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Abstract 
 

This paper presents analytical, Monte Carlo, and empirical evidence on the 

effectiveness of combining recursive and rolling forecasts when linear predictive models 

are subject to structural change.  We first provide a characterization of the bias-variance 

tradeoff faced when choosing between either the recursive and rolling schemes or a scalar 

convex combination of the two.  From that, we derive pointwise optimal, time-varying 

and data-dependent observation windows and combining weights designed to minimize 

mean square forecast error.  We then proceed to consider other methods of forecast 

combination, including Bayesian methods that shrink the rolling forecast to the recursive 

and Bayesian model averaging.  Monte Carlo experiments and several empirical 

examples indicate that although the recursive scheme is often difficult to beat, when gains 

can be obtained, some form of shrinkage can often provide improvements in forecast 

accuracy relative to forecasts made using the recursive scheme or the rolling scheme with 

a fixed window width. 

JEL classification:  C53, C12, C52 

Keywords:  Structural breaks, forecasting, model averaging 
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1. Introduction 

 In a universe characterized by heterogeneity and structural change, forecasting agents may 

feel it necessary to estimate model parameters using only a partial window of the available 

observations.  If the earliest available data follow a data-generating process unrelated to the 

present then using such data in estimation may lead to biased parameter estimates and forecasts.  

Such biases can accumulate and lead to larger mean square forecast errors than do forecasts 

constructed using only that data relevant to the present and (hopefully) future data-generating 

process.  Unfortunately, reducing the sample in order to reduce heterogeneity also increases the 

variance of the parameter estimates.  This increase in variance maps into the forecast errors and 

causes the mean square forecast error to increase.  Hence when constructing a forecast there is a 

balance between using too much or too little data to estimate model parameters. 

 This tradeoff leads to patterns in the decisions on whether or not to use all available data 

when constructing forecasts.  As noted in Giacomini and White (2003), the finance literature 

tends to construct forecasts using only a rolling window of the most recent observations.  In the 

macroeconomics literature, it is more common for forecasts to be constructed recursively – using 

all available data to estimate parameters (e.g. Stock and Watson, 2003).  Since both financial and 

macroeconomic series are known to exhibit structural change (Stock and Watson 1996, Paye and 

Timmermann 2002), one reason for the rolling approach to be used more often in finance than in 

macroeconomics may simply be that financial series are often substantially longer. 

 In light of the bias-variance tradeoff associated with the choice between a rolling and 

recursive forecasting scheme, a combination of recursive and rolling forecasts could be superior 

to the individual forecasts.  Combination could be seen as a form of shrinkage.  Min and Zellner 

(1993), Koop and Potter (2003), Stock and Watson (2003), Wright (2003), Maheu and Gordon 
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(2004), and Pesaran, Pettenuzzo and Timmermann (2004) have found some form of shrinkage to 

be effective in samples with instabilities. 

 Accordingly, we present analytical, Monte Carlo, and empirical evidence on the effectiveness 

of combining recursive and rolling forecasts, compared to using either just a recursive or rolling 

forecast.  We first provide a characterization of the bias-variance tradeoff involved in choosing 

between either the recursive and rolling schemes or a scalar convex combination of the two.  

This tradeoff permits us to derive not only the optimal observation window for the rolling 

scheme but also a solution for the joint optimal observation window and combining weights. 

 Because we find that simple scalar methods of combining the recursive and rolling forecasts 

are useful, we also consider combining methods that do not fit directly into our analytical 

framework.  One approach uses standard Bayesian methods to shrink parameter estimates based 

on a rolling sample toward those based on the recursive sample.  Another method consists of 

using the Bayesian model averaging approach of Wright (2003) to average a recursive forecast 

with a sequence of rolling forecasts, each with a distinct observation window. 

 The results in the paper suggest a benefit to some form of combination of recursive and 

rolling forecasts.  In particular, shrinking coefficient estimates based on a rolling window of data 

seems to be effective.  On average, the shrinkage produces a forecast MSE essentially the same 

as the recursive MSE when the recursive MSE is best.  When there are model instabilities, the 

shrinkage produces a forecast MSE that often captures most of the gain that can be achieved with 

the methods we consider.  Thus combining recursive and rolling forecasts yields forecasts that 

are likely to be as good as or better than either recursive or rolling forecasts based on an 

arbitrary, fixed window size. 

 Our results build on several lines of extant work.  The first is the very large and resurgent 
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literature on forecast combination, both theoretical (e.g. Elliott and Timmermann, 2004) and 

empirical (e.g. Stock and Watson, 2003, 2004).  Second, our analysis follows very much in the 

spirit of Min and Zellner (1993), who also consider forecast combination as a means of handling 

heterogeneity induced by structural change.  Using a Bayesian framework, they combine a stable 

linear regression model with another with classical unit-root time variation in the parameters.1 

 Finally, our work on the optimal choice of observation window builds on Pesaran and 

Timmermann (2002b).  They, too, consider the determinants of the optimal choice of the 

observation window in a linear regression framework subject to structural change.  Using both 

conditional and unconditional mean square errors as objective functions they find that the 

optimal length of the observation window is weakly decreasing in the magnitude of the break, 

the size of any change in the residual variance, and the magnitude of the time since the break 

date.  They derive a recursive data-based stopping rule for selecting the observation window that 

does not admit a closed-form solution.  We are able to generalize Pesaran and Timmermann’s 

results in many respects – among them, imposing less restrictive assumptions, such as a scalar 

parameter vector, and obtaining closed form solutions for the optimal window size. 

 Our paper proceeds as follows.  In section 2 we analytically characterize the bias-variance 

tradeoff and, in light of that tradeoff, determine the optimal observation window.  Section 3 

details the recursive-rolling combination methods considered.  In section 4 we present Monte 

Carlo evidence on the finite sample effectiveness of combination.  Section 5 compares the 

effectiveness of the forecast methods in a range of empirical applications.  The final section 

concludes.  Details pertaining to theory and data are presented in Appendixes 1 and 2. 

 

                                                 
1 In a related approach, Engle and Smith (1999) allow continuous variation in parameters, but make the rate of 
variation a function of recent errors in the forecasting model.  Larger errors provide a stronger signal of a change in 
parameters. 
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2. Analytical Results on the Bias-Variance Tradeoff and Optimal Observation Window 

 In this section, after first detailing the necessary notation, we provide an analytical 

characterization of the bias-variance tradeoff, created by model instability, involved in choosing 

between recursive and rolling forecasts.  In light of that tradeoff, we then derive the optimal 

rolling observation window.  A detailed set of technical assumptions, sufficient for the results, 

are given in Appendix 1.  The same appendix provides general theoretical results (allowing for 

the recursive and rolling forecasts to be combined with weights tα  and 1 tα−  respectively) 

from which the results in this section are derived as a special case (with 0tα = ).  We take up 

the possibility of combining the recursive and rolling forecasts in section 3. 

 
2.1  Environment 

 The possibility of structural change is modeled using a sequence of linear DGPs of the form2 

 
  ' *

, , , ,T t T t T t T ty x uτ τβ+ += +     * * 1/2
, ( / )T t T g t Tβ β −= +  

  , , , 0T t T t T tEx u Ehτ τ+ +≡ =  for all 1,..., ,...t T T P= + . 

 
Note that we allow the dependent variable ,T ty τ+ , the predictors ,T tx  and the error term ,T tu τ+  

to depend upon T , the initial forecasting origin.  By doing so we allow the time variation in the 

parameters to influence their marginal distributions.  This is necessary if we want to allow lagged 

dependent variables to be predictors.  Except where necessary, however, for the remainder we 

omit the subscript T  that is associated with the observables and the errors. 

 At each origin of forecasting ,...t T T P= + , we observe the sequence '
1{ , }tj j jy x = .  These 

include a scalar random variable ty  to be predicted and a ( 1)k × vector of potential predictors tx  

                                                 
2 The parameter *

,T tβ  does not vary with the forecast horizon τ  since, in our analysis, τ  is treated as fixed. 
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which may include lagged dependent variables.  Forecasts of the scalar ty τ+ , ,...t T T P= + , 

1τ ≥ , are generated using the vector of covariates tx and the linear parametric model 'tx β .  The 

parameters are estimated one of two ways.  For a time varying observation window tR , the 

parameter estimates satisfy ,R̂ tβ  = --1 ' 2
1argmin ( - )t
s sst y xτ

τ β+=∑  and ,L̂ tβ  = 

--1 ' 2
- - 1argmin ( - )

t
t

t s ss t RR y xτ
ττ β+= +∑  for the recursive and rolling schemes respectively.  The 

corresponding loss associated with the forecast errors are 2 ' 2
, ,

ˆˆ ( - )R t t t R tu y xτ τ β+ +=  and 

2 ' 2
, ,

ˆˆ ( - )L t t t L tu y xτ τ β+ += . 

 Before presenting the results it is useful to provide a brief discussion of Assumptions 1–4 in 

Appendix 1.  In Assumptions 1–3 we maintain that the OLS-estimated DGP is a linear regression 

subject to local structural change.  The local structural change is nonstochastic, square integrable 

and of a small enough magnitude that the observables are asymptotically mean square stationary.  

In order to insure that certain weighted partial sums converge weakly to standard Brownian 

motion (.)W , we impose the high level assumption that, in particular, th τ+  satisfies Theorem 

3.2 of De Jong and Davidson (2000).  By doing so we also are able to take advantage of various 

results pertaining to convergence in distribution to stochastic integrals that are also contained in 

De Jong and Davidson. 

 Our final assumption is unique.  In part (a) of Assumption 4 we generalize assumptions made 

in West (1996) that require lim / (0,1)T t RR T λ→∞ = ∈ .  Such an assumption is too stringent 

for our goals.  Instead, in parts (a) and (c) we weaken that type of assumption so that 

/ ( ) (0, ]t RR T s sλ⇒ ∈ , 1 1 Ps λ≤ ≤ + , where lim / (0, )T PP T λ→∞ = ∈ ∞  and hence the 

duration of forecasting is finite but non-trivial.  By doing so we permit an observation window 

that changes with time as evidence of instability is discovered.  For the moment we omit a 
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discussion of part (b) but return to it in section 3 when we consider combining the recursive and 

rolling schemes. 

 
2.2  Theoretical results on the tradeoff: the general case 

 Our approach to understanding the bias-variance tradeoff is based upon an analysis of 

2 2
, ,ˆ ˆ( - )T P
R t L tt T u uτ τ

+
+ +=∑ , the difference in the (normalized) MSEs of the recursive and rolling 

forecasts.3  As detailed in Theorem 1 in Appendix 1, we show that this statistic has an asymptotic 

distribution that can be decomposed into three terms: 

 
2 2
, ,ˆ ˆ( - )T P
R t L tt T u uτ τ

+
+ +=∑  d→  1

1 ( )P
W s

λ ξ+
∫  = 1

11 ( )P
W sλ ξ+

∫  + 1
21 ( )P

W sλ ξ+
∫  + 1

31 ( )P
W sλ ξ+

∫ . (1) 

 
The first component can be interpreted as the pure “variance” contribution to the distribution of 

the difference in the recursive and rolling MSEs.  The third term can be interpreted as the pure 

“bias” contribution, while the second is an interaction term. 

 This very general result implies that the bias-variance tradeoff depends on: (1) the rolling 

window size ( ( )R sλ ), (2) the duration of forecasting ( Pλ ), (3) the dimension of the parameter 

vector (through the dimension of W  or g ), (4) the magnitude of the parameter variability (as 

measured by the integral of quadratics of g ), (5) the forecast horizon (via the long-run variance 

of th τ+ , V ) and (6) the second moments of the predictors ( ' -1
, ,lim ( )T T t T tB Ex x→∞= ). 

 Providing a more detailed analysis of the distribution of the relative accuracy measure is 

difficult because we do not have a closed form solution for the density and the bias term allows 

for very general breaking processes.  Therefore, we proceed in the remainder of this section to 

                                                 
3 In Theorem 1, the tradeoff is based on 2 2

, ,ˆ ˆ( - )T P
R t W tt T u uτ τ

+
+ +=∑ , which depends upon the combining weights tα .  

If we set 0tα =  we find that 2 2
, ,ˆ ˆ( - )T P
R t W tt T u uτ τ

+
+ +=∑  = 2 2

, ,ˆ ˆ( - )T P
R t L tt T u uτ τ

+
+ +=∑ . 
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focus on the mean (rather than the distribution) of the bias-variance tradeoff when there are 

either no breaks or a single break. 

 
2.3  The case of no break 

 We can precisely characterize the mean in the case of no breaks.  When there are no breaks 

we need only analyze the mean of the variance contribution 1
11 ( )P

W sλ ξ+
∫ .  Taking expectations 

and noting that the first of the variance components is zero mean we obtain  

 

 1
11 ( )P

WE sλ ξ+
∫  = 1

1
1 1( ) ( - )

( )
P

R
tr BV ds

s s
λ

λ
+

∫            (2) 

 
where (.)tr  denotes the trace operator.  It is straightforward to establish that all else constant, the 

mean variance contribution is increasing in the window width ( )R sλ , decreasing in the forecast 

duration Pλ  and negative semi-definite for all Pλ  and ( )R sλ .  Not surprisingly, we obtain the 

intuitive result that in the absence of any structural breaks the optimal observation window is 

( )R s sλ = .  In other words, in the absence of a break, the recursive scheme is always best. 

 
2.4  The case of a single break 

 Suppose that a permanent local structural change, of magnitude 1/2 1/2( / )T g t T T β− −= ∆ , 

occurs in the parameter vector β  at time 1 BT t≤ ≤  where again, ,...t T T P= +  denotes the 

present forecasting origin.  In the following let lim / (0, )T B BT T sλ→∞ = ∈ .  Substitution into 

Theorem 1 in Appendix 1 yields the following corollary regarding the bias-variance tradeoff. 

 
Corollary 2.1: (a) If ( )R Bs sλ λ> −  for all [1,1 ]Ps λ∈ +  then  

 1
1 ( )P

WE sλ ξ+
∫  = 1

1
1 1[ ( )( - )]

( )
P

R
tr BV ds

s s
λ

λ
+

∫  
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  + 1 ' -1
2 21

-( - )( ( )) 2 ( ))[ ( - ( ))( - )( )]
( )

P B R R
R B

R

s s s s sB s s s ds
s s

λ λ λ λβ β λ λ
λ

+ + +∆ ∆∫ . 

(b) If ( )R Bs sλ λ≤ −  for all [1,1 ]Ps λ∈ +  then  

 1
1 ( )P

WE sλ ξ+
∫  = 1

1
1 1[ ( )( - )]

( )
P

R
tr BV ds

s s
λ

λ
+

∫  + 
2

1 ' -1
21 [ ( )]P BB ds
s

λ λβ β+ ∆ ∆∫ . 

 
 From Corollary 2.1 we see that the tradeoff depends upon a weighted average of the 

precision of the parameter estimates as measured by ( )tr BV  and the magnitude of the structural 

break as measured by the quadratic ' -1Bβ β∆ ∆ .  Note that the first term in each of the 

expansions is negative semi-definite while that for the latter is positive semi-definite.  The 

optimal observation window given this tradeoff is provided in the following corollary. 

 
Corollary 2.2: In the presence of a single break in the regression parameter vector, the pointwise 

optimal observation window satisfies 

 

 * ( )R sλ  = 

' -1

' -1 ' -1

' -1 ' -1

' -1

2

( )

( ) ( )

( ) ( )

( )

2 ( - )
0 1

2( - ) 2 ( - )
1 0

2( - ) - 1 2 ( - )

- 0
2 ( - )

B B

B B B

B B B

B

B B

B

tr BV

B B

tr BV tr BV
B B

tr BV tr BV

B

tr BV

s
s

s

s s s
ss s s

ss
s s

β β

β β β β

β β β β

β β

λ λ

λ λ λ

λ λ λ

λ
λ λ

∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆

⎧⎪⎪⎪⎪⎪ ≤ −⎪⎪⎪⎪⎪⎪⎪⎪⎪ − < <⎨⎪⎪ +⎪⎪⎪⎪⎪⎪ →⎪⎪⎪ +⎪⎪⎪⎩

. 

 
 Corollary 2.2 provides pointwise optimal observation windows for forecasting in the 

presence of a single structural change in the regression coefficients.  We describe these as 

pointwise optimal because they are derived by maximizing the arguments of the integrals in parts 

(a) and (b) of Corollary 2.1 that contribute to the average expected mean square differential over 

the duration of forecasting.  In particular, the results of Corollary 2.2 follow from maximizing 
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 1 1( )( - )
( )R

tr BV
s sλ

 + ' -1
2 2

-( - )( ( )) 2 ( )( - ( ))( - )( )
( )

B R R
R B

R

s s s s sB s s s
s s

λ λ λβ β λ λ
λ
+ +∆ ∆  (3) 

 
with respect to ( )R sλ  for each s  and keeping track of the relevant corner solutions. 

 The formula in Corollary 2.2 is plain enough that comparative statics are reasonably simple.  

Perhaps the most important is that the observation window is decreasing in the ratio 

' -1 / ( )B tr BVβ β∆ ∆ .  For smaller breaks we expect to use a larger observation window and 

when parameter estimates are more precisely estimated (so that ( )tr BV  is small) we expect to 

use a smaller observation window. 

 Note, however, that the term ' -1Bβ β∆ ∆  is a function of the local break magnitudes β∆  and 

not the global break magnitudes we estimate in practice.  Moreover, note that these optimal 

windows are not presented relative to an environment in which agents are forecasting in ‘real 

time’.  We therefore suggest a transformed formula.  Let B̂ and V̂  denote estimates of B  and V  

respectively.  If for an estimated global break β̂∆  at an estimated break date B̂T , we let β̂∆  

denote an estimate of the local change in β  ( 1/2T β− ∆ ) at time BT  and ˆ ˆ /B BT tδ = , we obtain 

the following real time estimate of the pointwise optimal observation window.4 

 

                                                 
4 We estimate B  with -1 ' -1

1
ˆ ( )t

j jjB t x x== ∑ , where tx  is the vector of regressors in the forecasting model 
(supposing the MSE stationarity assumed in the theoretical analysis).  In the Monte Carlo experiments, ( )tr BV  is 
estimated imposing homoskedasticity: ( )tr BV  = 2ˆkσ , where k  is the number of regressors in the forecasting 
model and 2σ̂  is the estimated residual variance of the forecasting model estimated with data from 1 to t .  In the 
empirical applications, though, we use the estimate ( )tr BV  = -1 ' -1 -1 2 '

1 1 ˆ[( ) ( )]t t
j j j j jj jtr t x x t u x xτ+= =∑ ∑ , where û  

refers to the residuals from estimates of the forecasting model using data from 1 to t . 
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 *
t̂R  = 

' -1

' -1
2

' -1

' -1 ' -1

ˆ ˆ ˆˆ ˆ0 1 2 (1 - )( )ˆ ˆ( )
ˆ ˆ ˆˆ2 (1 - ) ( )ˆ ˆ ˆ ˆ ˆ( ) 1ˆ ˆ1 2 (1 - )( ) 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )ˆ ˆ ˆ2(1 - )( ) - 1 1 2 (1 - )( )ˆ ˆ ˆ ˆ( ) ( )

1ˆ(1 - )
ˆ ˆ1 2 (1 - )(

B B

B

B B

B B B

B

B B

t B
t

tr BV

t Bt
tr BV t B

t B tr BV t B
tr BV tr BV

t
t

β βδ δ

β βδ
β βδ δ

β β β βδ δ δ

δ
δ δ

∆ ∆≤ −

∆ ∆
∆ ∆− < <

∆ ∆ ∆ ∆+

+
' -1

0ˆ ˆ ˆ
)ˆ ˆ( )

B
tr BV
β β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪ →⎪⎪ ∆ ∆⎪⎪⎪⎪⎪⎩

. (4) 

 
 One final note on the formulae in Corollary 2.2 and (4).  In Corollary 2.2, we use local breaks 

to model the bias-variance tradeoff faced by a forecasting agent in finite samples.  Doing so 

allows us to derive closed form solutions for the optimal observation window.  Unfortunately, 

though, local breaks cannot be consistently estimated (Bai (1997)).  We therefore simply use 

global break magnitudes and dates to estimate (inconsistently) the assumed local magnitudes and 

optimal sample window.  However, our Monte Carlo experiments indicate that the primary 

difficulty is not the inconsistency of our estimate of the optimal observation window; rather, the 

primary difficulty is break identification and dating.  Optimal rolling window (and combination) 

forecasts that estimate the size of the break using the known date of the break in the DGP 

perform essentially as well as forecasts using both the known size and date of the break.  Not 

surprisingly, forecast accuracy deteriorates somewhat when both the size and date of the break 

are estimated.  Even so, we find that the estimated quantities perform well enough to be a 

valuable tool for forecasting. 

 
3.  Approaches to Combining Recursive and Rolling Forecasts 

 In section 2 we discussed how the choice of observation window can improve forecast 

accuracy by appropriately balancing a bias-variance tradeoff.  In this section, we consider 

whether combining recursive and rolling forecasts can also improve forecast accuracy by 
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balancing a similar tradeoff.  We do so using three different combination approaches.  The first is 

a simple scalar combination of recursive and rolling forecasts.  The second, which can be viewed 

as a matrix-valued combination, is based on Bayesian shrinkage of rolling estimates toward 

recursive estimates.  The third is Bayesian model averaging, as implemented in Wright (2003). 

 
3.1  Simple scalar combination 

 The simplest possible approach to combination is to form a scalar linear combination of 

recursive and rolling forecasts.  With linear models, of course, the linear combination of the 

forecasts is the same as that generated with a linear combination of the recursive and rolling 

parameter estimates.  Accordingly, we consider generating a forecast using coefficients ,Ŵ tβ  = 

,
ˆ
t R tα β  + ,

ˆ(1 )t L tα β− , with corresponding loss 2 ,Ŵ tu τ+  = ' 2
,

ˆ( - )t t W ty xτ β+ . 

 Using Theorem 1 in Appendix 1, we are able to derive not only the optimal observation 

window for such a forecast, but also the associated optimal combining weight in the presence of 

a single structural break.  If, as we have for the observation window tR , we let tα  converge 

weakly to the function ( )sα , the following corollaries provide the desired results.  For each we 

maintain the same assumptions and notation used in Corollaries 2.1 and 2.2. 

 
Corollary 3.1: (a) If ( )R Bs sλ λ> −  for all [1,1 ]Ps λ∈ +  then  

 1
1 ( )P

WE sλ ξ+
∫  = 1 2

1
1 1( ) (1 - ( )) ( - )

( )
P

R
tr BV s ds

s s
λ α

λ
+

∫  + 

1' -1
2 21

( - )( ( )( - ( )) - ( ( ))) 2 ( ))(1 - ( ))( - ( ))( - )( )
( )

P B R R R
R B

R

s s s s s s s sB s s s s ds
s s

λ λ α λ λ λβ β α λ λ
λ

+ + +∆ ∆ ∫ . 

(b) If ( )R Bs sλ λ≤ −  for all [1,1 ]Ps λ∈ +  then 

 1
1 ( )P

WE sλ ξ+
∫  = 1 2

1
1 1( ) (1 - ( )) ( - )

( )
P

R
tr BV s ds

s s
λ α

λ
+

∫  + 
2

1' -1 2
21 (1 - ( ))( )P BB s ds
s

λ λβ β α+∆ ∆ ∫ . 
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Corollary 3.2: In the presence of a single break in the regression parameter vector, the pointwise 

(jointly) optimal window width and combining weights satisfy 

 * *( ( ), ( ))R s sλ α  = ' -1

( )

( , )
( ) ( - )

B

B B
B
tr BV

ss
s sβ β

λ
λ λ∆ ∆

−
+

. 

 
 Corollary 3.2 provides pointwise (jointly) optimal observation windows and combining 

weights for forecasting in the presence of a single structural change in the regression 

coefficients.  We describe these as pointwise optimal because they are derived by maximizing 

the arguments of the integrals in parts (a) and (b) of Corollary 3.1 that contribute to the average 

expected mean square differential over the duration of forecasting. 

 In contrast to the optimal observation window result from Corollary 2.2, the joint optimal 

solution is surprisingly simple.  In particular, the optimal strategy is to combine a rolling forecast 

that uses all post-break observations with a recursive forecast that uses all observations.  In other 

words, the best strategy for minimizing the mean square forecast error in the presence of a 

structural break is not so much to optimize the observation window, as suggested in Pesaran and 

Timmermann (2002b), but rather to focus instead on forecast combination. 

 Comparative statics for the combining weights are straightforward.  As the magnitude of the 

break increases relative to the precision of the parameter estimates, the weight on the recursive 

scheme decreases.  We also obtain the intuitive result that as the time since the break (( )Bs λ− ) 

increases, we eventually place all weight on the rolling scheme. 

 Again though, the optimal observation windows and combining weights in Corollary 3.2 are 

not presented in a real time context and depend upon several unknown quantities.  If we make 

the same change of scale and use the same estimators that were used for equation (4), we obtain 

the real time equivalents of the formula in Corollary 3.2. 
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 * *ˆ ˆ( , )t tR α  = ' -1
1ˆ( (1 ), )ˆ ˆ ˆ ˆ ˆ1 ( ) (1 - )ˆ ˆ( )

B

B B

t
t B
tr BV

δ
β β δ δ

−
∆ ∆+

.         (5) 

 
3.2  A Bayesian shrinkage forecast 

 Given the bias-variance tradeoff between recursive and rolling forecasts, a second 

combination approach that might seem natural is to use parameter estimates based on a rolling 

sample shrunken so as to reduce the noise in the parameter estimates and resulting forecast.  We 

therefore consider shrinking rolling sample estimates toward the recursive estimates, 

implemented with standard Bayesian formulae. 

 Recall that for a prior 2~ ( , )N m Mβ σ , the Normal linear regression model yields the 

posterior mean estimate β  = -1 -1 -1( ) ( )M X X M m X Y′ ′+ +  where X  denotes the relevant 

design matrix and Y  the associated vector of dependent variables.  If we treat the recursive 

parameter estimates as the prior mean and treat the associated standard errors under conditional 

homoskedasticity as our prior variance we have ,R̂ tm β=  and -1( )RM B t=  where ( )RB t  = 

--1 ' -1
1( )t
j jjt x xτ

=∑ .5  If we let ( )LB t  = --1 ' -1
- - 1( )

t
t

t j jj t RR x xτ
τ= +∑ , our Bayesian shrinkage estimator 

then follows by constructing the posterior mean rolling parameter estimates given this prior: 

 
 ,W tβ  = -1 1 1 1

, - - 1
ˆ[ ( ) ( )] [ ( ) ]

t

t
R t L R R t s ss t RtB t R B t tB t x yτ

ττβ− − − −
+= ++ + ∑   

  = 1 1 1 1
,
ˆ[ ( ) ( / ) ( )] ( )R t L R R tB t R t B t B t β− − − −+  + 1 1 1 1

,
ˆ[( / ) ( ) ( )] ( )t R L L L tt R B t B t B t β− − − −+ . (6) 

 
It is clear from the right-hand side of (6) that the parameter estimates are a linear combination of 

both recursive and rolling parameter estimates.  In contrast to the simple combination considered 

                                                 
5  Since we are using data to parameterize the prior, it is perhaps more appropriate to say that we are using an 
objective (rather than subjective) prior.  See Berger and Pericchi (2004) for discussion. 



 14

in our analytical work, here the weights are matrix valued and depend upon the ratio /tR t  and 

the matrices of sample second moments ( )RB t  and ( )LB t . 

 This Bayesian shrinkage estimator of course involves selecting a rolling observation window.  

In light of the results from Corollary 3.2, we use all post-break observations when constructing 

the rolling component of the forecast. 

 
3.3  Bayesian model averaging 

 Yet another approach to shrinking rolling forecasts toward the recursive might be to average 

a recursive forecast with forecasts generated with a potentially wide range of different 

observation windows.  Bayesian model averaging (BMA) of the form considered by Wright 

(2003) provides a natural way of doing so.  At each forecast date t , suppose that a single, 

discrete break in the full set of model coefficients could have occurred at any point in the past 

(subject to some trimming of the start of the sample and the end of the sample, as is usually 

required in break analysis).  For example, allowing for the possibility of a single break point 

anywhere between observations 20 through t  – 20 implies a total of t  – 39 models with a break.  

For each time t , the forecast generated by a model with a break in all coefficients at date Bt  and 

estimated with all data up to t  is of course exactly the same as the forecast generated from a 

model estimated with just data starting in Bt  + 1.  Therefore, applying BMA techniques to obtain 

a forecast averaged across the recursive model and the models with breaks (each model 

represents a different characterization of observations 1 to t ) is the same as averaging across the 

recursive forecast and rolling forecasts based on different observation windows. 

 In the particulars of our implementation of BMA, we largely follow the settings of Wright 

(2003).  We estimate each forecast model by least squares (which of course can be viewed as 

Bayesian estimation with a diffuse prior) and use Bayesian methods simply to weight the 
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forecasts.  In the benchmark case, the prior probability, Prob( )iM , on each model is just 1/the 

number of models.  We also consider the alternative of putting a large prior weight on the 

recursive forecast – a weight of .7 – and a weight of .3/the number of models on each of the 

rolling forecasts.  In calculating the posterior probabilities, Prob( | )iM data , of each model, we 

set the prior on the coefficients equal to the recursive estimates.6  Specifically, at each forecast 

origin t  we calculate the posterior probability of each model iM  using 

 

 Prob( |data)iM  = 
i

Prob(data| )×Prob( )
Prob(data| )×Prob( )

i i

i i

M M
M M∑

, 

where: 

 Prob(data| )iM  ∝ / 2 ( 1)(1 ) ip t
iSφ − − ++  

 φ  = parameter determining the rate of shrinkage toward the prior 

 ip  = the number of explanatory variables in model i 

 2
iS  = 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

1i i i i i prior i i i priorY Z Y Z Z Z
φ

′′ ′− Γ − Γ + Γ − Γ Γ − Γ
+

 

 iZ  = matrix of variables in model i  (including sx  and, in the models used to generate rolling  

  forecasts, sx  interacted with a break dummy) 

 ˆ
iΓ  = OLS-estimated coefficients of model i  

 priorΓ  = recursive estimates of the coefficients on the sx  variables and zeros for the break  

  terms in the model. 

 
 
 

                                                 
6 As Wright (2003) actually uses a coefficient prior of 0, our use of the recursive prior requires a simple adjustment 
to the S  term that enters the posterior probability. 
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4.  Monte Carlo Results 

 We use Monte Carlo simulations of bivariate data-generating processes to evaluate, in finite 

samples, the performance of the forecast methods described above.  In these experiments, the 

DGP relates the predictand y  to lagged y  and lagged x  with the coefficients on lagged y  and 

x  subject to a structural break.  As described below, forecasts of y  are generated with the basic 

approaches considered above, along with some related methods that are used or might be used in 

practice.  Performance is evaluated using some simple summary statistics of the distribution of 

each forecast’s MSE: the average MSE across Monte Carlo draws (medians yield very similar 

results), and the probability of equaling or beating the recursive forecast’s MSE. 

 
4.1  Experiment design 

 The DGPs considered share the same basic form, differing only in the persistence of the 

predictand y  and the size of the coefficient break: 

 

  

1 1 1 1

1

( ) (.5 )

.5

, (0,1)

1( ).

t y t y t t x t t

t t t

t t

t B

y b d b y d b x u

x x v

u v iid N

d t Tλ

− − − −

−

= + ∆ + + ∆ +
= +
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We begin by considering forecast performance in two stable models, one with yb  = .3 (DGP 1-S) 

and another with yb  = .9 (DGP 2-S), imposing 0y xb b∆ = ∆ =  in both cases.  We then 

consider four specifications with breaks: 

DGP 1-B1   yb  = .3   ( , ) ( .3, .5)y xb b∆ ∆ = − −  

DGP 2-B1   yb  = .9   ( , ) ( .3, .5)y xb b∆ ∆ = − −  

DGP 1-B2   yb  = .3   ( , ) (0, .5)y xb b∆ ∆ = −  

DGP 2-B2   yb  = .9   ( , ) (0, .5)y xb b∆ ∆ = − . 
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For DGPs with breaks, we present results for experiments with two different break dates (a 

single break in each experiment): Bλ  = .6 and .8. 

 In each experiment, we conduct 1000 simulations of data sets of 200 observations (not 

counting the initial observation necessitated by the lag structure of the DGP).  The data are 

generated using innovation draws from the standard normal distribution and the autoregressive 

structure of the DGP.7  We set T , the number of observations preceding the first forecast date, to 

100, and consider forecast periods of various lengths:  Pλ  = .2, .4, .6, and 1.0.  For each value of 

Pλ , forecasts are evaluated over the period T  through (1 )P Tλ+ . 

 
4.2  Forecast approaches 

 Forecasts of 1, ,..., ,ty t T T P+ = +  are formed from various estimates of the model 

0 1 1 2 1t t t ty y x eγ γ γ− −= + + + , 

using variations on the approaches described above.  Table 1 details all of the forecast methods.  

As to the particulars of our analysis, we note the following. 

1.  Some break testing details:  (a) Our tests are based on the full set of forecast model 
coefficients, in part for simplicity.  (b) We impose a minimum segment length of 20 periods.   
 
2.  For all but one of the forecasts that rely on break identification, if in forecast period 1t +  
the break metric fails to identify a break in earlier data, then the estimation window is the 
full, available sample, and the forecast for 1t +  is the same as the recursive forecast.  The 
exception is the shrinkage: sup Wald R (all) forecast, which simply uses the estimated break 
and break date without requiring the break to be statistically significant. 
 
3.  Most of our results using break tests are based on the Andrews (1993) test for a single 
break, with a 5% significance level.8  We do, however, consider other approaches.  One, for 

                                                 
7 The initial observations necessitated by the lag structure of the model are generated from draws of the 
unconditional normal distribution implied by the (pre-break) model parameterization. 
8 At each point in time, the asymptotic p-value of the sup Wald test is calculated using Hansen’s (1997) 
approximation.  As noted by Inoue and Rossi (2003) in the context of causality testing, repeated tests in such real 
time analyses with the use of standard critical values will result in spurious break findings.  Using adjusted critical 
values would improve the stable-DGP performance of some of our break test-based methods.  But in DGPs with 
breaks, performance would deteriorate. 
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which we report results, is the reverse order CUSUM (of squares) method proposed by 
Pesaran and Timmermann (2002a), which involves searching backward from each forecast 
date to find the most recent break.9  Because the reverse CUSUM proves to be prone to 
spurious break findings, a relatively parsimonious 1 percent significance level is used in 
identifying breaks with the CUSUM of squares.  Another, not reported in the interest of 
brevity, is the BIC criterion of Yao (1988) and Bai and Perron (2003).  We omit the results 
for the BIC, which allows for the potential of multiple breaks, because they are comparable 
to those reported for the single break sup Wald approach.  Yet another approach, which we 
leave for future research, would be Bayesian break identification (e.g.,Wang and Zivot 
(2000)). 
 
4.  Although we have experimented with various values of the BMA parameter φ  that 
determines the rate of shrinkage toward the recursive (a smaller value corresponds to more 
shrinkage) used in calculating the posterior probabilities, we report results for the single 
value that seems to work best: φ  = .2. 

 
5.  Because many readers seem to find discounted least squares (DLS) to be a natural 
alternative, and DLS has come to be widely used in macroeconomic models featuring 
learning (e.g., Cho, Williams, and Sargent (2002)), we include forecasts based on models 
estimated with a discount rate of .99. 

 
6.  Although infeasible in empirical applications, for benchmarking purposes we report 
results for forecasts based on the optimal weight *

tα  and window *
tR  calculated using the 

known features of the DGP – the break point, the break size, and the population moments of 
the data.10 

 
4.3  Simulation results 

 In our Monte Carlo comparison of forecast approaches, we mostly base our evaluation on 

average MSEs over a range of forecast samples.  For simplicity, in presenting average MSEs, we 

only report actual average MSEs for the recursive forecast.  For all other forecasts, we report the 

ratio of a forecast’s average MSE to the recursive forecast’s average MSE.  To capture potential 

                                                 
9 For data samples of up to a little more than 200 observations, our CUSUM analysis uses the asymptotic critical 
values provided by Durbin (1969) and Edgerton and Wells (1994).  For larger data samples, our CUSUM results 
rely on the asymptotic approximation of Edgerton and Wells. 
10 In calculating the “known” Rt*, we set the change in the vector of forecast model coefficients to β∆ =  
(0 )y xT b b ′∆ ∆  (the local alternative assumed in generating (4) means a finite-sample break needs to be 

scaled by T ) and calculate the appropriate second moments using the population values implied by the pre-break 
parameterization of the model. 
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differences across approaches in MSE distributions, we also present some evidence on the 

probabilities of equaling or beating a recursive forecast. 

4.3.1  Stable DGPs:  Average MSEs 

 With stable DGPs, the most accurate forecasting scheme will of course be the recursive.  

Moreover, because the DGP has no break, the optimal weight *
tα  on the recursive forecast is 1 

and the rolling window *
tR  (α =0) in (4) is the full sample.  Thus, the known optimal 

combination forecast, the rolling forecast based on the known *
tR  (α =0), and the Bayesian 

shrinkage forecast based on the known break date will be the same as the recursive forecast. 

 Not surprisingly, then, the average MSEs reported in Table 2 from simulations of the stable 

DGPs (DGP 1-S and DGP 2-S ) show that no forecast beats the recursive forecast – all of the 

reported MSE ratios are 1.000 or higher.  Using an arbitrary rolling window yields considerably 

less accurate forecasts, with the loss bigger the smaller the window.  For example, with DGP 2-S 

and a forecast sample of 20 observations ( Pλ  = .2), using a rolling estimation window of 20 

observations yields, on average, a forecast with MSE 20.2 percent larger than the recursive 

forecast’s MSE. 

 Forecasts with rolling windows determined by formal break tests perform considerably 

better, with their performance ranking determined by the break metrics’ relative parsimony.  The 

reverse CUSUM approach yields a forecast modestly less accurate than a recursive forecast.  For 

example, with DGP 2-S and a forecast sample of 40 observations ( Pλ  = .4), the reverse CUSUM 

forecast has an average MSE 1.7 percent larger than the recursive forecast.  For the same DGP 

and sample, a forecast based on the sup Wald break test outcome (rolling: sup Wald R) has an 

average MSE 3.1 percent greater than the recursive forecast.  The optimal combination forecast – 

a weighted average of the recursive and rolling: sup Wald R projections, with estimated weights 
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– performs slightly better than the rolling forecast.  Similarly, the rolling forecast based on an 

estimate of *
tR (α =0) is modestly less accurate than the recursive, much more so for the higher 

persistence DGP 2-S than DGP 1-S.  In all, such findings highlight the crucial dependence of 

these methods on the accuracy of the break metrics. 

 For all forecasts based on a rolling window of data, using Bayesian shrinkage toward the 

recursive effectively eliminates any loss in accuracy relative to the recursive forecast.  As shown 

in Table 2, shrinkage of model estimates based on arbitrary rolling windows of 20 or 40 

observations yields forecasts with average MSE no worse than .3 percent larger than the 

recursive forecasts.  Shrinkage of model estimates using a sup Wald-determined rolling window 

yields a forecast (shrinkage: sup Wald R (5%)) that, at worse, has an average MSE .1 percent 

larger than the recursive.  As indicated by the results in the shrinkage: sup Wald R (all) row, 

shrinkage effectively eliminates the loss relative to the recursive even if the estimate of the 

rolling window isn’t conditioned on the statistical significance of the break. 

 Using Bayesian model averaging to combine recursive and rolling forecasts can also 

essentially match the recursive forecast in average accuracy, if a large prior weight is placed on 

the recursive model.  With the large prior on the recursive forecast, on average the MSE of the 

BMA forecast exceeds the MSE of the recursive projection by no more than .2 or .3 percent.  But 

with all models having equal weight in the prior, the BMA forecast is somewhat less accurate, 

exceeding the recursive MSE by between 2 and 3 percent, depending on the DGP and forecast 

sample.  For example, with DGP 2-S and a forecast sample of 40 observations ( Pλ  = .4), the 

BMA, equal prior prob. forecast has an average MSE 3.1 percent larger than the recursive 

forecast. 
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4.3.2  DGPs with Breaks:  Average MSEs 

 For the breaks imposed in our DGPs, the theoretical results in section 2 imply that, in 

population, the combined forecast based on the known optimal *
tα  will have the lowest MSE.  

Within the class of forecasts without any combination, predictions based on a rolling window of 

the known *
tR (α=0) observations should have the lowest MSE.  The Monte Carlo results in 

Tables 3 and 4 bear out these analytical implications:  the optimal combination forecast always 

has the lowest average MSE, with the known *
tR (α=0) forecast second, although sometimes just 

trivially so.  Moreover, in most but not all cases, the known *
tR (α=0) forecast has a lower MSE 

than the Bayesian shrinkage forecast based on the known break date.  For example, Table 3 

reports that, for DGP 1-B1, Pλ  = .2, and Bλ  = .8 (a break at observation 80), the optimal 

combination forecast has an average MSE ratio of .854, compared to MSE ratios of .874 for the 

known *
tR (α=0) forecast and .947 for the shrinkage forecast with the known break date.  But in 

some unreported experiments with smaller or longer-ago breaks, the Bayes shrinkage forecast 

based on the known break date slightly beats the known *
tR (α=0) forecast.  The ranking of the 

two approaches can change because, as the break gets smaller, the *
tR (α=0) window tends to 

become the recursive window, while the shrinkage forecast is based on the post-break 

observations. 

 Within the class of feasible approaches, if the timing is just right, a rolling window of 

arbitrary, fixed size can produce the lowest average MSE.  But if the timing is not just right, a 

simple rolling approach can be inferior to recursive estimation.  Consider, for example, Table 3’s 

results for DGP 1-B1.  With the break occurring at observation 80 ( Bλ = .8), and forecasts 

constructed for 40 periods (for observations 101 through 140; Pλ  = .4), using a rolling window 
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of 20 observations yields an average MSE ratio of .945.  But with the break occurring further 

back in history, at observation 60 ( Bλ = .6), rolling estimation with 20 observations yields an 

average MSE that is 1.1 percent larger than the recursive forecast’s.  In general, of course, the 

gain from using a rolling window shrinks as the break moves further back in history. 

 Overall, the results in Tables 3 and 4 indicate that estimation with an arbitrary rolling 

window of 40 observations performs pretty well in our DGPs with breaks.  When the recursive 

forecast can be beaten, this simple rolling approach often does so, but when little gain can be had 

from any of the methods considered, rolling forecasts based on 40 observations are not much 

worse than the recursive. 

 The performance of forecasts relying on rolling windows determined by formal break tests is 

somewhat mixed, reflecting the mixed success of the break tests in correctly identifying breaks.  

For DGPs with relatively large, recent breaks, the reverse CUSUM and sup Wald-based rolling 

forecasts are slightly to modestly more accurate than recursive forecasts.  For example, Table 3 

shows that with DGP 1-B1, Bλ  = .8, and Pλ  = .4, the MSE ratios for these two forecasts are .958 

and .941, respectively.  But, as might be expected, gains tend to shrink or become losses as the 

break becomes smaller.  For DGP 1-B2, the same forecast approaches have MSE ratios of .973 

and .991 when Bλ  = .8 and Pλ  = .4 (Table 4).  Either combining the recursive and post-break 

forecasts according to (7) or constructing a forecast with the estimated rolling window *
tR (α=0) 

offers some slight improvement over the reverse CUSUM and sup Wald forecasts.  For instance, 

with Bλ  = .8 and Pλ  = .4, the optimal combination forecast has an average MSE ratio of .928 for 

DGP 1-B1 (Table 3) and .977 for DGP 1-B2 (Table 4); the estimated *
tR (α=0) forecast has an 

average MSE ratio of .931 for DGP 1-B1 (Table 3) and .978 for DGP 1-B2 (Table 4).  In their 
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feasible incarnations, the optimal combination and optimal rolling window methods yield 

virtually the same average MSEs. 

 Nonetheless, the results in Tables 3 and 4 consistently indicate there is some benefit to 

simple Bayesian shrinkage of estimates based on rolling data samples.  In general, apart from 

those cases in which an arbitrary rolling window is timed just right so as to yield the best feasible 

forecast, Bayesian shrinkage seems to improve rolling-window forecasts.  In terms of average 

MSE, the shrinkage forecasts are always as good as or better than the recursive forecast.  

Moreover, some form of a shrinkage-based forecast usually comes close to yielding the 

maximum gain possible, among the approaches considered.  For example, one of the simplest 

possible approaches, shrinking rolling estimates based on a window of 40 observations, yields 

MSE ratios of roughly .96 for both DGP 1-B1 and DGP 2-B1 when Bλ = .8 or .6 (Table 3).  

Bayesian shrinkage of the sup Wald-determined rolling estimates (the shrinkage: sup Wald R 

(5%) approach) also yields MSE ratios of roughly .96 in these cases.  Perhaps even better is the 

approach of applying Bayesian shrinkage to a rolling estimate based on a sample window of size 

determined without conditioning on the significance of the break test (the shrinkage: sup Wald R 

(all) approach).  In the same cases, this approach yields an MSE ratio of about .945. 

 Finally, the Monte Carlo results indicate that Bayesian model averaging also yields a 

consistent benefit that is generally at least as large as that provided by any of the other shrinkage 

approaches.  BMA with an equal prior weight on the recursive and rolling models typically 

yields a gain in MSE nearly as large as that associated with the known optimal combination.  In 

DGP 2-B1, for example, the MSE ratios for the known optimal combination and BMA equal 

prior probability forecasts are .838 and .856, respectively.  Not surprisingly, with breaks in the 

DGP, putting a much larger prior probability on the recursive forecast reduces the benefits of 
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BMA (the advantage of the larger prior being that it sharply reduces the costs of BMA when the 

DGP is stable):  in the same example, the MSE ratio for the BMA large prior probability forecast 

is .914.  But even the large prior probability implementation of BMA seems to perform about as 

well or better than any other feasible approach to forecasting. 

4.3.2  MSE distributions 

 The limited set of Monte Carlo-based probabilities reported in Table 5 show that the 

qualitative findings based on average MSEs reflect general differences in the distributions of 

each forecast’s MSE.  In the interest of brevity, we report a limited set of probabilities; 

qualitatively, results are similar for other experiments and settings. 

 For stable DGPs, in line with the earlier finding that forecasts based on arbitrary rolling 

windows are on average less accurate than recursive forecasts, the probability estimates in the 

upper panel of the table indicate that the rolling forecasts are almost always less accurate than 

recursive forecasts.  For example, with DGP 1-S and a forecast sample of 20 observations ( Pλ  = 

.2), the probability of a forecast based on a rolling estimation window of 40 observations beating 

a recursive forecast is only 27.1 percent.  Another finding in line with the average MSE results is 

that shrinkage of rolling estimates significantly reduces the probability of the forecast being less 

accurate than the recursive.  Continuing with the same example, the probability of a shrinkage 

forecast using a rolling window of 40 observations beating a recursive forecast is 40.2 percent.  

The table also shows that, in stable DGPs, the break estimate-dependent forecasts tend to 

perform similarly to the recursive because, with breaks not often found, the break-dependent 

forecast is usually the same as the recursive forecast (note that the shrinkage: post-break R (all) 

forecast is an exception because it does not condition on the significance of the break test). 
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 For DGPs with breaks, the probabilities in the lower panel of Table 5 show that while beating 

the recursive forecast on average usually translates into having a better than 50 percent 

probability of equaling or beating the recursive forecast, in some cases probability rankings can 

differ from average MSE rankings.  That is, one forecast that produces a smaller average gain 

(against the recursive) than another sometimes has a higher probability of producing a gain.  

Perhaps not surprisingly, the reversal of rankings tends to occur with rolling vs. shrinkage 

forecasts, as shrinkage greatly tightens the MSE distribution.  For example, with DGP 1-B1, Bλ = 

.8, and Pλ  = .4, the rolling-40 and shrinkage-40 forecasts have average MSE ratios of .889 and 

.953, respectively (Table 3).  Yet, as reported in the lower panel of Table 5, the probabilities of 

the rolling-40 and shrinkage-40 forecasts having lower MSE than the recursive are 83.6 and 95.7 

percent, respectively. 

4.3.3  Summary of simulation results 

 Not surprisingly, there is a simple tradeoff:  methods that forecast most accurately when the 

DGP has a break tend to fare poorly relative to the recursive approach when the DGP is stable. 

Assuming a desire to be cautious in the sense of wanting to not fail to beat a recursive forecast, 

shrinking estimates based on a rolling or post-break sample of data seems to be effective and 

valuable, as does Bayesian model averaging with a large prior on the recursive model.  On 

average, both approaches produce a forecast MSE essentially the same as the recursive MSE 

when the recursive MSE is best.  When there are model instabilities, the shrinkage approaches 

produce a forecast MSE that often captures most of the gain that can achieved with the methods 

considered in this paper, and beats the recursive with a high probability. 
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5.  Application Results 

 To evaluate the empirical performance of the various forecast combination methods, we 

follow the spirit of Stock and Watson (1996, 2003) in considering a wide range of applications 

and forecast performance over various periods (1976-89 and 1990-2003).  For a number of the 

applications, other studies have found some evidence of instability.  In line with common 

empirical practice, our presented results are simple RMSEs for one-step ahead forecasts. 

 
5.1  Applications and forecast approach 

 The predictands in the 12 applications listed below are widely-studied, broad-scope 

economic indicators for the U.S. and select other industrial economies (see Appendix 2 for 

details on the data and model specifications).  

(1) Predicting quarterly U.S. GDP growth with lagged growth, an interest rate term 

spread, and the change in the short-term interest rate (examples:  Estrella and Hardouvelis 

(1991), Hamilton and Kim (2002), and Stock and Watson (2003)). 

(2) Forecasting quarterly U.S. core CPI inflation with an AR(4) model (Stock and 

Watson (1999) and Orphanides and van Norden (2003)).  

(3) Predicting the monthly change in the U.S. unemployment rate with an AR(12) model 

(Montgomery, et al. (1998) and Terui and van Dijk (2002)). 

(4) Predicting the quarterly change in the 3-month T-bill rate with the prior quarter’s 

spread between the 6-month and 3-month bill rates (Mankiw and Miron (1986) and 

Lange, Sack, and Whitesell (2003)).  

(5) Forecasting monthly excess returns in the S&P 500 using lagged returns, the 

dividend-price ratio, the 1-month interest rate, and the spread between Baa and Aaa 
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corporate bond yields (Paye and Timmermann (2002), Pesaran and Timmermann 

(2002a), and Rapach and Wohar (2002)). 

(6) Predicting the monthly change in the U.S. dollar-Swiss franc spot exchange rate with 

interest differentials at 1, 3, 6, and 12 months (Clarida and Taylor (1997) and Clarida, et 

al. (2003)). 

(7-12)  Predicting quarterly GDP growth in the non-U.S. G7 countries (henceforth, G6 

countries) with AR models (Min and Zellner (1993) and Stock and Watson (2004)). 

 
 In this empirical analysis, we consider the same forecast methods included in the Monte 

Carlo analysis, with some minor modifications.11  Rather than allowing a range of arbitrary 

rolling window sizes, we examine forecasts based on just a 10-year window (with the exception 

of the exchange rate application, for which data limitations lead us to shorten the window to six 

years).  We also, by necessity, drop consideration of the rolling forecast based on the known *
tR  

and the shrinkage forecast using the known break date.  Finally, in the break analysis, we impose 

a minimum break segment length of five years of data – 20 quarterly observations or 60 monthly 

observations (with the exchange rate sample relatively short, in that case we shorten the 

minimum segment length to 36 observations). 

 
5.2  Results 

 In a broad sense, the application results presented in Tables 6 and 7 line up with the Monte 

Carlo results of Section 4.  For example, the simple approach of using an arbitrary rolling 

window of observations in model estimation can yield the most accurate forecasts when the 

timing is right (as in the 3-month interest rate-term spread for 1990-03) but inferior forecasts 

                                                 
11 Note also that our Andrews (1993) tests use Wald statistics with heteroskedasticity-robust variances. 
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when the timing is not (as in the same application results for 1976-89).  Here, too, it seems, the 

methods that are capable of performing the best when a break may have occurred tend to perform 

the worst when the model has been stable.  The reverse CUSUM method provides a perhaps 

even more stark example of this pattern.  The CUSUM method can produce nearly the most 

accurate forecast (3-month interest rate-term spread application, 1990-03) but often produces one 

of the worst (same application, 1976-89). 

 Such broad similarities aside, one particularly notable result is the difficulty of beating the 

recursive approach.12  Despite the extant evidence of instability in many of the applications 

considered, the recursive forecast is frequently the best.  Perhaps most strikingly, in the core 

inflation and stock return applications, none of the alternative approaches yields a forecast 

RMSE materially smaller than the recursive, for either of the reported sample periods.  Indeed, in 

several cases, the alternative forecasts have RMSEs roughly 20 percent larger than the recursive 

forecast.  The same basic pattern applies in the exchange rate and German GDP examples, 

although the failures relative to the recursive are not as large as in the core inflation and stock 

return cases.  That said, the recursive approach does not seem to perform as strongly in the G6 

GDP growth applications in Table 7 as in the U.S. applications in Table 6. 

 Despite the general difficulty of improving on the recursive method, there are some 

approaches that, in terms of RMSE, usually forecast as well or better.  And, in line with the 

Monte Carlo results, it is the shrinkage-based forecasts that consistently equal or improve on the 

recursive forecast.  In particular, our take on the applications evidence is that, within the class of 

methods that improve on the recursive when improvement is possible but match the accuracy of 

the recursive when improvement is not possible, Bayesian shrinkage of 10-year rolling window 

                                                 
12 Any gains in the empirical results will naturally appear smaller than in the Monte Carlo results because the 
empirical results are reported in terms of RMSEs, while the Monte Carlo tables report MSEs. 
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estimates performs very well, and perhaps best.  Some of the other methods, such as Bayesian 

model averaging or discounted least squares, can offer larger gains over the recursive in some 

periods, but perform poorly when the recursive forecast is best.  When the recursive forecast is 

best, the Bayesian shrinkage of 10 year estimates essentially matches the recursive RMSE. 

 Consider, for example, the 3-month interest rate-term spread application.  For 1976-89 the 

10-year shrinkage forecast is essentially as accurate as the top-ranked recursive forecast, with a 

RMSE ratio of 1.007; a rolling forecast based on 40 observations has a RMSE ratio of 1.027.  

For 1990-03, the 10-year shrinkage forecast’s RMSE ratio is .930, compared to the best RMSE 

ratio of .747 provided by a simple rolling forecast.  A shrinkage forecast that uses a post-break 

sample without requiring the estimated break to be significant doesn’t perform as well:  the 

shrinkage: post-break R (all) RMSE ratios are 1.010 and 1.028 for 1976-89 and 1990-03, 

respectively.  Bayesian model averaging also doesn’t perform as well, yielding RMSE ratios of 

1.007 and .967 when a large prior weight is placed on the recursive model (the forecast based on 

BMA with equal weights has RMSE ratios of 1.034 and .911).  In this application, discounted 

least squares performs as well as shrinkage of rolling estimates based on 10 years of data, with 

RMSE ratios of 1.009 and .926 for 1976-89 and 1990-03, respectively. 

 In the GDP-interest rates application, the 10-year shrinkage forecast improves on the 

accuracy of the recursive forecast in both periods, with a RMSE ratio of .981 for 1976-89 and 

.946 for 1990-03, essentially matching the performance of the forecast based on a 10 year rolling 

window.  The shrinkage forecast that uses a post-break window without requiring the estimated 

break to be significant (the shrinkage: post-break R (all) forecast) yields RMSE ratios of .988 

and .993 for 1976-89 and 1990-03, respectively.  In this application, Bayesian model averaging 

performs roughly as well as 10-year shrinkage.  For instance, for 1990-03, BMA with equal prior 
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weight on all models yields an RMSE ratio of .959; BMA with a large prior weight on the 

recursive yields an RMSE ratio of .980.  Discounted least squares also performs well, with 

RMSE ratios of .980 for 1976-89 and .930 for 1990-03.  As this application clearly shows, in 

some instances Bayesian model averaging and discounted least squares can perform as well as 

simple shrinkage of 10-year rolling estimates.  The advantage of the simple shrinkage approach 

comes in other applications, such as the inflation and stock return cases, in those samples in 

which no method really beats the recursive approach. 

 Still other approaches generally don’t seem to fare as well as shrinkage.  For example, 

predictions based on either the optimal combination of recursive and post-break forecasts or a 

rolling window of an estimated *
tR (α=0) observations are sometimes at least as accurate as 

recursive forecasts (as in the GDP-interest rates and Japan GDP applications), but sometimes 

significantly less accurate (as with the stock return and 3-month interest rate-term spread 

examples). 

 
6. Conclusion 

 Within this paper we provide several new results that can be used to improve forecast 

accuracy in an environment characterized by heterogeneity induced by structural change.  These 

methods focus on the selection of the observation window used to estimate model parameters 

and the possible combination of forecasts constructed using the recursive and rolling schemes.  

We first provide a characterization of the bias-variance tradeoff that a forecasting agent faces 

when deciding which of these methods to use.  Given this characterization we establish 

pointwise optimality results for the selection of both the observation window and any combining 

weights that might be used to construct forecasts. 



 31

 Overall, the results in the paper suggest a clear benefit – in theory and practice – to some 

form of combination of recursive and rolling forecasts.  Our Monte Carlo results and results for 

wide range of applications show that shrinking coefficient estimates based on a rolling window 

of data seems to be effective and valuable.  On average, the shrinkage produces a forecast MSE 

essentially the same as the recursive MSE when the recursive MSE is best.  When there are 

model instabilities, the shrinkage produces a forecast MSE that often captures most of the gain 

that can achieved with the methods considered in this paper, and beats the recursive with a high 

probability.  Thus, in practice, combining recursive and rolling forecasts – and doing so easily, in 

the case of Bayesian shrinkage – yields forecasts that are highly likely to be as good as or better 

than either recursive forecasts or pure rolling forecasts based on an arbitrary, fixed window size. 
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Appendix 1:  General Theoretical Results on the Bias-Variance Tradeoff 
 
 In this appendix we provide a theorem that is used to derive Corollaries 2.1, 2.2, 3.1 and 3.2 
in the text.  A proof of the Theorem is provided in a not-for-publication technical appendix, 
Clark and McCracken (2004).  In the following let ,T tU  = , , ,( , ( ) )T t T t T th vec x xτ+′ ′ ′ ′ , V  = 

-1
11,- 1 jj

τ
τ= + Ω∑  where 11, jΩ  is the upper block-diagonal element of jΩ  defined below, ⇒  

denotes weak convergence, 1B−  = -1 '
, ,1lim ( )T

T T t T ttT E x x→∞ =∑ , and (.)W  denotes a standard 
( 1)k ×  Brownian motion. 
 
Assumption 1: (a) The DGP satisfies ' *

, , , ,T t T t T t T ty x uτ τβ+ += +  = ' *
,T tx β  + -1/2 '

, ( / )T tT x g t T  + 
,T tu τ+  for all t , (b) For (0,1 ]Ps λ∈ +  ( / ) ( )g t T g s⇒  a nonstochastic square integrable 

function. 
 
Assumption 2: The parameters are estimated using OLS. 
 
Assumption 3: (a) [ ]-1 '

, ,1
rT

T t T t j jtT U U r−= ⇒ Ω∑  where jΩ  = -1 '
, ,1lim ( )T

T T t T t jtT E U U→∞ −=∑  all 
0j ≥ , (b) 11, jΩ  = 0 all j τ≥ , (c) 2

1, ,sup | | qT t T P T tE U≥ ≤ + <∞  some 1q > , (d) The zero 
mean triangular array , ,T t T tU EU−  = , , , , ,( , ( - ) )T t T t T t T t T th vec x x Ex xτ+′ ′ ′ ′ ′ satisfies Theorem 3.2 
of De Jong and Davidson (2000). 
 
Assumption 4: For (0,1 ]Ps λ∈ + , (a) / ( ) (0, ]t RR T s sλ⇒ ∈ , (b) ( ) ( ,1]t sα α⇒ ∈ −∞ , (c) 
/ (0, )PP T λ→ ∈ ∞ . 

 
Theorem 1: Given Assumptions 1 – 4, 2 2

, ,ˆ ˆ( - )T P
R t W tt T u uτ τ

+
+ +=∑  d→   

 { 1 -1 -1 ' 1/2 1/2
1-2 (1 - ( ))[ ( ) - ( )( ( ) - ( - ( )))] ( )P

R Rs s W s s W s W s s V BV dW sλ α λ λ+
∫  

  + 1 2 -2 ' 1/2 1/2
1 (1 - ( )) ( ) ( )P s s W s V BV W s dsλ α+
∫  

  − 1 2 -2 ' 1/2 1/2
1 (1 - ( )) ( ( ) - ( - ( ))) ( ( ) - ( - ( )))]P

R R Rs W s W s s V BV W s W s s dsλ α λ λ λ+
∫ } 

  − 1 -1 -1 ' 1/2 1/2
12 ( )(1 - ( )) ( ) ( ) ( ( ) - ( - ( )))P

R Rs s s sW s V BV W s W s s dsλ α α λ λ+
∫ } 

 + 2 { 1 -1 -1 ' 1/2
1 0 - ( )(1 - ( ))[ ( ( ) ) - ( )( ( ) )] ( )P

R

s s
R s ss s g r dr s g r dr V dW sλ

λα λ+−∫ ∫ ∫   

  + 1 2 -2 ' 1/2
1 0[(1 - ( )) ( ) ( ( ) )P ss s W s V g r drλ α+
∫ ∫  

   − 2 -2 ' 1/2
- ( )(1 - ) ( )( ( ) - ( - ( ))) ( ( ) )]
R

s
R R s ss W s W s s V g r dr dsλα λ λ ∫  

  − 1 -1 -1 ' 1/2
1 - ( )( )(1 - ( )) ( ) ( ) ( ( ) )P

R

s
R s ss s s sW s V g r dr dsλ

λα α λ+
∫ ∫  

  − 1 -1 -1 ' 1/2
1 0( )(1 - ( )) ( )( ( ) - ( - ( ))) ( ( ) )]P s

R Rs s s s W s W s s V g r dr dsλ α α λ λ+
∫ ∫  

  − 1 ' 1/2 -1 -1
1 (1 - ( )) ( ) [ ( ) - ( )( ( ) - ( - ( )))]P

R Rs g s V s W s s W s W s s dsλ α λ λ+
∫ } 

 + { 1 ' -1 -1 -1
1 0 - ( )-2 (1 - ( )) ( ) [ ( ( ) ) - ( )( ( ) )]P

R

s s
R s ss g s B s g r dr s g r dr dsλ

λα λ+
∫ ∫ ∫  
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  + 1 2 -2 ' -1
1 0 0[(1 - ( )) ( ( ) ) ( ( ) )P s ss s g r dr B g r drλ α+
∫ ∫ ∫  

   − 2 -2 ' -1
- ( ) - ( )(1 - ( )) ( ( ) ) ( ( ) )]
R R

s s
R s s s ss g r dr B g r dr dsλ λα λ ∫ ∫  

  − 1 -1 -1 ' -1
1 0 - ( )2 ( )(1 - ( )) ( )( ( ) ) ( ( ) )P

R

s s
R s ss s s s g r dr B g r dr dsλ

λα α λ+
∫ ∫ ∫ } 

 
 = 1

1 ( )P
W s

λ ξ+
∫  = { 1

11 ( )P
W sλ ξ+

∫ } + { 1
21 ( )P

W sλ ξ+
∫ } + { 1

31 ( )P
W sλ ξ+

∫ }. 
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Appendix 2:  Application Details 
 
 Unless otherwise noted, all data are taken from the FAME database of the Board of 
Governors.  All data end in 2003:Q4 or December 2003.  Growth rates and inflation rates are 
calculated as log changes.  In the table, start point refers to the beginning of the regression 
sample, determined by the availability of the raw data, any differencing, and lag orders.  In all 
cases the forecasting model includes a constant in the set of predictors. 
 
application predictand (data frequency) predictors data notes 
1.  GDP-interest rates real GDP growth (qly) one lag of:  GDP growth; 

10 year Treasury bond 
yield less the 3 month T-
bill rate; and the change in 
the T-bill rate. 

start point:  1953:Q3. 

2.  Core CPI inflation core CPI inflation (qly) four lags (AR(4)) start point:  1958:Q2 
 
data for 1967-83 are the 
BLS’ housing-consistent 
series instead of the 
published core CPI 

3.  Unemployment rate ∆ unemployment rate (mly) 12 lags (AR(12)) start point:  1954:1 
4.  3-mo. Interest rate-term 
spread 

change in 3-month T-bill rate 
(qly) 

one lag of the spread 
between the 6-month and 
3-month T-bill rates 

start point:  1959:Q2 
 
quarterly values are the 
interest rates on the last 
day of the quarter 

5.  Stock returns excess return, S&P 500 (mly) one lag of:  excess return; 
dividend-price ratio; 1-
month nominal interest rate 
less average over past 12 
months; and Baa – Aaa 
yield spread 

start point:  January 1953 
 
excess return = return less 
1-month interest rate 
 
d-p ratio based on average 
of dividends from t-11 to t  
 
S&P 500 dividend data 
from Global Insight; 1-
month interest rate from 
Kenneth French’s website 

6.  U.S.-Switz. exchange 
rate 

U.S.-Switzerland ex. rate 
(nominal, mly, end of month) 

two lags of:  the change in 
the spot rate and the U.S.-
Switz. differential in 1, 3, 
6, and 12 month interest 
rates (all end of month) 

start point:  August 1973 
 
interest rates from Global 
Insight 

7.  G6 GDP growth growth rate of real GDP (qly) in 
the non-U.S. G7 countries13 

lags of growth (AR model), 
order determined with AIC 

start points: 
  1961:3   Canada 
  1964:2   France 
  1961:2   Germany 
  1960:4   Italy 
  1956:2   Japan 
  1955:3   UK 
   

 

                                                 
13 We smoothed some outlier observations due to factors such as strikes and German reunification as follows.  (1) 
The growth rate of German GDP in 1991:Q1 was set to the forecast from an AR(4) model fit with data from 1961 
through 1990:Q4.  (2) Output in France in 1968:Q2 was calculated by interpolating between 1968:Q1 and 1968:Q3. 



 35

 
References 

Andrews, D.W.K. (1993): “Tests for Parameter Instability and Structural Change with Unknown 
Change Point,” Econometrica, 61, 821-56. 
 
Bai, J. (1997):  “Estimation of a Change Point in Multiple Regression Models,” Review of 
Economics and Statistics, 79, 551-63. 
 
Bai, J. and P. Perron (2003): “Computation and Analysis of Multiple Structural-Change 
Models,” Journal of Applied Econometrics, 18, 1-22. 
 
Berger, J. and Pericchi, L. (2004). “Training samples in objective Bayesian model selection,” 
Annals of Statistics, 18, forthcoming. 
 
Cho, I.K., N. Williams, and T.J. Sargent (2002):  “Escaping Nash Inflation,” Review of 
Economic Studies, 69, 1-40. 
 
Clarida, R.H., L. Sarno, M.P. Taylor, and G. Valente (2003): “The Out-of-Sample Success of 
Term Structure Models as Exchange Rate Predictors:  a Step Beyond,” Journal of International 
Economics, 60, 61-83. 
 
Clarida, R.H. and M.P. Taylor (1997):  “The Term Structure of Forward Exchange Premiums 
and the Forecastability of Spot Exchange Rates:  Correcting the Errors,” Review of Economics 
and Statistics, 79, 353-61.  
 
Clark, T.E. and M.W. McCracken (2004):  “Technical Appendix to ‘Improving Forecast 
Accuracy by Combining Recursive and Rolling Forecasts’,” manuscript, University of Missouri-
Columbia.  
 
de Jong, R.M. and Davidson, J. (2000): “The Functional Central Limit Theorem and Weak 
Convergence to Stochastic Integrals I: Weakly Dependent Processes,” Econometric Theory, 16, 
621-42 
 
Durbin, J. (1969): “Tests for Serial Correlation in Regression Analysis Based on the 
Periodogram of Least Squares Residuals,” Biometrika 56, 1-15. 
 
Edgerton, D. and C. Wells (1994): “Critical Values for the CUSUMSQ Statistic in Medium and 
Large Sized Sample,” Oxford Bulletin of Economics and Statistics, 56, 355-65. 
 
Elliott, G. and A. Timmermann (2004): “Optimal Forecast Combinations Under General Loss 
Functions and Forecast Error Distributions,” Journal of Econometrics, 122, 47-79. 
 
Engle, R. and A.D. Smith, (1999) “Stochastic Permanent Breaks,” Review of Economics and 
Statistics, 81, 553-574. 
 



 36

Estrella, A. and G.A. Hardouvelis (1991): “The Term Structure as a Predictor of Real Economic 
Activity,” Journal of Finance, 46, 555-76. 
 
Giacomini, R. and H. White (2003): “Tests of Conditional Predictive Ability”, manuscript, 
UCSD. 
 
Hamilton, J.D. and D.H. Kim (2002): “A Re-Examination of the Predictability of Economic 
Activity Using the Yield Spread,” Journal of Money, Credit, and Banking, 34, 340-60. 
 
Hansen, B.E. (1997): “Approximate Asymptotic P Values for Structural-Change Models,” 
Journal of Business and Economic Statistics, 15, 60-67. 
 
Inoue, A. and B. Rossi (2003): “Recursive Predictability Tests for Real-Time Data,” manuscript, 
Duke University. 
 
Koop, G. and S. Potter (2003): “Forecasting in Large Macroeconomic Panels Using Bayesian 
Model Averaging,” manuscript, Federal Reserve Bank of New York. 
 
Lange, J., B. Sack, and W. Whitesell (2003):  “Anticipations of Monetary Policy in Financial 
Markets,” Journal of Money, Credit, and Banking, 35 (Dec.), 889-909. 
 
Maheu, J.M. and S. Gordon (2004): “Learning, Forecasting and Structural Breaks”, manuscript, 
University of Toronto. 
 
Mankiw, N.G. and J.A. Miron (1986):  “The Changing Behavior of the Term Structure of 
Interest Rates,” Quarterly Journal of Economics, 101 (May), 211-28. 
 
Min, C. and A. Zellner (1993): “Bayesian and non-Bayesian Methods for Combining Models and 
Forecasts with Applications to Forecasting International Growth Rates”, Journal of 
Econometrics, 56, 89-118. 
 
Montgomery, A.L., V. Zarnowitz, R. Tsay, and G.C. Tiao (1998):  “Forecasting the U.S. 
Unemployment Rate,” Journal of the American Statistical Association, 93, 478-93. 
 
Orphanides, A. and S. van Norden (2003): “The Reliability of Inflation Forecasts Based on 
Output Gap Estimates in Real Time,” Scientific Series 2003s-01, CIRANO, January. 
 
Paye, B.S. and A. Timmermann (2002):  “How Stable Are Financial Prediction Models?  
Evidence from US and International Stock Market Data,” manuscript, UCSD. 
 
Pesaran, M.H. and A. Timmermann (2002a): “Market Timing and Return Prediction Under 
Model Instability,” Journal of Empirical Finance, 9, 495-510. 
 
Pesaran, M.H. and A. Timmermann (2002b): “Model Instability and Choice of observation 
window,” manuscript, UCSD. 
 



 37

Pesaran, M.H., D. Pettenuzzo and A. Timmermann (2004): “Bayesian Regime Averaging for 
Time Series subject to Structural Breaks,” manuscript, UCSD. 
 
Rapach, D.E., and M.E. Wohar (2002): “Structural Change and the Predictability of Stock 
Returns,” manuscript, St. Louis University. 
 
Stock, J.H. and M.W. Watson (1996): “Evidence on Structural Stability in Macroeconomic Time 
Series Relations,” Journal of Business and Economic Statistics, 14, 11-30. 
 
Stock, J.H., and M.W. Watson (1999): “Forecasting Inflation,” Journal of Monetary Economics 
44, 293-335. 
 
Stock, J.H. and M.W. Watson (2003): “Forecasting Output and Inflation: The Role of Asset 
Prices,” Journal of Economic Literature, 41, 788-829. 
 
Stock, J.H. and M.W. Watson (2004): “Combination Forecasts of Output Growth in a Seven–
Country Data Set”, Journal of Forecasting, 23, 405-30. 
 
Terui, N., and H.K. van Dijk, (2002):  “Combined Forecasts from Linear and Nonlinear Time 
Series Models,” International Journal of Forecasting, 18, 421-38. 
 
Wang, J. and E. Zivot (2000): “A Bayesian Time Series Model of Multiple Structural Changes in 
Level, Trend, and Variance,” Journal of Business and Economic Statistics, 18, 374-386 
 
West, K.D. (1996): “Asymptotic Inference About Predictive Ability,” Econometrica, 64, 1067-
84. 
 
Wright, J.H., (2003): “Forecasting U.S. Inflation by Bayesian Model Averaging,” manuscript, 
Board of Governors of the Federal Reserve System. 
 
Yao, Y-C. (1988): “Estimating the Number of Change-Points Via Schwarz’ Criterion,” Statistics 
and Probability Letters, 6, 181-89. 



 38

Table 1:  Summary of Forecast Approaches 
 

approach explanation 
recursive coefficient estimates based on all available data 
rolling: R=20 coefficient estimates based on 20 most recent observations 
rolling: R=40 same as above, except that R = 40 
shrinkage: R=20 coefficient estimates based on 20 most recent observations, with shrinkage 

toward recursive estimates, using (6) 
shrinkage: R=40 same as above, except that R = 40 
rolling: reverse CUSUM R coefficient estimates based on data since break identified by reverse order 

CUSUM (1% sig.level) 
rolling: sup Wald R coefficient estimates based on data since break identified by Andrews’ (1993) 

sup Wald test for a single break (5% sig.level) 
rolling: known R* (α=0) coefficient estimates based on R* most recent observations, where R* is 

determined using (4) and the known values of the break point, the break size, 
and the population moments as specified in the DGP 

rolling: estimated R* (α=0) coefficient estimates based on R* most recent observations, where R* is 
estimated using (4) and sup Wald-based estimates of the break point and size 
and sample moment estimates. 

shrinkage: known break date coefficient estimates based on post-break window, using the known break 
date imposed in the DGP, with shrinkage toward recursive estimates, using 
(6) 

shrinkage: sup Wald R (5%) coefficient estimates based on post-break window, using  break dates 
identified as significant at the 5% level, with shrinkage toward recursive m 
estimates, using (6) 

shrinkage: sup Wald R (all) coefficient estimates based on post-break window, using least squares 
estimate of break date regardless of test significance, with shrinkage toward 
recursive estimates, using (6) 

opt. combination:  known combination of the recursive forecast and a forecast based on rolling 
parameter estimates from the post-break period, with weights determined 
using (5) and the known features of the DGP 

opt. combination:  estimated combination of the recursive forecast and a forecast based on rolling 
parameter estimates from the post-break period, with weights estimated using 
(5), based on the results of the Andrews (1993) test (5% sig.level) and the 
estimated date of the break 

BMA, equal prior prob. Bayesian model averaging of recursive and rolling forecasts, with rolling 
forecasts using each possible start date between observations 20 and t-20.  
The prior probability on each model is 1/number of models.  The shrinkage 
coefficient φ  = .2. 

BMA, large prior prob. Same as above, except that the prior probability on the recursive model is .7 
and the prior on each rolling model is .3/number of models.  

DLS Discounted least squares with a discount rate of .99. 
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Table 2:  Monte Carlo Results for Stable DGPs, Average MSEs
(average MSE for recursive, and ratio of average MSE to recursive average for other forecasts)

DGP 1-S DGP 2-S
λ P =.20 λ P =.40 λ P =.60 λ P =1 λ P =.20 λ P =.40 λ P =.60 λ P =1

recursive 1.029 1.030 1.023 1.022 1.029 1.022 1.020 1.020
rolling: R=20 1.152 1.159 1.165 1.170 1.202 1.207 1.211 1.215
rolling: R=40 1.052 1.056 1.060 1.062 1.066 1.071 1.074 1.078
shrinkage: R=20 1.001 1.001 1.002 1.002 1.000 1.001 1.001 1.000
shrinkage: R=40 1.003 1.003 1.003 1.002 1.000 1.001 1.001 1.001
rolling: reverse CUSUM R 1.004 1.014 1.023 1.037 1.005 1.017 1.028 1.047
rolling: sup Wald R 1.011 1.014 1.014 1.013 1.033 1.031 1.030 1.027
rolling: known R* (α=0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
rolling: estimated R* (α=0) 1.008 1.010 1.010 1.009 1.027 1.024 1.023 1.021
shrinkage: known break date 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
shrinkage: sup Wald R (5%) 1.000 1.000 1.000 1.000 1.001 1.001 1.001 1.001
shrinkage: sup Wald R (all) 1.005 1.005 1.005 1.005 1.003 1.004 1.003 1.003
opt. combination:  known 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
opt. combination:  estimated 1.008 1.011 1.011 1.010 1.028 1.026 1.025 1.023
BMA, equal prior prob. 1.024 1.024 1.024 1.021 1.031 1.031 1.028 1.025
BMA, large prior prob. 1.002 1.002 1.002 1.002 1.002 1.003 1.003 1.002
DLS 1.008 1.010 1.011 1.013 1.006 1.008 1.009 1.011  
 
 
Notes: 
 
1.  DGPs DGP 1-S and DGP 2-S are defined in Section 4.1.  The forecast approaches are defined in Table 1. 
2.  The total number of observations generated for each experiment is 200.  Forecasting begins with observation 101.  Results are 
reported for forecasts evaluated from period 101 through (1 )100Pλ+ . 
3.  The table entries are based on averages of forecast MSEs across 1000 Monte Carlo simulations.  For the recursive forecast, the 
table reports the average MSEs.  For the other forecasts, the table reports the ratio of the average MSE to the average recursive 
MSE. 
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Table 3:  Baseline Monte Carlo Results for DGPs with Breaks, Average MSEs
(average MSE for recursive, and ratio of average MSE to recursive average for other forecasts)

Break point:  λ B = .8

DGP 1-B1 DGP 2-B1
λ P =.20 λ P =.40 λ P =.60 λ P =1 λ P =.20 λ P =.40 λ P =.60 λ P =1

recursive 1.279 1.254 1.221 1.185 1.310 1.284 1.262 1.231
rolling: R=20 0.922 0.945 0.969 1.002 0.915 0.931 0.948 0.975
rolling: R=40 0.893 0.889 0.902 0.924 0.881 0.868 0.875 0.893
shrinkage: R=20 0.961 0.966 0.971 0.977 0.966 0.971 0.975 0.981
shrinkage: R=40 0.957 0.953 0.957 0.964 0.959 0.956 0.959 0.966
rolling: reverse CUSUM R 0.991 0.958 0.946 0.952 0.992 0.954 0.931 0.929
rolling: sup Wald R 0.956 0.941 0.937 0.937 0.932 0.909 0.899 0.893
rolling: known R* (α=0) 0.874 0.874 0.881 0.895 0.853 0.845 0.847 0.857
rolling: estimated R* (α=0) 0.944 0.931 0.929 0.930 0.926 0.904 0.893 0.890
shrinkage: known break date 0.947 0.944 0.944 0.947 0.951 0.947 0.947 0.948
shrinkage: sup Wald R (5%) 0.965 0.958 0.956 0.955 0.963 0.956 0.953 0.951
shrinkage: sup Wald R (all) 0.947 0.943 0.944 0.947 0.951 0.947 0.946 0.947
opt. combination:  known 0.854 0.860 0.871 0.887 0.843 0.838 0.842 0.853
opt. combination:  estimated 0.941 0.928 0.926 0.928 0.924 0.902 0.892 0.888
BMA, equal prior prob. 0.880 0.878 0.885 0.898 0.865 0.856 0.857 0.864
BMA, large prior prob. 0.933 0.926 0.927 0.931 0.925 0.914 0.909 0.907
DLS 0.928 0.918 0.917 0.921 0.934 0.925 0.920 0.915

Break point:  λ B = .6

DGP 1-B1 DGP 2-B1
λ P =.20 λ P =.40 λ P =.60 λ P =1 λ P =.20 λ P =.40 λ P =.60 λ P =1

recursive 1.188 1.173 1.148 1.125 1.217 1.199 1.186 1.165
rolling: R=20 0.993 1.011 1.030 1.055 0.986 0.997 1.010 1.031
rolling: R=40 0.910 0.925 0.941 0.963 0.888 0.900 0.912 0.932
shrinkage: R=20 0.974 0.977 0.981 0.985 0.979 0.982 0.985 0.988
shrinkage: R=40 0.954 0.960 0.965 0.973 0.957 0.963 0.967 0.974
rolling: reverse CUSUM R 0.982 0.958 0.960 0.974 0.979 0.944 0.938 0.950
rolling: sup Wald R 0.947 0.944 0.947 0.952 0.914 0.908 0.906 0.910
rolling: known R* (α=0) 0.896 0.904 0.913 0.925 0.870 0.872 0.877 0.888
rolling: estimated R* (α=0) 0.937 0.936 0.941 0.947 0.906 0.902 0.901 0.906
shrinkage: known break date 0.946 0.948 0.951 0.956 0.948 0.948 0.949 0.952
shrinkage: sup Wald R (5%) 0.958 0.957 0.958 0.962 0.953 0.952 0.952 0.954
shrinkage: sup Wald R (all) 0.946 0.947 0.951 0.956 0.947 0.947 0.948 0.951
opt. combination:  known 0.890 0.898 0.908 0.922 0.866 0.870 0.875 0.887
opt. combination:  estimated 0.936 0.935 0.939 0.946 0.906 0.902 0.901 0.906
BMA, equal prior prob. 0.896 0.904 0.914 0.928 0.873 0.876 0.881 0.892
BMA, large prior prob. 0.930 0.932 0.938 0.946 0.911 0.912 0.913 0.918
DLS 0.928 0.927 0.932 0.941 0.933 0.929 0.928 0.927  
 
Notes: 
 
1.  DGPs DGP 1-B1 and DGP 2-B1 are defined in Section 4.1.  The forecast approaches are defined in Table 1. 
2.  The total number of observations in each experiment is 200.  Forecasting begins with observation 101.  Results are reported 
for forecasts evaluated from period 101 through (1 )100Pλ+ .  The break in the DGP occurs at observation 100Bλ . 
4.  The table entries are based on averages of forecast MSEs across 1000 Monte Carlo simulations.  For the recursive forecast, the 
table reports the average MSEs.  For the other forecasts, the table reports the ratio of the average MSE to the average recursive 
MSE. 
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Table 4:  Auxiliary Monte Carlo Results for DGPs with Breaks, Average MSEs
(average MSE for recursive, and ratio of average MSE to recursive average for other forecasts)

Break point:  λ B = .8

DGP 1-B2 DGP 2-B2
λ P =.20 λ P =.40 λ P =.60 λ P =1 λ P =.20 λ P =.40 λ P =.60 λ P =1

recursive 1.202 1.181 1.152 1.124 1.196 1.173 1.153 1.127
rolling: R=20 0.988 1.012 1.034 1.064 1.033 1.047 1.065 1.094
rolling: R=40 0.931 0.936 0.951 0.972 0.944 0.945 0.960 0.984
shrinkage: R=20 0.964 0.970 0.975 0.981 0.962 0.968 0.972 0.979
shrinkage: R=40 0.962 0.961 0.965 0.972 0.959 0.958 0.962 0.969
rolling: reverse CUSUM R 0.991 0.973 0.972 0.985 0.994 0.977 0.977 0.995
rolling: sup Wald R 1.000 0.991 0.990 0.988 1.021 1.006 1.002 0.997
rolling: known R* (α=0) 0.925 0.925 0.932 0.942 0.950 0.939 0.940 0.946
rolling: estimated R* (α=0) 0.986 0.978 0.978 0.978 1.005 0.990 0.987 0.984
shrinkage: known break date 0.953 0.953 0.956 0.961 0.951 0.951 0.953 0.958
shrinkage: sup Wald R (5%) 0.975 0.972 0.972 0.973 0.973 0.969 0.968 0.969
shrinkage: sup Wald R (all) 0.955 0.954 0.957 0.962 0.955 0.954 0.955 0.960
opt. combination:  known 0.905 0.911 0.920 0.934 0.919 0.917 0.923 0.934
opt. combination:  estimated 0.985 0.977 0.977 0.978 1.006 0.992 0.990 0.987
BMA, equal prior prob. 0.919 0.921 0.929 0.941 0.925 0.924 0.929 0.940
BMA, large prior prob. 0.953 0.952 0.954 0.960 0.952 0.950 0.951 0.957
DLS 0.939 0.936 0.940 0.949 0.934 0.931 0.933 0.941  
 
Notes: 
 
1.  DGPs DGP 1-B2, DGP 2-B2, DGP 1-B1, and DGP 2-B1 are defined in Section 4.1.  The forecast approaches are defined in 
Table 1. 
2.  The total number of observations in each experiment is 200.  Forecasting begins with observation 101.  Results are reported 
for forecasts evaluated from period 101 through (1 )100Pλ+ .  The break in the DGP occurs at observation 100Bλ . 
3.  The table entries are based on averages of forecast MSEs across 1000 Monte Carlo simulations.  For the recursive forecast, the 
table reports the average MSEs.  For the other forecasts, the table reports the ratio of the average MSE to the average recursive 
MSE. 
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Table 5:  Monte Carlo Probabilities of Equaling or Beating Recursive MSE

(Stable) DGP 1-S
λ P =.20 λ P =.40 λ P =.60 λ P =1

Pr(=REC) Pr(<REC) Pr(=REC) Pr(<REC) Pr(=REC) Pr(<REC) Pr(=REC) Pr(<REC)
rolling: R=20 0.000 0.162 0.000 0.071 0.000 0.022 0.000 0.007
rolling: R=40 0.000 0.271 0.000 0.177 0.000 0.109 0.000 0.045
shrinkage: R=20 0.000 0.417 0.000 0.410 0.000 0.389 0.000 0.384
shrinkage: R=40 0.000 0.402 0.000 0.378 0.000 0.360 0.000 0.360
rolling: reverse CUSUM R 0.000 0.432 0.000 0.335 0.000 0.246 0.000 0.111
rolling: sup Wald R 0.863 0.033 0.795 0.030 0.751 0.020 0.675 0.020
rolling: known R* (α=0) 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
rolling: estimated R* (α=0) 0.863 0.036 0.795 0.036 0.751 0.024 0.675 0.029
shrinkage: known break date 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
shrinkage: sup Wald R (5%) 0.863 0.053 0.795 0.067 0.751 0.079 0.675 0.084
shrinkage: sup Wald R (all) 0.000 0.422 0.000 0.393 0.000 0.360 0.000 0.332
opt. combination:  known 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
opt. combination:  estimated 0.863 0.035 0.795 0.033 0.751 0.021 0.675 0.023
BMA, equal prior prob. 0.000 0.311 0.000 0.237 0.000 0.203 0.000 0.151
BMA, large prior prob. 0.000 0.389 0.000 0.347 0.000 0.317 0.000 0.316
DLS 0.000 0.357 0.000 0.306 0.000 0.260 0.000 0.202

(Break) DGP 1-B1, λ B = .8

λ P =.20 λ P =.40 λ P =.60 λ P =1

Pr(=REC) Pr(<REC) Pr(=REC) Pr(<REC) Pr(=REC) Pr(<REC) Pr(=REC) Pr(<REC)
rolling: R=20 0.000 0.636 0.000 0.622 0.000 0.572 0.000 0.492
rolling: R=40 0.000 0.773 0.000 0.836 0.000 0.859 0.000 0.845
shrinkage: R=20 0.000 0.881 0.000 0.934 0.000 0.950 0.000 0.965
shrinkage: R=40 0.000 0.873 0.000 0.957 0.000 0.975 0.000 0.985
rolling: reverse CUSUM R 0.000 0.553 0.000 0.748 0.000 0.785 0.000 0.790
rolling: sup Wald R 0.253 0.448 0.106 0.580 0.063 0.659 0.025 0.745
rolling: known R* (α=0) 0.000 0.764 0.000 0.858 0.000 0.904 0.000 0.941
rolling: estimated R* (α=0) 0.253 0.480 0.106 0.625 0.063 0.704 0.025 0.789
shrinkage: known break date 0.000 0.923 0.000 0.974 0.000 0.989 0.000 0.995
shrinkage: sup Wald R (5%) 0.253 0.619 0.106 0.779 0.063 0.847 0.025 0.920
shrinkage: sup Wald R (all) 0.000 0.889 0.000 0.943 0.000 0.969 0.000 0.986
opt. combination:  known 0.000 0.813 0.000 0.902 0.000 0.928 0.000 0.964
opt. combination:  estimated 0.253 0.477 0.106 0.629 0.063 0.700 0.025 0.784
BMA, equal prior prob. 0.000 0.845 0.000 0.930 0.000 0.952 0.000 0.971
BMA, large prior prob. 0.000 0.892 0.000 0.955 0.000 0.975 0.000 0.993
DLS 0.000 0.865 0.000 0.947 0.000 0.971 0.000 0.978  
 
Notes: 
 
1.  DGPs DGP 1-S and DGP 1-B1 are defined in Section 4.1.  The forecast approaches are defined in Table 1. 
2.  The total number of observations in each experiment is 200.  Forecasting begins with observation 101.  Results are reported 
for forecasts evaluated from period 101 through (1 )100Pλ+ .  The break in the DGP occurs at observation 100Bλ . 
3.  The table entries are frequencies (percentages of 1000 Monte Carlo draws) with which a given forecast approach yields a 
forecast MSE less than or equal to the recursive forecast’s MSE. 
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Table 6:  Results for U.S. Forecasting Applications
(RMSE for recursive forecast, and ratio of RMSE to recursive RMSE for other forecasts)

GDP-interest rates Core CPI Inflation
1976-89 1990-03 1976-89 1990-03

recursive 3.663 2.497 2.063 0.558
rolling:  fixed R 0.978 0.959 1.048 1.102
shrinkage:  fixed R 0.981 0.946 1.009 0.987
rolling: reverse CUSUM R 0.989 1.080 1.029 0.966
rolling: sup Wald R 0.991 0.991 1.254 1.168
rolling: estimated R* (α=0) 0.997 0.991 1.080 1.001
shrinkage: sup Wald R (5%) 0.992 0.993 1.029 1.013
shrinkage: sup Wald R (all) 0.988 0.993 1.029 1.013
opt. combination:  estimated 0.991 0.991 1.150 1.116
BMA, equal prior prob. 0.976 0.959 1.049 1.053
BMA, large prior prob. 0.985 0.980 1.018 1.015
DLS 0.980 0.930 1.036 0.983

Unemployment rate 3-mo. Int. rate-spread
1976-89 1990-03 1976-89 1990-03

recursive 0.192 0.142 1.623 0.543
rolling:  fixed R 1.030 1.012 1.027 0.747
shrinkage:  fixed R 1.000 0.994 1.007 0.930
rolling: reverse CUSUM R 1.029 1.115 1.083 0.807
rolling: sup Wald R 1.001 0.992 1.107 1.019
rolling: estimated R* (α=0) 1.000 1.000 1.061 1.024
shrinkage: sup Wald R (5%) 1.001 0.993 1.006 0.998
shrinkage: sup Wald R (all) 0.990 0.993 1.010 1.028
opt. combination:  estimated 1.001 0.992 1.063 1.007
BMA, equal prior prob. 1.013 0.985 1.034 0.911
BMA, large prior prob. 0.999 0.991 1.007 0.967
DLS 1.065 1.025 1.009 0.926

Stock returns U.S.-Switz. exchange rate
1976-89 1990-03 1980-89 1990-03

recursive 4.558 4.386 4.095 3.195
rolling:  fixed R 1.039 1.052 1.048 1.082
shrinkage:  fixed R 1.004 1.001 1.005 0.996
rolling: reverse CUSUM R 1.022 1.024 1.090 1.143
rolling: sup Wald R 1.061 1.060 1.043 1.048
rolling: estimated R* (α=0) 1.057 1.057 1.019 1.040
shrinkage: sup Wald R (5%) 1.002 0.999 0.998 1.004
shrinkage: sup Wald R (all) 1.004 0.999 1.012 1.004
opt. combination:  estimated 1.052 1.054 1.021 1.038
BMA, equal prior prob. 1.029 1.007 1.086 1.016
BMA, large prior prob. 1.004 1.001 1.018 1.000
DLS 1.028 1.015 1.028 1.002  

Notes: 
1.  Details of the six applications (data, forecast model specification, etc.) are provided in Appendix 2. 
2.  The forecast approaches listed in the first column are defined in Table 1.  Note that, for the fixed R rolling and shrinkage 
forecasts, R = 40 for the (quarterly) GDP, core inflation, and 3-month interest rate applications.  R = 120 for the (monthly) 
unemployment and stock return examples and 72 for the (monthly) exchange rate application. 
4.  The table entries are based on forecast RMSEs.  For the recursive forecast, the table reports the RMSE.  For the other 
forecasts, the table reports the ratio of its RMSE to the recursive RMSE. 
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Table 7:  Results for G6 GDP Forecasting Applications
(RMSE for recursive forecast, and ratio of RMSE to recursive RMSE for other forecasts)

Canada (AR(1)) France (AR(4))
1976-89 1990-03 1976-89 1990-03

recursive 3.547 2.381 2.087 1.897
rolling: R=40 0.989 0.863 1.009 1.034
shrinkage: R=40 0.984 0.941 0.981 0.993
rolling: reverse CUSUM R 0.960 0.982 1.017 1.159
rolling: sup Wald R 1.005 0.902 0.989 0.957
rolling: estimated R* (α=0) 1.002 0.906 0.991 0.957
shrinkage: sup Wald R (5%) 0.995 0.948 0.966 0.974
shrinkage: sup Wald R (all) 0.969 0.931 0.966 0.974
opt. combination:  estimated 1.000 0.908 0.983 0.957
BMA, equal prior prob. 0.951 0.882 0.979 0.967
BMA, large prior prob. 0.977 0.935 0.973 0.980
DLS 0.962 0.904 0.975 0.987

Germany (AR(4)) Italy (AR(1))
1976-89 1990-03 1976-89 1990-03

recursive 4.847 3.379 3.028 2.947
rolling: R=40 1.012 1.043 0.994 0.912
shrinkage: R=40 0.995 1.000 0.996 0.979
rolling: reverse CUSUM R 1.031 1.136 0.978 0.963
rolling: sup Wald R 1.025 0.991 1.004 0.932
rolling: estimated R* (α=0) 1.020 0.992 1.005 0.936
shrinkage: sup Wald R (5%) 1.008 0.994 1.001 0.972
shrinkage: sup Wald R (all) 1.008 0.994 0.996 0.972
opt. combination:  estimated 1.018 0.992 1.003 0.932
BMA, equal prior prob. 1.031 0.990 0.997 0.925
BMA, large prior prob. 1.005 0.993 0.995 0.966
DLS 1.008 0.981 0.998 0.948

Japan (AR(3)) UK (AR(1))
1976-89 1990-03 1976-89 1990-03

recursive 3.432 3.450 4.162 2.092
rolling: R=40 0.937 0.927 1.039 0.880
shrinkage: R=40 0.966 0.973 1.007 0.990
rolling: reverse CUSUM R 1.009 0.973 1.008 0.968
rolling: sup Wald R 0.917 0.944 1.002 0.814
rolling: estimated R* (α=0) 0.913 0.927 1.035 0.931
shrinkage: sup Wald R (5%) 0.950 0.959 1.000 0.958
shrinkage: sup Wald R (all) 0.950 0.959 0.998 0.958
opt. combination:  estimated 0.905 0.944 0.998 0.825
BMA, equal prior prob. 0.928 0.932 1.017 0.925
BMA, large prior prob. 0.960 0.963 1.004 0.974
DLS 0.954 0.930 1.010 0.951  

 
Notes: 
1.  The orders of the AR models for each country, determined with the AIC, are provided in the headers.  Other details of the 
applications (data, forecast model specification, etc.) are provided in Appendix 2. 
2.  The forecast approaches listed in the first column are defined in Table 1. 
4.  The table entries are based on forecast RMSEs.  For the recursive forecast, the table reports the RMSE.  For the other 
forecasts, the table reports the ratio of its RMSE to the recursive RMSE. 




