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Abstract: A body of recent work suggests commonly—used VAR models of output,
inflation, and interest rates may be prone to instabilities. In the face of such instabilities,
a variety of estimation or forecasting methods might be used to improve the accuracy of
forecasts from a VAR. These methods include using different approaches to lag
selection, different observation windows for estimation, (over-) differencing, intercept
correction, stochastically time—varying parameters, break dating, discounted least
squares, Bayesian shrinkage, and detrending of inflation and interest rates. Although
each individual method could be useful, the uncertainty inherent in any single
representation of instability could mean that combining forecasts from the entire range
of VAR estimates will further improve forecast accuracy. Focusing on models of U.S.
output, prices, and interest rates, this paper examines the effectiveness of combination
in improving VAR forecasts made with real-time data. The combinations include
simple averages, medians, trimmed means, and a number of weighted combinations,
based on: Bates-Granger regressions, factor model estimates, regressions involving just
forecast quartiles, Bayesian model averaging, and predictive least squares—based
weighting. Our goal is to identify those approaches that, in real time, yield the most
accurate forecasts of these variables. We use forecasts from simple univariate time
series models and the Survey of Professional Forecasters as benchmarks.
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1 Introduction

In previous work (Clark and McCracken, 2006a) we considered the performance of various
methods for improving the forecast accuracy of VARs in the presence of structural change.
For trivariate VARs in a range of measures of output, inflation, and a short—term interest
rate, these methods include: sequentially updating lag orders, using various observation
windows for estimation, working in differences rather than levels, making intercept cor-
rections (as in Clements and Hendry (1996)), allowing stochastic time variation in model
parameters, allowing discrete breaks in parameters, discounted least squares estimation,
Bayesian shrinkage, and detrending of inflation and interest rates. While some of these
methods performed well at various times, various forecast horizons, and for some variables,
simple averages (across the various methods just described) were consistently among the
best performers.

One interpretation of this result is that it is crucial to have an understanding of the
form of instability when constructing good forecasts. Another, and the one we prefer, is
that in practice it is very difficult to know the form of structural instability, and model
averaging provides an effective method for forecasting in the face of such uncertainty. As
Timmermann (2006) indicates, structural breaks are commonly cited (in studies such as
Bates and Granger (1969), Diebold and Pauly (1987), and Hendry and Clements (2004))
as motivation for combining forecasts from alternative models.

As summarized by Timmermann (2006), competing models will differ in their sensitiv-
ity to structural breaks. Depending on the size and nature of structural breaks, models
that quickly pick up changes in parameters may or may not be more accurate than models
that do not. For instance, in the case of a small, recent break, a model with constant
parameters may forecast more accurately than a model that allows a break in coefficients,
due to the additional noise introduced by the estimation of post—break coefficients (see, for
example, Clark and McCracken (2005b) and Pesaran and Timmermann (2006)). However,
in the case of a large break well in the past, a model that correctly picks up the associ-
ated change in coefficients will likely forecast more accurately than models with constant
or slowly changing parameters. Accordingly, Timmermann (2006) and Pesaran and Tim-
mermann (2006) suggest that combinations of forecasts from models with varying degrees
of adaptability to uncertain (especially in real time) structural breaks will be more accu-

rate than forecasts from individual models. Min and Zellner (1993) consider averaging of



fixed and time—varying parameter models as a means of managing the impacts of structural
change on forecasts. Along the same lines, combining forecasts from models that allow for
different forms of structural breaks (non—stationarities) may improve accuracy.

Accordingly, in this paper we provide empirical evidence on the ability of various forms of
forecast averaging to improve the real-time forecast accuracy of small-scale macroeconomic
VARs in the presence of uncertain forms of model instabilities. Focusing on six distinct
trivariate models incorporating different measures of output and inflation and a common
interest rate measure, we consider a wide range of approaches to averaging forecasts obtained
with a variety of the aforementioned primitive methods for managing model instability. The
average forecasts include: equally weighted averages with and without trimming, medians,
common factor-based forecasts, Bates—Granger combinations estimated with ridge regres-
sion, MSE—weighted averages, lowest MSE forecasts (predictive least squares forecasts),
Bayesian model averages, and combinations based on quartile average forecasts (as sug-
gested by Aiolfi and Timmermann (2006)).> For each of these forms of forecast or model
averaging we construct real time forecasts of each variable using real-time data. We com-
pare our results to those from simple baseline univariate models, selected baseline VAR
models, and forecasts from the Survey of Professional Forecasters (SPF).

We consider this problem to be important for two reasons. First, small-scale VARs
are widely used in macroeconomics and central bank forecasting. Examples of VARs used
to forecast output, prices, and interest rates are numerous, including Sims (1980), Doan,
et al. (1984), Litterman (1986), Brayton et al. (1997), Jacobson et al. (2001), Robertson
and Tallman (2001), Del Negro and Schorfheide (2004), and Favero and Marcellino (2005).
Second, there is an increasing body of evidence suggesting that these VARs may be prone
to instabilities.? Examples include Webb (1995), Kozicki and Tinsley (2001b, 2002), Cog-
ley and Sargent (2001, 2005), Boivin (2006), and Beyer and Farmer (2006). Still more
studies have examined instabilities in smaller models, such as AR models of inflation or

Phillips curve models of inflation. Examples include Stock and Watson (1996, 1999b, 2003,

'Recent examples of studies incorporating averages of forecasts from models with different variables
include Koop and Potter (2004a), Stock and Watson (2003), Hendry and Clements (2004), Maheu and
Gordon (2004), and Pesaran, Pettenuzzo and Timmermann (2006).

2 Admittedly, while the evidence of instabilities in the relationships incorporated in small macroeconomic
VARs seems to be growing, the evidence is not necessarily conclusive. Rudebusch and Svensson (1999) apply
stability tests to the full set of coefficients of an inflation—output gap model and are unable to reject stability.
Rudebusch (2005) finds that historical shifts in the behavior of monetary policy haven’t been enough to make
reduced form macro VARs unstable. Estrella and Fuhrer (2003) find little evidence of instability in joint
tests of a Phillips curve relating inflation to the output gap and an IS model of output. Similarly, detailed
test results reported in Stock and Watson (2003) show inflation—output gap models to be largely stable.



2005), Levin and Piger (2003), Koop and Potter (2004b), Roberts (2006), and Clark and
McCracken (2006b). Although many different structural forces could lead to instabilities
in macroeconomic VARs (e.g., Rogoff (2003) and others have suggested that globalization
has altered inflation dynamics), much of the aforementioned literature has focused on shifts
potentially attributable to changes in the behavior of monetary policy.3

Our results indicate that while some of the primitive forms of managing structural
instability sometimes provide the largest gains in terms of forecast accuracy — notably
those models with some form of Bayesian shrinkage — model averaging is a more consistent
method for improving forecast accuracy. Not surprisingly, the best type of averaging often
varies with the variable being forecast, but several patterns do emerge. After aggregating
across all models, horizons and variables being forecasted, it is clear that the simplest
forms of model averaging — such as those that use equal weights across all models or those
that average a univariate model with a particular VAR, such as a VAR(4) using detrended
inflation and interest rates — consistently perform among the best methods. At the other
extreme, forecasts based on OLS—type combination and factor model-based combination
rank among the worst.

The remainder of the paper proceeds as follows. Section 2 describes the real-time data
and samples. Section 3 provides a synopsis of the forms of model averaging used to forecast
in the presence of uncertain forms of structural change. Section 4 presents our results
on forecast accuracy, including root mean square errors of the methods used. Section 5

concludes.

2 Data

We consider the real-time forecast performance of models with three different measures of
output (y), two measures of inflation (7), and a short—term interest rate (7). The output
measures are GDP or GNP (depending on data vintage) growth, an output gap computed
with the method described in Hallman, Porter, and Small (1991), and an output gap esti-
mated with the Hodrick and Prescott (1997) filter. The first output gap measure (hereafter,
the HPS gap), based on a method the Federal Reserve Board once used to estimate po-

tential output for the nonfarm business sector, is entirely one—sided but turns out to be

3Even if monetary policy is a leading cause of structural instability in common VAR models, the timing
of changes in policy regimes is rarely clear. Moreover, even if policy regimes were easily identified, the type
of instability these regimes changes induce in VARs would remain unclear.



highly correlated with an output gap based on the Congressional Budget Office’s (CBO’s)
estimate of potential output. The HP filter of course has the advantage of being widely
used and easy to implement. We follow Orphanides and van Norden (2005) in our real time
application of the filter: for forecasting starting in period ¢, the gap is computed using the
conventional filter and data available through period ¢t — 1. The inflation measures include
the GDP or GNP deflator or price index (depending on data vintage) and CPI price index.
The short—term interest rate is measured with the 3—-month Treasury bill rate (for which we
have SPF forecasts); using the federal funds rate (for which we do not have SPF forecasts)
yields qualitatively similar results. Note, finally, that growth and inflation rates are mea-
sured as annualized log changes (from ¢ — 1 to t). Output gaps are measured in percentages
(100 times the log of output relative to trend). Interest rates are expressed in annualized
percentage points.

The raw quarterly data on output, prices, and interest rates are taken from the Federal
Reserve Bank of Philadelphia’s Real-Time Data Set for Macroeconomists (RTDSM), the
Board of Governor’s FAME database, and the website of the Bureau of Labor Statistics
(BLS). Real-time data on GDP or GNP and the GDP or GNP price series are from the
RTDSM. For simplicity, hereafter we simply use the notation “GDP” and “GDP price
index” to refer to the output and price series, even though the measures are based on GNP
and a fixed weight deflator for much of the sample. In the case of the CPI and the interest
rates, for which real time revisions are small to essentially non—existent, we simply abstract
from real time aspects of the data. For the CPI, we follow the advice of Kozicki and Hoffman
(2004) for avoiding choppiness in inflation rates for the 1960s and 1970s due to changes in
index bases, and use a 1967 base year series taken from the BLS website in late 2005.% For
the T-bill rate, we use a series obtained from FAME. Finally, we obtained SPF projections
of GDP/GNP growth, inflation, and the T-bill rate from the website of the Federal Reserve
Bank of Philadelphia.’

The full forecast evaluation period runs from 1970:Q1 through 2005; as detailed in sec-
tion 3, forecasts from 1965:Q4 through 1969:Q4 are used as initial values in the combination

forecasts that require historical forecasts. Accordingly, we use real time data vintages from

4The BLS only provides the 1967 base year CPI on a not seasonally adjusted basis. We seasonally
adjusted the series with the X-11 filter.

®The SPF data provide GDP/GNP and the GDP/GNP price index in levels, from which we computed
log growth rates. We derived 1-year ahead forecasts of CPI inflation by compounding the reported quarterly
inflation forecasts.



1965:QQ4 through 2005:Q4. As described in Croushore and Stark (2001), the vintages of the
RTDSM are dated to reflect the information available around the middle of each quarter.
Normally, in a given vintage ¢, the available NIPA data run through period ¢ — 1.6 The start
dates of the raw data available in each vintage vary over time, ranging from 1947:Q1 to
1959:Q3, reflecting changes in the published samples of the historical data. For each fore-
cast origin t in 1965:Q4 through 2005:Q3, we use the real time data vintage t to estimate
output gaps, estimate the forecast models, and then construct forecasts for periods ¢t and
beyond. The starting point of the model estimation sample is the maximum of (i) 1955:Q1
and (ii) the earliest quarter in which all of the data included in a given model are available,
plus five quarters to allow for four lags and differencing or detrending.

We present forecast accuracy results for forecast horizons of the current quarter (h =
0Q), the next quarter (h = 1Q), four quarters ahead (h = 1Y), and eight quarters ahead
(h =2Y). In light of the time ¢ — 1 information actually incorporated in the VARs used for
forecasting at ¢, the current quarter (¢) forecast is really a 1—quarter ahead forecast, while the
next quarter (t+1) forecast is really a 2-step ahead forecast. What are referred to as 1-year
ahead and 2—year ahead forecasts are really 5— and 9-step ahead forecasts. In keeping with
common central bank practice, the 1- and 2—year ahead forecasts for GDP/GNP growth
and inflation are four—quarter rates of change (the l1-year ahead forecast is the percent
change from period ¢ 4+ 1 through t + 4; the 2—year ahead forecast is the percent change
from period ¢ 4+ 5 through ¢ 4+ 8). The 1- and 2—year ahead forecasts for output gaps and
interest rates are quarterly levels in periods ¢ +4 and ¢+ 8, respectively. For computational
simplicity in our extensive real-time analysis, all of the multi—step forecasts are obtained
by iterating the 1-step ahead models.”

As discussed in such sources as Romer and Romer (2000), Sims (2002), and Croushore
(2006), evaluating the accuracy of real time forecasts requires a difficult decision on what
to take as the actual data in calculating forecast errors. The GDP data available today
for, say, 1970, represent the best available estimates of output in 1970. However, output

as defined and measured today is quite different from output as defined and measured in

In the case of the 1996:Q1 vintage, with which the BEA published a benchmark revision, the data run
through 1995:Q3 instead of 1995:Q4.

"We leave as a topic for future research the accuracy of direct multi-step versus iterated forecasts. For
stationary models, Schorfheide (2005) shows that direct multi-step forecasts are typically more accurate if
the 1-step ahead model is badly misspecified. The same result may or may not apply for models subject
to instabilities (non—stationarities). In our application, averaging of forecasts should mitigate the effects of
model misspecification (see the arguments for forecast combination summarized by Hendry and Clements
(2004) and Timmermann (2006)).



1970. For example, today we have available chain weighted GDP; in the 1970s, output was
measured with fixed weight GNP. Forecasters in 1970 could not have foreseen such changes
and the potential impact on measured output. Accordingly, in our baseline results, we
follow Romer and Romer (2000) and use the second available estimates of GDP/GNP and
the GDP/GNP deflator as actuals in evaluating forecast accuracy. In the case of h—step
ahead (for h = 0Q, 1Q, 1Y, and 2Y) forecasts made for period ¢t + h with vintage ¢ data
ending in period ¢ — 1, the second available estimate is normally taken from the vintage
t + h + 2 data set. In light of our abstraction from real time revisions in CPI inflation and

interest rates, for these series the real time data correspond to the final vintage data.

3 Forecast methods

The forecasts of interest in this paper are combinations of forecasts from a wide range of
approaches to allowing for structural change in trivariate VARs: sequentially updating lag
orders, using various observation windows for estimation, working in differences rather than
levels, making intercept corrections (as in Clements and Hendry (1996)), allowing stochas-
tic time variation in model parameters, allowing discrete breaks in parameters identified
with break tests, discounted least squares estimation, Bayesian shrinkage, and detrending
of inflation and interest rates. Table 1 lists the set of individual VAR forecast methods
considered in this paper, along with some detail on forecast construction. To be precise, for
each model — defined as being a baseline VAR in one measure of output (y), one measure
of inflation (7), and one short—term interest rate (i) — we apply each of the estimation and
forecasting methods listed in Table 1.

Note that, although we simply refer to all the underlying forecasts as VAR forecasts,
in fact the list of individual models includes a univariate specification for each of output,
inflation, and the interest rate. For output, widely modeled as following low-order AR
processes, the univariate model is an AR(2). In the case of inflation, we follow Stock and
Watson (2005) and use an MA(1) process for the change in inflation (Ar), estimated with
a rolling window of 40 observations. Stock and Watson find that the IMA(1) generally
outperforms random walk or AR model forecasts of inflation. For simplicity, in light of
some general similarities in the time series properties of inflation and short—term interest
rates and the IMA (1) rationale for inflation described by Stock and Watson, the univariate

model for the short-term interest rate is also specified as an MA(1) in the first difference of



the series (Ad).®
Table 2 provides a comprehensive list, with some detail, of the approaches we use to
combining forecasts from these underlying models. The remainder of this section explains

the averaging methods.

3.1 Equally weighted averages

We begin with seven distinct, simple forms of model averaging, in each case using what
could loosely be described as equal weights. The first is an equally weighted average of all
the VAR forecasts in Table 1, for a given triplet of variables. More specifically, for a given
combination of measures of output, inflation, and the interest rate (for example, for the
combination GDP growth, GDP inflation, and the T-bill rate), we average forecasts from
the 50 VARs listed in Table 1.

Three more equally weighted average forecasts are constructed in much the same way
but with an eye towards making the model average robust to individual forecasts that might
be considered outliers. Specifically, following Stock and Watson (1999a), we consider 10
percent and 20 percent trimmed means. To implement these, at each forecast origin ¢, we
first order the 50 VAR forecasts. With 10 percent trimming, we remove the 3 highest and
lowest forecasts, and take an equally weighted average of the remaining forecasts. With 20
percent trimming, we do the same but after removing the 5 highest and lowest forecasts.
Finally, we also consider using the median rather than the equally weighted average of
all the forecasts (a rule that might be thought of as a trimmed forecast as the trimming
parameter approaches 50 percent).

We include a fifth average forecast approach motivated by the results of Clark and Mc-
Cracken (2005b), who show that forecast accuracy can be improved by combining forecasts
from models estimated with recursive (all available data) and rolling samples. For a given
VAR(4), we form an equally weighted average of the model forecasts constructed using
parameters estimated (i) recursively (with all of the available data) and (ii) with a rolling
window of the past 60 observations. Three other averages are motivated by the Clark and
McCracken (2005a) finding that combining forecasts from nested models can improve fore-
cast accuracy. We consider an average of the univariate forecast with the VAR(4) forecast,

an average of the univariate forecast with the DVAR(4) forecast, and an average of the

8 After completing the results and analysis presented below, we went back and compared the IMA(1) for
the interest rate to various AR alternatives. The IMA(1) generally dominated these alternatives.



univariate forecast with a forecast from a VAR(4) in output, detrended inflation, and the
detrended interest rate (Table 1 and section 3.7 provide more information on the VAR with
detrending).

While these pairwise average forecasts may seem ad hoc from a Bayesian model aver-
aging perspective, our aforementioned results, based on frequentist methods, suggest they
may be effective, especially in the face of considerable parameter estimation noise associated
with VARs. As an example, suppose that, in truth, output, inflation, and the interest rate
can be modeled as a VAR(4). The frequentist results in our prior work (theory, Monte Carlo
experiments, and empirics in Clark and McCracken (2005a)) imply that, unless the VAR(4)
is estimated with great precision, combining forecasts from the VAR(4) with forecasts from
univariate models will likely improve forecast accuracy. Similar arguments suggest averag-
ing a DVAR(4) (or a VAR(4) in detrended data) with univariate forecasts and averaging a
rolling estimate of the VAR with forecasts based on recursive estimates. In each case, com-
bination improves forecast accuracy by shrinking the larger model forecast with relatively
high sampling error and arguably less bias to a smaller model forecast with less sampling

error but greater bias.

3.2 Combinations based on Bates—Granger /ridge regression

We also consider a large number of average forecasts based on historical forecast perfor-
mance — one such approach being forecast combination based on Bates and Granger (1969)
regression. For these methods, we need an initial sample of forecasts preceding the sample
to be used in our formal forecast evaluation. With the formal forecast evaluation sample
beginning with 1970:Q1, we use an initial sample of forecasts from 1965:Q4 (the starting
point of the RTDSM) through 1969:Q4. Therefore, in the case of current quarter forecasts
constructed in 1970:Q1, we have an initial sample of 17 forecasts to use in estimating com-
bination regressions, forming MSE weights, etc. Note also that these performance-based
combinations are based on real time forecast accuracy. That is, in period ¢, in deciding how
best to combine forecasts based on historical performance, we use the historical real time
forecasts compared to real time data in determining the combinations.

To obtain combinations based on the Bates—Granger approach, for each of output, in-
flation, and the interest rate we use the actual data that would have been available to a
forecaster in real time to estimate a generalized ridge regression of the actual data on the

50 VAR forecasts, shrinking the coefficients toward equal weights. Our implementation



follows that of Stock and Watson (1999a): letting Z, 5, denote the vector of 50 forecasts
of variable z.; made in period ¢t and 3°“* denote a 50 x 1 vector filled with 1 /50, the

combination coefficient vector estimate is
7z -1 l
B=(cIso+ Y ZisnpZipne) (B +3" Zpppzien), (1)
t t

where ¢ = k x trace(5071 Y, Zt+h|tZ£+h\t)- We consider three different forecasts, based on
different values of the shrinkage coefficient k: .001, .25, and 1. A smaller (larger) value of
k implies less (more) shrinkage. Following Stock and Watson (1999a), we use a value .001
to approximate the OLS combination of Bates and Granger (1969). For each value of k, we
consider forecasts based on both a recursive estimate of the combination regression (using
all available forecasts) and a 10—year rolling sample estimate (using just the most recent 10

years of forecasts, or all available if less than 10 years are available).

3.3 Common factor combinations

Stock and Watson (1999a, 2004) develop another approach to combining information from
individual model forecasts: estimating a common factor from the forecasts, regressing actual
data on the common factor, and then using the fitted regression to forecast into the future.
Therefore, using the real time forecasts available through the forecast origin ¢, we estimate
(by principal components) one common factor from the set of 50 VAR forecasts for each
of output, inflation, and the interest rate (estimating one factor for output, another for
inflation, etc.). We then regress the actual data available in real time as of ¢ on a constant
and the factor. The factor—based forecast is then obtained from the estimated regression,
using the factor observation for period ¢. As in the case of the ridge regressions, we compute
factor—combination forecasts on both a recursive (using all available forecasts) and 10—-year
rolling (using just the most recent 10 years of forecasts, or all available if less than 10 years

are available) basis.

3.4 MSE-weighted and PLS forecasts

As noted in Bates and Granger (1969), if one ignores the covariances of the forecast errors
across models, the regression-based method above (with & set to 0) is equivalent to weighting
each of the models by its inverse forecast MSE relative to the sum of those for the other
models. Accordingly, we consider several average forecasts based on inverse MSE weights.

At each forecast origin ¢, historical MSEs of the 50 VAR forecasts of each of output, inflation,



and the interest rate are calculated with the available forecasts and actual data, and each
forecast i of the given variable is given a weight of MSE; />, MSE; . In addition,
following Stock and Watson (2004) and Rapach and Strauss (2005), we consider a forecast
based on a discounted mean square forecast error (in which, from a forecast origin of ¢, the
squared error in the earlier period s is discounted by a factor 6°~%). We use a discount rate
of § = .95.

We also consider a forecast based on the model(s) with lowest historical MSE — i.e.,
based on predictive least squares (PLS). At each forecast origin t, we identify the model
forecast with the lowest historical MSE, and then use that single model to forecast into the
future. In the event two or more models are equally accurate in the historical period under
consideration at t, we use an equally—weighted average of the forecasts from these models.

We compute alternative MSE—weighted and PLS forecasts with several different sam-
ples of historical forecasts: all available forecasts (recursive), a 10 year rolling window of

forecasts, and a 5 year rolling window of forecasts.

3.5 Quartile forecasts

Aiolfi and Timmermann (2006) develop alternative approaches to forecast combination that
take into account persistence in forecast performance — the possibility that some models
may be consistently good while others may be consistently bad. Their simplest forecast
is an equally weighted average of the forecasts in the top quartile of forecast accuracy
(that is, the forecasts with historical MSEs in the lowest quartile of MSEs). More sophisti-
cated forecasts involve measuring performance persistence as forecasting moves forward in
time, sorting the forecasts into clusters based on past performance, and estimating combi-
nation regressions with a number of clusters determined by the degree of persistence. For
tractability in our extensive real-time forecast evaluation, we consider simple versions of the
Aiolfi-Timmermann methods, based on just the first and second quartiles. Specifically, we
consider a simple average of the forecasts in the top quartile of historical forecast accuracy.
We also consider a forecast based on an OLS—estimated combination regression including a
constant, the average of the first quartile forecasts, and the average of the second quartile
forecasts. For simplicity, we systematically exclude the third and fourth quartiles in light
of the tendency for some VAR forecasts to be persistently poor (see Clark and McCracken
(2006a)). We compute these quartile-based forecasts with several different samples of his-

torical forecasts: all available forecasts (recursive), a 10 year rolling window of forecasts,
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and a 5 year rolling window of forecasts.

3.6 Bayesian model averages

Following Wright (2003) and Koop and Potter (2004a), among others, we also consider
forecasts obtained by Bayesian model averaging (BMA). At each forecast origin ¢, for each
equation of the 50 models listed in Table 1, we calculate a posterior probability using the

conventional formula

Prob(data|M;) x Prob(M;)
>; Prob(data|M;) x Prob(M;)
Prob(M;) = prior probability on model i = 1/50

Prob(M;|data)

Prob(data|M;) = marginal likelihood for model i.

We consider several different measures of the marginal likelihood, each of which yields a
different BMA forecast. The three measures are the AIC, BIC, and Phillips’ (1996) PIC.”
The BIC is well known to be proportional to the marginal likelihood of models estimated by
OLS or, equivalently, diffuse priors. BMA applications such as Koop, Potter, and Strachan
(2005) and Garratt, Koop, and Vahey (2006) have also used BIC to estimate the marginal
likelihood and in turn average models. The AIC can be viewed as another measure of the
marginal likelihood for models estimated by OLS. Phillips (1996) develops another criterion,
PIC, as a measure of marginal likelihood appropriate for comparing VARs in levels, VARs
in differences, and VARs estimated with informative priors (BVARs). Specifically, at each
forecast origin t, for each of the model estimates listed in Table 1, we compute the AIC,
BIC, and PIC for each equation of the model.'® For each criterion, we then form a BMA
forecast using —.57" times the information criterion value as the marginal likelihood of each
equation.

In our application, calculating the information criteria requires some decisions on how
to deal with some of the important differences in estimation approaches (e.g., rolling versus

recursive estimation) for the 50 underlying model forecasts. In the case of models estimated

9Note that our BMA forecasts are numerically equivalent (with equal prior weights on each model) to
those that would be obtained under the information criteria—weighting approach developed in Kapetanios,
Labhard, and Price (2005). These authors, however, suggest a frequentist, rather than Bayesian, interpre-
tation of the information criterion—weighted forecast.

10T calculating PIC for the univariate IMA models for inflation and interest rates, we simply approximate
the MA fits with AR(1) models estimated for Aw and A (estimating separate models for the rolling sample
and the earlier sample), and calculate PIC values using these AR(1) approximations.

11



with a rolling sample of data, we calculate the AIC, BIC, and PIC based on a model that
allows a discrete break in all the model coefficients at the point of the beginning of the
rolling sample (equivalently, based on two models, one estimated with the rolling window
and the other estimated with data up to the start of the rolling window). Our rationale
is the Ng and Perron (2005) argument that model selection based on information criteria
should use a common estimation sample for all models. For models estimated by discounted
least squares (DLS), we calculate the information criteria using residuals defined as actual
data less fitted values based on the DLS coefficient estimates.

In the case of the AIC and BIC applied to BVAR models, for simplicity we abstract from
the prior and calculate the criteria based on the residual sums of squares and simple param-
eter count (PIC is calculated for VARs and BVARs, to take account of priors, as described
in Phillips (1996)).11 As Phillips (1996) notes, the prior is asymptotically irrelevant in the
sense that, as the sample grows, sample information dominates the prior. Admittedly, to
the extent the priors are important for improving forecasting in finite samples, our BMA
approach based on AIC and BIC will give too little weight to a BVAR relative to the corre-
sponding VAR. However, for marginal likelihood measures other than PIC, taking (proper
Bayesian) account of the finite—sample role of the Bayesian prior in combining forecasts
from models estimated with different priors would require Monte Carlo integration, which

is intractable in our large-scale, real-time forecast evaluation.?

3.7 Benchmark forecasts

To evaluate the practical value of all the averaging methods described above, we compare
the accuracy of the above combination or average forecasts against various benchmarks. In
light of common practice in forecasting research, we use forecasts from the univariate time
series models as one set of benchmarks.!> We also use SPF forecasts of growth, inflation,

and interest rates as benchmarks. Using forecasts from the Federal Reserve’s Greenbook

"For BVARs with TVP, at each point in time ¢ we calculate the model residuals as a function of the
period t coefficients and use these residuals to compute the residual sums of squares.

'2As Koop and Potter (2004a) note, BMA allows for two types of shrinkage: (1) through priors on
parameters imposed in parameter estimation and (2) through the model priors in the calculation of the
BMA weights. Accordingly, in practice, there is some interchangeability between the two types of shrinkage.
Asymptotically, the first form becomes irrelevant asymptotically. Our simple approach with AIC and BIC
corresponds to focusing entirely on the second form of shrinkage.

130f course, the choice of benchmarks today is influenced by the results of previous studies of forecasting
methods. Although a forecaster today might be expected to know that an IMA(1) is a good univariate
model for inflation, the same may not be said of a forecaster operating in 1970. For example, Nelson (1972)
used as benchmarks AR(1) processes in the change in GNP and the change in the GNP deflator (both in
levels rather than logs). Nelson and Schwert (1977) first proposed an IMA(1) for inflation.
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yields qualitatively similar conclusions.

We also include for comparison forecasts from selected VAR methods that are either of
general interest in light of common usage or performed relatively well in our prior work: a
VAR(4); DVAR(4) (a VAR with inflation and the interest rate differenced); BVAR(4) with
conventional Minnesota priors; BVAR(4) with stochastically time—varying (random walk)
parameters; and a BVAR(4) in output, detrended inflation, and the interest rate less the
inflation trend. The BVAR(4) with inflation detrending draws on the work of Kozicki and
Tinsley (2001a,b, 2002) on models with learning about an unobserved time—varying inflation
target of the central bank. For tractability in real time forecasting, we follow Cogley (2002)
in estimating the inflation target or trend with exponential smoothing.!* Table 1 provides

additional detail on all of these model specifications.

4 Results

In evaluating the performance of the forecasting methods described above, we follow Stock
and Watson (1996, 2003, 2005), among others, in using squared error to evaluate accuracy
and considering forecast performance over multiple samples. Specifically, we measure accu-
racy with root mean square error (RMSE). The forecast samples are generally specified as
1970-84 and 1985-2005.'> We split the full sample in this way to ensure our general findings
are robust across sample periods, in light of the evidence in Stock and Watson (2003) and
others of instabilities in forecast performance over time.

To be able to provide broad, robust results, in total we consider a large number of
models and methods — too many to be able to present all details of the results. In the
interest of brevity, we present more detailed results on forecasts of output and inflation than
forecasts of interest rates, in light of generally greater interest in the former. We also focus
on a few forecast horizons — those for A = 0Q, h = 1Q), and h = 1Y — and present just
select supplemental results for the h = 2Y horizon (partly for brevity and partly because,
as the horizon grows, it likely becomes more difficult to identify statistically significant
differences in forecast performance due to growing serial correlation in forecast errors and
the convergence of the forecasts toward unconditional means).

Tables 3 through 8 report forecast accuracy (RMSE) results for six combinations of

4 As noted in Clark and McCracken (2006a), the resulting trend estimate is quite similar to measures of
long—run inflation expectations.

15With forecasts dated by the end period of the forecast horizon h = 0, 1,4, the VAR forecast samples
are, respectively, 1970:Q1+h to 1984:Q4 and 1985:Q1 to 2005:Q3-h.
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output (GDP growth, HPS gap, and HP gap) and inflation (GDP price index and CPI)
and 38 forecast methods. In each case we use the 3-month T-bill as the interest rate, and
present results for horizons h = 0Q, h = 1Q, and h = 1Y. In Table 9 we report forecast
accuracy results for the T-bill rate, from models using GDP growth and GDP inflation and
models using the HP gap and GDP inflation. Table 10 reports 2—year ahead forecast results
for GDP growth, GDP inflation, and the T-bill rate. In every case, the first row of the table
provides the RMSE associated with the baseline univariate model, while the others report
ratios of the corresponding RMSE to that for the benchmark univariate model. Hence
numbers less than one denote an improvement over the univariate baseline while numbers
greater than one denote otherwise.

In Table 11 we take another approach to broadly determining which methods tend to
perform better than the benchmark. Across each variable, model and horizon (excluding
the h = 2Y case), we compute the average rank of the methods included in Tables 3-9.
We present average rankings for every method we consider across each variable, forecast
horizon, and the 1970-84 and 1985-05 samples (spanning all columns of Tables 3-9 plus
unreported results for forecasts of the T-bill rate from models using the HP gap and GDP
inflation, GDP growth and CPI inflation, HPS gap and CPI inflation, and HPS gap and
CPI inflation).

To determine the statistical significance of differences in forecast accuracy, we use a non—
parametric bootstrap patterned after White’s (2000) to calculate p—values for each RMSE
ratio in Tables 3-10. The individual p—values represent a pairwise comparison of each VAR
or average forecast to the univariate forecast. RMSE ratios that are significantly less than 1
at a 10 percent confidence interval are indicated with a slanted font. To determine whether
a best forecast in each column of the tables is significantly better than the benchmark once
the data snooping or search involved in selecting a best forecast is taken into account, we
apply Hansen’s (2005) (bootstrap) SPA. test to differences in MSEs (for each model relative
to the benchmark). Hansen shows that, if the variance of the forecast loss differential of
interest differs widely widely across models, his SPA. test will typically have much greater
power than White’s (2000) test. For each column, if the SPA, test yields a p—value of 10
percent or less, we report the associated RMSE ratio in bold font. Because the SPA, test is
based on t-statistics for equal MSE instead of just differences in MSE (that is, takes MSE

variability into account), the forecast identified as being significantly best by SPA. may not
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be the forecast with the lowest RMSE ratio.

We implement the bootstrap procedures by sampling from the time series of forecast
errors underlying the entries in Tables 3-10. For simplicity, we use the moving block method
of Kunsch (1989) and Liu and Singh (1992) rather than the stationary bootstrap actually
used by White (2000) and Hansen (2005); the moving block is also asymptotically valid.
The bootstrap is applied separately for each forecast horizon, using a block size of 1 for the
h = 0Q forecasts, 2 for h = 1Q, 5 for h = 1Y, and 9 for h = 2Y.'6 In addition, in light
of the potential for changes over time in forecast error variances, the bootstrap is applied
separately for each subperiod. Note, however, that the bootstrap sampling preserves the

correlations of forecast errors across forecast methods.

4.1 Declining volatility

While there are many nuances in the detailed results, some clear patterns emerge. The
univariate RMSEs clearly show the reduced volatility of the economy since the early 1980s,
particularly for output. For each horizon, the benchmark univariate RMSEs of GDP growth
and HP gap forecasts declined by roughly two-thirds across the 1970-84 and 1985-05 samples;
the benchmark RMSE for HPS gap forecasts declined by about half. The reduced volatility
is less extreme for the inflation measures but still evident. For each horizon, the benchmark
RMSEs fell by roughly half across the two periods, with the exception that at the h = 1Y
horizon the variability in GDP inflation declined nearly two-thirds. The reverse is true for
the interest rate forecasts. For each horizon, the benchmark RMSEs fell by roughly two-
thirds across the two periods, with the exception that at the h = 1Y horizon the variability
declined only by half.

4.2 Declining predictability

Consistent with the results in Campbell (2006), D’Agostino, et al. (2005), Stock and Watson
(2005), and Tulip (2005), there are some clear signs of a decline in the predictability of both
output and inflation: it has become harder to beat the accuracy of a univariate forecast.
For example, for each forecast horizon, most methods or models beat the accuracy of the
univariate forecast of GDP growth during the 1970-84 period (Tables 3 and 6). In fact,

many do so at a level that is statistically significant; at each horizon Hansen’s (2005) SPA.

YSFor a forecast horizon of T periods, forecast errors from a properly specified model will follow an MA (7—1)
process. Accordingly, we use a moving block size of 7 for a forecast horizon of 7.
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test identifies a statistically significant best performer. But over the 1985-2005 period, only
the BVAR(4)-TVP models are more accurate at short horizons, and that improvement fails
to be statistically significant. At the h = 1Y horizon a handful of the methods continue to
outperform the benchmark univariate, but very few are statistically significant.

The reduction in predictability is a bit more mixed when output is measured by an
output gap. For example, in the case of h = 1Y forecasts of the HPS output gap over
the 1970-84 period (Tables 4 and 7), many methods perform significantly better than the
benchmark, while only a couple of forecasts significantly outperform the benchmark in
the 1985-05 period. However, when the HP measure of the output gap is used, a higher
percentage of the methods outperform the univariate benchmark at all horizons, and the
magnitude of the accuracy gains can be impressive. In fact, in Table 5 we see that the
inflation detrended BVAR(4) model improves upon the benchmark in every horizon during
the 1985-05 period and does so with statistically significant maximal gains of 20 and 30
percent at the h = 1Q) and h = 1Y horizons.

The predictability of inflation has also declined, although less dramatically than for
output. For example, in models with GDP growth and GDP inflation (Table 3), the best
1-year ahead forecasts of inflation improve upon the univariate benchmark RMSE by more
than 10 percent in the 1970-84 period but only about 5 percent in 1985-05. The evidence
of a decline in inflation predictability is perhaps most striking for CPI forecasts at the
h = 0Q horizon. In Tables 6-8, most of the models convincingly outperform the univariate
benchmark during the 1970-84 period, with statistically significant maximal gains of roughly
20 percent. But in the following period, fewer methods outperform the benchmark, with
gains typically about 4 percent.

Predictability of the T-bill rate has not so much declined as it has shifted to a longer
horizon. In Table 9 we see that at the h = 0Q) horizon far fewer methods outperform the
univariate benchmark as we move from the 1970-84 period to the 1985-05 period. However,
the decline in relative predictability starts to weaken as the forecast horizon increases. At
the h = 1Q) horizon some methods continue to beat the benchmark, although with maximal
gains of only about 5 percent. But at the h = 1Y horizon, not only do a larger number of
methods improve upon the benchmark, they do so with maximal gains that are substantial

and statistically significant, at about 12 percent.
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4.3 Averaging methods that typically outperform the benchmark

The sharp decline of predictability makes it difficult to identify models or averaging methods
that consistently beat the accuracy of the univariate benchmarks. The considerable sam-
pling error inherent in small sample forecast comparisons further compounds the difficulty
of finding a method that always or nearly always beats the univariate benchmark. Suppose,
for example, that there exists a model or average forecast that, in population, is somewhat
more accurate (by 10 percent, say) than the univariate benchmark. For forecast samples
of roughly 15 years, there is a good chance that, in a given sample, the univariate forecast
will actually be more accurate (see, e.g., Clark and McCracken’s (2006b) results for Phillips
curve forecasts of inflation). The sampling uncertainty grows with the forecast horizon. As
a result, we probably shouldn’t expect to be able to identify a particular forecast model or
method that beats the univariate benchmark for every variable, horizon, and sample period.
Instead, we might judge a model or method a success if it beats the univariate benchmark
most of the time (with some consistency across the 1970-84 and 1985-05 samples) and, when
it fails to do so, is not dramatically worse than the univariate benchmark.

With these considerations in mind, the best forecast would appear to come from the
pairwise averaging class: the single best forecast is an average of the univariate forecast
with the forecast from a VAR(4) with inflation detrending (a VAR(4) in y, # — 7*;, and
i —m*, motivated by the work of Kozicki and Tinsley (2001a,b, 2002)). More so than any
other forecast, the forecast based on an average of the univariate and inflation detrended
VAR(4) projections beats the univariate benchmark a very high percentage of the time and,
when it fails to do so, is generally comparable to the univariate forecast. For example, in
the case of forecasts of GDP growth and GDP inflation from models in these variables and
the T-bill rate (Table 3), this pairwise average’s RMSE ratio is less than 1 for all samples
and horizons, with the exception of h = 0Q) and h = 1Q) forecasts of GDP growth for 1985-
05, in which cases the RMSE ratio is only slightly above 1. For 1-year ahead forecasts of
GDP growth, the RMSE of this average forecast is about 15 percent below the univariate
benchmark for 1970-84 and 9 percent below for 1985-05; the corresponding figures for GDP
inflation are each roughly 3 percent. Similarly, for forecasts of the HPS output gap and CPI
inflation (Table 7), the RMSE ratio of the univariate-inflation detrended VAR(4) average
forecast is less than 1 in all columns but one, in which the ratio is 1.010 (h = 0Q) forecasts

of the HPS gap).
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While not quite as good as the average of the univariate and inflation detrended VAR
forecasts, some other averages also seem to perform well, beating the accuracy of the univari-
ate benchmark with sufficient consistency as to be considered superior. In particular, two
of the other pairwise forecasts — the VAR(4) with univariate and DVAR(4) with univariate
averages — are often, although not always, more accurate than the univariate benchmarks.
For instance, in forecasts of the HPS output gap and CPI inflation (Table 7), these pairwise
averages’ RMSE ratios are less than 1 in 8 of 12 columns, and only slightly to modestly
above 1 (1.5 to 3.3 percent) in the exceptions. The VAR(4)-univariate average tends to
have a more consistent advantage in 1985-05 forecasts. In addition, among the inflation
forecasts, the three pairwise combinations (univariate with inflation detrended VAR(4),
VAR(4) and DVAR(4)) are the most consistent out-performers of the univariate benchmark
across both the 1970-84 and 1985-05 subsamples.

The rankings in Table 11 confirm that, from a broad perspective, the best forecasts
are averages. In these rankings, the single best forecast is the average of the forecasts
from the univariate and inflation detrended VAR(4). Across all variables, horizons, and
samples, this forecast has an average ranking of 6.5; the next—best forecast, the average of
the univariate and VAR(4) forecasts, has an average ranking of 11.4. While the univariate-
inflation detrended VAR(4) average is, in relative terms, especially good for forecasting the
T-bill rate (see column 5), this forecast retains its top rank even when interest rate forecasts
are dropped from the calculations (column 2). This average forecast also performs relatively
well for forecasting both output (column 3 shows it ranks a close third to the recursive best
quartile and BVAR(4) with inflation detrending forecasts) and inflation (column 4 shows
it ranks first). As to sample stability, the univariate-inflation detrended VAR(4) average is
not best across both samples, but consistent. In the 1970-84 sample, this average is slightly

outranked by a few others (column 6), but in the later sample, it is the top-ranked forecast.

4.4 Averaging methods that sometimes outperform the benchmark

Among other forecasts, it is difficult to identify any methods that might be seen as con-
sistently equaling or materially beating the univariate benchmark. Take, for instance, the
simple equally weighted average of all forecasts, applied to a model in GDP growth, GDP
inflation, and the T-bill rate (Table 3). This averaging approach is consistent in beating
the univariate benchmark in the 1970-84 sample, but in most cases fails to beat the bench-

mark in the 1985-05 sample. Similarly, in the case of T-bill forecasts from the same model
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(Table 9, left half), the all-model average loses out to the univariate benchmark for two of
the six combinations of horizon and sample, while the generally best—performing method
of averaging the univariate and inflation detrended VAR(4) forecasts beats the univariate
benchmark in all cases.

A number of the other averaging methods perform quite comparably to the simple aver-
age — and thus, by extension, fail to consistently equal or beat (materially) the univariate
benchmark. Among the broad average forecasts, from the results in Tables 3-9 there seems
to be no advantage of a median forecast or trimmed means over the simple average. The ac-
curacy of these forecasts tends to be quite similar. For example, in the case of 1-year ahead
forecasts of GDP growth and GDP inflation for 1985-05, the 20 percent trimmed mean
forecast’s RMSE ratios are .972 (growth) and 1.023 (inflation), compared to the simple
average’s ratios of, respectively, .962 and 1.036 (Table 3).

Similarly, MSE—weighted forecasts are comparable to simple average forecasts, in terms
of RMSE accuracy.!” To use the same example of 1-year ahead forecasts of GDP growth
and GDP inflation for 1985-05, the recursively MSE—weighted forecast’s RMSE ratios are
.957 (growth) and 1.028 (inflation), compared to the simple average’s ratios of, respectively,
962 and 1.036 (Table 3). In 1-year ahead forecasts of CPI inflation (Table 6), the RMSE
ratio of the recursively MSE-weighted forecast is .951 for 1970-84 and 1.055 for 1985-05,
compared to the simple average forecast’s RMSE ratios of .950 and 1.066, respectively.

Using the best—quartile forecast yields mixed results: the best quartile forecasts are
sometimes more accurate and other times less accurate than the simple average and uni-
variate forecasts. For example, in Table 6’s results for 1-year ahead forecasts of GDP
growth, the best quartile forecast based on a 10 year rolling sample has a RMSE ratio of
.780 for 1970-84 and 1.017 for 1985-05, compared to the simple average forecast’s RMSE
ratios of, respectively, .839 and .997. Similarly, for Table 6’s CPI inflation forecasts, the 10
year rolling best quartile approach yields a forecast that is more accurate than the simple
average for 1970-84 and less accurate for 1985-05. Where the best quartile forecast seems
to have a consistent advantage over a simple average is in output forecasts (especially for
the HP output gap) for 1970-84.

The rankings in Table 11 confirm the broad similarity of the above methods — the

simple average, MSE—weighted averages, and best quartile forecasts. For example, the

"However, in the case of forecasts of the HP output gap, the MSE-weighted averages are consistently
slightly better than the simple averages.
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simple average forecast has an overall average ranking of 13.6, compared to rankings of 12.1
for the recursive MSE—weighted forecast and 13.0 for the recursive best quartile forecast. By
comparison, the best forecast, the univariate-inflation detrended VAR(4) average, has an
overall ranking of 6.5. In a very broad sense, most of the aforementioned average forecasts
are better than the univariate benchmarks in that they all have higher rankings than the
univariate’s average ranking of 17.7 (column 1). Note, however, that most of their advantage
comes in the 1970-84 sample; in the later sample, the univariate forecast generally ranks
higher. For instance, for 1970-84 output and inflation forecasts, the all-model average has
an average accuracy rank of 12.0, compared to the univariate ranking of 24.0 (column 6).
But for 1985-05 forecasts, the all-model average has an average accuracy rank of 17.6,

compared to the univariate ranking of 13.5 (column 7).

4.5 Averaging methods that rarely outperform the benchmark

Many of the other averaging or combination methods are clearly dominated by univariate
benchmarks (and, in turn, other average forecasts). OLS combinations or ridge combina-
tions that approximate OLS often fare especially poorly. The OLS—approximating ridge
regression combination (the one with & = .001) consistently yields poor forecasts. For ex-
ample, in the case of 1985-05 1—year ahead forecasts of CPI inflation from models with GDP
growth (Table 6), the RMSE ratio of the recursively estimated ridge regression with shrink-
age parameter of .001 is 1.458. In other instances, the RMSE of the OLS—-approximating
ridge combination is about twice as large as that of the univariate benchmark. Similarly, the
forecasts based on OLS combination regression using the first and second quartile average
forecasts — especially those using rolling samples — are generally (although not always,
to be sure) dominated by other average forecasts. In the same example, the RMSE ratios
of the forecasts based on rolling OLS combinations of the top two quartile forecasts are
1.125 (10 year rolling) and 1.110 (5 year rolling), respectively, compared to the all-average
forecast’s RMSE ratio of 1.066.

While using more shrinkage improves the accuracy of forecast combinations estimated
with generalized ridge regression, even the combinations based on ridge regression with
non—trivial shrinkage are generally less accurate than the univariate benchmarks and simple
average forecasts. For example, in 1985-05 forecasts of GDP growth from models using the
GDP inflation measure (Table 3), the RMSE ratios of the k = 1 recursive ridge regression

forecast are all above those of the simple average forecast. While the ridge forecasts are
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more commonly beaten by the simple average, there are, to be sure, a number of instances
(as in the same example, but with a forecast sample of 1970-84) in which ridge forecasts
are more accurate. On balance, though, the ridge combinations seem to be inferior to
alternatives such as the simple average forecast.

Forecasts based on using factor model methods to obtain a combination are also generally
less accurate than alternatives such as the univariate and simple average forecasts. For
example, in the case of 1-year ahead forecasts of GDP growth and GDP inflation for 1985-
05, the recursively estimated factor combination forecast’s RMSE ratios are 1.021 (growth)
and 1.536 (inflation), compared to the simple average’s ratios of, respectively, .962 and 1.036
(Table 3). The same is true for the PLS forecasts: although PLS forecasts are sometimes
more accurate than the simple average, they are often worse. In the same example, the
recursive PLS forecast’s RMSE ratios are 1.108 and 1.011, respectively.

The BMA forecasts are also generally, although not universally, dominated by the simple
average. For example, in Table 9’s forecasts of the T-bill rate, the RMSE ratios of the BMA:
BIC forecast are consistently above the ratios of the simple average forecast. Similarly, in
forecasts of GDP inflation from models using the HPS output gap (Table 4), the simple
average forecast is, in all cases, at least as good as the BMA: BIC forecast. However, in
Table 3’s results for GDP growth and GDP inflation, the accuracy of the BMA: BIC forecast
is generally comparable to that of the simple average forecast. Among the alternative BMA
forecasts, there are times when those using AIC or PIC to measure the marginal likelihood
are more accurate than those using BIC. But more typically, the BMA: BIC forecast is
more accurate than the BMA: AIC and BMA: PIC forecasts — the pattern is especially
clear in 1985-05 forecasts.

The rankings in Table 11 provide a clear and convenient listing of the forecast methods
that are generally dominated by the univariate benchmark and alternatives such as the
best—performing pairwise average forecast and the all-model simple average. As previously
mentioned, generalized ridge forecasts with little shrinkage (k = .001, so as to approximate
OLS-based combination) typically perform among the worst forecasts for all horizons, vari-
ables and periods, with average ranks consistently in the low- to mid-30s. OLS combinations
of quartile forecasts also fare quite poorly when based on rolling samples, with ranks gener-
ally in the mid 20s to low 30s. The factor-based combination forecasts are also consistently

ranked in the bottom tier, with average rankings generally in the mid-20s. While not neces-
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sarily in the bottom tier, the BMA forecasts are generally dominated by the simple average
forecast. The overall rankings of the BMA: BIC, BMA: PIC, and BMA: AIC forecasts are
22.0, 26.2, and 30.0, respectively, compared with the simple average forecast’s ranking of
13.6 (first column). The average ranks of the PLS forecasts are consistently around 20 (or
much worse in the 5 year rolling case). The ridge-based combination forecasts with the
highest degree of shrinkage (k = 1) fare much better than the OLS-approximating ridge
combinations, but consistently rank below the simple average forecast. For example, as
shown in the first column, the 10—year rolling ridge regression with k& = 1 has an average

ranking of 15.8.

4.6 Single VAR methods

Among the single VAR forecasts included for comparison, the BVAR(4) with inflation de-
trending is generally best. While shrinkage in the form of averaging forecasts from an
inflation detrended VAR(4) with univariate forecasts is better than estimating the inflation
detrended VAR(4) by Bayesian methods, the latter at least performs comparably to the
simple average forecast. For example, as shown in Table 3, forecasts of GDP growth from
the BVAR(4) with inflation detrending are often at least as accurate as the simple average
forecasts (as, for example, with 1-year ahead forecasts for 1985-05). However, forecasts of
GDP inflation from the same model are generally less accurate than the simple average
(see, for example, the 1-year ahead forecasts for 1985-05). These examples reflect a pattern
evident throughout Tables 3-8: while inflation detrending might be expected to most im-
prove inflation forecasts, it instead most improves output forecasts. Although the accuracy
of the other individual VAR models is more variable, overall these models are more clearly
dominated by the univariate benchmark and others such as the simple average forecast. For
example, in the case of the BVAR(4) using GDP growth and GDP inflation (and the T-bill
rate), the simple average forecasts are generally more accurate than the BVAR(4) forecasts
of growth over 1970-84, inflation over 1970-84, and inflation over 1985-05 (Table 3).

Consistent with these examples, in general, forecasts from single models are dominated
by average forecasts. The pattern is clearly evident in the average rankings of Table 11.
Across all variables, horizons, and samples, the best-ranked single model is the BVAR(4)
with inflation detrending, which is out—-ranked by 12 different average forecasts. The other
single models rank well below the BVAR(4) with inflation detrending.

While averages are broadly more accurate than single model forecasts, it is less clear
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that they are consistently more accurate across sample periods. To check consistency, we
calculated the correlation of the ranks of all 32 average forecasts and all 50 single model
forecasts across the 1970-84 and 1985-05 periods, based on the inflation and output results
covered in the columns 6-7 of Table 11 (using rankings including T-bill rate forecasts yields
essentially the same correlations). The correlation of single model forecast rankings is
about 60 percent; the correlation of the average forecast rankings is about 85 percent. The
implication is that not only is the typical average forecast more accurate than the typical

single model forecast, it is also consistently so across the two periods.

4.7 Longer horizon results

From a broad perspective, extending the forecast horizon to two years yields qualitatively
similar results. The average rankings of each forecast given in Table 11 are quite similar
for the h = 1Y and h = 2Y horizons (the rank correlation for the results in the last two
columns of Table 11 is about .9). The average of the univariate and inflation detrended
VAR(4) forecasts is top—ranked for all horizons, with a ranking of roughly 7 for all but the
h = 0Q) horizon.

That said, at a greater level of detail, accuracy results at the 2—year horizon do differ in
notable ways from those at shorter horizons. Of course, some differences might be expected.
As indicated at the beginning of the section, as the horizon increases beyond a year, forecasts
gradually converge toward unconditional means implied by each model. Convergence will
generally be more rapid for less persistent variables such as GDP growth than for more
persistent variables like inflation. Moreover, for a given variable, convergence will be faster
in some models than in others. In particular, in the case of GDP growth, forecasts from
the benchmark AR(2) model may converge to an unconditional mean faster than forecasts
from a VAR that includes more variables and longer lags.

The detailed results for GDP growth, GDP inflation, and the T-bill rate reported in
Table 10 are consistent with such expectations. As noted above, in the results for horizons
of 1 year or less, predictability has declined over time, in the sense that the VAR and average
forecasts fare better compared to the univariate benchmark in the 1970-84 sample than in
the 1985-05 sample. However, at the 2—year horizon, the reverse is clearly true for GDP
growth and the T-bill rate. In the case of GDP growth, no forecasts are more accurate than
the univariate benchmark in the 1970-84 sample, but about half of the forecasts are more

accurate in the 1985-05 period. This pattern appears to reflect two phenomena. One is that,
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in real time, the VAR models using inflation and interest rate levels are prone to explosive
roots (associated with inflation and the interest rate) in the late 1970s and early 1980s, and
these roots can lead to unreasonable or extreme model-implied unconditional means. These
unconditional means in turn can lead to unreasonable forecasts at the 2—year (and longer)
horizon. For example, the VAR(4) estimated with the 1981:Q3 vintage of data (which has
a largest AR root in excess of 1) yields a 2—year ahead growth forecast of -2.6 percent and
an interest rate forecast of 19.2 percent; this model’s forecasts of growth, inflation, and the
interest rate become even more extreme as the horizon is extended beyond two years. As a
result, in the case of 1970-84 GDP growth forecasts, the VAR forecasts and averages based
on them are generally beaten by the univariate benchmark

The other phenomenon is that, once the sample moves beyond the late 1970s and early
1980s and associated root problems, the richer dynamics and information set incorporated
in VARs compared to univariate models tend to give the VAR and average forecasts an
advantage. For both GDP growth and the T-bill rate, many VAR and average forecasts
(especially for T-bill projections) are more accurate than the univariate benchmark in the
1985-05 sample. However, in the case of inflation, the univariate benchmark is rarely beaten
in the 1985-05 sample (in line with Stock and Watson’s (2005) results for various models
compared to the difficult—to-beat IMA(1) benchmark).

4.8 Interpretation

Why might simple averages in general and the pairwise average of univariate and inflation—
detrended VAR(4) forecasts be more accurate than any single model? As noted in the
introduction, in practice it is very difficult to know the form of structural instability, and
competing models will differ in their sensitivity to structural change. In such an environ-
ment, averages across models are likely to be superior to any single forecast. In line with
prior research on combining a range of forecasts that incorporate information from different
variables (such as Stock and Watson (1999a, 2004) and Smith and Wallis (2005)), simple
equally weighted averages are typically at least as good as averages based on weights tied to
historical forecast accuracy. The limitations of weighted averages relative to simple averages
are commonly attributed to difficulties in estimating potentially optimal weights in finite
samples, especially when the cross—section dimension is large relative to the time dimension.

As to the particular success of forecasts using inflation detrending, one interpretation

is that removing a smooth inflation trend — a trend that matches up well with long—term
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inflation expectations — from both inflation and the interest rate does a reasonable job of
capturing non—stationarities in inflation and interest rates. Kozicki and Tinsley (2001a,b,
2002) have developed such VARs from models with learning about an unobserved, time—
varying inflation target of the central bank.

However, such a single representation is surely not the true model, and noise in estimat-
ing the many parameters of the model likely have an adverse effect on forecast accuracy.
Therefore, a better forecast can be obtained by applying some form of shrinkage. One ap-
proach, which primarily addresses parameter estimation noise, is to use Bayesian shrinkage
in estimating the VAR with inflation detrending. Another approach is to combine fore-
casts from the inflation detrended VAR with forecasts from an alternative model — in our
case, the univariate benchmark (note that the IMA(1) benchmarks for inflation and the
T-bill rate imply random walk trends).'® Koop and Potter (2004a) note that such model
averaging can be viewed as a form of shrinkage for addressing both parameter estimation
noise and model uncertainty. The superiority of this average forecast can be interpreted as
highlighting the value of inflation detrending, shrinkage of parameter noise, and shrinkage

to deal with model uncertainty.

4.9 Comparisons with the Survey of Professional Forecasters

Table 12 compares the accuracy of selected model and average forecasts (generally the better
performing forecasts above) with the accuracy of SPF projections. The variables we report
are those for which SPF forecasts exist: GDP growth, GDP inflation, CPI inflation (in
the case of CPI inflation, the SPF forecasts don’t begin until 1981, so we only report CPI
results for the 1985-05 period), and the T-bill rate. Because the SPF forecast horizon does
not go out two years, the reported horizons are h = 0Q), h = 1Y, and h = 2Y. The first row
of the table provides the raw RMSEs of SPF forecasts; the remaining rows provide ratios
of the RMSE of model or average forecasts relative to the RMSE of the corresponding SPF
forecast.

Perhaps not surprisingly, in light of the results in studies such as Ang, Bekaert, and Wei

(2006), the SPF forecasts generally dominate the time series model and average forecasts.

18 As discussed in Stock and Watson (2005), suppose inflation is equal to the sum of a trend component
and a cycle component. Moreover, suppose the trend is a random walk and the cycle is just white noise. The
change in inflation is then equal to the sum of the trend innovation and the change in the cycle component,
which is an MA(1) process.

9The results of Clark and McCracken (2005b) can be used to make a frequentist case for averaging the
inflation detrended VAR with the univariate benchmark, based entirely on parameter estimation error.
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For example, in h = 0Q forecasts of GDP growth and GDP inflation for 1970-84, the
(recursive) MSE-weighted average forecast’s RMSEs exceed the SPF RMSEs by about 46
and 17 percent, respectively. At such short horizons, of course, the SPF has a considerable
information advantage over simple time series methods. As described in Croushore (1993),
the SPF forecast is based on a survey taken in the second month of each quarter. Survey
respondents then have considerably more information, on variables such as interest rates and
stock prices, than is reflected in time series forecasts that don’t include the same information
(as reflected in the bottom panel of Table 12, that information gives the SPF its biggest
advantage in near-term interest rates). However, the SPF’s advantage over time series
methods generally declines as the forecast horizon rises. For instance, in h = 1Y forecasts
of GDP growth and GDP inflation for 1970-84, the RMSE ratios of the MSE—weighted
average forecasts are, respectively, 1.031 and 1.072.

Moreover, the SPF’s advantage is typically much greater in the 1970-84 sample than
the 1985-05 sample. Campbell (2006) notes the same for SPF growth forecasts compared
to AR(1) forecasts of GDP growth, attributing the pattern to declining predictability. For
example, in this later period, the RMSE ratio of h = 0Q) forecasts of GDP growth from the
MSE-weighted average method is 1.103, compared to 1.456 in the earlier period. Reflecting
the declining predictability of output and inflation and the reduced advantage of the SPF
at longer horizons, for 1-year ahead forecasts in the 1985-05 period, the advantage of the
SPF over the averages of VAR forecasts is often quite small (or nonexistent). For instance,
in 1-year ahead forecasts, the RMSE ratios of MSE-weighted average forecasts of GDP
growth, GDP inflation, and the T-bill rate are, respectively, .983, .980, and .986. However,
in forecasts of CPI inflation, the SPF retains a sizable accuracy advantage over all VAR—-

based forecasts.

5 Conclusion

In this paper we provide empirical evidence on the ability of several forms of forecast aver-
aging to improve the real-time forecast accuracy of small-scale macroeconomic VARs in the
presence of uncertain forms of model instability. Focusing on six distinct trivariate models
incorporating different measures of output and inflation (but a common interest rate mea-
sure), we consider a wide range of approaches to averaging forecasts obtained with a variety

of primitive methods for managing model instability. These primitive methods include se-
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quentially updating lag orders, using various observation windows for estimation, working
in differences rather than levels, making intercept corrections (as in Clements and Hendry
(1996)), allowing stochastic time variation in model parameters, allowing discrete breaks
in parameters identified with break tests, discounted least squares estimation, Bayesian
shrinkage, and detrending of inflation and interest rates. The forecast averages include:
equally weighted averages with and without trimming, medians, common factor-based fac-
tors, combinations estimated with ridge regression, MSE—weighted averages, lowest MSE
forecasts (predictive least squares forecasts), Bayesian model averages, and combinations
based on quartile average forecasts.

Our results indicate that some forms of model averaging do consistently improve forecast
accuracy in terms of root mean square errors. Not surprisingly, the best method often varies
with the variable being forecasted, but several patterns do emerge. After aggregating
across all models, horizons and variables being forecasted, it is clear that the simplest
forms of model averaging — such as those that use equal weights across all models or
those that average a univariate model with a particular VAR, such as a VAR(4) with
inflation detrending — consistently perform among the best methods. At the other extreme,
forecasts based on OLS—-type combination and factor model-based combination rank among

the worst.
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Table 1: VAR forecasting methods

method details

VAR(4) VAR in y, m, ¢ with fixed lag of 4

VAR(2) same as above with fixed lag of 2

VAR(AIC) VAR with system lag determined at each t by AIC
VAR(BIC) VAR with system lag determined at each t by BIC

VAR(AIC, by eq.&var.)
VAR(BIC, by eq.&var.)
DVAR(4)
DVAR(2)
DVAR(AIC)
DVAR(BIC)
DVAR(AIC, by eq.&var.)
DVAR(BIC, by eq.&var.)
BVAR(4)
BDVAR(4)
VAR(4), rolling
VAR(2), rolling
(AIC), rolling
VAR(BIC), rolling
(

VAR(AIC, by eq.&var.), rolling
VAR(BIC, by eq.&var.), rolling

DVAR(4), rolling
DVAR(2), rolling
DVAR(AIC), rolling
DVAR(BIC), rolling

DVAR(AIC, by eq.&var.), rolling
DVAR(BIC, by eq.&var.), rolling

BVAR(4), rolling
BDVAR(4), rolling
DLS, VAR(4)
DLS, VAR(2)
DLS, VAR(AIC)
DLS, DVAR(4)
DLS, DVAR(2)
DLS, DVAR(AIC)

VAR(AIC), AIC intercept breaks
VAR(AIC), BIC intercept breaks
VAR(4), intercept correction
VAR(AIC), intercept correction
VAR(4), inflation detrending
VAR(2), inflation detrending
VAR(AIC), inflation detrending
VAR(BIC), inflation detrending
BVAR(4), inflation detrending

BVAR(4) with TVP
BVAR(4) with TVP, A4
BVAR(4) with TVP, A4
BVAR(4) with TVP, \y =
BVAR(4) with intercept
BVAR(4) with intercept
univariate

5,4 = .0025
1000, A = .005
1000, A = .0001

TVP
TVP, Ay = .5, A = .0025

VAR in y, m, i allowing different, AIC-chosen lags for each variable in each equation
same as above, with BIC-determined lags

VAR in y, Aw, A7 with fixed lag of 4

same as above with fixed lag of 2

VAR in y, Am, Ai with system lag determined at each t by AIC

VAR in y, Ax, At with system lag determined at each ¢t by BIC

VAR in y, Ax, At allowing different, AIC-chosen lags for each variable in each equation
same as above, with BIC-determined lags

VAR(4) in y, 7, i, est. with Minnesota priors, using A1 = .2, A2 = .5, A3 = 1, A4 = 1000
VAR(4) in y, Am, Ag, est. with Minnesota priors, using A1 = .2, A2 = .5, A3 = 1, Ay = 1000
VAR in y, m, ¢ with fixed lag of 4, estimated with a rolling sample

same as above with fixed lag of 2

same as above with AIC—determined lag

same as above with BIC—-determined lag

same as above with AIC-determined lags for each var. in each eq.

same as above with BIC-determined lags for each var. in each eq.

VAR in y, Aw, Ai with fixed lag of 4, estimated with a rolling sample

same as above with fixed lag of 2

same as above with AIC-determined lag

same as above with BIC-determined lag

same as above with AIC-determined lags for each var. in each eq.

same as above with BIC-determined lags for each var. in each eq.

BVAR(4) in y, 7, ¢ with Ay = .2, Ay = .5, A3 = 1, Ay = 1000, est. with a rolling sample
BVAR(4) in y, A7, Ai with Ay = .2, A2 = .5, A3 = 1, A4 = 1000, est. with a rolling sample
VAR(4) in y, 7, i, est. by DLS, using dis. rates of .01 for y eq. and .05 for w and ¢ eq.
same as above with fixed lag of 2

same as above with lag determined from AIC applied to OLS estimates of system
VAR(4) in y, Am, A, est. by DLS using dis. rates of .01 for y eq. and .05 for A7 and Az eq.
same as above with fixed lag of 2

same as above with lag determined from AIC applied to OLS estimates of system
VAR(AIC lags) in y, m, 4, with intercept breaks (up to 2) chosen to minimize the AIC
same as above, using the BIC to determine the number of intercept breaks

VAR(4) forecasts adjusted by the average value of the last four OLS residuals
VAR(AIC lag) forecasts adjusted by the average value of the last four OLS residuals
VAR(4) iny, # —«*, and ¢ — w* |, where 7" = «*; + .05(m — 7" ;)

same as above with fixed lag of 2

same as above with AIC-determined lag for the system in y, # — 7%, and ¢ — 7",
same as above with BIC—determined lag for the system in y, # — 7", and ¢ — 7",
BVAR(4) iny, # — 7%, and i — w*, using A1 = .2, A2 = .5, Az = 1, Ay = 1000

TVP BVAR(4) in y, m, i with Ay = .2, Ao = .5, A3 = 1, Ay = .1, A = .0005

TVP BVAR(4) in y, 7, ¢ with Ay = .2, Ao = .5, A3 =1, Ay = .5, A =.0025

TVP BVAR(4) in y, 7, ¢ with Ay = .2, Ao = .5, A3 = 1, A4 = 1000, A = .005

TVP BVAR(4) in y, 7, ¢ with A1 = .2, Ao = .5, A3 = 1, A4 = 1000, A = .0001

BVAR(4) in y, 7, ¢, TVP in intercepts, A1 = .2, Ao = .5, A3 = 1, Ay = .1, A = .0005
BVAR(4) in y, 7, 4, TVP in intercepts, A\1 = .2, Ao = .5, A3 = 1, Ay = .5, A = .0025
AR(2) for y, rolling MA(1) for Am, rolling MA(1) for A

737}

Notes:

1. The variables y, w, and i refer to, respectively, output (GDP growth, the HPS gap, or the

HP gap), inflation (GDP or

CPI inflation), and the 3-month T-bill rate.

2. Unless otherwise noted, all models are estimated recursively, using all data (starting in 1955 or later) available up to the
forecasting date. The rolling estimates of the univariate models for A7 and A use 40 observations. The rolling estimates of
the VAR models use 60 observatinos.
3. The AIC and BIC lag orders range from 0 (the minimum allowed) to 4 (the maximum allowed).

4. The intercept correction approach takes the form of equation (40) in Clements and Hendry (1996).

5. In BVAR estimates, prior variances take the “Minnesota” style described in Litterman (1986). The prior variances
are determined by hyperparameters A; (general tightness), A2 (tightness of lags of other variables compared to lags of the
dependent variable), A3 (tightness of longer lags compared to shorter lags), and A4 (tightness of intercept). The prior standard
LS

deviation of the coefficient on lag k of variable j in equation j is set to 5

The prior standard deviation of the coefficient
A2 75
kA3 om
autoregressions estimated for variables j and m. The prior standard deviation of the intercept in equation j is set to Ago;. In
fixed parameter BVARs, we use generally conventional hyperparameter settings of A\y = .2, Ao = .5, A3 = 1, and A4 = 1000.
The prior means for all coefficients are generally set at 0, with the following exceptions: (a) prior means for own first lags of
7 and ¢ are set at 1 (in models with levels of inflation and interest rates); (b) prior means for own first lags of y are set at
0.8 in models with an output gap; and (c) prior means for the intercept of GDP growth equations are set to the historical
average of growth in BVAR estimates that impose informative priors (A4 = .1 or .5) on the constant term.

6. The time variation in the coefficients of the TVP BVARs takes a random walk form. The variance matrix of the coefficient
innovations is set to A times the Minnesota prior variance matrix. In time—varying BVARs with flat priors on the intercepts
(A4 = 1000), the variation of the innovation in the intercept is set at A times the prior variance of the coefficient on the own
first lag instead of the prior variance of the constant.

on lag k of variable m in equation j is

, where o; and o,, denote the residual standard deviations of univariate
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Table 2: Forecast averaging methods

method

details

avg. of VAR(4), univariate

avg. of infl. detr. VAR(4), univariate
avg. of DVAR(4), univariate

avg. of VAR(4), rolling VAR(4)
average of all forecasts

median

trimmed mean, 10%

trimmed mean, 20%

ridge: recursive, .001

ridge: recursive, .25

ridge: recursive, 1.

ridge: 10y rolling, .001

ridge: 10y rolling, .25

ridge: 10y rolling, 1.

factor, recursive

factor, 10y rolling

MSE weighting, recursive

MSE weighting, 10y rolling

MSE weighting, 5y rolling

MSE weighting, discounted

PLS, recursive

PLS, 10y rolling

PLS, 5y rolling

best quartile, recursive

best quartile, 10y rolling

best quartile, 5y rolling

OLS comb. of quartiles, recursive
OLS comb. of quartiles, 10y rolling
OLS comb. of quartiles, 5y rolling
BMA: AIC

average of forecasts from univariate model and VAR(4) in y, 7, and ¢

average of forecasts from univariate model and VAR(4) in y, 7 — 7*,, and ¢ — 7*;
average of forecasts from univariate model and VAR(4) in Ay, A, and ¢

average of forecasts from recursive and rolling estimates of VAR(4) in y, 7, and &
simple average of forecasts from models listed in Table 1

median of model forecasts

average of model forecasts, excluding 3 highest and 3 lowest

average of model forecasts, excluding 5 highest and 5 lowest

combination of model forecasts, est. with ridge regression (1), k = .001

same as above, using k = .25

same as above, using k = 1

same as above, using k = .001 and a rolling window of 40 forecasts

same as above, using k = .25 and a rolling window of 40 forecasts

same as above, using k = 1 and a rolling window of 40 forecasts

forecast from regression on common factor in model forecasts

same as above, using rolling window of 40 forecasts

inverse MSE—weighted average of model forecasts

same as above, using a rolling window of 40 forecasts

same as above, using a rolling window of 20 forecasts

inverse discounted MSE—weighted average of model forecasts, with discount rate of .95
forecast from model with lowest historical MSE

same as above, using a rolling window of 40 forecasts

same as above, using a rolling window of 20 forecasts

simple average of model forecasts in the top quartile of historical (MSE) accuracy
same as above, using a rolling window of 40 forecasts

same as above, using a rolling window of 20 forecasts

forecast from (OLS) regression on the avg. forecasts from the 1st and 2nd quartiles
same as above, using a rolling window of 40 forecasts

same as above, using a rolling window of 20 forecasts

BMA of model forecasts, using AIC as measure of marginal likelihood

BMA: BIC BMA of model forecasts, using BIC as measure of marginal likelihood
BMA: PIC BMA of model forecasts, using Phillips’ (1996) PIC as measure of marginal likelihood
Notes:

1. All averages are based on the 50 forecast models listed in Table 1, for a given combination of measures of output,
inflation, and the short-term interest rate.

2. See the notes to Table 1.
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Table 12: Accuracy of select VAR and average forecasts compared to SPF forecasts,
in real time data
(RMSEs in first row, RMSE ratios in all others)

GDP growth forecasts
1970-84 1985-2005
h=0Q | h=1Q | h=1Y | h=0Q | h=1Q | h=1Y
SPF 2.945 3.943 2.903 1.664 1.798 1.331
univariate 1.545 1.274 1.251 1.055 1.015 1.027
BVAR(4) with TVP 1.478 1.185 1.214 1.049 1.002 .944
BVAR(4), inflation detrending 1.364 1.058 1.015 1.126 1.077 .962
avg. of VAR(4), univariate 1.523 1.174 1.118 1.080 1.037 981
avg. of DVAR(4), univariate 1.474 1.133 .995 1.129 1.096 1.022
avg. of infl. detr. VAR(4), univariate 1.479 1.139 1.071 1.073 1.031 .942
average of all forecasts 1.458 1.118 1.046 1.106 1.076 .988
MSE weighting, recursive 1.456 1.116 1.031 1.103 1.074 .983
best quartile, recursive 1.456 1.119 974 1.084 1.079 .965
GDP inflation forecasts
1970-84 1985-2005
h=0Q | h=1Q | h=1Y | h=0Q | h=1Q | h=1Y
SPF 1.524 2.087 2.265 .826 911 .780
univariate 1.254 1.074 1.089 1.198 1.155 .953
BVAR(4) with TVP 1.208 1.131 1.205 1.201 1.129 .955
BVAR(4), inflation detrending 1.256 1.141 1.168 1.210 1.186 1.226
avg. of VAR(4), univariate 1.199 1.049 1.088 1.176 1.106 .887
avg. of DVAR(4), univariate 1.210 1.022 1.018 1.172 1.110 .923
avg. of infl. detr. VAR(4), univariate 1.205 1.044 1.062 1.181 1.117 .924
average of all forecasts 1.170 1.065 1.066 1.225 1.152 987
MSE weighting, recursive 1.172 1.066 1.072 1.224 1.151 .980
best quartile, recursive 1.186 1.067 1.091 1.216 1.134 1.009
CPI inflation forecasts
1970-84 1985-2005
h=0Q | h=1Q | h=1Y | h=0Q | h=1Q | h=1Y
SPF NA NA NA 793 1.252 .962
univariate NA NA NA 1.690 1.167 1.304
BVAR(4) with TVP NA NA NA 1.667 1.127 1.220
BVAR(4), inflation detrending NA NA NA 1.648 1.150 1.383
avg. of VAR(4), univariate NA NA NA 1.631 1.158 1.298
avg. of DVAR(4), univariate NA NA NA 1.608 1.147 1.320
avg. of infl. detr. VAR(4), univariate NA NA NA 1.636 1.165 1.329
average of all forecasts NA NA NA 1.663 1.181 1.390
MSE weighting, recursive NA NA NA 1.660 1.175 1.375
best quartile, recursive NA NA NA 1.645 1.178 1.407
T-bill rate forecasts
1970-84 1985-2005
h=0Q | h=1Q | h=1Y | h=0Q | h=1Q | h=1Y
SPF .310 1.436 2.589 .105 .462 1.552
univariate 4.207 1.461 1.090 3.612 1.683 1.047
BVAR(4) with TVP 3.992 1.364 1.148 3.893 1.694 .989
BVAR(4), inflation detrending 3.913 1.257 .989 4.154 1.720 .934
avg. of VAR(4), univariate 3.931 1.359 1.122 3.568 1.626 .968
avg. of DVAR(4), univariate 3.916 1.329 1.052 3.710 1.743 1.080
avg. of infl. detr. VAR(4), univariate 3.886 1.330 1.050 3.547 1.610 951
average of all forecasts 3.833 1.355 1.109 3.734 1.664 .989
MSE weighting, recursive 3.860 1.354 1.098 3.741 1.666 .986
best quartile, recursive 4.028 1.374 1.069 3.798 1.687 .995

Notes:

1. The forecast errors are calculated using the second—available (real-time) estimates of output and inflation as the actual
data on output and inflation.

2. All of the GDP growth, GDP inflation, and T-bill results correspond to those reported in Table 3, based on models in
GDP growth, GDP inflation, and the T-bill rate.

3. The CPI results correspond to those reported in Table 5, based on models in GDP growth, CPI inflation, and the T-bill
rate.

4. RMSEs for SPF forecasts of CPI inflation are not reported for the 1970-84 sample because the SPF data don’t begin until
1981.

5. See the notes to Table 3.
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