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1 Introduction

The relevance of the zero lower bound on nominal interest rates for the conduct

of monetary policy is a much debated issue among both policymakers and acad-

emics. Clearly, the economic experience of Japan during the last decade as well

as the low levels of nominal interest rates prevailing in Europe and the United

States contribute to the renewed interest in this topic.1 Although deflation-

ary pressures seem eventually to be subsiding, investigating this issue remains

relevant for effectively dealing with such pressures should they reemerge.

Surprisingly, however, a systematic investigation of the policy implications

arising from the lower bound in stochastic models with forward-looking agents

is not available yet. This paper determines optimal discretionary monetary pol-

icy in a benchmark New Keynesian model, featuring monopolistic competition

and sticky prices in the product market (see Clarida, Galí and Gertler (1999)

and Woodford (2003)), under standard conditions of uncertainty and taking

explicitly into account the existence of the lower bound.

Studying a fully stochastic setup with lower bound is of interest because it

allows us to calibrate the model, to the U.S. economy, and study the welfare im-

plications of discretionary monetary policy. In particular, comparing our results

to those obtained under commitment in Adam and Billi (2005), we illustrate

that ignoring the existence of the lower bound one may significantly understate

the value of policy commitment.

To facilitate comparison to the case with policy commitment we eliminate

the discretionary inflation bias by assuming the existence of an appropriate

output subsidy that offsets the monopoly distortion. For a purely forward-

looking model, we then show that under discretionary monetary policy a fall

in the ‘natural’ real rate of interest generates large output losses and a sizable

1For recent discussions see Auerbach and Obstfeld (2005), Coenen and Wieland (2003),

Eggertsson and Woodford (2003), and Svensson (2003).
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amount of deflation.2 In particular, for our benchmark calibration a negative

three standard deviation value of the natural real rate leads to a negative output

gap of about 8% and an annual rate of deflation around 1.8%.3 The fall in both

output and inflation is found to be considerably larger than in the case with

policy commitment and does not show up at all if the model ignores the existence

of the lower bound. In fact, under commitment the output gap is less than 2%

and deflation is less than 0.1% .

As a result, the unconditional welfare losses generated by discretionary pol-

icy increase markedly if the model takes into account the lower bound. For our

benchmark calibration the welfare equivalent consumption losses generated by

discretionary policy increase by about 65%. However, we find that depending

on the precise parameterization of the model the consumption losses may easily

increase by as much as 300%. The consumption losses generated by discre-

tionary policy increase even further if we depart from our fully forward-looking

specification, allowing inflation to be partly determined by lagged inflation in

the Phillips curve; see Billi (2005) for the case with policy commitment.

Overall, these results emerge because in a fully stochastic setup private sec-

tor expectations of future output and inflation and the discretionary policy

response to these expectations reinforce each other, causing the lower bound to

be reached much more often than under commitment. Compared to the case

with commitment, the private sector expects larger output losses and stronger

deflation once the lower bound is reached: discretionary policy cannot engage

in credible promises about the conduct of future policy actions, therefore, is

unable to lower real interest rates by promising future inflation.4 Since adverse

shocks in the future may always cause the lower bound to be reached, private

agents expect lower output and inflation even at times when nominal rates are

2The ‘natural’ real rate of interest is the real interest rate associated with the optimal

allocation in the flexible price economy. Expectations of lower future productivity or higher

future government spending, for example, cause the natural real interest rate to be low.
3The natural real rate then temporarily stands at -1.39%.
4Any monetary expansion implemented during a time of zero nominal rates is expected to

be reversed once the lower bound ceases to be binding, see Eggertsson and Woodford (2003).
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still positive. Reduced inflationary expectations increase real interest rates and

put downward pressure on actual output and inflation. This induces policy to

lower nominal rates, which causes the lower bound to be reached much earlier

than under commitment. This in turn justifies even lower expectations of future

output and inflation and generates additional downward pressure on the actual

values of these variables.5

The literature on monetary policy under discretion was initiated by the

seminal contributions of Kydland and Prescott (1977) and Barro and Gordon

(1983). More recently, it has been extended to fully micro-founded models

in Clarida et al. (1999) and Woodford (2003).6 The relevance of the zero

lower bound under discretionary policy was first noted by Krugman (1998)

who emphasized that the credibility problem may generate a deflation problem.

Eggertsson (2005) and Jeanne and Svensson (2004) build upon this idea and

discuss potential solutions to the credibility problem.

The remainder of this paper is structured as follows. Section 2 introduces

the economic model and section 3 explains how we solve it. After presenting

the calibration to the U.S. economy in section 4, we illustrate the welfare impli-

cations of discretionary policy in section 5. To explain the welfare results, first

we analytically determine the perfect foresight equilibrium in Section 6, then

we present detailed results for the stochastic equilibrium in Section 7. Section

8 checks the robustness of our findings with respect to the model specification

and parameterization. Section 9 briefly concludes. Analytical derivations and

our numerical algorithms are described in the appendix.

5 If the probability of reaching the lower bound in the future is sufficiently small, e.g,

because of mean-reverting dynamics in the shock process, then the expectational feedback

will be sufficiently weak and this process does not lead to a deflationary spiral.
6Albanesi et al. (2003), and King and Wolman (2004) highlight that when monetary

authorities act under discretion multiple steady states may arise.
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2 The Model

We consider a well-known monetary policy model of a representative consumer

and firms in monopolistic competition facing restrictions on the frequency of

price adjustments (Calvo (1983)). Following Rotemberg (1987), this is often

referred to as the ‘New Keynesian’ model, that has frequently been studied in

the literature, e.g., Clarida, Galí and Gertler (1999) and Woodford (2003).

We augment this otherwise standard monetary policy model by explicitly

imposing the zero lower bound on nominal interest rates. We thus consider the

following problem:

max
{yt,πt,it}

−Et

∞X
i=0

βi
¡
π2t+i + λy2t+i

¢
(1)

s.t.

πt = βEtπt+1 + κyt + ut (2)

yt = Etyt+1 − σ (it −Etπt+1) + gt (3)

it ≥ −r∗ (4)

ut = ρuut−1 + εu,t (5)

gt = ρggt−1 + εg,t (6)

ut, gt given (7)

{yt+i, πt+i, it+i} given for i ≥ 1 (8)

where πt denotes the inflation rate, yt the output gap, and it the nominal

interest rate expressed as deviation from the interest rate consistent with the

zero inflation steady state.

Under certain conditions the monetary policy objective (1) can be inter-

preted as a quadratic approximation to the utility of the representative house-

hold.7 The welfare weight λ > 0 is then given by

λ =
κ

θ
7This requires steady output to be efficient, e.g., thanks to the existence of an output

subsidy that neutralizes the distortions from monopolistic competition, and the output gap to
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where θ > 1 denotes the price elasticity of demand for the goods produced by

monopolistic firms. Equation (2) is a forward-looking Phillips curve summariz-

ing, up to first order, profit-maximizing price setting behavior by firms, where

β ∈ (0, 1) denotes the discount factor and κ > 0 is given by

κ =
(1− α)(1− αβ)

α

σ−1 + ω

1 + ωθ

with α ∈ (0, 1) denoting the share of firms that cannot adjust prices in a given
period, σ > 0 the household’s intertemporal elasticity of substitution, and ω > 0

the elasticity of a firm’s real marginal costs with respect to its own output

level.8 Equation (3) is a linearized Euler equation summarizing, up to first order,

households’ intertemporal maximization. The shock gt captures the variation

in the ‘natural’ real interest rate and is usually referred to as a real rate shock,

i.e.,

gt = σ(rt − r∗) (9)

where the natural real rate rt is the real interest rate consistent with the flexible

price equilibrium, and r∗ = 1/β − 1 is the real rate of the deterministic zero
inflation steady state.9 The requirement that nominal interest rates have to

remain positive is captured by constraint (4). Finally, equations (5) and (6)

describe the evolution of the shocks, where ρj ∈ (−1, 1) and εj,t ∼ iiN(0, σ2j)

for j = u, g.10

Assuming the monetary policymaker cannot commit to future plans, one

solves problem (1)-(8) on a period-by-period basis. In other terms, the poli-

cymaker rationally anticipates its inability to commit, therefore, treats future

values of y, π and i as given. This is captured by constraint (8). This is the

be defined as the difference between the actual output level and the efficient level, see chapter

6 of Woodford (2003) for details.
8 See chapter 3 in Woodford (2003) for further details.
9The shock gt summarizes all shocks that under flexible prices generate time variation in the

real interest rate, therefore, it captures the combined effects of preference shocks, productivity

shocks, and exogenous changes in government expenditure.
10As shown in Adam and Billi (2005), this specification of the shock processes is sufficiently

general to describe the historical sequence of shocks in the U.S. economy for the period 1983:1-

2002:4 that we consider.
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only point of departure from the case with policy commitment, where the entire

solution is determined in period zero, see Adam and Billi (2005).

One should note that (1)-(8) describes a social planning problem since in

addition to the nominal interest rate the policymaker also ‘chooses’ the preferred

output level and inflation rate. We thus implicitly allow the policymaker to

select the preferred equilibrium outcome consistent with discretionary monetary

policymaking. In this paper we do not discuss how policy can insure that the

preferred outcome is indeed the only one consistent with the way interest rate

policy is conducted. This is a matter of policy implementation, which is beyond

the scope of this paper; the reader may want to refer to Giannoni and Woodford

(2003) for a treatment in the linear case.

2.1 Discussion

2.1.1 Relation to earlier work

The new feature of the discretionary maximization problem introduced in the

previous section is the presence of both the zero lower bound (4) and the sto-

chastic disturbances εu,t and εg,t. These elements together render the policy

problem nonlinear, since the disturbances will cause the nominal interest rate

to occasionally reach the lower bound.

The model without lower bound is analyzed in Clarida, Galí and Gertler

(1999). Without lower bound the policy problem is linear quadratic, so one can

solve for the equilibrium dynamics analytically using standard methods. Jung,

Teranishi, and Watanabe (2005) consider a model with lower bound but assume

perfect foresight. In their model the lower bound may be reached in t = 0, but

is never binding again some time onwards in the future. As is shown below,

the equilibrium of a stochastic economy differs considerably from such a perfect

foresight solution, because shocks may always drive the economy back into a

situation with zero nominal interest rates.
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2.1.2 How much non-linearity?

Instead of the fully nonlinear model, we study linear approximations to firms’

and households’ first order conditions, i.e., equations (2) and (3), respectively,

and a quadratic approximation to the objective function, i.e., equation (1). This

means that the only nonlinearity that we take account of is the one imposed by

the zero lower bound (4).11

Clearly, this modelling approach has advantages and disadvantages. One

disadvantage is that for the empirically relevant shock support and the estimated

value of the discount factor the linearizations (2) and (3) may perform poorly

at the lower bound. Yet, this depends on the degree of nonlinearity present in

the model, an issue about which empirically relatively little seems to be known.

A paramount advantage of our approach is that one can economize in the

dimension of the state space. A fully nonlinear setup would require an addi-

tional state to keep track over time of the higher-order effects of price dispersion,

as shown by Schmitt-Grohé and Uribe (2004). Computational costs would be-

come prohibitive with such an additional state.12 Moreover, the simpler setup

implies that our results remain more easily comparable to the standard linear-

quadratic analysis without lower bound that appears in the literature, as the

only difference consists of imposing equation (4).

3 Solving the Model

This section shows how we solve the model under discretion. The solution

strategy for the case with policy commitment is illustrated in Adam and Billi

(2005).

11Technically, this approach is equivalent to linearizing the first order conditions of the non-

linear maximization problem around the first best steady state except for the non-negativity

constraint for nominal interest rates that is kept in its original nonlinear form.
12With policy commitment the model has four state variables already, i.e., the two exogenous

shocks and the lagged values of the Lagrange multipliers for constraints (2) and (3), see Adam

and Billi (2005) for details.
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We restrict attention to stationary Markov perfect equilibria in which the

policy functions depend on the current predetermined states ut and gt only.13 A

Markov perfect equilibrium consists of policy functions y(ut, gt), π(ut, gt), and

i(ut, gt) that solve problem (1)-(8) when the expectations in equations (2) and

(3) are given by

Etπt+1 =

Z
π(ρuut + εu,t+1, ρggt + εg,t+1)f(εu,t+1, εg,t+1)d(εu,t+1, εg,t+1)

(10)

Etyt+1 =

Z
y(ρuut + εu,t+1, ρggt + εg,t+1)f(εu,t+1, εg,t+1)d(εu,t+1, εg,t+1)

(11)

where f(·, ·) is the probability density function of the innovations (εu, εg).

Equations (10) and (11) show that the solution to problem (1)-(8) enters

the constraints (2) and (3). Solving for the equilibrium thus requires finding a

fixed-point in the space of policy functions.

We numerically solve for the fixed-point as follows. We guess initial policy

functions, then compute the associated expectations in equations (10) and (11).

For given expectations, problem (1)-(8) is a simple static one-period maximiza-

tion problem, where the first order conditions can be used to determine updated

policy functions. We iterate in this manner until convergence. The numerical

procedure is described in detail in appendix A.1.

4 Calibration to U.S. Economy

We calibrate the model to the U.S. economy employing the parameterization of

Adam and Billi (2005), which is based in turn on the results of Rotemberg and

Woodford (1998) and our estimates of the U.S. shock processes for the period

1983:1-2002:4. The parameter values are summarized in table 1 and serve as the

13When considering a model with lagged inflation in the Phillips curve, as in section 8,

policy functions also depend on lagged inflation rates.
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baseline calibration of the model. The implied steady state real interest rate for

this parameterization is 3.5% annually.

[Table 1 about here]

Throughout the paper variables are expressed in terms of percentage point

deviations from deterministic steady state values. Interest rates and inflation

rates are expressed in annualized percentage deviations, while the real rate shock

and the mark-up shock are stated in quarterly percentages.

5 The Welfare Losses from Discretionary Policy

This section shows that the welfare losses from discretionary monetary policy

increase markedly once the zero lower bound is taken into account. The origin

of this result will be explained in sections 6 and 7.

Using the baseline calibration from the previous section, table 2 reports the

welfare losses implied by optimal discretionary policy.14 Losses are expressed

in terms of their welfare equivalent permanent consumption reduction.15 The

table reports losses both for a model with bound and for one ignoring the lower

bound. As is usually the case with New Keynesian models, e.g., Galí (2003),

and representative agent models more generally, e.g., Lucas (1987), the welfare

losses associated with cyclical fluctuations turn out to be fairly small in absolute

size. Yet, important relative differences do show up.

[Table 2 about here]

As shown in the second column of table 2, under policy commitment the

consumption losses are almost independent of whether or not the zero lower
14The table reports unconditional welfare losses, obtained by averaging the discounted losses

across 1000 simulations each 1000 periods long.
15Consumption equivalents are obtained via an appropriate transformation of the losses

from objective (1), see appendix A.2.
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bound is taken into account by the model. We find this to be a fairly robust

outcome. The situation differs notably under discretionary policy, where the

consumption losses relative to the case with commitment increase by about 65%

once the zero lower bound is accounted for. This clarifies that one significantly

understates the true welfare losses associated with discretionary monetary policy

if ignoring the existence of a lower bound on nominal interest rates.

Depending on the precise model parameterization, the understatement of the

consumption losses may turn out to be even larger. This is illustrated in figure

1, which reports the increase in the consumption losses associated with taking

into account the zero lower bound under discretionary policy, as a function of

the steady state real interest rate.16 It shows that already for steady state real

interest rates slightly below the baseline value of 3.5%, the true consumption

loss generated by discretionary policy may be as much as 300% higher than

suggested instead by a model ignoring the zero lower bound.

[Figure 1 about here]

The dependence of the size of the consumption losses on the steady state

real interest rate, displayed in figure 1, suggests that the lower bound inflicts

welfare losses under discretionary policy whenever the natural real interest rate

is low, i.e., for low values of the real rate shock gt. The next sections investigate

this issue in greater detail.

6 Perfect Foresight

To gain intuition for the numerical findings reported above, this section assumes

perfect foresight and analytically determines the Markov perfect equilibrium

associated with discretionary monetary policy. Analysis of the stochastic case

is deferred to the next section.
16The steady state real interest rate is varied by changing the discount factor β. Instead, all

other parameters take on their baseline values from table 1. For a steady state real interest rate

below 3.29% our algorithm for computing the optimal discretionary policy fails to converge.
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For simplicity, we abstract from time variations in the mark-up shock ut

and focus on variations of the real rate shock gt only.17 To characterize the

discretionary equilibrium define for the real rate shock a critical value

gc = −σr∗ (12)

and partition the real line into a number of non-intersecting intervals

I0 = [gc,+∞)
Ij = [gc/

¡
ρg
¢j
, gc/

¡
ρg
¢j−1

) for j = 1, 2, 3 . . .

Under perfect foresight these intervals have the convenient property that if gt ∈
Ij then gt+1 ∈ Ij−1 for all j > 0. The interval I0 is an absorbing interval that

is reached in finite time for any initial value g0.

In appendix A.3 the following result is shown:

Proposition 1 Suppose εu,t = εg,t = 0 and u0 = 0. There exists a Markov

perfect equilibrium with perfect foresight such that

i =

⎧⎨⎩ 1
σg for g ≥ gc

−r∗ for g < gc
(13)

and in which output and inflation are continuous functions of g. For g ∈ I0

output and inflation are equal to zero. For g ∈ Ij (j > 0) output and inflation

are negative and linearly increasing in g at a rate that increases with j.

Figure 2 displays the equilibrium for the case with lower bound (solid line)

and without lower bound (dashed line with circles), when using the U.S. baseline

calibration of table 1.18 When ignoring the lower bound real rate shocks do

not generate any policy trade-off. The policymaker replicates variations in the

natural real rate by adjusting nominal interest rates appropriately.

17For the baseline calibration of table 1, our numerical simulations show that mark-up

shocks do not drive the higher welfare losses associated with taking proper account of the

lower bound.
18For this calibration gc ≈ −5.47.
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[Figure 2 about here]

Instead, with lower bound it remains optimal to mimic this policy as long

as the lower bound is not reached, but to set nominal interest rates to zero

once the natural real rate drops below the critical value gc. Yet, when this

happens output falls short of potential and inflation becomes negative because

real interest rates are higher than their efficient level.

Figure 2 also shows that, as stated in proposition 1, the effects of a marginal

reduction of g on output and inflation are increasing as the real rate becomes

more negative. More negative values of g imply the lower bound is reached also

in the future. This induces expectations of negative output and inflation, which

reinforce the downward pressure on current output and inflation associated with

too high real interest rates, see equations (2) and (3).

This finding can explain the dependence of the welfare loss on the steady

state real interest rate, illustrated earlier in figure 1. A lower steady state real

interest rate r∗ leads to an increase in the critical value gc, see equation (12),

and causes output losses and negative inflation rates over a wider range of real

rate shocks. None of these losses show up in a model that ignores the existence

of the zero lower bound.

7 Stochastic Equilibrium

This section presents the stochastic Markov perfect equilibrium with lower

bound corresponding to the baseline parameterization in table 1. In partic-

ular, we find that the presence of shocks leads to significant differences from the

case with perfect foresight considered in the previous section.

7.1 Impact on Average Values

We first discuss the effect of the zero lower bound on average output and infla-

tion under discretionary policy. Since the lower bound causes the model to be
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nonlinear, the average values of endogenous variables will generally differ from

their steady state values due to a breakdown of certainty equivalence.

[Figure 3 about here]

The perfect foresight solution presented earlier in section 6 suggests that both

average output and inflation should fall short of their steady state value of zero.

Figure 3 depicts the average values of output and inflation under discretionary

policy at different levels of the steady state real interest rate.19 As suggested by

the perfect foresight solution, there is more deflation on average as the steady

state real interest rate falls. Surprisingly, however, average output is above

potential, unlike suggested by figure 2 for the case with perfect foresight.

The origin of these results is clarified in the next section, which looks at the

stochastic equilibrium in greater detail.

7.2 Equilibrium Response to Shocks

We first discuss the response to mark-up shocks and then discuss that to real

rate shocks.

We find that the zero lower bound does not represent a binding constraint

in the model when dealing with mark-up shocks. The empirical variability of

these shocks is simply too small for the policy constraint to matter. Figure

4 displays the equilibrium response of output, inflation, and nominal interest

rates to mark-up shocks.20 The solid line corresponds to the optimal responses

if the bound is considered, while the dashed line refers to the case where the

lower bound is ignored. The figure shows that the optimal reaction to mark-up

shocks is virtually unaffected by the presence of the zero lower bound. Moreover,

19The steady state interest rate is varied by changing the discount factor β. All other

parameters take on their baseline values from table 1.
20The figure depicts responses over a range of ±3 unconditional standard deviations of the

mark-up shock; with the value of the real rate shock set equal to zero.
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interest rates remain well above their lower bound, even for very negative values

of the mark-up shock.

[Figure 4 about here]

The situation differs notably when considering real-rate shocks. Figure 5

depicts the equilibrium response of output, inflation, and nominal rates to a

real rate shock.21 The solid line corresponds to the stochastic case while the

dashed line corresponds to the case with perfect foresight, considered in section

6. The figure reveals a number of interesting features.

[Figure 5 about here]

First, while large negative values of the real rate shock result in negative

output gaps and deflation, these effects are much more pronounced in the sto-

chastic case. Compared to the case with perfect foresight, both the maximum

output losses and deflation approximately triple.

Second, the zero lower bound is now reached much earlier than under per-

fect foresight, since interest rates are lowered more aggressively in response to

negative real rate shocks. For our baseline calibration the presence of the lower

bound might require setting nominal interest rates up to 75 basis points lower

than under perfect foresight.

Third, figure 5 reveals that the output gap becomes slightly positive and

inflation slightly negative well before the zero lower bound is reached. Thus

real rate shocks generate a policy trade off even at times where nominal interest

rates are still positive.

All these features emerge because in a fully stochastic setup shocks may

drive the economy from a situation with positive nominal interest rates into one
21The figure displays the responses up to a −3 unconditional standard deviation value of

the real rate shock; assuming mark-up shocks to be at zero.
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where the lower bound is reached. Since output and inflation become negative

once at zero nominal rates, the possibility of reaching the lower bound in the

future causes agents to reduce their expectations of future output and inflation

well before interest rates are at the lower bound.22 The reduction in expected

output and inflation is isomorphic to a negative mark-up shock and a negative

real rate shock in equations (2) and (3), respectively. To both these shocks

the policymaker responds by lowering nominal interest rates. This explains the

more aggressive reduction of interest rates in the lower panel of figure 5.

Negative mark-up shocks, however, generate a policy trade-off and policy

responds to them by letting output rise and inflation fall, see figure 4. The

downward bias in expectations, therefore, also explains the output boom that

can be observed in the ‘run-up’ to zero nominal rates in figure 5, i.e., before gt

enters the binding area. This output boom compensates for the output losses

occurring for more negative shock values and explains why in the stochastic case

there is virtually no distortion of the average output level, see figure 3.

Finally, the downward bias of expected future values of output and inflation,

due to the presence of shocks, generates downward pressure for corresponding

actual values. This in turn justifies even lower expectations. This comple-

mentarity between expectations and outcomes explains the large differences in

magnitudes implied by the perfect foresight equilibrium and the stochastic equi-

librium.

7.3 Comparison to the case with commitment

This section briefly summarizes results derived in Adam and Billi (2005), and

explains why under commitment taking into account the existence of the zero

lower bound does not generate large welfare consequences.

22Technically, since the policy functions of output and inflation depicted in figure 2 are

concave, Jensen’s inequality implies a downward bias once we allow for uncertainty about the

future value of the natural real rate.
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[Figure 6 about here]

Figure 6 displays the average values of output and inflation as a function of

the steady state real interest rate. Unlike in the case with discretion, average

inflation does not fall as the level of the real interest rate is lower. For very low

levels of the real interest rate the average inflation rate even becomes slightly

positive. This suggests that under commitment output and inflation fall much

less in response to a negative real rate shock.

[Figure 7 about here]

This point is illustrated in figure 7 which depicts the equilibrium response

of output and inflation to a negative real rate shock. The solid line shows the

responses under commitment, while the dashed line corresponds to the case with

discretion. The difference in the responses of output and inflation is sizable. It

emerges because under commitment the policymaker can engage in (credible)

promises about the conduct of monetary policy in the future. In particular, once

the lower bound is reached, the policymaker promises to allow for some inflation

in the future. This raises expectations of future inflation, which reduces real

interest rates and helps stabilizing current inflation and output. Since the infla-

tion promises fail to be time-consistent, they are unavailable to a discretionary

policymaker.

8 Sensitivity Analysis

In this section we report the results of robustness exercises regarding the model

specification and parameterization.

8.1 Hybrid Phillips Curve

In the benchmark model considered thus far inflation is assumed to be purely

forward-looking. Yet, a number of econometric studies suggest that inflation is

partly determined by lagged inflation rates, e.g., Galí and Gertler (1999).
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This section studies the implications of allowing inflation to depend on lagged

inflation rates. In particular, we replace the forward-looking Phillips curve (2)

by its ‘hybrid’ version

πt =
1

1 + βγ
[βEtπt+1 + γπt−1 + κyt + ut] (14)

where γ ≥ 0 is an ‘indexation parameter’ that indicates the degree to which firms
automatically adjust their prices to lagged inflation rates when they do not fully

reoptimize prices, see Woodford (2003). Correspondingly, we also replace the

objective function (1) by

−E0
∞X
i=0

βi
¡
(πt+i − γπt+i−1)2 + λy2t+i

¢
(15)

which Woodford (2003) shows to be a second order approximation to the house-

hold’s utility function when the Phillips curve is given by equation (14).

To economize on the number of the state variables we abstract from mark-up

shocks in the model, i.e., we set ut ≡ 0 in equation (14).23 This simplification
implies welfare losses emerge only if the lower bound is taken into account,

independently of the degree of indexation.24 For γ = 0 the policy problem

reduces to the simpler case considered in the previous sections, except for the

fact that we now abstract from mark-up shocks. For γ > 0 inflation is partly

determined by lagged inflation, which becomes an endogenous state variable

of the system. Solving the policy problem is then more involved, since the

discretionary maximization problem fails to be static.

We consider stationary Markov-perfect equilibria where output, inflation,

and nominal interest rates depend on the exogenous shocks (u, g) and also on

the lagged inflation rate π−1. The current policymaker behaves as a Stackel-

berg leader and rationally anticipates how future equilibrium values respond to

23An additional state variable would raise the dimension of the state space of the model to

five in the case with commitment. Computational costs would thus be prohibitive.
24When ignoring the lower bound, the optimal policy response to real rate shocks is time-

consistent. Discretionary monetary policy then does not generate welfare losses.
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current inflation outcomes. Constraint (8) thus has to be replaced by

{y(st+i), π(st+i), i(st+i)} given for i ≥ 1, where st+i = (ut+i, gt+i, πt+i−1)
(16)

Appendix A.4 illustrates the numerical algorithm we employ to solve the

model under discretion, based on a value function representation of the policy

problem. It can be seen as a generalization to a nonlinear setup of the tech-

nique described in Söderlind (1999). The solution strategy for solving the policy

problem under commitment is described in Billi (2005).

[Figure 8 about here]

Figure 8 depicts the steady state consumption losses from discretionary pol-

icy associated with various degrees of indexation γ.25 The consumption losses

are expressed in terms of the percentage increase relative to the loss without

indexation (γ = 0). As shown, the consumption losses are strongly increasing in

the degree of indexation, e.g., with γ = 0.17, the loss from discretionary policy

is almost 300% higher than in the case without indexation.26

[Figure 9 about here]

Moreover, figure 9 compares the equilibrium responses for the purely forward-

looking case (solid line) to the case where γ = 0.17 (dashed line). Endogenous

inflation persistence significantly increases the amount of deflation and the size

of output losses associated with negative values of the real rate shock. Also,

the policymaker has to ease monetary policy even more aggressively than in a

purely forward-looking specification. This is in line with findings by Coenen et

al. (2004) and Wolman (2005) who report that interest rate rules that stabi-

lize the inflation rate lead to significant real distortions whenever price or wage

setting frictions impart inertia to the inflation rate.
25The figure uses the baseline values from table 1 for the remaining parameters.
26For values of γ larger than 0.17 our numerical algorithm for computing the optimal dis-

cretionary policy then fails to converge.
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Overall, this suggests that endogenous inflation persistence considerably re-

inforces the results obtained for the purely forward-looking model: by ignoring

the zero lower bound one understates the value of monetary commitment.

8.2 Lower Interest Rate Elasticity of Output

Our benchmark calibration of table 1 assumes an interest rate elasticity of out-

put of σ = 6.25, which seems to lie on the high side for plausible estimates of the

intertemporal elasticity of substitution.27 Therefore, we also consider a calibra-

tion with σ = 1, that corresponds to log utility in consumption, and constitutes

the usual benchmark parameterization in the real business cycle literature. This

calibration is taken from our companion paper, see Adam and Billi (2005), and

is summarized in table 3.

[Tables 3 and 4 about here]

Table 4 reports the consumption equivalent welfare losses associated with

discretionary monetary policy. As for the benchmark calibration, losses remain

almost unchanged when taking into account the zero lower bound under com-

mitment. The losses under discretion, however, increase markedly. The increase

is much stronger than for the benchmark calibration because for σ = 1 the data

imply a slightly more variable natural real rate process. This causes the lower

bound to be reached more often.

9 Conclusions and Outlook

We show that taking explicitly into account the existence of the zero lower bound

on nominal interest rates considerably increases the welfare costs associated with

discretionary monetary policy. In particular, low values of the natural real rate

of interest cause much larger output losses and stronger deflation than in the case

27As argued by Woodford (2003), a high elasticity value may capture non-modeled interest-

rate-sensitive investment demand.
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with policy commitment. Importantly, none of these feature is appropriately

accounted for by models that ignore the lower bound.

In the benchmark New Keynesian model that we employ, once the lower

bound is reached the inability to commit to future policy actions deprives discre-

tionary monetary policymakers of their policy instruments. However, in practice

there are several alternative policy instruments that might still be available in

a situation of zero nominal interest rates, most notably fiscal policy and ex-

change rate policy. We plan to investigate the relevance of these other policy

instruments by including them into our analysis in future work.

A Appendix

A.1 Numerical algorithm (forward-looking Phillips curve)

To solve problem (1)-(8), we define a grid of N interpolation nodes over the state

space (u, g) ⊂ R2 and evaluate policy functions y(u, g), π(u, g), and i(u, g) at

intermediate values resorting to linear interpolation. The expectations defined

by equations (10) and (11) are evaluated at each interpolation node using an M

node Gaussian-Hermite quadrature scheme.28 Our numerical algorithm consists

of the following steps:

Step 1: Choose the degree of approximationN andM and assign the interpolation

and quadrature nodes. Guess initial values for the policy functions y0, π0,

and i0 at the interpolation nodes.

Step 2: At each interpolation node compute the expectations (10) and (11) implied

by the current guess yk, πk, and ik. Then employ the first order conditions

of (1)-(8) to derive a new guess for the policy functions in the following

way. At each interpolation node, first assume i > −r∗. The first order
28See chapter 7 in Judd (1998) for details.
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conditions then imply the well-known ‘targeting rule’

π = −λ
κ
y (17)

This together with (2) delivers the implied values for y and π. Plugging

these into (3) determines the value of i. If i > −r∗, as initially conjectured,
one has found a solution. Otherwise, set i = −r∗ and solve (2) and (3) for
y and π. Performing this at each node delivers a new guess yk+1, πk+1,

and ik+1.

Step 3: Stop if max
©¯̄
yk − yk+1

¯̄
max

,
¯̄
πk − πk+1

¯̄
max

,
¯̄
ik − ik+1

¯̄
max

ª
< τ where

|·|max denotes the maximum absolute norm and τ > 0 the convergence

tolerance level. Otherwise repeat step 2.

In our application we set N = 275 and M = 9. Relatively more nodes

are placed in areas of the state space where the policy functions display kinks,

i.e., at negative values of the g shock where the lower bound is reached. The

support of the interpolation nodes is chosen to cover ±4 unconditional standard
deviations for each of the exogenous shocks. Our initial guess for the policies

is set to the solution of the problem without zero lower bound. The tolerance

level is τ = 1.49 · 10−8, i.e., the square root of machine precision.

A.2 Computing welfare equivalent consumption losses

The results in chapter 6 of Woodford (2003) show that a second order approxi-

mation of the representative agent’s discounted utility is given by

U = −Y UcL

where Y denotes steady state output, Uc > 0 steady state marginal utility of

consumption, and

L =
1

2

αθ (1 + ωθ)

(1− α) (1− αβ)

∞X
i=0

βi
¡
π2t+i + λy2t+i

¢
(18)

Note that, up to a change in sign, the infinite sum appearing in the previous

expression corresponds to the discounted loss (1).
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Assuming a permanent reduction in consumption by p ≥ 0 percent, a second
order approximation of the utility loss generated is given by

1

1− β

µ
−UcY p

100
+

Ucc
2

³
Y

p

100

´2¶
= − UcY

1− β

µ
p

100
− UccY

2Uc

³ p

100

´2¶
= − UcY

1− β

µ
p

100
+
1

2σ

³ p

100

´2¶
where Ucc < 0 is the second derivative of utility with respect to consumption

evaluated at the steady state. Equating this utility loss to U delivers

1

2σ

³ p

100

´2
+

p

100
− (1− β)L = 0

The utility equivalent percentage loss in steady state consumption is then

p = 100 · σ
Ã
−1 +

r
1 +

2(1− β)L

σ

!

Since we express y and π in percentage points, we have to rescale the losses and

use

p = 100 · σ
Ã
−1 +

r
1 +

2(1− β)L

σ1002

!
(19)

Analogous arguments apply for the model with a hybrid Phillips curve. Equa-

tion (19) then still applies, but (18) is substituted with

L =
1

2

αθ (1 + ωθ)

(1− α) (1− αβ)

" ∞X
i=0

βi
³
(πt+i − γπt+i−1)

2
+ λy2t+i

´#

A.3 Proof of proposition 1

Suppose g ∈ I0, then g0 ∈ I0 where g0 denotes the value of g in the subsequent

period. Given the interest rate policy (13), equations (2) and (3) imply that

π = y = 0 constitutes a perfect foresight equilibrium for all g ∈ I0. Clearly, the

interest rate policy (13) is optimal for all g ∈ I0.

Now suppose g ∈ I1. Since this implies g0 ∈ I0, we can solve the problem

by backward induction: g0 ∈ I0 implies private sector’s expectations are given
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by Eπ0 = Ey0 = 0. It then follows from equations (2), (3), and (13) that

y = −gc + g (20)

π = −κgc + κg (21)

Note that output and inflation are continuous in the transition from I1 to I0,

and linear in g for g ∈ I1. One can iterate in this manner to obtain output and

inflation for I2, I3, . . .. Continuity and linearity of all equations involved thereby

implies that output and inflation are continuous functions of g. Moreover, for

the stated interest rate policy, in each interval Ij output and inflation are linear

in g and can be represented as

y = cjy + sjyg (22)

π = cjπ + sjπg (23)

Equations (20) and (21) imply⎛⎝ s1y

s1π

⎞⎠ =

⎛⎝ 1

κ

⎞⎠
Using equations (22) and (23) and the law of motion of g to construct expec-

tations in the interval Ij+1, equations (2) and (3) and the interest rate policy

gives ⎛⎝ sj+1y

sj+1π

⎞⎠ =

⎛⎝ s1y

s1π

⎞⎠+A

⎛⎝ sjy

sjπ

⎞⎠ where

A =

⎛⎝ ρg σρg

ρgκ ρg (κσ + β)

⎞⎠
Iterating on this equation implies that

s2 = s1 +As1

s3 = s2 +A2s1

s4 = s3 +A3s1

...
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where

sj ≡
⎛⎝ sjy

sjπ

⎞⎠
Given that s1 > 0 and all entries in A are positive, the slopes sj are increasing

in j. Since output and inflation are negative for g ∈ I1, from continuity it follows

that they are negative for all g ∈ Ij with j > 1. Therefore, zero nominal interest

rates are optimal for g ∈ Ij with j > 1, since positive nominal interest rates

would generate even lower output levels and inflation rates.

A.4 Numerical algorithm (hybrid Phillips curve)

We define a grid of N interpolation nodes over the state space (u, g, π−1) ⊂
R3. Associated with the policy functions π(u, g, π−1) and y(u, g, π−1) are the

expectation functions

Eπ+1 =

Z
π(ρuu+ εu,+1, ρgg + εg,+1, π)f(εu,+1, εg,+1)d(εu,+1, εg,+1) (24)

Ey+1 =

Z
y(ρuu+ εu,+1, ρgg + εg,+1, π)f(εu,+1, εg,+1)d(εu,+1, εg,+1) (25)

where f(·, ·) is the probability density function of the stochastic shock innova-
tions (εu, εg). The expectations (24) and (25) are evaluated at each interpolation

node using an M node Gaussian-Hermite quadrature scheme.29 Our numerical

algorithm then performs the following steps:

Step 1: Choose the degree of approximationN andM and assign the interpolation

and quadrature nodes. Guess initial values for the policy functions y0, π0,

and i0 at the interpolation nodes.

Step 2: At each interpolation node compute the expectations (24) and (25) implied

by the current guess yk, πk, and ik. For given expectation functions, the

Lagrangian for maximizing (15) subject to (3)-(7), (14) and (16) can be

29See chapter 7 in Judd (1998) for details.
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written as a recursive saddle point problem

V k(u, g, π−1) = max
(y,π,i)

min
(m1,m2)

hk(u, g, π−1, y, π, i,m1,m2, E
kπ+1, E

ky+1)

+ βEV k(u+1, g+1, π) (26)

s.t.

i ≥ −r∗

u+1 = ρuu+ εu,+1

g+1 = ρgg + εg,+1

where

hk(·) = −π2 − λy2 +m1[π − 1

1 + βγ
(βEkπ+1 + γπ−1 + κy + u)]

+m2

£
y −Eky+1 + σ

¡
i− Ekπ+1

¢− g
¤

and m1 and m2 are the Lagrange multipliers. Using the collocation

method one can numerically solve for the fixed-point of (26) and the as-

sociated optimal policy functions yk+1, πk+1, ik+1, mk+1
1 , mk+1

2 . Details

of this procedure are described, e.g., in appendix A.2 in our companion

paper, see Adam and Billi (2005).

Step 3: Stop if the maximum of
¯̄
yk − yk+1

¯̄
max

,
¯̄
πk − πk+1

¯̄
max

,
¯̄
ik − ik+1

¯̄
max

,¯̄
mk
1 −mk+1

1

¯̄
max

and
¯̄
mk
2 −mk+1

2

¯̄
max

is smaller than τ , where |·|max de-
notes the maximum absolute norm evaluated at the interpolation nodes

and τ > 0 the convergence tolerance level. Otherwise repeat step 2.

In our application we set N = 1375 and M = 9. Relatively more nodes

are placed in areas of the state space where the value and policy functions

display a higher degree of curvature and kinks, respectively. The support of the

interpolation nodes is chosen to cover ±4 unconditional standard deviations for
each of the exogenous shocks, and to insure that all values of π−1 lie inside the

state space when using the solution to perform stochastic simulations. Since

this can only be verified after the solution is achieved some experimentation is

necessary. Our initial guess for the polices is set to the solution of the model
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without zero lower bound. The tolerance level is τ = 1.49 ·10−8, i.e., the square
root of machine precision.
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Parameter Economic interpretation Assigned value

β quarterly discount factor
³
1 + 3.5%

4

´−1
≈ 0.9913

σ real rate elasticity of output 6.25

α share of firms keeping prices fixed 0.66

θ price elasticity of demand 7.66

ω elasticity of firms’ marginal costs 0.47

κ slope of the Phillips curve 0.024

λ weight on output in the loss function 0.048
42 = 0.003

ρu AR-coefficient mark-up shocks 0

ρg AR-coefficient real rate shocks 0.8

σu s.d. mark-up shock innovations (quarterly %) 0.154

σg s.d. real rate shock innovations (quarterly %) 1.524

Table 1: Parameter values (baseline calibration)

Consumption equivalents Loss under Loss under Additional loss

(in percent) commitment discretion from discretion

Without zero bound -0.0152 -0.0197 -0.0045

With zero bound -0.0153 -0.0228 -0.0075

Increase in additional loss +65%

Table 2: Welfare equivalent consumption losses from discretion (baseline calibration)
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Parameter Economic interpretation Assigned value

β quarterly discount factor
³
1 + 3.5%

4

´−1
≈ 0.9913

σ real rate elasticity of output 1

α share of firms keeping prices fixed 0.66

θ price elasticity of demand 7.66

ω elasticity of firms’ marginal costs 0.47

κ slope of the Phillips curve 0.057

λ weight on output in the loss function 0.007

ρu AR-coefficient mark-up shocks 0.36

ρg AR-coefficient real rate shocks 0.8

σu s.d. mark-up shock innovations (quarterly %) 0.171

σg s.d. real rate shock innovations (quarterly %) 0.294

Table 3: Parameter values (RBC calibration)

Consumption equivalents Loss under Loss under Additional loss

(in percent) commitment discretion from discretion

Without zero bound -0.0258 -0.0400 -0.0142

With zero bound -0.0259 -0.0668 -0.0408

Increase in additional loss +189 %

Table 4: Welfare equivalent consumption losses from discretion (RBC calibration)
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Figure 1: Increase in consumption losses taking into account the zero lower

bound (discretionary policy)
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Figure 2: Perfect foresight equilibrium (discretionary policy)

32



3.29 3.5 4 4.5 5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Average inflation (yearly rates)

P
er

ce
nt

ag
e 

po
in

ts

Steady−state real interest rate (annual %)

3.29 3.5 4 4.5 5
−0.1

−0.05

0

0.05

0.1
Average output gap

P
er

ce
nt

ag
e 

po
in

ts

Steady−state real interest rate (annual %)

Figure 3: Average values (discretionary policy)
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Figure 4: Equilibrium response to mark-up shocks (discretionary policy)
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Figure 5: Equilibrium response to real-rate shocks (discretionary policy)
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Figure 6: Average values (commitment policy)
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Figure 7: Equilibrium response to real rate shocks (commitment vs. discre-

tionary policy)
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Figure 8: Increase in consumption losses from indexation to lagged inflation

(discretionary policy)
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Figure 9: Equilibrium response to real rate shocks with indexation to lagged

inflation (discretionary policy)
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