with squares). More severe model uncertainty produces a larger welfare cost. Yet the welfare cost

from the zero lower bound� the distance between the two lines� amounts to a permanent reduction in

consumption of less than 0:02 percent per year.

6.3.3 Worst-Case Shocks

Without the zero lower bound, the worst-case shocks are linear in the state because the model is linear-

quadratic. When the detection error probability is 29 percent, the worst-case shock to the Phillips Curve

is w1t = 0:34ut + 0rnt + 0�t�1 + 0:17m1t�1 + 0m2t�1. Yet the worst-case shock to the Euler Equation is

irrelevant, w2t = 0¯
�st, because the Euler Equation is redundant to the solution of the model. With the

zero bound, however, the worst-case shocks do not have a closed-form solution.

Figure 9 characterizes the worst-case shocks to the Phillips Curve (left-hand panel) and the Euler

Equation (right-hand panel). The variability of the worst-case shocks (top panel) explains the model

uncertainty. The correlation of the worst-case shocks to either the mark-up shock (middle panel) or the

real-rate shock (bottom panel) is positive, which means that the worst-case shocks are �piled onto�the

exogenous shock processes. The worst-case shock to the Phillips Curve piles onto the mark-up shock

(left-hand, middle panel) but not the real-rate shock (left-hand, bottom panel). The worst-case shock

to the Euler Equation piles onto the mark-up shock (right-hand, middle panel) and the real-rate shock

(right-hand, bottom panel).

7 Conclusions

When in�ation is low, nominal interest rates may approach zero which limits a central bank�s ability

to stabilize the economy by lowering its policy rate. Researchers who have analyzed this issue have

estimated a tradeo¤ between the central bank�s in�ation objective and the likelihood of hitting the zero

lower bound on nominal interest rates. Previous studies show that the incidence of hitting the zero

lower bound falls quickly as the in�ation objective rises from 0 to roughly 4 percent per year. While

this line of research provides information policymakers can use in formulating an in�ation objective, it

does not provide them a direct estimate of the optimal in�ation rate.

An estimate of the optimal in�ation rate, however, can be obtained by simulating a small New-

Keynesian model. In the model described in this paper, estimates of the optimal in�ation rate which

accounts for the zero bound range 0.7 to 1.4 percent per year, for the PCE price index, depending on

the degree of model uncertainty. This range of estimates is somewhat lower than that suggested by

previous researchers.

In interpreting these results, a number of caveats must be kept in mind. First, the model focuses

on the e¤ects of the zero nominal interest rate bound and ignores other potential factors that might

lead policymakers to pursue positive rates of in�ation. These factors include downward wage rigidity

and the potential cost of debt-de�ation. Second, the results are derived from a very simple model that

abstracts from many real world features. Finally, the estimates of measurement error in the various
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price indexes are themselves subject to error, creating some uncertainty around the optimal rate of

in�ation as measured using available price indexes.

Even with these caveats, the results suggest that the zero nominal interest rate bound may not

warrant quite the concern that some economists and policymakers have attributed to it. Still, further

research is needed to con�rm or re�ne these results in models that incorporate a more realistic and

complete description of the economy.

A Appendix

A.1 Numerical Procedure

Solving the robust control model requires �nding a response function which satis�es the high-dimensional

nonlinear system of equilibrium conditions in De�nition 2.

The state space, s � R5, is discretized into a set of N interpolation nodes, fsnjn = 1; :::; Ng where
sn 2 s. The response function, ŷ (s) � R7, is evaluated at intermediate values of the discretization grid
by resorting to multilinear interpolation. Next period�s state depends on the current state and response

and the shock innovations that are unknown in the current period: s+1 = g(s; ŷ (s) ; "+1). Since the

shock innovations, " 2 R2, are normally distributed, the expectations function, Êŷ+1 (s), is evaluated
accurately and e¢ ciently with an M -node Gaussian-Hermite quadrature scheme, f"mjm = 1; :::;Mg
where "m 2 ", as explained in Chapter 7 of Judd (1998).34 Quadrature-based integration is accurate
only if the integrands to be evaluated are smooth. The integrands are smooth because the underlying

distributions of in�ation and the output gap are smooth, which the top panels (in�ation) and middle

panels (output gap) of Figures 1 to 4 show.

The �xed-point of the nonlinear system in De�nition 2 is found with an iterative update rule

ŷk+1  ŷk + �k
�
ŷk+1 � ŷk

�
; from step k to k + 1 (29)

where �k 2 (0; 1] is the step size chosen to guarantee algorithm stability and convergence, as explained

in Chapter 4 of Bertsekas (1999).

The Algorithm proceeds as follows:

Step 1: Assign the interpolation nodes with an e¢ cient, sparse-grid method. Guess an initial value for
the response function, ŷ0.

Step 2: Update the state, evaluate the expectations function and apply the iterative update rule (29)
to derive a new guess for the response function, ŷ+1.

34However, when solving for the perfect-foresight limit (�" ! 0), next period�s state depends only on the current state
and response, s+1 = g(s; y (s)), and the expectations function is Êŷ+1 (s) = ŷ (g(s; y (s))). The stationary distribution
in the limit collapses to a mass point at the deterministic steady state of the model. Since a quadrature scheme is not
necessary, the numerical procedure is less involved.
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Step 3: Stop if max
n=1;:::;N



ŷk+1 � ŷk

 < � , where � > 0 is the convergence tolerance level. Otherwise

repeat step 2.

The convergence tolerance level is set to the square root of machine precision, � = 1:49 � 10�8. The
accuracy of the solution is checked by computing the Euler equation residuals at an arbitrary set of R

residual interpolation nodes, fsrjr = 1; :::; Rg where sr 2 s, as explained by Santos (2000). To assure
that the approximation error is acceptably small and does not a¤ect the results, the Euler equation

residuals are veri�ed at the interpolation nodes and over a �ner grid.

To cope with the curse of dimensionality, the procedure employs a sparse grid which assigns more

weight to the regions of the state space where the occasionally-binding constraint is active. The support

for the exogenous shocks is chosen to cover �4 unconditional standard deviations, which is more than
su¢ cient for a mark-up shock or a real-rate shock to drive the nominal interest rate to its zero lower

bound. The support for the endogenous state variables is chosen large enough to avoid erroneous

extrapolation. To achieve for the baseline an acceptable degree of approximation with a sparse grid

requires N � 3:6 � 104 interpolation nodes and M � 45 quadrature nodes, as opposed to a linearly

spaced grid which would require over 106 interpolation nodes.

To achieve greater e¢ ciency, the procedure employs an approximation re�nement method. The

initial guess for the response function is set to the linearized solution around the deterministic steady

state on a coarse grid, N0�M0. The nonlinear solution obtained for the coarse grid is interpolated over

a �ner grid and used as a new guess to resolve. The degree of approximation is progressively increased

towards the �nal set of nodes, fN0�M0 < N1�M1 < : : : < N�Mg. Experimentation with alternative
initial guesses did not lead to di¤erences in the results.

A.2 Permanent Consumption Loss

The expected utility of the representative household, as shown in Chapter 6 of Woodford (2003a), can

be validly approximated up to second order by

Ê0

1X
t=0

�tUt =
UcY

2

�� (1 + !�)

(1� �) (1� ��) L̂ (30)

where Y denotes steady state output, Uc > 0 is the steady state marginal utility of consumption and

L̂ � �Ê0
1X
t=0

�t
h
(�t � 
�t�1)2 + �x2t ��

�
w21t + w

2
2t

�i
� 0

is the objective function (15) of the policymaker.

At the same time, the utility loss generated by a permanent reduction in consumption of � � 0 can
be validly approximated up to second order by

1

1� �

�
UcY �+

Ucc
2

�
Y �
�2�

=
UcY

1� �

�
�� 1

2'
�2
�

(31)
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where Ucc < 0 is the second derivative of utility with respect to consumption evaluated at the steady

state and ' � �Uc=
�
Y Ucc

�
> 0 is the intertemporal elasticity of substitution of aggregate expenditure.

Equating the right-hand sides of (30) and (31) delivers

1

2'
�2 � �+ 1� �

2

�� (1 + !�)

(1� �) (1� ��) L̂ = 0

Therefore, the loss in terms of permanent consumption is

� = '

 
1�

s
1� 1� �

'

�� (1 + !�)

(1� �) (1� ��) L̂
!

(32)

A.3 Detection Error Probability

To compute the detection error probability, as explained in Chapter 9 of Hansen and Sargent (2008), the

researcher should simulate the model for a small sample. For a long enough sample the misspeci�cation

will be easy to detect. In the limit, for T ! +1, the probability of a detection error is 50 percent.
The researcher can estimate the log-likelihood ratio that the data was generated by the approximat-

ing model without a worst-case shock

rA =
1

T

T�1X
t=0

�
1

2
w0AtwAt � w0At"At

�
where wAt is a vector of control variables set by the adversary agent so to distort the dynamics of

the exogenous shock processes (18) and (19). "At is a vector of innovations normally distributed and

independent across time and cross-sectionally. The paths for wAt are obtained, however, by performing

stochastic simulations with the dynamics of the shocks following the undistorted processes (4) and (5).

The researcher can also estimate the log-likelihood ratio that the data was generated by the approx-

imating model with a worst-case shock

rB =
1

T

T�1X
t=0

�
1

2
w0BtwBt + w

0
Bt"Bt

�
where wBt is a vector of control variables distorting the dynamics of the shock processes (18) and

(19). "Bt is a vector of innovations assumed normally distributed and independent across time and

cross-sectionally. The paths for wBt are stochastically simulated with the shocks following the distorted

processes (18) and (19).

Therefore, by assigning equal prior weights to the approximating model with or without a worst-case

shock, the overall detection error probability is

p (�) =
1

2
(pA + pB)

where pj = Freq(rj � 0), for j = A;B.
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Figure 1: Stationary Distribution of In�ation, Output Gap and Nominal Interest Rate under the Baseline
Calibration (Annual Percent)
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Figure 2: Stationary Distribution for Extremely Uncertain Economy: Standard Deviation of Innovations
50% Larger than Baseline (Annual Percent)
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Figure 3: Stationary Distribution for Worst-Case Equilibrium with Extreme Model Uncertainty: Lowest
Detection Error Probability with Lower Bound (Annual Percent)
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Figure 4: Stationary Distribution for Approximating Equilibrium with Extreme Model Uncertainty:
Lowest Detection Error Probability with Lower Bound (Annual Percent)
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Figure 7: Optimal Nominal Interest Rate and Model Uncertainty (Annual Percent)
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Figure 8: Welfare Cost from the Lower Bound and Model Uncertainty (Annual Percent)
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Figure 9: Worst-Case Shocks and Model Uncertainty (Annual Percent)
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