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1. Introduction

Monetary policy making is complex. Central bankers examine a vast array of data,
hear from a variety of advisors, use suites of models to interpret the data, and apply
judgment to adjust the predictions of models. This process produces a monetary
policy rule that is a complicated, probably non-linear, function of a large set of
information about the state of the economy.

For both descriptive and prescriptive reasons, macroeconomists have sought a sim-
ple characterization of policy. Perhaps the most successful simplification is due to
Taylor (1993). He finds that a very simple rule does a good job of describing Federal
Reserve interest-rate decisions, particularly since 1982. Taylor’s rule is

it = α(πt − π∗) + γxt + εt, (1)

where i is the central bank’s policy interest rate, π is inflation, π∗ is the central
bank’s inflation target, x is output, and ε is a possibly serially correlated random
variable. With settings of α = 1.5 and γ = .5 or 1, Taylor (1999a) uses this equation
to interpret Federal Reserve behavior over several eras since 1960.

The Taylor principle—the proposition that central banks can stabilize the macroe-
conomy by adjusting their interest rate instrument more than one-for-one with infla-
tion (setting α > 1)—and the Taylor rule that embodies it have proven to be powerful
devices to simplify the modeling of policy behavior. The rule appears to be a good ap-
proximation to Federal Reserve behavior since the early 1980s [Taylor (1993, 1999a),
Clarida, Gali, and Gertler (2000)]. It has also been found to produce desirable out-
comes in a class of models now in heavy use in policy research [Bryant, Hooper, and
Mann (1993), Rotemberg and Woodford (1997), Taylor (1999b), Schmitt-Grohe and
Uribe (2004)]. Some policy institutions publish the policy interest rate paths im-
plied by Taylor-inspired simple rules, believing that these present useful benchmarks
for policy evaluation [Bank for International Settlements (1998), Sveriges Riksbank
(2001, 2002), Norges Bank (2005), Federal Reserve Bank of St. Louis (2005)]. In
large part because it is a gross simplification of reality, the Taylor rule has been
extraordinarily useful.

Gross simplification is both a strength and a weakness of a constant-parameter rule
like (1). Because the rule compresses and reduces information about actual policy
behavior, it can mask important aspects of that behavior. There are clearly states
of the economy in which policy settings of the nominal interest rate deviate from the
rule in substantial and serially correlated ways. This confronts researchers with a sub-
stantive modeling choice: it matters whether these deviations are shuffled into the ε’s
or modeled as time-varying feedback coefficients, αt and γt. Positing that policy rules
mapping endogenous variables into policy choices evolve according to some probabil-
ity distribution can fundamentally change dynamics, including conditions that ensure
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a unique equilibrium, and substantially expand the set of unique, stationary rational
expectations equilibria supported by conventional monetary models.

This paper generalizes Taylor’s rule and principle by allowing the parameters of
that rule to vary stochastically over time.1 It examines how such time variation affects
the nature of equilibrium in popular models of monetary policy. As a first step, in this
paper we model parameters as evolving exogenously according to a Markov chain. The
models admit analytical solutions that make transparent how time variation in policy
parameters changes the set of equilibria conventional monetary models support. Our
modeling strategy springs from a desire to retain the simplicity of the Taylor rule and
the Taylor principle while taking a step toward realism by recognizing that actual
monetary policy behavior is complex and it does not strictly conform to a simple
constant-coefficient rule.

In the Markov-switching literature, different possible realizations of policy param-
eters are referred to as “regimes” or “states” [Hamilton (1989) or Kim and Nelson
(1999)]. Although we use these terms interchangeably with “rules,” nothing rests on
the terminology. Readers who believe the actual policy rule is time-invariant can in-
terpret this paper as pointing out that introducing a particular form of non-linearity
in policy rules can lead to important changes in the predictions of monetary models.

Our analysis starts with a simple model of inflation determination to illustrate the
following general points:

(1) A unique equilibrium does not require the Taylor principle to hold in every
period, but it does require that it hold for the ergodic distribution of policy.
This leads to a long-run Taylor principle, which we derive explicitly.

(2) Monetary policy can experience substantial (but brief) or modest (and pro-
longed) departures from the Taylor principle and still deliver a unique equi-
librium.

(3) If there are two possible policy rules—one that aggressively reacts to infla-
tion (“more active”) and one that reacts less aggressively (“less active” or
“passive”)—the prospect that future policy might be less active can spillover
to the equilibrium under the more-active rule. The cross-regime spillover can
be substantial, making the volatility of inflation under the more-active rule
many times its level in a corresponding constant-parameter specification.

1In contrast to our approach, some papers consider changes in processes governing exogenous pol-
icy variables [Dotsey (1990), Kaminsky (1993), Ruge-Murcia (1995), Andolfatto and Gomme (2003),
Davig (2003, 2004), and Leeper and Zha (2003)]. Each of these considers changes in exogenous pro-
cesses for policy instruments like a tax rate, money growth rate, or government expenditures. Two
other papers model policy switching as changes in endogenous policy functions [Davig, Leeper, and
Chung (2004) and Davig and Leeper (2005)].
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These themes extend to a conventional model of inflation and output determination
in which price adjustment obeys Calvo’s (1983) mechanism:

(4) The long-run Taylor principle can dramatically expand the region of determi-
nacy relative to the constant-parameter setup.

(5) Cross-rule spillovers occur whenever rules differ. Those spillovers can change
the responses of inflation and output to exogenous disturbances in quantita-
tively important ways.

Compelling empirical evidence points toward recurring regime change as a plausi-
ble working hypothesis to replace the convention of constant-coefficient policy rules.
Based on that evidence, we calibrate the model to three empirically plausible policy
scenarios that illustrate the potential spillovers that can arise. First, we consider
Goodfriend’s (1993) “inflation scares,” in which policy is usually active but occasion-
ally becomes very active, reacting more strongly to current inflation. Second, drawing
on evidence from Marshall (2001) and Rabanal (2004), we examine episodes in which,
because of worries about financial instability or slow recoveries from recessions, the
central bank reduces the weight it places on inflation stabilization relative to output
stabilization. The third scenario addresses a major branch of applied work, which
finds evidence of time variation in monetary policy in the United States.2 To model
the idea that there is some probability that U.S. monetary policy can return to the
policies of the 1970s, we posit two persistent policy rules—one active and the other
passive—and show how the effects of aggregate disturbances differ from a constant
policy parameter setup. Each of these scenarios underscores that deviations, even
small ones, from the maintained assumption that policy parameters are fixed can
drastically alter the models’ predictions of the impacts of exogenous disturbances.

Results from the three scenarios illustrate potential pitfalls in studies of monetary
policy. Many researchers insert estimated versions of (1) into dynamic stochastic
general equilibrium models to study how the model economy performs [see papers
in Bryant, Hooper, and Mann (1993), Taylor (1999b) and Faust, Orphanides, and
Reifschneider (2005)]. Those researchers face a substantive choice between model-
ing deviations from the constant-coefficient Taylor rule as serially correlated ε’s or
as time-varying feedback coefficients.3 This modeling choice affects expectations for-
mation. By assuming that parameters are fixed, deviations from the rule that are

2For example, Judd and Trehan (1995), Taylor (1999a), Clarida, Gali, and Gertler (2000), Kim
and Nelson (2004), Lubik and Schorfheide (2003), Rabanal (2004), Davig and Leeper (2005), Favero
and Monacelli (2005), Boivin and Giannoni (2003), Boivin (forthcoming), and Sims and Zha (2004).

3Taylor (1993) acknowledges that the rule shuffles into ε much of the detail about how monetary
policy responds to the myriad exogenous disturbances that buffet the economy. He provides some
illustrations of circumstances in which a central bank would decide not to follow (1) rigidly. In
Taylor (1999a), he characterizes substantial and persistent departures from the rule in the early
1960s, from the mid-1960s through the 1970s, and in the early 1980s as “policy mistakes.”
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nonetheless systematic responses to the economy, are ruled out. Policy is not modeled
as responding differently to inflation and output during business cycle expansions and
contractions, dramatic run-ups of long-term interest rates, oil-price increases, stock
market crashes, foreign financial crises, or “jobless recoveries.” Instead, these system-
atic and predictable deviations appear as serially correlated errors that do not affect
solutions or the qualitative nature of equilibrium.

This paper pursues the alternative choice—modeling deviations from a simple Tay-
lor rule as time-varying systematic responses of policy to the economy—and shows
the implications of that choice for the predictions of two standard monetary models.

2. A Model of Inflation Determination

An especially simple model of inflation determination emerges from using Lucas’s
(1978) asset-pricing framework to price nominal government bonds. The setup is rich
enough to highlight general features that arise in a rational expectations environ-
ment with regime change in monetary policy, but simple enough to admit analytical
solutions that make transparent the mechanisms at work.

We adopt a two-step procedure to solve the models in this paper. First, we derive
the evolution equations for endogenous variables, from which we derive analytical
conditions on the model parameters, which ensure there exists a unique equilibrium.
Next, we derive a stationary equilibrium using the method of undetermined coeffi-
cients to obtain solutions as functions of the minimum set of state variables. Con-
ditions from step one are employed to guarantee the solution in step two is unique.
Throughout the paper, fiscal policy is in the background, passively adjusting lump-
sum taxes and transfers to ensure fiscal solvency.

2.1. The Setup. Consider a nominal bond that costs $1 at date t and pays off
$(1 + it) at date t + 1. The asset-pricing equation for this bond can be written in
log-linearized form as:

it = Etπt+1 + Etrt+1, (2)

where Etrt+1, the expected real interest rate, is the conditional expectation at t of
the stochastic discount factor. For simplicity, the real interest rate is exogenous and
evolves according to

rt = ρrt−1 + υt, (3)

with |ρ| < 1 and υ is an i.i.d. random variable.

Monetary policy follows a simplified Taylor rule, adjusting the nominal interest rate
in response to inflation, where the reaction to inflation evolves stochastically between
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regimes:4

it = α(st)πt. (4)

st is the observed policy regime, which takes realized values of 1 or 2. Two regimes
are sufficient for our purposes, though the methods employed immediately generalize
to many regimes. Regime follows a Markov chain with transition probabilities pij =
P [st = j |st−1 = i ], where i, j = 1, 2. We assume

α(st) =

{
α1 for st = 1
α2 for st = 2

.

We assume the processes for s and υ are independent.

A monetary policy regime is a distinct realization of the random variable α(st) and
a monetary policy process consists of all possible αi’s and the transition probabilities
of the Markov chain, (α1, α2, p11, p22). In this model, monetary policy is active in
regime i if αi > 1 and passive if αi < 1, following the terminology of Leeper (1991).
If α1 > α2, then the monetary policy process becomes more active if α1, α2, or p11

increase or p22 decreases.

Substituting (4) into (2) and using (3), the system reduces to the single state-
dependent equation:

α(st)πt = Etπt+1 + ρrt. (5)

Realizations of the real interest rate at t can affect current inflation only if they are
informative about the future path of r; that is, only if ρ �= 0. The serial correlation of
r, therefore, plays the role of a propagation mechanism in this model, which otherwise
contains no source of propagation.

If only a single, fixed regime were possible, then αi = α and the expected path
of policy depends on the constant α. A unique equilibrium requires active policy
behavior (α > 1) and the solution to (5) would be

πt =
ρ

α − ρ
rt.

Stronger responses of policy to inflation (larger values of α) reduce the variability of
inflation. The Taylor principle says that α > 1 is necessary and sufficient for a unique
equilibrium.

When α < 1 and regime is fixed, the equilibrium is not unique and self-fulfilling
sunspot equilibria are possible. In this case, the difference equation for inflation is
stable and the “forward solution” is non-stationary. Stationary solutions for inflation
make πt a function of (πt−1, rt) and possibly a sunspot shock.

4Although this rule is clearly sub-optimal in this model, its use is motivated by the fact that it
produces effects that carry over to a richer model, like the one in section 3, in which Taylor rules
are nearly optimal.
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2.2. The Long-Run Taylor Principle. With regime change, the difference equa-
tion in (5) can be expressed as a system, with an equation for each possible date t
regime. Let Ω−s

t = {rt, rt−1, . . . , st−1, st−2, . . .} denote the representative agent’s in-
formation set at t, not including the current regime, and let Ωt = Ω−s

t ∪ {st}. All
expectations are formed conditional on Ωt.

In general, the expectation of inflation in (5) is given by

E[πt+1(st+1 = i, st = j) |Ωt ],

for i, j = 1, 2. Integrating out the current regime, st, and writing (5) for st = 1 and
st = 2,

α(st = 1)πt(st = 1) = p11E[πt+1(st+1 = 1, st = 1)
∣∣Ω−s

t ]

+(1 − p11)E[πt+1(st+1 = 2, st = 1)
∣∣Ω−s

t ] + ρrt (6)

and

α(st = 2)πt(st = 2) = (1 − p22)E[πt+1(st+1 = 1, st = 2)
∣∣Ω−s

t ]

+p22E[πt+1(st+1 = 2, st = 2)
∣∣Ω−s

t ] + ρrt. (7)

These equations are derived assuming that current regime enters the agent’s informa-
tion set. This assumption contrasts with the usual econometric treatment of regime
as an unobserved state variable [Hamilton (1989) or Kim and Nelson (1999)]. Future
regimes, however, are not known.5

Appendix A shows how to convert these equations into a system in realized state-
dependent inflation rates, whose dynamics are governed by the eigenvalues of[

p11 1 − p11

1 − p22 p22

]−1 [
α1 0
0 α2

]
.

Those eigenvalues are

λk =
p11α2 + p22α1 ±

√
(p11α2 + p22α1)2 + 4α1α2(1 − p11 − p22)

2(p11 + p22 − 1)
, k = 1, 2. (8)

A unique equilibrium requires that the absolute values of both roots exceed unity,
leading to a generalization of the Taylor principle. A monetary policy process satisfies
the long-run Taylor principle if and only if

λk > 1 for k = 1, 2.

Two unstable eigenvalues imply two linear restrictions that uniquely determine the
regime-dependent expectations of inflation in (6) and (7). This is quite different from

5Some theoretical work treats agents as having to infer the current regime [Andolfatto and Gomme
(2003), Leeper and Zha (2003), and Davig (2004)]. Concentrating all uncertainty about policy
on future regimes, as we do, makes clearer how expectations formation, as opposed to inference
problems, affect the regime-switching equilibrium.
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fixed regimes because now it is possible for both roots to be unstable, even if αi < 1 in
one regime. With regime switching, when there is a unique equilibrium, the solutions
always come from “solving forward,” even in regimes where monetary policy behavior
is passive (αi < 1). This delivers solutions that are qualitatively different from those
obtained with fixed regimes. The roots are highly non-linear functions of all the
parameters of the monetary policy process, including the feedback coefficients in the
rule and the transition probabilities for regimes.

A necessary condition for uniqueness is that policy be active in at least one regime,
so αi > 1 for some i. When this necessary condition is satisfied, the long-run Taylor
principle simplifies to:

p11(1 − α2) + p22(1 − α1) + α1α2 > 1. (9)

This determinacy condition implies that a range of monetary policy behavior is con-
sistent with a unique equilibrium: monetary policy can be mildly passive most of the
time or very passive some of the time. To see this, suppose that regime 1 is active and
regime 2 is passive and consider the limiting case that arises as α1 becomes arbitrarily
large. Driving α1 → ∞ in (9) implies that α2 > p22 is the lower bound for α2 in a
determinate equilibrium. For α1 sufficiently large, a unique equilibrium can have α2

arbitrarily close to 0 (a pegged nominal interest rate), so long as the regime in which
this passive policy is realized is sufficiently short-lived (p22 → 0). When regime 1 is
an absorbing state (p11 = 1), the eigenvalues are α1 and α2/p22. A unique equilibrium
requires that that α1 > 1 and α2 > p22.

6 The general principle is that an active
regime that is either very aggressive (α1 → ∞) or very persistent (p11 = 1) imposes
the weakest condition on behavior in the passive regime.

Alternatively, the passive regime can be extremely persistent (p22 → 1), so long as
α2 is sufficiently close to, but still less than, 1. In this case, if the active regime has
short duration, it is possible for the ergodic probability of the passive regime to be
close to 1 (but less than 1), yet still deliver a unique equilibrium.

An interesting special case arises when both regimes are reflecting states. With
p11 = p22 = 0, the eigenvalues reduce to λk = ±√

α1α2. When the α’s are both
positive and regime 1 is active, the lower bound on the passive policy (α2) for a
unique equilibrium is α2 > 1/α1. In this case, the economy spends equal amounts of
time in the two regimes, but it changes regime every period with probability 1. This
inequality reinforces the general principle that the more aggressive monetary policy
is in active regimes, the more passive it can be in other regimes and still deliver
uniqueness.

6As the system derived in appendix A makes clear, p11 = 1 makes the system recursive, so the
difference equation for inflation in state 1 is independent of state 2 and yields the usual fixed-regime
solution for inflation. The second equation reduces to a difference equation in inflation in state 2
and a unique, stationary solution to that equation requires α2 > p22.
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Figure 1 uses the eigenvalues in (8) to plot combinations of the policy-rule coef-
ficients, α1 and α2, that deliver unique equilibria for given transition probabilities.
Light-shaded areas mark regions of the parameter space that deliver unique equilib-
ria when regime is fixed. When regime can change, those regions expand to include
the dark-shaded areas. The top two panels show that as the mean duration, given
by 1/(1 − pii), of each regime declines, the determinacy region expands. Asymmet-
ric mean duration expands the determinacy region in favor of the parameter drawn
from the more transient regime (α2 in the southwest panel of the figure). As the
mean durations of both regimes approach 1 period, the determinacy region expands
dramatically along both the α1 and α2 dimensions, as the southeast panel shows.

2.3. Solutions. To solve the model, define the state of the economy at time t to be
(rt, st). We are interested only in unique, stationary equilibria. We find the model’s
minimum state variable (MSV) solution by positing regime-dependent linear solutions
of the form:

πt = a(st)rt,

where

a(st) =

{
a1 for st = 1
a2 for st = 2

.

Within the class of solutions that are functions of (rt, st), the MSV solution is unique.
Of course, there may be other solutions that are functions of an expanded state
vector, so the question of whether the MSV solution is the only solution remains to
be answered. We use (8) to check that all the solutions we report are unique.

Expected inflation one step ahead depends on this period’s realizations of regime
and real interest rate, as well as on next period’s expected solution:

Etπt+1 = E[πt+1 |st, rt ]

= ρrtE[a(st+1) |st, rt ], (10)

where we have used the independence of the processes governing r and s. The posited
solutions, together with (10), imply the following regime-dependent expectations:

E[πt+1 |st = 1, rt ] = [p11a1 + (1 − p11)a2]ρrt, (11)

E[πt+1 |st = 2, rt ] = [(1 − p22)a1 + p22a2]ρrt. (12)

Substituting (11) and (12) into (5) for each st = 1, 2, we obtain a linear system in
the unknown coefficients, (a1, a2) :

A

[
a1

a2

]
= b,

where

A =

[
α1 − ρp11 −ρ(1 − p11)

−ρ(1 − p22) α2 − ρp22

]
, b =

[
ρ
ρ

]
.
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The solutions are:

a1 = aF
1

(
1 + p12a

F
2

1 − p12aF
2 p21aF

1

)
, (13)

and

a2 = aF
2

(
1 + p21a

F
1

1 − p12aF
2 p21aF

1

)
, (14)

where we have used the facts that p12 = 1−p11 and p21 = 1−p22, and we have defined
the “fixed-regime” coefficients to be7

aF
i =

ρ

αi − ρpii
, i = 1, 2.

The limiting arguments applied to (9), together with the stationarity of the real
interest rate process, imply that in a unique equilibrium, αi > ρpii, so aF

i ≥ 0. aF
i

is strictly increasing in ρ (for αi > 0), strictly decreasing in αi (for ρ > 0), and
strictly increasing in pii (for ρ > 0). It is straightforward to show that the volatility
of inflation is smaller in the regime where policy is more active; that is, a1 < a2 if
α1 > α2.

Notice that if α2 < 1, nothing like solution (14) can emerge from a fixed-regime
setup. In a fixed-regime model, α < 1 creates a stable root which, following Sargent’s
(1987) dictum to “solve unstable roots forward and stable roots backward,” makes
a stationary solution for πt depend on πt−1 (and shocks). With recurring regime
change, in contrast, the “forward solution” is stationary even when α2 < 1. This has
the effect of expanding the set of unique, stationary rational expectations equilibria
relative to those available under fixed regimes.

In general, all policy parameters enter the solution. Policy behavior in regime 2
affects the equilibrium in regime 1 and vice versa. Let D = 1 − p12a

F
2 p21a

F
1 denote

the denominator common to (13) and (14). D ∈ (0, 1] and reaches its upper bound
whenever regimes are absorbing states (p12 = 0 or p21 = 0). Values of D less than
1 scale up the coefficients relative to their “fixed-regime” counterparts. D achieves
its minimum when regimes are reflecting states (p12 = p21 = 1). In that case, D =
1− ρ2/α1α2, raising the variability of inflation by its maximum amount (given values
for α1 and α2).

The numerators in the solutions report the two distinct effects that news about
future real interest rates has on current inflation. Suppose the economy is in regime
1 and a higher real interest rate is realized. One effect is direct and raises inflation
by an amount inversely related to α1, just as it would if regime were fixed. A second
effect works through expected inflation, E[πt+1 |st = 1, rt ], which is the function given
by (11), (p11a1 + p12a2)ρrt. The term p12a

F
2 in (13) arises from the expectation that

7When regime is fixed at i, pii = 1, pjj = 0, i �= j, i, j = 1, 2 and the coefficients reduce to
aF

i = ρ/(αi − ρ).
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regime can change, with p12 the probability of changing from regime 1 to regime 2.
The size of this effect is also inversely related α1 through the coefficient aF

1 . Both
of these effects are tempered when the current policy regime is active (α1 > 1) or
amplified when current policy is passive (α1 < 1).

The a1 and a2 coefficients have the intuitive properties that they are strictly de-
creasing in both α1 and α2 and strictly increasing in ρ. More active monetary policy
raises the α’s and decreases the inflation impacts of real interest rate shocks. Greater
persistence in real interest rates amplifies the magnitude and therefore the impact
of real-rate shocks on inflation. If α1 > α2, then as p11 rises (holding p22 fixed), the
persistence of the more-active regime and the fraction of time the economy spends in
the more-active regime both rise. This reduces the reaction of inflation to real-rate
disturbances in both regimes.8

How strongly regime 2 behavior affects the equilibrium in regime 1 depends on the
probability of transitioning from regime 1 to regime 2, p12, and on the policy behavior
in and the persistence of regime 2, which are determined by α2 and p22. Cross-regime
spillovers to regime 1 can be large if p12 is large, p22 is large, or α2 is small. The
only way to eliminate spillover is for regime 1 to be an absorbing state. In that case,
p11 = 1 and the solution in that regime is πt = [ρ/(α1−ρ)]rt, exactly the fixed-regime
rule.

2.4. Implications of Regime Switching. Solutions (13) and (14) suggest the po-
tential for spillovers from regime 2 to regime 1 and to the ergodic distribution of
inflation. We now show that in this setup those spillovers can be quantitatively im-
portant. We restrict attention to regions of the policy parameter space for which a
unique equilibrium exists.

Results in this section focus on how regime change alters the variability of inflation
relative to a fixed-regime policy that always satisfies the Taylor principle. Throughout
these examples, we assume that policy is more active in regime 1 than in regime 2
(α1 > α2) and that policy may be passive in regime 2 (α2 < 1). We show how in the
switching setup the standard deviation of inflation conditional on regime 1 compares
to its fixed-regime counterpart. For most of the results, we assume that in the active
regime, whether fixed or switching, policy reacts to inflation with a coefficient of 1.5,
as in Taylor’s (1993) original formulation. If policy is less active (or passive) in regime
2, inflation can be appreciably more volatile even in the active regime, compared to
fixed-regime policy.

2.4.1. Mildly Passive Most of the Time. Figure 2 illustrates the implications for in-
flation volatility of a policy process that is slightly passive most of the time, yet
the equilibrium is unique. Active policy is transitory, lasting only one period before

8Of course, if α1 > α2 and p22 rises (holding p11 fixed), then both a1 and a2 rise.
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switching back to passive behavior (p11 = 0). The top panel indicates the ergodic
probability of the active regime that is associated with each plot of relative standard
deviations as a function of regime 2 policy (α2). For a given α2, the smaller the ergodic
probability of the active regime, the more volatile inflation is in both regimes. In this
example, that ergodic probability is given by (1 − p22)/(2 − p22), so it is completely
determined by the persistence of regime 2. Here the distinction between inflation
behavior in the two regimes is not very pronounced because the high probability of
transitioning from regime 1 to 2 maximizes the spillovers. These spillovers are sub-
stantial, with inflation more than five times more volatile in the active regime than
in its fixed-regime counterpart.

This example creates difficulties for empirical efforts to infer whether observed time
series were generated by a determinate or an indeterminate equilibrium [Clarida,
Gali, and Gertler (2000) and Lubik and Schorfheide (2003)]. Samples of the lengths
typically employed—20 to 40 years—can with high probability never realize active
monetary policy or realize very few observations of active policy. Parameter estimates
based on such samples will inevitably conclude that policy was passive throughout
and that the equilibrium is indeterminate.

2.4.2. Spectacular Spillovers from Extremely Passive Policy. A purely transitory pas-
sive regime can generate spectacular spillovers to the active regime. When p22 = 0,
the lower bound for uniqueness on policy in the passive regime is given by α2 >
(1 − p11)/(α1 − p11). This bound falls as active policy becomes more aggressive (α1

rises) or more persistent (p11 → 1). In both cases the lower bound on α2 approaches
p22 = 0, representing a pegged nominal interest rate of the form the Federal Reserve
adopted during World War II until the Treasury Accord in 1953.

Table 1 reports the same relative standard deviations of inflation shown in the
figures, but for select values of p11 and α2. Scanning down the column titled “Regime
1,” the numbers outside the parentheses give the standard deviation in regime 1 with
α1 = 1.5 relative to a fixed regime with α = 1.5. When the probability of passing from
the active to the passive regime is .01 (p11 = .99), the relative standard deviation rises
from 1.3 to 7.5 as α2 falls from .10 to .02. Even when the probability of switching
to passive policy is .001, over this range of α2’s the relative standard deviation of
inflation varies from 2 percent higher to 14 percent higher than in the fixed regime.

Monetary policy in the active regime can offset the spillovers from the passive
regime by leaning more strongly against the wind. Numbers in parentheses reflect
the standard deviations of inflation when the active regime sets α1 = 2 relative to
a fixed regime with α = 1.5. Of course, more aggressive active behavior lowers the
determinacy bound for α2. Setting α1 = 2 allows α2 to move closer to zero, drastically
raising the volatility in regime 2 and spilling over strongly to regime 1.
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This spectacular example resembles a peso problem. A small probability (.001) of
extremely passive policy behavior (α2 = .001) can cause substantially higher volatility
in the active regime. Moreover, time series generated by this policy process are quite
likely never to exhibit the passive policy, making it problematic to identify the source
of the volatility.

3. A Model of Inflation and Output Determination

This section and the next report the implications of a regime-switching monetary
policy process for determinacy and equilibrium dynamics in a bare-bones model from
the class of models with nominal rigidities now in wide use for monetary policy anal-
ysis. Ours is a textbook version, as in Walsh (2003) and Woodford (2003), but the
general insights extend to the variants being fit to data [Smets and Wouters (2003)
and Adolfson, Laseen, Linde, and Villani (2004)]. There are several reasons to exam-
ine regime change in a more complex model: it brings the analysis closer to models
now being used to confront data, compute optimal policy, and conduct actual policy
analysis at central banks; the model contains an explicit transmission mechanism for
monetary policy—an endogenous real interest rate—which tempers some of the spec-
tacular spillovers found in the simple model; it allows us to track how the possibility
of regime change influences the dynamic impacts of aggregate demand and aggregate
supply shocks on inflation and output.

3.1. The Model. The linearized equations describing private sector behavior are the
consumption-Euler equation and aggregate supply relations

xt = Etxt+1 − σ−1(it − Etπt+1) + uD
t , (15)

πt = βEtπt+1 + κxt + uS
t , (16)

where xt is the output gap, uD
t is an aggregate demand shock, and uS

t is an aggre-
gate supply shock. σ−1 represents the intertemporal elasticity of substitution, κ is a
function of how frequently price adjustments occur, as in Calvo (1983), and of β, the
discount factor. The slope of the supply curve is determined by κ = (1−ω)(1−βω)/ω,
where 1 − ω is the randomly selected fraction of firms that adjust prices. Prices are
more flexible as ω → 0, which makes κ → ∞. Most of our examples use a benchmark
calibration of β = .99, σ = 1, ρ = .9, ω = 2/3, so κ = .18. We interpret a model period
as one quarter in calendar time.

Exogenous disturbances are autoregressive and mutually uncorrelated:

uD
t = ρDuD

t−1 + εD
t ,

uS
t = ρSuS

t−1 + εS
t ,
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where |ρD| < 1, |ρS | < 1, εD
t ∼ N(0, σ2

D), εS
t ∼ N(0, σ2

S) and E[εD
t εS

s ] = 0 for all t
and s. If shocks are i.i.d., then regime switching is irrelevant to the dynamics, but
not the determinacy properties of the equilibrium.

As before, monetary policy is the source of regime switching and we assume a
simplified Taylor rule that sets the nominal interest rate according to

it = α(st)πt + γ(st)xt, (17)

where st evolves according to a Markov chain with transition matrix Π, with typical
element pij = Pr[st = j|st−1 = i] for i, j = 1, 2. st is independent of uD

t and uS
t . As

before, α(st) equals α1 or α2 and γ(st) equals γ1 or γ2. We assume the steady state
does not change across regimes.

3.2. Fixed-Regime Equilibrium. Intuition from the fixed-regime equilibrium car-
ries over to a switching environment. Solutions are given by:

πt =
κ

ΔD
uD

t +
σ−1γ + 1 − ρS

ΔS
uS

t ,

xt =
1 − βρD

ΔD
uD

t − σ−1(α − ρS)

ΔS
uS

t ,

where ΔZ = 1 + σ−1(ακ + γ) − ρZ [1 + σ−1(κ + βγ) + β(1− ρZ)], Z = S, D.

More-active monetary policy (higher α) reduces the elasticities of inflation and
output to demand shocks. Supply shocks, however, present the monetary authority
with a well-known tradeoff: a more-active policy stance reduces the elasticity of
inflation with respect to supply shocks, but it raises the responsiveness of output. A
stronger reaction of monetary policy to output (higher γ) reduces the elasticities of
inflation and output to demand shocks. Higher γ reduces the elasticity of output to
supply shocks and raises the responsiveness of inflation to supply shocks.

3.3. The Long-Run Taylor Principle. Turning back to the setup with regime
change, this section describes how to derive restrictions on the monetary policy pro-
cess that ensure the long-run Taylor principle is satisfied. Substituting the policy
rule, (17) , into (15) yields

xt = Etxt+1 − σ−1(α(st)πt + γ(st)xt − Etπt+1) + uD
t . (18)

The system to be solved consists of (16) and (18).

To specify the system whose eigenvalues determine whether there exists a unique
equilibrium, we follow the procedure in section 2.2. Let πit = πt(st = i) and
xit = xt(st = i), i = 1, 2, denote state-specific inflation and output. As appendix
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B describes, after defining the forecast errors

ηπ
1t+1 = π1t+1 − Etπ1t+1, ηπ

2t+1 = π2t+1 − Etπ2t+1,

ηx
1t+1 = x1t+1 − Etx1t+1, ηx

2t+1 = x2t+1 − Etx2t+1,

the model is cast in the form

AYt = BYt−1 + Aηt −Cut, (19)

where

Yt =

⎡
⎢⎢⎣

π1t

π2t

x1t

x2t

⎤
⎥⎥⎦ , ηt =

⎡
⎢⎢⎣

ηπ
1t

ηπ
2t

ηx
1t

ηx
2t

⎤
⎥⎥⎦ , ut =

[
uS

t

uD
t

]
,

and the matrices are defined in the appendix. A unique equilibrium requires four un-
stable roots to generate four linear restrictions that determine the regime-dependent
forecast errors for inflation and output. The eigenvalues of this system determine
whether the monetary policy process satisfies the long-run Taylor principle.

Analytical expressions for the eigenvalues are available, but do not yield compact
expressions for the restrictions that guarantee a unique equilibrium. We nonetheless
use those analytical expressions to calculate the eigenvalues to check whether a given
monetary policy process satisfies the long-run Taylor principle.9 Figure 3 illustrates
that recurring regime change can dramatically expand the set of policy parameters
that deliver a unique equilibrium.10 As long as one regime is active, the less persistent
the other regime is, the smaller is the lower bound on the response of monetary policy
to inflation. The bottom panels of the figure indicate that when regimes are transitory,
a large negative response of policy to inflation is consistent with determinacy. As in
the simple model, a unique equilibrium can be produced by a policy process that is
mildly passive most of the time or very passive some of the time.

In contrast to fixed regimes, recurring regime change makes determinacy of equilib-
rium depend on the policy process and all the parameters describing private behavior,
(β, σ, κ), even when the Taylor rule does not respond to output. Because the cur-
rent regime is not expected to prevail forever, parameters that affect intertemporal
margins interact with expected policies to influence determinacy [figure 4]. Greater
willingness of households to substitute intertemporally (lower σ) or greater ability of
firms to adjust prices (lower ω) enhance substitution away from expected inflation,
which gives expected regime change a smaller role in decisions. This shrinks the
determinacy region toward the flexible-price region in section 2.

9We also compute the generalized eigenvalues for system (19) and check the spanning criteria
used by Sims’s (2001) gensys program to confirm existence and uniqueness of a solution.

10For simplicity, figures 3 and 4 are drawn setting γ(st) = 0, st = 1, 2, so in fixed regimes, the
Taylor principle is α1 > 1 and α2 > 1.
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3.4. Solutions. To solve the model, define the state of the economy at t as
(
uD

t , uS
t , st

)
.

The method of undetermined coefficients delivers solutions as functions of this small-
est set of state variables—the MSV solution. We posit solutions of the form

πt = aD(st)u
D
t + aS(st)u

S
t ,

xt = bD(st)u
D
t + bS(st)u

S
t ,

where

aZ(st) =

{
aZ

1 for st = 1
aZ

2 for st = 2
, bZ(st) =

{
bZ
1 for st = 1

bZ
2 for st = 2

, Z = D, S.

These posited solutions, along with their one-step-ahead expectations,

E [πt+1 |st = i ] = pii

(
aD

i ρDuD
t + aS

i ρSuS
t

)
+ pij

(
aD

j ρDuD
t + aS

j ρSuS
t

)
,

E [xt+1 |st = i ] = pii

(
bD
i ρDuD

t + bS
i ρSuS

t

)
+ pij

(
bD
j ρDuD

t + bS
j ρSuS

t

)
,

for i, j = 1, 2, are substituted into (16) and (18) to form a system whose solution
yields expressions for π and x as functions of the model parameters and the monetary
policy process. Appendix B describes the systems of equations that are solved.

4. Three Empirically Plausible Policy Processes

We turn now to study the implications of three monetary policy processes that
empirical evidence suggests are relevant. The first process pursues the idea that
modeling recurring regime change can be important even if the policy process is
switching between two active regimes. There is evidence that over the past decade
or so, U.S. monetary policy has fluctuated between aggressive and less-aggressive
stances against inflation. We illustrate this idea by interpreting Goodfriend’s (1993)
“inflation scares” episodes.

The second process examines instances when central banks abandon their “business-
as-usual” rule and do something different. Examples include the October 1987 stock
market crash, Asian and Russian financial crises in the 1990s, credit controls in 1980,
sluggish job-market recoveries from recessions, and currency crises. These are events
with small probability mass that recur and can entail a substantial deviation from
the usual rule. We model these events as relatively short-lived excursions into passive
policy behavior, though we recognize that this is, at best, a crude representation of
the diversity of examples listed above.

The final process addresses the consequences of private agents believing there is a
small probability of returning to a persistent regime like the one that prevailed in the
1970s. This process reflects empirical work that finds U.S. monetary policy followed
very different rules from 1960 to 1979 and after 1982 and it captures some of the drive
in favor of inflation targeting.
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4.1. Inflation Scares. Goodfriend (1993) coined the term “inflation scares” to de-
scribe instances when long-term interest rates rise, even when contemporaneous mea-
sures of inflation are not rising. For example, Fed tightening during the 1983-1984
inflation scare increased the real short-term rate by 3 percentage points, even though
inflation was steady at 4 percent. Goodfriend (2005) argues that inflation scares occur
at times when the Federal Reserve’s commitment to act aggressively against inflation
is in question. Scares have recurred over the past 25 years—Chairman Paul Volcker
faced four and Chairman Alan Greenspan two. Inflation scares are also prone to oc-
cur during transitions between Fed chairs—the 1987 scare coincided with Greenspan’s
appointment.

Constant-parameter Taylor rules, which do not include long rates as arguments,
categorize a sharp rise in the interest rate instrument as a “shock”—the unsystematic
part of policy behavior. But Goodfriend argues that Fed behavior during inflation
scares is systematic and specifically designed to affect agents’ beliefs about the Fed’s
commitment to fight inflation. During a scare, the Fed systematically responds more
strongly to inflation than in normal times. One way to model this, which maintains
the simplicity of a Taylor-rule specification, is to treat policy as moderately active
most of the time, responding to inflation with a coefficient of 1.5, but occasionally—
and only briefly—very active, raising the interest rate by 2.5 times the change in
inflation.11

Consider a monetary policy process with α1 = 2.5, α2 = 1.5, p11 = .5, and p22 =
.975.12 Policy is moderately active 95 percent of the time and very active the rest of
the time; the expected duration of the more-active regime is 2 quarters.

In the inflation-scare state, a demand shock can raise inflation and lower output on
impact, just as an aggregate supply shock usually does. Figure 5 plots the expected
paths in the very active regime and in a fixed regime.13 More aggressive policy
tempers the impact of the shock on current and expected inflation by sharply raising
the real interest rate. Lower inflation is achieved, however, through lower output. In
the assumed policy process, the real rate rises enough to more than offset the positive
output effects of the demand shock, and output can fall on impact.14 In subsequent
periods, the real interest rate essentially follows the path it would if regime were fixed,
so output exhibits a hump-shaped response, as it does in many empirical studies that

11This policy process might also describe the Fed’s preemptive strike against inflation in 1994,
which Leeper and Zha (2003) model as an intervention on policy shocks.

12We set γ1 = γ2 = 0.
13Expected paths are computed from 50,000 simulated paths in which regime is randomly drawn

for periods t ≥ 2; the demand shock is 1 at t = 1 and 0 for t ≥ 2, and the supply shock is 0 for t ≥ 1.
14Lower values for the intertemporal elasticity of substitution, such as .16 as in Woodford (2003),

do not alter the qualitative conclusions.
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identify aggregate demand shocks [Blanchard and Quah (1989), Leeper, Sims, and
Zha (1996)].

4.2. Financial Crises and Business Cycles. Periodically, monetary policy shifts
its focus from price stability to other concerns. Two other concerns that recurrently
come into the central bank’s focus are financial stability and job creation. Episodes
in which price stability is de-emphasized in favor of other objectives can last a few
months or more than a year. Distinctive features of these episodes are that they
recur fairly often and they represent an important shift away from monetary policy’s
usual reaction to inflation and output. In the United States, since Greenspan became
chairman of the Fed in the summer of 1987, the episodes include at least two stock
market crashes, two foreign financial crises, and two “jobless recoveries”—an episode
every three years, on average.15

Marshall (2001) carefully documents the financial crisis in late summer and fall
of 1998. In August the Russian government devalued the rouble, defaulted on debt,
and suspended payments by financial institutions to foreign creditors. These actions
precipitated the near collapse of Long-Term Capital Management, a large hedge fund.
The Fed reacted swiftly by cutting the federal funds rate by a total of 75 basis
points over three moves. One of the policy moves arose from an unusual intermeeting
conference call on October 15 and all the moves occurred against a backdrop of
concern by Federal Open Market Committee members about inflation. In fact, until
the August 18 FOMC meeting, which left the funds rate unchanged, the Committee
concluded the risks to the outlook were tilted toward rising inflation. Marshall argues
that the Fed’s unusually rapid response signalled that the “policy rule had changed,”
with the purpose of discretely shifting private-sector beliefs to a lower likelihood of a
liquidity crisis in the United States.

Rabanal (2004) presents a variety of evidence on time variation in Taylor rules.
First, he reports estimates of Taylor rules with parameter drift that buttress Mar-
shall’s claim: during periods that Rabanal calls “high risk in the economy,” the Fed’s
response to inflation declines appreciably. High-risk periods include financial crises.

Rabanal also estimates a two-state—recessions and expansions—Taylor rule to find
that during recessions the Fed’s reaction to inflation is weaker and its reaction to out-
put is stronger than during expansions. Davig and Leeper’s (2005) estimates of (17)
identify the “jobless recoveries” from the recessions of 1990-91 and 2000 as episodes
of passive Fed behavior, with a weaker response to inflation and a stronger response
to output than in the surrounding active episodes. Whereas Rabanal estimates the

15We do not include the terrorist attacks of September 11, 2001 in this list because, although the
Fed reacted sharply by pumping liquidity into the market and lowering the federal funds rate, within
two months it had just as sharply withdrawn the liquidity. This event is probably best modeled as
a sequence of additive shocks to the policy rule.
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economy is three times more likely to be in an expansion than a recession, Davig
and Leeper, using data beginning in the late 1940s, estimate that active and passive
regimes are almost equally likely.

Table 2 reports that spillovers from a passive regime can substantially raise the
standard deviations of inflation and output in an active regime relative to their values
in a fixed regime. The probabilities of transitioning to the passive regime are 5 percent
and 2.5 percent (p11 = .95 and p11 = .975), which correspond to a financial crisis or
stronger concern about job growth occurring every 5 or 10 years, on average. In the
active and the fixed regimes, α1 = α = 1.5 and γ1 = .25. Passive policy responds
more strongly to output (γ2 = .5), while both its response to inflation, α2, and its
persistence, p22, take different values in the table.16

When the passive regime always lasts only one period (p22 = 0), spillovers are
relatively small and intuition from fixed regimes directly applies: when regime 2 is
more passive (lower α2), spillovers raise the volatility of inflation and output from
demand shocks, raise the volatility of inflation from supply shocks, and lower the
volatility of output from supply shocks. Fixed-regime intuition carries over because
when the passive regime lasts only one period, it has only a minor impact on expected
inflation.

As the passive regime becomes more persistent (p22 rises), the monetary policy
process becomes less active and the relative volatility of inflation rises monotonically
across both types of shocks. Even when the expected duration of passive policy is
only 2 quarters (p22 = .5), as it might be during some financial crises, if policy is
very passive, inflation volatility can be 20 percent or more higher in the active state
than in a fixed-regime setup. When the duration is one year (p22 = .75), as when
the Fed kept interest rates low for extended periods during the two recent recoveries
from recession, inflation can be 50 percent more volatile than in a fixed regime [see
columns for p11 = .95].

Persistence in the passive regime changes the effects of increases in the degree
to which policy is passive on relative output variability. The prospect of moving to
a passive regime raises current and expected inflation in the active regime relative
to a fixed regime. Although it starts at a higher level, in the long run the ergodic
mean of inflation in the switching environment converges to the mean when regime is
constant. With inflation expected to fall more rapidly in the active regime, the real
interest rate rises more sharply. A higher real rate offsets the effects of a demand
shock on output, but it reinforces the impacts of a supply shock. This shows up
in table 2 as declining relative output variability in the demand columns and rising

16In the case of pure inflation targeting, γ1 = γ2 = γ = 0, the relative standard deviations in the
table are amplified, but the patterns are identical to those in the table.
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relative output variability in the supply columns, as the monetary policy process
becomes more passive.

4.3. A Return to the 1970s? Many observers of U.S. monetary policy fear that
the Fed could revert to the policies of the 1970s. Such a fear is often behind argu-
ments for adopting inflation targeting in the United States [Bernanke and Mishkin
(1997), Bernanke, Laubach, Mishkin, and Posen (1999a), Mishkin (2004), Goodfriend
(2005)]. The United States seems particularly susceptible to this kind of policy rever-
sal because, in the absence of institutional reforms, the Fed relies on what Bernanke,
Laubach, Mishkin, and Posen (1999b) call the “just trust us” approach, which relies
more on the personal credibility of policy makers than on the credibility of the policy
institution or the policymaking process.17

Three widely cited empirical studies report constant-coefficient estimates of Tay-
lor rules for the United States [Clarida, Gali, and Gertler (2000), Taylor (1999a),
Lubik and Schorfheide (2003)]. Each of these reports that U.S. monetary policy
was passive through the 1960s and 1970s and active since 1982. Efforts to estimate
Markov-switching versions of these rules frequently find analogous results [Favero and
Monacelli (2003), Davig and Leeper (2005)].18 A literal interpretation of the switching
results is that agents place substantial probability mass on a return to the inflationary
times of the 1970s.

4.3.1. Determinacy Regions for Previous Studies. Lubik and Schorfheide (2003) em-
phasize that in a model with a fixed policy rule, their estimate of Fed behavior
from 1960-1979 leaves the model undetermined and subject to self-fulfilling sunspot
equilibria.19 Since the early 1980s, however, Lubik and Schorfheide infer their esti-
mates imply a unique equilibrium. For the latter period, they estimate α1 = 2.19
and γ1 = .17, while for the earlier period the estimates are α2 = .77 and γ2 = .3.
Their maximum likelihood estimates contrast the fit of determinate to indeterminate
equilibria under the maintained assumption that policy rules cannot change.

17Fiscal policy represents a possible impetus for a change from an active to a passive monetary
policy stance. In 2005, in the face of growing federal government budget deficits, the talk in Wash-
ington is of making President Bush’s earlier tax cuts permanent, not of how spending and taxes can
be adjusted to balance the budget. Demographic shifts in the United States and elsewhere have
created projected fiscal deficits for the foreseeable future [Kotlikoff and Burns (2004)]. As fiscal
pressures build, it may be reasonable to expect some erosion of the much-vaunted independence of
the Federal Reserve. A possible outcome is a shift to a policy that accommodates inflation as a
source of fiscal financing. Sargent’s (1999) learning environment offers a different rationale for how a
return to the 1970s might arise. In his setup, time inconsistency and constant-gain learning combine
to create incentives for policy to optimally choose to revert to an accommodative stance.

18Sims and Zha (2004), in contrast, find that the best fit is achieved from an identified VAR with
constant coefficients and eight distinct variance states.

19Clarida, Gali, and Gertler (2000) also suggest this possibility.
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Figure 6 reports combinations of the transition probabilities, (p11, p22), that yield a
unique equilibrium given the Lubik-Schorfheide estimates of policy parameters (light-
shaded plus dark-shaded regions). For reference, the figure also reports determinacy
regions for Taylor’s (1999a) estimates—α1 = 1.5, γ1 = .75 (post-1987) and α2 =
.8, γ2 = .25 (1960-1979). A larger set of transition probabilities is consistent with
determinacy under the Lubik-Schorfheide estimates because their active regime is
substantially more active than is Taylor’s (2.19 compared to 1.5).

On the surface, the figure seems to support Lubik and Schorfheide’s inference. After
all, if the passive regime has an expected duration of more than 5 years (p22 > .95), as
switching estimates consistently find, then Lubik and Schorfheide’s policy parameter
estimates imply indeterminacy. Carrying this argument forward, however, reveals an
unappealing implication. Unless one is willing to maintain the extreme assumption
that the post-1982 regime is an absorbing state (p11 = 1), the U.S. economy must
still be in an indeterminate equilibrium.20 Without assuming people place no proba-
bility mass on future passive policy, it is difficult to reconcile Lubik and Schorfheide’s
conclusions with an environment of recurring regime change.

4.3.2. Impacts of Demand and Supply Shocks. To illustrate the potential spillovers of
a belief that policy might return to its passive behavior in the 1970s, we impose Lubik
and Schorfheide’s policy parameter estimates, along with the transition probabilities
p11 = .95 and p22 = .93, on the model of inflation and output determination. These
probabilities mean there is a 5 percent chance of returning to a passive policy rule.
The active regime is expected to last 20 quarters, while the passive regime lasts
14 quarters, on average. We gauge the extent of spillovers to the active regime by
contrasting responses of inflation and output to demand and supply disturbances in
the active regime to those in an equivalently active fixed regime.

Cross-regime spillovers from this policy process are substantial. Figure 7 shows that
researchers predicting the impacts of exogenous disturbances assuming the policy
rule is fixed will consistently underpredict inflation.21 The underprediction can be
as much as 40 basis points following demand shocks and nearly 1 percentage point
following supply disturbances. Output predictions depend on the source of the shock.
A hump-shaped response of output in the switching environment means the fixed-
regime model initially overpredicts and then underpredicts output. With supply
shocks, the prediction errors are quite large. A constant-coefficient policy rule misses
the initial decline in output by nearly 1 percentage point; the errors change sign after
several periods when constant-coefficient predictions are about .3 percentage points
too pessimistic.

20The reasoning is identical to that contained in footnote 6.
21As in figure 5, these are expected paths, computed taking draws from regime after the initial

period. See footnote 13.
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5. Concluding Remarks

This paper offers a broader perspective on the Taylor principle and the range of
unique equilibria it supports by allowing policy regime to vary over time. Examples
show that endowing conventional models with empirically relevant monetary policy
switching processes can generate important cross-regime spillovers. These spillovers
can alter the qualitative and quantitative predictions of standard models. Along
the way, the paper develops a two-step solution method that obtains determinacy
conditions and solutions for a rational expectations equilibrium. This method can
be extended to a broad class of linear rational expectations models with exogenous
Markov switching in parameters and many discrete regimes.

The paper’s results should be useful for both researchers and policy analysts using
constant-coefficient policy rules in DSGE models. The choice of how to model devia-
tions from such rules is potentially quite important. Under prevailing practice, that
choice is made implicitly. That choice should be explicit, with careful consideration
given to the characteristics of the deviation—how likely is it to recur? how long is it
likely to last? what is the nature of policy behavior during the period of deviation?
Some deviations are more naturally modeled as additive, exogenous errors to the
policy rule. Some might be better modeled as systematic responses to an expanded
information set for the policy authority. Others are best treated as recurring changes
in rules mapping endogenous variables to policy choices, as in this paper.

Modeling policy as we do in this paper requires no more heroic assumptions than
those routinely made in policy research. Largely as a matter of convenience, nearly
all theoretical models assume—rather heroically—that future policy is current pol-
icy. When the current regime is an absorbing state, this assumption is reasonable.
If, as seems more likely, alternative future policies are possible, then rational agents
must have a probability distribution over those policies, and the properties of ob-
served equilibria will depend critically agents’ beliefs about those policies and their
probabilities.
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Appendix A. Inflation Model: Determinacy

Let Ω−s
t = {rt, rt−1, . . . , st−1, st−2, . . .} denote the agents’ information set at t, not

including the current regime, and let Ωt = Ω−s
t ∪ {st}. All expectations are formed

conditional on Ωt. We have the equation

α(st)πt = Etπt+1 + ρrt. (20)

Recall that the processes for s and r are independent.

In general, the expectation of inflation is given by

E[πt+1(st+1 = i, st = j) |Ωt ], (21)

for i, j = 1, 2. Integrating out the current regime, st, and writing (20) for st = 1 and
st = 2,

α(st = 1)πt(st = 1) = p11E[πt+1(st+1 = 1, st = 1)
∣∣Ω−s

t ]

+(1 − p11)E[πt+1(st+1 = 2, st = 1)
∣∣Ω−s

t ] + ρrt (22)

and

α(st = 2)πt(st = 2) = (1 − p22)E[πt+1(st+1 = 1, st = 2)
∣∣Ω−s

t ]

+p22E[πt+1(st+1 = 2, st = 2)
∣∣Ω−s

t ] + ρrt. (23)

Several remarks about (22) and (23) are in order. First, by using the transition
probabilities as weights on the respective expectations, the current state, st, is no
longer in the conditioning set for the expectations. Second, at any given date t, the
realization of st determines which of the two equations determines the current equilib-
rium.22 Third, the structure of the model—being forward-looking and containing no
lagged endogenous variables—together with the assumption that the Markov process
is first-order, imply that πt+1 will not be a function of st, allowing the equations to
be written as

α(st = 1)πt(st = 1) = p11E[πt+1(st+1 = 1)
∣∣Ω−s

t ]

+(1 − p11)E[πt+1(st+1 = 2)
∣∣Ω−s

t ] + ρrt

and

α(st = 2)πt(st = 2) = (1 − p22)E[πt+1(st+1 = 1)
∣∣Ω−s

t ]

+p22E[πt+1(st+1 = 2)
∣∣Ω−s

t ] + ρrt.

Introduce the notation that πit = πt(st = i) and let

Etπ1t+1 = p11E[πt+1(st+1 = 1)
∣∣Ω−s

t ] + (1 − p11)E[πt+1(st+1 = 2)
∣∣Ω−s

t ]

22By analogy to the reasoning underlying contingent-claims pricing, these expressions define in-
flation in the different states as different “goods.”
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Etπ2t+1 = (1 − p22)E[πt+1(st+1 = 1)
∣∣Ω−s

t ] + p22E[πt+1(st+1 = 2)
∣∣Ω−s

t ].

Define the forecast errors

η1t+1 = π1t+1 − Et[π1t+1]

η2t+1 = π2t+1 − Et[π2t+1].

Because the forecast errors are functions of st+1, but not of st, we can write the model
as the system [

α1 0
0 α2

] [
π1t

π2t

]
=

[
p11 1 − p11

1 − p22 p22

] [
π1t+1

π2t+1

]

+

[
ρ
ρ

]
rt −

[
p11 1 − p11

1 − p22 p22

] [
η1t+1

η2t+1

]
.

The roots of the system are the eigenvalues of[
p11 1 − p11

1 − p22 p22

]−1 [
α1 0
0 α2

]
,

and a unique equilibrium requires that both roots exceed 1 in absolute value.

Appendix B. Output and Inflation Model: Solution Method

Define the information set Ω−s
t = {uS

t , uS
t−1, . . . , u

D
t , uD

t−1, . . . st−1, st−2, . . .} denote
the agents’ information set at t, not including the current regime, and let Ωt =
Ω−s

t ∪ {st}. All expectations are formed conditional on Ωt. The equations of the
model are

πt = βEtπt+1 + κxt + uS
t

xt = Etxt+1 − σ−1(α(st)πt + γ(st)xt −Etπt+1) + uD
t

B.1. Conditions for Uniqueness. Following the procedure in appendix A, write
these equations out as

πt(st = 1) = β
{
p11E[πt+1(st+1 = 1)

∣∣Ω−s
t ] + (1 − p11)E[πt+1(st = 2)

∣∣Ω−s
t ]

}
+κxt(st = 1) + uS

t (24)

πt(st = 2) = β
{
(1 − p22)E[πt+1(st+1 = 1)

∣∣Ω−s
t ] + p22E[πt+1(st = 2)

∣∣Ω−s
t ]

}
+κxt(st = 2) + uS

t (25)

xt(st = 1) = p11E[xt+1(st+1 = 1)
∣∣Ω−s

t ] + (1 − p11)E[xt+1(st+1 = 2)
∣∣Ω−s

t ]

−σ−1[α(st = 1)πt(st = 1) + γ(st = 1)xt(st = 1)]

+σ−1
{
p11E[πt+1(st+1 = 1)

∣∣Ω−s
t ] + (1 − p11)E[πt+1(st = 2)

∣∣Ω−s
t ]

}
+ uD

t (26)
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xt(st = 2) = (1 − p22)E[xt+1(st+1 = 1)
∣∣Ω−s

t ] + p22E[xt+1(st+1 = 2)
∣∣Ω−s

t ]

−σ−1[α(st = 2)πt(st = 2) + γ(st = 2)xt(st = 2)]

+σ−1
{
(1 − p22)E[πt+1(st+1 = 1)

∣∣Ω−s
t ] + p22E[πt+1(st = 2)

∣∣Ω−s
t ]

}
+ uD

t (27)

As before, define π1t, π2t, x1t, x2t to represent inflation and output when the current
state is 1 or 2. And define the forecast errors

ηπ
1t+1 = π1t+1 − Etπ1t+1, ηπ

2t+1 = π2t+1 − Etπ2t+1,

ηx
1t+1 = x1t+1 − Etx1t+1, ηx

2t+1 = x2t+1 − Etx2t+1.

Using these forecast errors to eliminate the conditional expectations in (24)-(27)
yields the system

AYt = BYt−1 + Aηt − Cut

where

Yt =

⎡
⎢⎢⎣

π1t

π2t

x1t

x2t

⎤
⎥⎥⎦ , ηt =

⎡
⎢⎢⎣

ηπ
1t

ηπ
2t

ηx
1t

ηx
2t

⎤
⎥⎥⎦ , ut =

[
uS

t

uD
t

]
,

A =

[
β ⊗ Π 02×2

σ−1 ⊗ Π Π

]
,

B =

⎡
⎢⎢⎢⎢⎣

I2×2
|
| −κI2×2

−−− | −− −−−−−−
σ−1α1 0

0 σ−1α2
| 1 + σ−1γ1 0

0 1 + σ−1γ2

⎤
⎥⎥⎥⎥⎦ ,

C =

⎡
⎢⎢⎣

1 0
1 0
0 1
0 1

⎤
⎥⎥⎦ .

The roots of the system are the generalized eigenvalues of (A, B). A unique equi-
librium requires that all four eigenvalues exceed 1 in absolute value. The eigenvectors
associated with those unstable eigenvalues constitute four linear restrictions that de-
termine the four endogenous forecast errors.

B.2. Solutions. Solutions for the model are derived using the method of undeter-
mined coefficients, just as for the simple model in section 2. Supply and demand
shocks are uncorrelated, so the coefficients on the demand shocks and those on the
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supply shocks can be solved separately. Coefficients on the supply shock come from
solving⎡
⎢⎢⎣

1 − βp11ρS −βρS (1 − p11) −κ 0
−βρS (1 − p22) 1 − βp22ρS 0 −κ
1
σ
(α1 − ρSp11) −ρS

σ
(1 − p11) 1 + σ−1γ1 − p11ρS −ρS (1 − p11)

−ρS

σ
(1 − p22)

1
σ

(α2 − p22ρS) −ρS (1 − p22) 1 + σ−1γ2 − p22ρS

⎤
⎥⎥⎦

⎡
⎢⎢⎣

aS
1

aS
2

bS
1

bS
2

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦

and those on demand shocks from solving⎡
⎢⎢⎣

1 − βp11ρD −βρD (1 − p11) −κ 0
−βρD (1 − p22) 1 − βp22ρD 0 −κ
1
σ

(α1 − ρDp11) −ρD

σ
(1 − p11) 1 + σ−1γ1 − ρDp11 −ρD (1 − p11)

−ρD

σ
(1 − p22)

1
σ

(α2 − p22ρD) −ρD (1 − p22) 1 + σ−1γ2 − p22ρD

⎤
⎥⎥⎦

⎡
⎢⎢⎣

aD
1

aD
2

bD
1

bD
2

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦ .

Analytic expressions for the coefficients are not easy to interpret, but are straightfor-
ward to compute. These coefficients are the impact elasticities of the various shocks.
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α2 Regime 1 Regime 2
(Active) (Passive)

p11 = .95
.10 5.55 (1.26) 58.20 (17.43)

p11 = .975
.10 1.96 (0.80) 24.07 (13.12)
.05 6.62 (1.30) 136.83 (35.76)

p11 = .99
.10 1.28 (0.62) 17.69 (11.40)
.05 1.73 (0.75) 43.81 (25.15)
.025 3.82 (1.09) 167.30 (63.29)
.02 7.49 (1.33) 383.48 (90.85)

p11 = .995
.10 1.13 (0.57) 16.24 (10.92)
.05 1.30 (0.62) 35.64 (22.86)
.025 1.75 (0.75) 88.46 (50.45)
.02 2.07 (0.82) 125.73 (66.49)

p11 = .999
.10 1.03 (0.53) 15.23 (10.56)
.05 1.05 (0.54) 30.98 (21.31)
.025 1.11 (0.56) 64.14 (43.38)
.02 1.14 (0.57) 81.60 (54.71)

Addendum
p11 = .999

α1 = 2 .001 7.23 7413.4

Table 1. Standard Deviation in Active Regime 1 Relative to
Fixed Regime. Active and fixed regimes set α1 = α = 1.5, passive
regime is purely transitory (p22 = 0). Numbers in parentheses are
standard deviations when policy in the active regime is more aggressive,
α1 = 2, relative to the fixed regime with α = 1.5. p11 approximately
equals the ergodic probability of regime 1, active monetary policy.
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p11 = .95 p11 = .975
Demand Supply Demand Supply

Inflation Output Inflation Output Inflation Output Inflation Output
p22 = 0

α2 = .5 1.044 1.008 1.075 .995 1.022 1.004 1.037 .998
α2 = .25 1.060 1.011 1.092 .994 1.030 1.005 1.045 .997

α2 = 0 1.073 1.014 1.110 .992 1.037 1.007 1.054 .997

p22 = .5
α2 = .5 1.084 .988 1.143 1.008 1.042 .993 1.071 1.004

α2 = .25 1.120 .983 1.185 1.010 1.059 .990 1.091 1.006
α2 = 0 1.165 .977 1.238 1.013 1.080 .987 1.115 1.007

p22 = 2/3
α2 = .5 1.123 .961 1.209 1.025 1.061 .979 1.104 1.014

α2 = .25 1.188 .940 1.290 1.034 1.092 .968 1.142 1.018
α2 = 0 1.283 .910 1.408 1.048 1.135 .953 1.194 1.025

p22 = .75
α2 = .5 1.162 .931 1.275 1.044 1.080 .963 1.137 1.024

α2 = .25 1.268 .886 1.412 1.066 1.129 .940 1.199 1.034
α2 = 0 1.454 .807 1.653 1.104 1.210 .903 1.302 1.052

Table 2. Standard Deviation in Active Regime 1 Relative to
Fixed Regime. Active and fixed regimes set α1 = α = 1.5 and
γ1 = γ = .25. Passive regime sets γ2 = .5. Ergodic probability of active
regime ranges from .83 (p11 = .95, p22 = .75) to .98 (p11 = .975, p22 = 0).
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Figure 1. Determinacy Frontiers: Model of Inflation Deter-
mination. Parameter combinations in the light-shaded regions im-
ply a unique equilibrium in fixed-regime model; combinations in dark-
shaded plus light-shaded regions imply a unique equilibrium in regime-
switching model.
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Figure 2. Variability of Inflation: Mildly Passive Most of the
Time. Standard deviation of inflation with regime-switching policy
relative to fixed-regime policy (with α = 1.5). Active policy regime,
with α1 = 1.5 and p11 = 0. Labels in the top panel report the associated
ergodic probability of active policy.
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Figure 3. Determinacy Regions: Model of Output and In-
flation Determination. Parameter combinations in the light-shaded
regions imply a unique equilibrium in fixed-regime model; combinations
in dark-shaded plus light-shaded regions imply a unique equilibrium in
regime-switching model.
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Figure 4. Determinacy Regions and Private Parameters:
Model of Output and Inflation Determination. Parameter com-
binations in the light-shaded regions imply a unique equilibrium in
fixed-regime model; combinations in dark-shaded plus light-shaded re-
gions imply a unique equilibrium in regime-switching model for various
settings of ω and σ.
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Figure 5. Inflation Scares and Responses to an Aggregate De-
mand Shock. Solid line is conditional on more-active policy (α2 = 2.5
and p22 = .5); alternative regime has α1 = 1.5 and p11 = .975. Dashed
line is fixed regime with α = α1. In switching regime, figures plot the
mean responses from 50,000 draws of regime, beginning in the second
period.
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Figure 6. Determinacy Regions for Taylor and Lubik-
Schorfheide Estimates. Shaded regions give (p11, p22) combinations
that yield unique equilibrium. Dark region is for Taylor’s (1999a) es-
timates: α1 = 1.5, γ1 = .75, α2 = .8, γ2 = .25; light plus dark region is
for Lubik and Schorfheide’s (2003) estimates: α1 = 2.19, γ1 = .17, α2 =
.77, γ2 = .3.
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Figure 7. Demand and Supply Shocks Under Lubik-
Schorfheide Estimates of Policy Parameters. Solid line is con-
ditional on active regime initially (α1 = 2.19, γ1 = .17) when other
regime is passive (α2 = .77, γ2 = .3). Transition probabilities are
p11 = .95, p22 = .93. Dashed line is fixed regime with α = α1, γ = γ1.
Figures plot the mean responses from 50,000 draws of regime, beginning
in the second period.




