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1 Introduction

The low levels of nominal interest rates experienced over the last years in

major world economies has generated considerable interest in how mone-

tary policy should be conducted in the presence of a zero lower bound on

nominal interest rates. Nevertheless, there exists no rigorous treatment of

the optimal policy design problem under the standard conditions of uncer-

tainty and rational expectations. Intuition on how monetary policy should

be conducted had to be built from models without bound (e.g., Clarida, Galí

and Gertler (1999) and Woodford (2003)), or from models with the bound

but either deterministic (e.g., Jung, Teranishi, and Watanabe (2005) and

Eggertsson and Woodford (2003)) or with backward-looking expectations

(e.g., Kato and Nishiyama (2005)).

This paper studies optimal monetary policy under commitment in a sto-

chastic and forward-looking New Keynesian model along the lines of Clarida,

Galí and Gertler (1999) and Woodford (2003), but takes explicitly into ac-

count that nominal interest rates cannot be set to negative values.1

In our model the lower bound on nominal interest rates will occasionally

be reached due to adverse shocks hitting the economy.2 As a result, we are

able to study how monetary policy should be conducted when interest rates

are still positive but there is the possibility of reaching the lower bound

in the near future. In addition, having a fully stochastic setup allows us

to calibrate the model to the U.S. economy and to assess the quantitative

implications of the zero lower bound on nominal interest rates.

Two qualitatively new features of optimal policy emerge from our analy-

sis.

First, we find that nominal interest rates may have to be lowered more

aggressively in response to shocks than what is instead suggested by a model

without lower bound. Such ‘preemptive’ easing of nominal rates is optimal

because agents anticipate the possibility of shocks leading to zero nominal
1 In principle negative nominal rates are feasible, e.g., if one is willing to give up free

convertability of deposits and other financial assets into cash or if one could levy a tax on

money holdings, see Buiter and Panigirtzoglou (2003) and Goodfriend (2000). However,

there seems to be no general consensus on the applicability of such policy measures.
2Private agents will rationally anticipate this possibility.
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rates in the future and reduce already today their output and inflation expec-

tations correspondingly.3 Such expectations end up amplifying the adverse

effects of shocks and thereby trigger a stronger policy response. A similar

finding for backward-looking models is reported by Kato and Nishiyama

(2005) and Orphanides and Wieland (2000).

Second, the presence of shocks that lead to zero nominal rates alters also

the optimal policy response to non-binding shocks. This occurs because the

policymaker cannot affect the average real interest rate in any stationary

equilibrium, therefore, faces a ‘global’ policy constraint. The inability to

lower nominal and real interest rates as much as desired requires that optimal

policy increases rates less (or lowers rates more) in response to non-binding

shocks, compared to the policy that would instead be optimal in the absence

of the lower bound.

There are also a number of quantitative results regarding optimal mon-

etary policy for the U.S. economy emerging from this analysis.

First, the zero lower bound appears inessential in dealing with mark-up

shocks, i.e., variations over time in the degree of monopolistic competition

between firms.4 More precisely, the empirical magnitude of mark-up shocks

observable in the U.S. economy for the period 1983-2002 is too small for

the lower bound on nominal rates to be reached. This would remain the

case even if the true variance of mark-up shocks were threefold above our

estimated value.

Second, the shocks to the ‘natural’ real rate of interest may cause zero

nominal rates, but this happens relatively infrequently and is a feature of

optimal policy.5 Based on our estimates for the 1983-2002 period, in the

U.S. economy the bound would be reached on average one quarter every 17

years under optimal policy. Once zero nominal interest rates are observed,

they are expected to endure not more than 1 to 2 quarters. Moreover, the

average welfare losses entailed by the zero lower bound seem to be rather

small.
3Expectations are reduced because once the lower bound is reached inflation and output

become negative.
4These shocks are often called ‘cost-push’ shocks, e.g., Clarida et al. (1999).
5The natural real rate is the real interest rate associated with the optimal use of

productive resources under flexible prices.
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The latter results, however, are sensitive to the size of the standard

deviation of the estimated natural real rate process. In particular, we find

that zero nominal rates would occur much more frequently and generate

higher welfare losses if the real rate process had a somewhat larger variance.

Third, as argued by Jung, Teranishi, and Watanabe (2005) and Eggerts-

son and Woodford (2003) optimal policy reacts to zero nominal interest rates

by generating inflationary expectations in the form of a commitment to let

future output gaps and inflation rates increase above zero. The policymaker

thereby effectively lowers the real interest rates that agents are confronted

with.

Since reducing real rates using inflation promises is costly (in welfare

terms), the policymaker has to trade-off the welfare losses generated by too

high real rates with those stemming from higher inflation rates. We find

that the required levels of inflation and the associated positive output gap

are very moderate. A negative 3 standard deviation shock to the natural

real rate requires a promise of an increase in the annual inflation rate in the

order of 15 basis points and a positive output gap of roughly 0.5%.

Finally, while the optimal policy response to shocks through the promise

of above average output and inflation may in principal generate a ‘commit-

ment bias’, the quantitative effects turn out to be negligible. This holds not

only for our baseline calibration but also for a range of alternative model

parameterizations that we look at. It suggests that optimal policy for the

U.S. economy implements an average inflation rate of zero even when taking

directly into account the zero lower bound on nominal interest rates.6

The remainder of this paper is structured as follows. Section 2 briefly

discusses the related literature. Thereafter, section 3 introduces the model

and the policy problem. Section 4 presents our calibration for the U.S.

economy. The solution method we employ is described in section 5. Section

6 presents the main results. We then discuss in section 7 the robustness of

our findings to various parameter changes, and briefly conclude in section 8.

Our strategy for identifying the historical shocks and numerical algorithm

are discussed in the appendix.
6Zero inflation is optimal because it minimizes the price dispersion between firms with

sticky prices and we abstract from the money demand distortions associated with positive

nominal interest rates.
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2 Related Literature

A number of recent papers study the implications of the zero lower bound

on nominal interest rates for optimal monetary policy.

Most closely related is Kato and Nishiyama (2005) who consider a sto-

chastic backward-looking model with an occasionally binding zero lower

bound constraint. Jung et al. (2005) and Eggertsson and Woodford (2003)

consider forward-looking models under perfect foresight and analytically de-

rive optimal targeting rules.7 In this paper we consider instead a fully sto-

chastic setup which requires solving the model numerically to obtain the

rational expectations equilibrium.

A related set of papers focuses on optimal monetary policy in the absence

of credibility. In a companion paper of ours, Adam and Billi (2004), we

derive the optimal discretionary policy with zero lower bound in a stochastic

forward-looking model. Eggertsson (2005) analyzes discretionary policy and

the role of nominal debt policy as a way to achieve credibility.

The performance of simple monetary policy rules is examined by Fuhrer

and Madigan (1997), Wolman (2005), and Coenen, Orphanides and Wieland

(2004). A main finding of this set of papers is if the targeted inflation rate

is close enough to zero, simple policy rules formulated in terms of inflation

rates, e.g., the Taylor rule (1993), can generate significant real distortions.

Reifschneider andWilliams (2000) andWolman (2005) show that simple pol-

icy rules formulated in terms of a price level target can considerably reduce

these real distortions. Benhabib et al. (2002) study the global properties

of Taylor-type rules showing that these might lead to self-fulfilling deflation

that converges to a low inflation or deflationary steady state. Evans and

Honkapohja (2005) study the properties of global Taylor rules under adap-

tive learning, showing the existence of an additional steady state with even

lower inflation rates.
7Eggertsson and Woodford (2003) also consider a simple stochastic setup where the

economy never falls into a liquidity trap: the economy is either unexpectedly in a situation

with zero nominal interest rates and reverts back to positive nominal rates with a fixed

probability each period or it is in a situation where nominal rates are positive already and

the zero lower bound never binds in the future.
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The role of the exchange rate and monetary-base rules in overcoming the

adverse effects of a binding lower bound on interest rates is analyzed, e.g.,

by Auerbach and Obstfeld (2005), Coenen and Wieland (2003), McCallum

(2003), and Svensson (2003).8

3 The Monetary Policy Problem

We consider a simple and well-known monetary policy model of a represen-

tative consumer and firms in monopolistic competition facing restrictions

on the frequency of price adjustments (Calvo (1983)). Following Rotemberg

(1987), this is often referred to as the ‘New Keynesian’ model, that has fre-

quently been studied in the literature, e.g., Clarida, Galí and Gertler (1999)

and Woodford (2003).

We augment this otherwise standard monetary policy model by explicitly

imposing the zero lower bound on nominal interest rates. We thus consider

the following problem:

max
{yt,πt,it}

−E0
∞X
t=0

βt
¡
π2t + λy2t

¢
(1)

s.t.

πt = βEtπt+1 + κyt + ut (2)

yt = Etyt+1 − σ (it −Etπt+1) + gt (3)

it ≥ −r∗ (4)

ut = ρuut−1 + εu,t (5)

gt = ρggt−1 + εg,t (6)

u0, g0 given (7)

where πt denotes the inflation rate, yt the output gap, and it the nominal

interest rate expressed as deviation from the interest rate consistent with

the zero inflation steady state.

Under certain conditions the monetary policy objective (1) can be in-

terpreted as a quadratic approximation to the utility of the representative
8Further articles dealing with the relevance of the zero lower bound can be found in

the special issues of the Journal of Japanese and International Economies Vol. 14, 2000

and the Journal of Money Credit and Banking Vol. 32 (4,2), 2000.
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household.9 The welfare weight λ > 0 is then given by

λ =
κ

θ

where θ > 1 denotes the price elasticity of demand for the goods produced

by monopolistic firms. Equation (2) is a forward-looking Phillips curve

summarizing, up to first order, profit-maximizing price setting behavior by

firms, where β ∈ (0, 1) denotes the discount factor and κ > 0 is given by

κ =
(1− α)(1− αβ)

α

σ−1 + ω

1 + ωθ

with α ∈ (0, 1) denoting the share of firms that cannot adjust prices in a
given period, σ > 0 the household’s intertemporal elasticity of substitution,

and ω > 0 the elasticity of a firm’s real marginal costs with respect to its

own output level.10 Equation (3) is a linearized Euler equation summarizing,

up to first order, households’ intertemporal maximization. The shock gt

captures the variation in the ‘natural’ real interest rate and is usually referred

to as a real rate shock, i.e.,

gt = σ(rt − r∗) (8)

where the natural real rate rt is the real interest rate consistent with the

flexible price equilibrium, and r∗ = 1/β − 1 is the real rate of the determin-
istic zero inflation steady state.11 The requirement that nominal interest

rates have to remain positive is captured by constraint (4). Finally, equa-

tions (5) and (6) describe the evolution of the shocks, where ρj ∈ (−1, 1)
and εj,t ∼ iiN(0, σ2j ) for j = u, g.12

3.1 How much non-linearity?

Instead of the fully nonlinear model, we study linear approximations to

firms’ and households’ first order conditions, i.e., equations (2) and (3),
9This requires steady output to be efficient, e.g., thanks to the existence of an output

subsidy that neutralizes the distortions from monopolistic competition, and the output

gap to be defined as the difference between the actual output level and the efficient level,

see chapter 6 of Woodford (2003) for details.
10See chapter 3 in Woodford (2003) for further details.
11The shock gt summarizes all shocks that under flexible prices generate time variation

in the real interest rate, therefore, it captures the combined effects of preference shocks,

productivity shocks, and exogenous changes in government expenditure.
12As shown subsequently, this specification of the shock processes is sufficiently general

to describe the historical sequence of shocks in the U.S. economy for the period 1983:1-

2002:4 that we consider.
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respectively, and a quadratic approximation to the objective function, i.e.,

equation (1). This means that the only nonlinearity that we take account

of is the one imposed by the zero lower bound (4).13

Clearly, this modelling approach has advantages and disadvantages. One

disadvantage is that for the empirically relevant shock support and the esti-

mated value of the discount factor the linearizations (2) and (3) may perform

poorly at the lower bound. Yet, this depends on the degree of nonlinearity

present in the economy, an issue about which relatively little is empirically

known.

A paramount advantage of our approach is that one can economize in the

dimension of the state space. Higher-order approximations to the equilib-

rium conditions would require an additional state variable to keep track over

time of the higher-order effects of price dispersion, as shown by Schmitt-

Grohé and Uribe (2004). Computational costs would become prohibitive

with such an additional state.14 A further advantage of focusing solely on

the nonlinearities induced by the lower bound is that one does not have

to parameterize higher order terms when calibrating the model. This seem

important, given the lack of empirical evidence on this matter.

Finally, the simpler setup implies that our results remain more easily

comparable to the standard linear-quadratic analysis without lower bound

that appears in the literature, as the only difference consists of imposing

equation (4).

4 Calibration to U.S. Economy

To assess the quantitative importance of the zero lower bound for monetary

policy, we assign parameter values for the coefficients appearing in equations

(1) to (6) by calibrating the model to the U.S. economy.

Table 1 summarizes our baseline parameterization. The values for α, θ, σ, ω

(and κ, λ) are taken from table 6.1 in Woodford (2003). The parameters of
13Technically, this approach is equivalent to linearizing the first order conditions of the

nonlinear Ramsey problem around the first best steady state except for the non-negativity

constraint for nominal interest rates, that is kept in its original nonlinear form.
14Our model has 4 state variables with continuous support and it takes already 39 hours

to obtain convergence on a Pentium 4 with 2.6 GHz.
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the shock processes and the discount factor are estimated using U.S. data for

the period 1983:1-2002:4, following the approach of Rotemberg and Wood-

ford (1998). The implied steady state real interest rate for this parameteri-

zation is 3.5% annually. Details of the estimation and reasons for the sample

period chosen are given in appendix A.1.

The identified historical shock series are shown in figure 3. Mark-up

shocks do not display any significant autocorrelation and have a standard

deviation of approximately 0.61% annually.15 Real rate shocks, however, are

rather persistent. As one would expect, the natural real rate seems to fall

during recessions, e.g., at the beginning of the 1990s and at the start of the

new millennium. The implied annual standard deviation of the natural real

rate, as implicitly defined in equation (8), is equal to 1.63% annually.16

The robustness of our findings to various assumptions regarding the pa-

rameterization of the model is considered in section 7.

5 Solving the Model

This section illustrates how we solve the optimal policy problem and derive

the associated rational expectations equilibrium. While some insights can

be gained from an analytical approach, the presence of forward-looking vari-

ables and of an occasionally binding constraint require to rely on numerical

solution methods. We first describe our numercal solution approach and

then derive analytical results using first order conditions.

5.1 Numerical solution approach

An important complication for solving the model is that the policymaker’s

maximization problem fails to be recursive, since constraints (2) and (3)

involve forward-looking variables. For this reason we cannot directly resort

to dynamic programming techniques. To obtain a dynamic programming

15This lack of autocorrelation contrasts with Ireland (2004) who uses data starting in

1948:1. Extending our sample back to this date would also lead to highly persistent mark-

up shocks. But our identification of shocks requires the absence of structural breaks, so

we restrict attention to the shorter sample period.
16When using instead the period 1979:4-1995:2 as in Rotemberg and Woodford (1998),

which includes the volatile years 1980-1982, we find an annual standard deviation of 2.57%

for the natural real rate.
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formulation we rewrite the policy problem (1)-(7) by recursifying the La-

grangian of the infinite horizon problem, as in Marcet and Marimon (1998).

This involves the following four steps. First, write down the Lagrangian

for problem (1)-(7) and let γ1t and γ2t denote the Lagrange multipliers for

constraints (2) and (3), respectively. Since these constraints are forward-

looking, some terms involve period t Lagrange multipliers γit (i = 1, 2) mul-

tiplied by period t+1 choice variables πt+1 and yt+1. Second, relabel the La-

grange multipliers in these terms as μit+1 and define the transition equations

μit+1 = γit. Third, collect all terms dated t and add −μ10π0+μ20
1
β (σπ0 + y0)

in period zero, defining μi0 = 0 (i = 1, 2). This delivers the following infinite

horizon Lagrange problem

min
{γ1t ,γ2t }

max
{y1t ,π2t ,it}

E0

" ∞X
t=0

βt(−π2t − λy2t

+ γ1t (πt − κyt − ut)− μ1tπt

+γ2t (−yt − σit + gt) + μ2t
1

β
(σπt + yt))

¸
(9)

subject to
it ≥ −r∗
μ1t+1 = γ1t
μ2t+1 = γ2t
ut+1 = ρuut + εu,t+1

gt+1 = ρggt + εg,t+1

μ10 = 0

μ20 = 0

u0, g0 given

(10)

Then, defining the one-period return function as

h
¡
yt, πt, it, γ

1
t , γ

2
t , μ

1
t , μ

2
t , ut, gt

¢ ≡ −π2t − λy2t
+γ1t (πt − κyt − ut)− μ1tπt

+γ2t (−yt − σit + gt) + μ2t
1
β (σπt + yt) .

(11)

the inifinite horizon problem (9) can be written in recursive form

W (μ1t , μ
2
t , ut, gt) = min

(γ1t ,γ
2
t )
max

(yt,πt,it)

©
h(yt, πt, it, γ

1
t , γ

2
t , μ

1
t , μ

2
t , ut, gt)

+βEtW (μ1t+1, μ
2
t+1, ut+1, gt+1)

ª
(12)

9



where optimization is subject to the set of constraints (10), which now in-

volve only backward-looking transition equations. Equation (12) is a gener-

alized Bellman equation, requiring maximization with respect to the controls

(yt, πt, it) and minimization with respect to the Lagrange multipliers γ1t ≶ 0
and γ2t ≥ 0. In our numerical approach we approximate the value function
that solves the recursive functional equation (12) so to obtain the associated

optimal policy functions for (yt, πt, it) and (γ1t , γ
2
t ). The numerical algorithm

used is described in detail in appendix A.3.17

Note that the reformulated problem (12) has two additional state vari-

ables (μ1t , μ
2
t ), i.e., the lagged Lagrange multipliers, bringing the total num-

ber of state variables up to four. The additional states can be interpreted

as ‘promises’ that have to be kept from past commitments, leading to devi-

ations from purely forward-looking policy whenever their values differ from

zero. This can be seen from the expression of the one-period return function

h(·) given by equation (11). In particular, −μ1t + σ
βμ

2
t > 0, e.g., indicates

a promise from past commitments to generate today higher inflation rates

than what purely forward-looking policy would imply. Likewise, 1βμ
2
t > 0

indicates a promise from past commitments to generate today larger output

gaps than what purely forward-looking policy suggests.18

5.2 Targeting rule

Some insights about the solution to the optimal policy problem can also be

gained from the first-order conditions of problem (9). As shown in appendix

A.2, these can be used to derive the ‘targeting rule’µ
yt +

κ

λ
πt +

κ

2λ
μ1t −

1 + κσ

2λβ
μ2t

¶
· (it + r∗) = 0 (13)

which, provided it > −r∗, specifies a relationship between current output,
inflation, and the lagged Lagrange multipliers that has to be satisfied under

optimal policy in equilibrium. Interestingly, this relationship is linear despite

the policy problem being nonlinear. For the case where the lower bound has

17Our solution approach is complementary to that of Christiano and Fisher (2000) and

Aiyagari et al. (2002), which uses the first order conditions of problem (12) to solve for

the optimal policy functions.
18Clearly, inverting the signs of the inequalities implies inflation and output gap promises

of opposite direction.
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not been reached in any period j ≤ t, the targeting rule (13) simplifies to19

yt − yt−1 +
κ

λ
πt = 0 (14)

This is the targeting rule derived, e.g., in Clarida at al. (1999) for a model

that abstracts from the existence of a lower bound. Even though this sim-

plified targeting rule (14) can describe optimal policy in a model either with

or abstracting from the lower bound, satisfying it might require setting in-

terest rates differently, depending on whether or not the model abstracts

from the bound. This is the case because inflation and output are forward-

looking processes. Expected future output and inflation depend on whether

or not the model accounts for the possibility of the zero nominal interest

rate constraint being binding in the future.

6 Optimal Policy with Lower Bound

This section describes the optimal policy with a lower bound on nominal

interest rates for the calibration to the U.S. economy shown in table 1.

Throughout the paper variables are expressed in terms of percentage point

deviations from deterministic steady state values. Interest rates and inflation

rates are expressed in annualized percentage deviations, while the real rate

shock and the mark-up shock are stated in quarterly percentages.

6.1 Optimal Policy Functions

Figure 4 presents the optimal responses of (y, π, i) and the Lagrange mul-

tipliers (γ1, γ2) to both a mark-up shock and a real rate shock.20 The

responses of the Lagrange multipliers are of interest because they represent

commitments regarding future inflation rates and output gaps, as explained

in the previous section. Depicted are the optimal policy responses both for

the case of the zero lower bound being imposed in the model (solid line) and

for the case of interest rates allowed to become negative (dashed line with

circles).

19This is shown in appendix A.2.
20The state variables not shown on the x-axes are set to their (unconditional) average

values. Policies are shown for a range of ±4 unconditional standard deviations of both
the mark-up shock and the real rate shock.
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The left-hand panel of figure 4 shows that the optimal response to mark-

up shocks is virtually unaffected by the presence of the zero lower bound.21

Independently of whether the bound is imposed or not in the model, a nega-

tive mark-up shock lowers inflation, increases output, and leads to a promise

of future inflation, as indicated by the values γ1t < 0 and γ
2
t = 0 (recall from

section 5.1 that −μ1t+1 + σ
βμ

2
t+1 > 0 implies higher inflation in t + 1 than

what purely forward-looking policy would suggest then). Future inflation

ameliorates the deflationary effect of the shock through the expectational

channel present in equation (2). Overall, however, the required interest

rate changes in response to mark-up shocks are rather small, implying that

mark-up shocks do not plausibly lead to a binding lower bound.

The situation is quite different if we consider the policy response to a real

rate shock, as depicted on the right-hand panel of figure 4. Without zero

lower bound in the model these shocks do not generate any policy trade-off:

the required real rate can be implemented through appropriate variations

in the nominal rate alone. Once the lower bound is considered, sufficiently

negative real rate shocks cause the bound to be binding, so promising future

inflation remains the only instrument for implementing reductions in the

real rate. The values γ1t < 0 and γ2t > 0 associated with negative real rate

shocks (implying −μ1t+1 + σ
βμ

2
t+1 > 0) reveal that once the lower bound is

reached the policymaker indeed commits to future inflation as a substitute

for nominal rate cuts. Yet, inflation is a costly instrument (in welfare terms)

and it would be suboptimal to completely undo the output losses generated

by negative real rate shocks. As a result, there is a negative output gap,

some deflation, and nominal interest rates are at their lower bound. All

these features are generally associated with the concept of a ‘liquidity trap’.

Figure 5 depicts the optimal interest rate response to the current value

of the real rate shocks in greater detail. This reveals that nominal interest

rates have to be reduced more aggressively than is the case when nominal

rates are allowed to become negative.22 A stronger interest rate reduction is

21The optimal reaction to mark-up shocks is different with or without the bound, but

the difference is quantiatively small for the calibrated parameter values. We will come

back to this point in section 6.4.
22Kato and Nishiyama (2005) found a similar effect with a backward-looking AS curve,

which suggests that our result is robust to the introduction of lagged inflation terms into

the ‘New Keynesian’ AS curve. Using different models, Orphanides and Wieland (2000)

12



optimal because the possibility of additional shocks in the future generating

a binding lower bound places downward pressure on expected future out-

put and inflation, since these variables become negative once the bound is

reached, see the right-hand panel of figure 4. The reduced output and infla-

tion expectations amplify the effects of negative real rate shocks in equation

(3), thereby require that the policymaker lowers nominal rates faster. As

a result, zero nominal rates are reached much earlier than suggested by a

model without lower bound.

This amplification effect via private sector expectations points towards

an interesting complementarity between policy decisions and private sector

expectations formation, that may be of considerable importance for actual

policy making. Suppose, e.g., that agents suddenly assign a larger probabil-

ity to the lower bound being binding in the future. Since this lowers output

and inflation expectations, policy would reduce the nominal interest rate

and cause the economy to move into the direction of the expected change.

The existence of possible sunspot fluctuations, however, is an issue that has

to be explored in future work.

6.2 Dynamic Response to Real Rate Shocks

Figure 6 displays the mean response of the economy to real rate shocks of

±3 unconditional standard deviations.23 With our baseline calibration of

table 1 the annual ‘natural’ real rate, i.e., the real interest rate consistent

with the efficient use of productive resources, stands temporarily at +8.39%

and −1.39%, respectively; the interesting case being the one where full use
of productive resources requires a negative real rate.

As argued by Krugman (1998), negative real rates are plausible even

if the marginal product of physical capital remains positive. For instance

and Reifschneider and Williams (2000) also report more aggressive easing than in the

absence of the zero bound.
23Since in this nonlinear model certainty equivalence fails to hold, instead of the more

familiar deterministic impulse responses we discuss results in terms of the implied ‘mean

dynamics’ in response to shocks. The mean dynamics in this and other graphs are the

average responses computed for 105 stochastic simulations. The initial values for the other

states are set equal to their unconditional average values. Setting them to conditional

average values consistent with the real rate shock process does not make a noticeable

difference.
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agents may require a large equity premium, e.g., historically observed in the

U.S., or the price of physical capital may be expected to decrease.

Figure 6 shows that in response to a negative real rate shock annual infla-

tion rises by about 15 basis points for up to 3 or 4 quarters and then returns

to a value close to zero. Similarly, output increases slightly above potential

from the second quarter and slowly returns to potential. Getting out of a

‘liquidity trap’ induced by negative real-rate shocks, therefore, requires that

the policymaker promises to let future output and inflation increase above

zero for a substantial amount of time.24 The qualitative feature of this find-

ing is also reported in Eggertsson and Woodford (2003), and in a somewhat

different way in Auerbach and Obstfeld (2005). Our results tend to clarify,

however, that the required amount of inflation and the output boom are

rather modest.

One should note that ex-post there would be strong incentives to increase

nominal interest rates earlier than promised, since this would bring both

inflation and output closer to their target values. The feasibility of the

optimal policy response, therefore, crucially depends on the policymaker’s

credibility. Whether policymakers can and may want to credibly commit to

such policies is currently subject of debate, e.g., Orphanides (2004).25

6.3 Frequency of Zero Nominal Rates and Welfare Implica-
tions

In this section we discuss the frequency with which zero nominal rates can

be expected and the related welfare implications.

For the calibration to the U.S. economy, under optimal policy zero nom-

inal interest rates occur rather infrequently, namely in about one quarter

every 17 years on average. Moreover, they tend to prevail for rather short

periods of time (roughly 1.4 quarters on average). Figure 7 displays the

probability with which zero nominal rates occur for n quarters, conditional

24Promised inflation and output gaps are positive as long as −γ1t + σ
β
γ2t > 0 and γ

2
t > 0,

respectively, see section 5.1.
25 Interestingly, the Bank of Japan recently announced explicit macroeconomic condi-

tions that have to be fulfilled before it may consider abandoning its current zero interest

rate policy.
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on the nominal rate being at zero in quarter one. The likelihood that zero

nominal rates persist for more than 4 quarters is merely 1.8%.

Since the lower bound is reached rather infrequently, possible biases for

average output and inflation emerging from the nonlinear policy functions

are expected to be small. In fact, our simulations show that for the calibra-

tion at hand there are virtually no average level effects for these variables.26

Finally, as one would expect, the average welfare effects generated by

considering a zero lower bound in the model are rather small. The additional

welfare losses of the zero lower bound are roughly 1% of those generated by

the stickiness of prices alone.27 Since the zero lower bound is reached rather

infrequently, the conditional welfare losses associated with being at the lower

bound can nevertheless be quite substantial.

6.4 Global Implications of Binding Shocks

This section reports a qualitatively new finding that stems from the presence

of negative real rate shocks leading to zero nominal rates. It turns out that

these binding shocks alter the optimal policy response to non-binding shocks,

i.e., positive real rate shocks and mark-up shocks of both signs. In this sense,

the existence of a lower bound has ‘global’ implications on the shape of the

optimal policy functions.

For the baseline parameterization of the U.S. economy given in table 1,

however, these global effects are quite weak, since the lower bound is reached

rather infrequently. To illustrate the global effects, we thus assume in this

section that the variance σ2g of the innovations εg,t is threefold that implied

by the baseline calibration.28

Figure 8 illustrates the mean response of the real rate to a ±3 standard
deviation real rate shock under optimal policy. The upper panel shows
26Average output and inflation deviate less than 0.01% from their steady state values.
27We compute unconditional welfare losses under optimal policy, evaluating objective

(1), both with and without lower bound in the model. Welfare losses are obtained averag-

ing the discounted losses across 1000 simulations, of the initial states (u0, g0, μ10, μ
2
0) from

their stationary distributions, each 1000 periods long.
28This value is roughly consistent with the estimated variability of real rate shocks

in the period 1979:4-1995:2, i.e., the time span considered by Rotemberg and Woodford

(1998). In fact, the unconditional variance of the real rate shocks for 1979:4-1995:2 is

about 2.5-fold that for the period 1983:1-2002:4.
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the case with lower bound and the lower panel depicts the case without

bound in the model. While in the latter case the policy reaction is perfectly

symmetric, accounting for the bound creates a sizeable asymmetry: the real

rate reduction in response to a negative shock is much weaker than the

corresponding increase in response to a positive shock.29

Equation (3), however, implies that the policymaker is unable to affect

the average real rate in any stationary equilibrium.30 Therefore, the less

strong real rate decrease for a binding real rate shock has to be compensated

with a less strong real rate increase (or a stronger real rate decrease) in

response to other shocks. A close look at figure 8 reveals that this is indeed

the case: the real rate increase with the lower bound falls slightly short of

the one implemented without bound in the model.

Moreover, it is optimal to undo the asymmetry by trading-off across

all shocks, e.g., also across mark-up shocks. This is illustrated in figure 9

which plots the economy’s mean response to ±3 standard deviation mark-
up shocks. The left-hand panel illustrates the response when the zero lower

bound is considered and the right-hand panel depicts the case without bound

in the model. Clearly, the mean reactions change considerably once the lower

bound is accounted for. Real rates are now lowered more (increased less)

in response to negative (positive) mark-up shocks. This is the case even

though mark-up shocks do not lead to zero nominal rates.

7 Sensitivity Analysis

We now analyze the robustness of our findings to a number of variations in

our baseline calibration. Particular attention is given to the sensitivity of

the results to changes in the parameterization of the shock processes.

7.1 More Variable Shocks

We estimate the shock processes using data for a time period that most

economists would consider to be relatively ‘calm’ especially when confronted

29With negative shocks expected inflation has to be used to reduce the real interest rate

which is a costly instrument in welfare terms.
30This can be seen by taking unconditional expectations of equation (3), imposing sta-

tionarity, and noting that E[gt] = 0.
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with the more ‘turbulent’ 1960s and 1970s. Since one cannot exclude that

more turbulent times might lie ahead, it seems of interest to study the

implications of optimal policy with more variable mark-up and real rate

shocks. In this regard, this section considers the sensitivity of our findings

to an increase of the shock variances σ2u and σ2g above the values in table 1.

Increasing the variance of mark-up shocks we find that the results are

remarkably stable. This holds even if setting the variance of σ2u threefold

above its estimated value. Average output and (annual) inflation are vir-

tually unaffected. Moreover, zero nominal rates still occur with the same

frequency and persistence as for the baseline parameterization of table 1.

The picture changes somewhat increasing the variance of real rate shocks.

While average output remains virtually unaffected, average inflation and the

average frequency and persistence of zero nominal rates do change, albeit

to different extents. This is illustrated in the first three panels of figure 10,

that show the implications of increasing the variance of real rate shocks up

to threefold above that of the baseline calibration.31 Average inflation and

the average persistence of zero nominal rates change only in minor ways.

Instead, as real rate shocks become more variable, zero nominal rates occur

much more often.

Moreover, as can be observed in the lowest panel of figure 10, the addi-

tional welfare losses generated by considering the zero lower bound in the

model increase markedly with the variance of the real rate shock process.

While for the baseline calibration the additional average losses of the zero

lower bound over and above those generated by the stickiness of prices is in

the order of 1%, once the variance of real rate innovations is threefold the

additional losses surge to roughly 33%. This shows that the welfare effects

of the zero lower bound are fairly sensitive to the variance of the assumed

real rate process.

One should note that the effects of the variability of shocks on the average

level of output and inflation differ considerably from those reported in earlier

contributions. Uhlig (2000), e.g., reports negative level effects for both vari-

ables when analyzing optimal policy in a backward-looking model. Clearly,

31See footnote 28.
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the gains from promising positive values of future output and inflation can-

not show up in a backward-looking model. Similarly, Coenen, Orphanides

and Wieland (2004) report negative level effects for a forward-looking model

considering Taylor-type interest rate rules, rather than optimal policy as in

this paper. Moreover, unlike suggested by Summers (1991), our results do

not justify that it is necessary to target positive inflation rates so as to

safeguard the economy against hitting the zero lower bound.

7.2 Lower Interest Rate Elasticity of Output

Our benchmark calibration of table 1 assumes an interest rate elasticity

of output of σ = 6.25, which seems to lie on the high side for plausible

estimates of the intertemporal elasticity of substitution.32 Therefore, we

also consider the case σ = 1 that corresponds to log utility in consumption,

and constitutes the usual benchmark parameterization in the real business

cycle literature. Table 2 presents the parameters values implied by assuming

σ = 1 instead of σ = 6.25. Note that the values of κ and λ are also

changed, as they depend on the intertemporal elasticity of substitution.33

To estimate the shock processes, we follow the same procedure as for the

baseline calibration. Details of the estimation are given in appendix A.4.

Overall, our findings seem robust to the change in the intertemporal

elasticity of substitution. In particular, the level effects on average output

and inflation remain negligible. Moreover, required inflation in response to

a negative 3 standard deviation real rate shock is still in the order of 15

basis points annually. Even more importantly, the additional welfare losses

generated by considering the zero bound in the model are rather small and

in the order of less than one-half percent of the losses generated by the

stickiness of prices alone.

Respect to the baseline, however, the lower bound is reached more fre-

quently, namely in about one quarter every 5 years on average. Zero nominal

rates occur more often because the variance of the real rate shock process

implied by the parameterization in table 2 is about 45% higher than in our

32As argued by Woodford (2003), a high elasticity value may capture non-modeled

interest-rate-sensitive investment demand.
33See equations (2.19) and (2.22) in chapter 6 of Woodford (2003).
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baseline.34 However, binding shocks now generate lower additional welfare

losses: the steeper slope κ of the Phillips curve implies that inflation reacts

more strongly to output. As a result, the required amount of inflation can

be generated with less positive output gaps, implying lower welfare losses.

8 Conclusions

In this paper we determine optimal monetary policy under commitment

taking directly into account the zero lower bound on nominal interest rates

and assess its quantitative importance for the U.S. economy. One of the

main findings is that, given the historical properties of the estimated shock

processes for the U.S. economy, the zero lower bound seems neither to im-

pose large constraints on optimal monetary policy nor to generate large

additional welfare losses. Furthermore, we show that the existence of the

zero lower bound might require to lower nominal interest rates more aggres-

sively in response to adverse shocks than what is suggested instead by a

model without lower bound.

Our findings raise a number of further issues. First, the omission of fiscal

policy clearly constitutes a shortcoming; the study of the potential role of

fiscal policy in ameliorating adverse welfare effects entailed by the lower

bound seems to be of interest. Second, given the widespread belief among

academics and practitioners that lagged inflation is a major determinant of

inflation, an issue that should be addressed is the robustness of our findings

to the introduction of lagged inflation in the Phillips curve.

Finally, the central bank’s credibility is key to our results. The use of

expected inflation is unavailable to a discretionary policymaker, as there

is no incentive to implement promised inflation ex-post. As a result, the

case for preemptive easing is even stronger with discretionary policy mak-

ing because the use of current interest rates is the only available policy

instrument. Consequently, the zero lower bound on nominal interest rates is

binding more often and generates considerably higher welfare losses. This is

shown in a companion paper, see Adam and Billi (2004), where we analyze

the implications of relaxing the assumption of policy commitment.

34Mark-up shocks also play a less marginal role, a negative shock in the order of 4

standard deviations now leads to zero nominal rates.
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A Appendix

A.1 Identification of historical shocks (baseline calibration)

To identify the historical shock processes we apply the procedure of Rotem-

berg and Woodford (1998). In particular, we first construct output and

inflation expectations by estimating expectation functions from the data.

We plug these expectations along with actual values of the output gap and

inflation into equations (2) and (3), then identify the shocks ut and gt with

the equation residuals.

We measure the output gap by linearly detrended log real GDP, and

inflation by the log quarterly difference of the implicit deflator.35 Using

quadratically detrended GDP or HP(1600)-filtered GDP leaves the esti-

mated parameters of the shock processes virtually unchanged. Detrended

output is depicted in figure 1. For the interest rate we use the quarterly

average of the fed funds rate in deviation from the average real rate for

the whole sample, which is approximately equal to 3.5% (in annual terms).

Based on this latter estimate we can set the quarterly discount factor as

shown in table 1.

The expectation terms in equations (2) and (3) are constructed from

the predictions of an unconstrained VAR in output, inflation, and the fed

funds rate with three lags. Estimating expectation functions in such a way

is justified as long as there are no structural breaks in the economy. Since

our sample period, 1983:1-2002:4, starts after the disinflation policy under

Federal Reserve Chairman Paul Volcker, monetary policy is expected to

have been reasonably stable, see Clarida et al. (2000). A VAR lag order

selection test based on the Akaike information criterion for a maximum of

6 lags suggests the inclusion of 3 lags. A Wald lag exclusion test indicates

that the third lags are jointly significant at the 2% level. The correlations of

the VAR residuals are depicted in figure 2. Substituting the expectations in

equations (2) and (3) with the VAR predictions one can identify the shocks

ut and gt. The implied shock series are shown in figure 3.

Fitting univariate AR(1) processes to these shocks delivers the following

35The data is taken from the web site of the Bureau of Economic Analysis: www.bea.gov.

20



OLS estimates:

ρu = 0.129 (0.113)

ρg = 0.919 (0.050)

σu = 0.153

σg = 1.091

where numbers in brackets indicate standard errors. A univariate AR(1)

describes the shock processes ut and gt quite well. In particular, there is no

significant autocorrelation left in the innovations εi,t (i = u, g). Moreover,

when estimating AR(2) processes the additional lags remain insignificant.

The estimated value of ρu is insignificant at conventional significance

levels. For this reason we set ρu = 0 and let the standard deviation of

the innovations εu,t match the standard deviation of the identified mark-up

shocks, which is approximately equal to 0.61% annually.

Although real rate shocks seem quite persistent, the persistence drops

considerably once one uses actual future values to identify output and in-

flation expectations in equations (2) and (3), which amounts to assuming

perfect foresight. The estimated autoregressive coefficient for the real rate

shocks then drops to ρg = 0.794, indicating that better forecasts than our

simple VAR-predictions would most likely lead to a reduction in the esti-

mated persistence. Moreover, when using VAR-predictions but considering

the period 1979:4-1995:2, as in Rotemberg and Woodford (1998), the point

estimate falls to ρg = 0.827. For these reasons we set ρg = 0.8 in our calibra-

tion.36 The standard deviation σg of the innovations εg,t in table 1 equates

the unconditional standard deviation of the calibrated real shock process to

the standard deviation of the identified shock values.
36This value cannot be rejected at the 1% significance level when using estimates based

on the VAR-expectations. In an earlier version of this paper, which is available upon

request, we used instead the point estimates for ρu and ρg.

21



A.2 Derivation of the targeting rule

Let L denote the Lagrangian stated in equation (9). The first-order condi-
tions with respect to (yt, πt, it) are then

∂L
∂yt

= −2λyt − κγ1t − γ2t +
1

β
μ2t = 0 (15)

∂L
∂πt

= −2πt + γ1t − μ1t +
σ

β
μ2t = 0 (16)

∂L
∂ii

· (it + r∗) = γ2t · (it + r∗) = 0, γ2t ≥ 0, it ≥ −r∗ (17)

Eliminating Lagrange multipliers (γ1t , γ
2
t ) delivers the optimality condition

(13) stated in the text. If ij > −r∗ for all j ≤ t, from (17) it follows

that γ2j = μ2j+1 = 0 (j ≤ t). Equation (15) for period t − 1 then implies
κ
2λμ

1
t = −yt−1 and (13) simplifies to (14).

A.3 Numerical algorithm

We use the collocation method to numerically approximate the value func-

tion solving the generalized Bellman equation (12) and obtain the corre-

sponding optimal policy functions.37 Kato and Nishiyama (2005) in earlier

work use the collocation method for solving a standard Bellman equation of

a backward looking model.

We discretize the state space S ≡ ¡μ1, μ2, u, g¢ ⊂ R4 into a set of N col-

location nodes ℵ = {sn|n = 1, . . . , N}, where sn ∈ S. One then interpolates

the value function over these collocation nodes by choosing basis coefficients

cn (n = 1, . . . , N) such that

W (sn) ≈
X

n=1,...,N

cnζ(sn) (18)

at each node sn ∈ ℵ, where ζ(·) is a four dimensional cubic spline function.
Equation (18) is an approximation to the left-hand side of (12). Then to

evaluate the right-hand side of (12) one has to approximate the expected

value EW (t(sn, x1, x2, ε)), where t(·) denotes the state transition function,
x1 = (γ

1, γ2) and x2 = (y, π, i) are the vectors of controls, and ε = (εu, εg)

are the multivariate normal innovations of the shock processes. Assuming

37See chapter 11 in Judd (1998) and chapters 6 and 9 in Miranda and Fackler (2002)

for more detailed expositions.
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normality of the innovations, the expected value function can be approx-

imated by Gaussian-Hermite quadrature, which involves discretizing the

shock distribution into a set of quadrature nodes εm and associated proba-

bility weights ωm (m = 1, . . . ,M).38

Substituting the collocation equation (18) for the value functionW (t(·)),
the right-hand side of (12), RHSc(·), can be approximated as

RHSc(sn) ≈ inf
x1
sup
x2
{h(sn, x1, x2) (19)

+ β
X

m=1,...,M

X
n=1,...,N

ωmcnζj(t(sn, x1, x2, εm))}

at each node sn ∈ ℵ. The minimization/maximization problem (19) can be

implemented using standard Newton methods, taking into account that i ≥
−r∗. This delivers RHSc(·) and the policy functions x1c(·) and x2c(·) at the
collocation nodes. Using the collocation technique one can then approximate

RHSc(·) by a new set of basis coefficients c0n (n = 1, . . . , N) such that

RHSc(sn) =
X

n=1,...,N

c0nζ(sn) (20)

at each node sn ∈ ℵ.

Equations (18), (19), and (20) together define the iteration

c→ Φ(c) (21)

where c is the initial vector of basis coefficients in (18) and Φ(c) the vector

of basis coefficient c0 in (20). The fixed point of equation (12) satisfies

c∗ = Φ(c∗). To solve for this fixed point the algorithm proceeds as follows:

Step 1 Choose the degree of approximation N and M , and collocation and

quadrature nodes. Guess an initial basis coefficient vector c0.

Step 2 Iterate on equation (21) and update the basis function coefficient vec-

tor ck to ck+1.

Step 3 Stop if
¯̄
ck+1 − ck

¯̄
max

< τ , where τ > 0 is a tolerance level and |·|max
denotes the maximum absolute norm. Otherwise repeat step 2.

38See chapter 7 in Judd (1998) for details.
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Once convergence is achieved and the (approximate) fixed point c∗ is
found, one needs to assess the accuracy of the solution. Define the residual

function

Rc∗(s) = RHSc∗(s)−
X

n=1,...,Nε

c∗nζ(s)

where s ∈ ℵε = {sn|n = 1, . . . , N ε} is a grid of nodes for which ℵε ∩ ℵ = ∅.
Then compute the maximum absolute approximation error

eabs = max
s∈ℵε

|Rc∗(s)|

and the maximum relative approximation error

erel = max
s∈ℵε

¯̄̄̄
¯̄Rc∗(s)/

X
n=1,...,Nε

c∗nζ(s)

¯̄̄̄
¯̄

For the baseline parameterization we set N = 6875 and M = 9, with

relatively more nodes placed into the area of the state space where the policy

functions display kinks. The support of the discretization is chosen so as to

cover ±4 unconditional standard deviations of the exogenous states u and g,
and to insure that in a long simulation of 106 periods all values for μ1 and μ2

fall inside the chosen support. Since the latter can only be verified ex-post,

i.e., after having obtained the solution, some experimentation is necessary.

Our initial guess for c0 is consistent with the solution of the problem

without lower bound. The tolerance level is set to τ = 1.49 · 10−8, i.e.,
the square root of machine precision. Convergence is reached after about

39 hours on a Pentium IV with 2.6 GHz. The approximation errors are

eabs = 0.0021 and erel = 0.0027, where ℵε contained more than 75000 nodes.

A.4 Identification of historical shocks (RBC calibration)

We re-estimated the shock processes using the parameters from table 2 to-

gether with VAR-based expectations, following the procedure described in

appendix A.1. The autocorrelation coefficient for the mark-up shocks now

turns out to be statistically significant at the 1% level. Therefore, in table 2

we set ρu equal to its point estimate. The point estimate (standard devia-

tion) of the autocorrelation of the real rate shocks is now ρg = 0.882 (0.059).

Since we still cannot reject ρg = 0.8 at conventional significance levels, we
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keep this value of the baseline parameterization. As before, the standard

deviation σg of the innovation εg,t is chosen so as to match the standard

deviation of the estimated real rate shocks.
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Parameter Economic interpretation Assigned value

β quarterly discount factor
³
1 + 3.5%

4

´−1 ≈ 0.9913
σ real rate elasticity of output 6.25

α share of firms keeping prices fixed 0.66

θ price elasticity of demand 7.66

ω elasticity of firms’ marginal costs 0.47

κ slope of the Phillips curve 0.024

λ weight on output in the loss function 0.048
42

= 0.003

ρu AR-coefficient mark-up shocks 0

ρg AR-coefficient real rate shocks 0.8

σu s.d. mark-up shock innovations (quarterly %) 0.154

σg s.d. real rate shock innovations (quarterly %) 1.524

Table 1: Parameter values (baseline calibration)

Parameter Economic interpretation Assigned value

β quarterly discount factor
³
1 + 3.5%

4

´−1 ≈ 0.9913
σ real rate elasticity of output 1

α share of firms keeping prices fixed 0.66

θ price elasticity of demand 7.66

ω elasticity of firms’ marginal costs 0.47

κ slope of the Phillips curve 0.057

λ weight on output in the loss function 0.007

ρu AR-coefficient mark-up shocks 0.36

ρg AR-coefficient real rate shocks 0.8

σu s.d. mark-up shock innovations (quarterly %) 0.171

σg s.d. real rate shock innovations (quarterly %) 0.294

Table 2: Parameter values (RBC calibration)
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Figure 1: Detrended U.S. output
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Figure 2: Residual autocorrelations with 2 s.d. error bounds for an unre-

stricted VAR in GDP, inflation, and fed funds rate
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Figure 3: Identified shock processes
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Figure 4: Optimal policy responses (baseline calibration)
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Figure 5: More aggressive easing with lower bound (baseline calibration)
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Figure 6: Mean response to ±3 s.d. real rate shocks (baseline calibration)
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Figure 7: Persistence of zero interest rates (baseline calibration)
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Figure 8: Asymmetric real rate response with lower bound (3-fold variance

of real rate shocks)
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Figure 9: Mean response to ±3 s.d. mark-up shock (3-fold variance of real
rate shocks)
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Figure 10: Sensitivity to the variance of real rate shocks
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