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Abstract 
 
 We study monetary models with non-degenerate stationary distribution of money 

holdings. We find that the Friedman rule does not typically maximize ex-post social 

welfare. An increase in the rate of growth of the money supply has two effects: the 

standard distortionary, or rate-of-return, effect makes money a less desirable asset for all 

moneyholders. A second, redistributive effect, creates a transfer from one type of agent to 

the other. An increase in the rate of growth on money away from the Friedman rule can 

produce a rate-of-return effect that dominates the standard effect. 

 

JEL classification:  E31, E52, H23 

Keywords:  Friedman rule, monetary policy, redistribution, heterogeneity 



1 Introduction

Until 1951, the Federal Reserve System of the US explicitly pegged nomi-

nal interest rates on the Treasury’s debt obligations. In March 1951, the

Treasury-Fed Accord ended this explicit arrangement, ostensibly freeing the

Fed to pursue an independent monetary policy. It was natural for economists

to ask: how should an independent yet benevolent central bank conduct mon-

etary policy? Milton Friedman (1969) offered a simple and yet deep answer

(the Friedman rule): since money is an asset, the central bank ought to

change the stock of outstanding money at a rate that causes the real rate

of return on money to equal the real return rate on other physical assets.

Over the next three decades, researchers have studied Friedman’s dictum us-

ing the two main workhorse models for monetary theory, the infinitely-lived

representative agent (ILRA) model and the overlapping generations (OG)

model. In the context of infinitely-lived-representative-agent models, when

lump-sum taxes and transfers are available, the Friedman rule is the optimal

monetary policy.1 The seminal reference on the Friedman rule in OG models

is Wallace (1984). Wallace shows that once heterogeneity among agents is

explicitly considered, it may be impossible for the central bank to settle on

one monetary policy rule, including the Friedman rule, that benefits every

agent.

By construction, monetary policy cannot have redistributive effects in

representative-agent models. Yet these effects are known to be quantitatively

1See, for instance, Woodford (1990) and Ljunqvist and Sargent (2000). Note that

Chari, Christiano and Kehoe (1996) and Correia and Teles (1996) extend this to the case

in which other distortionary taxes are present.
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significant and important (see, for example, Erosa and Ventura, 2002). For

agents holding a disproportionate amount of money, their welfare is clearly

negatively related to inflation. In contrast, agents holding relatively less

money can realize welfare gains from higher inflation. This paper shows the

following: If monetary policy can have redistributive effects then, a monetary

policy that sets long-run nominal interest rates to zero – that is the Friedman

rule – does not typically maximize ex-post social welfare, and in some cases,

it does not maximize ex-ante welfare. Indeed, a necessary condition for the

Friedman rule to be suboptimal ex-post is that changes in the rate of growth

of the money supply have redistributive effects.

We study different monetary environments in which heterogeneity among

agents produces a long-run non-degenerate distribution of money holdings. In

particular, we study: 1) the random-matching model of money due to Lagos

and Wright (2002, hereafter, LW), 2) a turnpike model of the type introduced

by Townsend (1980), and 3) an OG model with stochastic relocation as in

Schreft and Smith (1997) and Smith (2002). In each model, agents have

heterogeneous money holdings in equilibrium. In the LW frameworks the

heterogeneity comes from differences in agents’ preferences. In the turnpike

environment it arises from different endowment patterns. In the OG model

agents alive in the same period may be from different generations. Our results

are robust to these various ways of obtaining heterogenous money holdings

in equilibrium.

In each of the models we study, an increase in the rate of growth of the

money supply away from the Friedman rule has two effects. First, the stan-

dard distortionary, or rate-of-return, effect is to make money a less desirable
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asset thereby decreasing the utility of all agents. Second, the redistribu-

tive effect is a transfer from one type of agent to the other. We show, for

each environment, examples for which the redistributive effect dominates the

rate-of-return effect when the rate of growth of the money supply is not too

high.

Markets are assumed to be incomplete, implying it is impossible to undo

transfers by means of non-distortionary fiscal policy. Deviating from the

Friedman rule therefore produces multiple Pareto optimal yet non-comparable

allocations. This assumption is crucial for our results. Indeed, if the central

bank can levy type-specific lump-sum taxes, it is always best to implement

the Friedman rule. This is because it is possible to offset any redistribution

induced by monetary policy with an appropriate lump-sum tax or transfer.

Type-specific lump-sum taxes and transfers are not the only way redistri-

bution effects can be undone. Bhattacharya, Haslag, and Russell (2004),

Haslag and Martin (2003), and da Costa and Werning (2003) describe other

mechanisms which produce the same result.

In the models we consider, the policymaker who chooses the rate of growth

of the money supply is faced with different types of agents and can assign

different weights to each type. Hence, we consider ex-post social welfare.

Since it is possible to specify a social welfare function which puts enough

weight on the type that benefits from such a deviation, it follows ex-post

social welfare may not be maximized at the Friedman rule.2

2Under a different approach we could have appealed to a political economy criterion.

For example, we could assume agents vote on their preferred policy. We can show, for

each of the economies we study, examples where at least 50 percent of the agents prefer

a deviation from the Friedman rule. Alternatively, we could assume agents influence the
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Our work is part of a growing literature studying environments (with

heterogeneity) in which the Friedman rule is not optimal (see, for example,

Levine (1991), Molico (1999), Deviatov and Wallace (2001), Smith (2002a,b),

Edmonds (2002), Green and Zhou (2002), Albanesi (2003)). These papers

consider an ex-ante welfare criterion and argue the Friedman rule might not

be optimal from such a standpoint. In other words, their analysis assumes

that agents “pick their preferred monetary policy under a “veil of ignorance”,

before knowing their true identity” [Ljungqvist and Sargent (2000)]. In con-

trast, we present results using a ex-post welfare criterion and can therefore

better capture the “conflict of interest” between different types of agents

that a benevolent policymaker has to consider. Our paper is also related to

recent work that studies the impact of agent heterogeneity on monetary pol-

icy. Kocherlakota (2002) shows monetary policy should react to the degree

of heterogeneity in the economy. Berentsen, Camera, and Waller show a one

shot deviation from the Friedman rule might increase ex-ante welfare in a

search economy of the type introduced by Lagos and Wright (2002).

The rest of the paper proceeds as follows. Section 2, 3, and 4 describe

the search and matching economy, the turnpike economy, and the overlapping

generations economy, respectively. Section 5 concludes.

choice of monetary policy by spending resources lobbying. For example, the “distance”

between a group’s preferred policy and the chosen policy could depend on the ratio of

resources this group spends lobbying to the total resources spent lobbying. The Friedman

rule will not be chosen for any such rule that implements a policy strictly between different

group’s preferred policies. In this paper, however, we limit ourselves to showing Pareto

incomparable allocations can arise.
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2 A search economy

This section considers a search model of the type introduced by LW.3 Time

is discrete and there is a continuum of mass 1 of infinitely-lived agents. Each

period is divided in two sub-periods. It is assume that there are two types of

goods: special goods which are traded in a decentralized market during the

first sub-period and general goods which are traded in a centralized market

during the second sub-period.

We consider each market in turn, starting with the centralized market. As

in LW, preferences in the centralized market are assumed to be quasi-linear,

so that the utility from consuming an amount X and producing an amount

H is given by U(X) − AH, where U is twice continuously differentiable,

U ′ > 0, U ′′ < 0, and A > 0. As in LW, is also assumed U is unbounded and

U ′(X∗) = 1 for X∗ ∈ (0,∞) with U(X∗) > X∗.

In the decentralized market, agents only consume and produce a subset of

the goods. Agents do not produce the goods they like to consume. We assume

there are no double coincidence of wants and denote by σ the probability of a

single coincidence of wants. Unlike the standard LW model, agents also differ

in how much they value special goods relative to general goods. The utility

derived by a type-α agent from consuming an amount x and producing an

amount h is given by αu(x)− c(h), where α > 0, u and c are at least thrice

continuously differentiable, u(0) = c(0) = 0, u′ > 0, c′ > 0, u′′ < 0, c′′ ≥ 0,

and u(q̄) = c(q̄) for some q̄ > 0.

A central bank can expands or contracts the money supply via lump-sum

3We are indebted to Randy Wright for showing us how to work out the example in this

section.
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transfers or taxes, denoted by τ , during the centralized market. The money

supply evolves according to Mt = (1 + z)Mt−1. Hence, τ = zMt−1.

Let φ denote units of consumption good per unit of money (the inverse

of the price level). Then we define Wα(m, φ) to be the value function for a

type α agent entering the centralized market with money m, and Vα(m,φ)

be the value function for this agent entering the decentralized market with

money m. The problem of an agent in the centralized market is

Wα(m, φ) = max
X,H,m+

{U(X)− AH + βVα(m+, φ)}

subject to

X = ωH + φ(m + τ −m+), (1)

where ω denotes the real wage, and m+ is the money carried out of the

market. We assume ω is fixed; for example, because of a linear technology.

Assuming an interior solution, we can substitute for H to get

Wα(m, φ) = max
X,m+

{
U(X)− A

ω

[
X − φ(m + τ −m+)

]
+ βVα(m+, φ)

}
.

The first order conditions for X and m+ are, respectively,

U ′(X) =
A

ω
, (2)

Aφ

ω
= βV ′

α(m+, φ). (3)

Also notice Wα(m,φ) is linear since W ′
α(m, φ) = Aφ

ω
for all m. As in LW,

the cost of producing H is linear, X and m+ are independent of m. Hence,

if there is only one type, all agents consume the same amount and leave the

market with the same money holdings. With more than one type, however,

m+ may depend on α as can be seen from (3).
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We now turn to the decentralized market. Let the joint distribution of

money and types in this market be given by F (m̃, α̃). The above analysis

shows F is degenerate conditional on types. In other words, all type-α agents

exit the centralized market with the same amount of money m+
α and thus

enter the decentralized market with the same amount mα. Hence, it is enough

to know the distribution of types G(α̃).

We can write the value function for an type-α agent entering the decen-

tralized market with money m as

Vα(m,φ) = σ

∫
{−c[qα̃(mα̃,φ)] + Wα[m + dα̃, φ]} dG(α̃)

+σ {αu[qα(m,φ)] + Wα[m− dα(m, φ), φ]}+ (1− 2σ)Wα(m,φ).

This expression states that with probability σ, the agent is a seller who

produces a quantity qα̃(mα̃, φ) of special goods in exchange for dα̃ units of

money. With probability σ the agent is a buyer who consumes qα(m,φ)

units of special goods acquired with dα(m, φ) units of money. In particular,

we have assumed, as will be verified below, that the terms of trade q and d

depend on the buyer’s but not the seller’s money balances. Now take the

partial derivative of the above expression with respect to m:

V ′
α(m, φ) = σ

∫
+W ′

α[m + dα̃(mα̃, φ), φ]dG(α̃) + σαu′[qα(m, φ)]q′α(m,φ)

+σ[1− d′α(m,φ)]W ′
α[m− dα(m,φ), φ] + (1− 2σ)W ′

α(m, φ).

Recall W ′
α(m, φ) = Aφ

ω
for all m, so we can write

V ′
α(m,φ) = σαu′[qα(m,φ)]q′α(m,φ) + [1− σd′α(m,φ)]

Aφ

ω
. (4)

Hence, V ′
α(m, φ) depends on an agent’s own type, α, and money holding, m,

but not on other agents type and money holdings.
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As in LW, we assume the terms of trade are determined by the generalized

Nash solution where the buyer has bargaining power θ and the threat points

are given by the continuation values. First, note for any real d and any type

α, Wα(m + d, φ)−Wα(m, φ) = dAφ
ω

. It follows that the terms of trade (q, d)

between a buyer of type α with money holding m and a seller of any type is

given by

max
q,d

[
αu(q)− d

Aφ

ω

]θ [
−c(q) + d

Aφ

ω

]1−θ

subject to d ≤ m. Thus, as claimed above, the terms of trade do not depend

on the seller’s type.

As in LW, it can be shown that in any equilibrium it must be the case

that d = m. In order to find q, we take the partial derivative of the above

expression with respect to q and set it equal to zero. This implies q =

qα(m, φ) is the solution to

m
Aφ

ω
= gα(q), (5)

where gα(q) is defined as

gα(q) ≡ θαu′(q)c(q) + (1− θ)αu(q)c′(q)

θαu′(q) + (1− θ)c′(q)
.

For example, if the buyer has all the bargaining power, so θ = 1, this expres-

sion reduces to gα(q) = c(q).

In the general case, implicit differentiation yields

q′α(m, φ) =
Aφ

ωg′α(q)
. (6)

We can substitute this expression, as well as d′α(m, φ) = 1, into V ′
α(m, φ),

given by equation (4). Then, with equation (3), we get

Aφ

ω
= β

{
σαu′(q+

α )
Aφ+

ωg′α(q+
α )

+ (1− σ)
Aφ+

ω

}
,
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where we use the superscript + to denote next period. Since we focus on

steady states, we know q is constant and φ = (1+z)φ+. The above expression

then reduces to

1 + z = β

[
σ

αu′(qα)

g′α(qα)
+ (1− σ)

]
. (7)

This expression determines the equilibrium value of qα for an agent of type

α. From equation (5) we get mα = ωgα(qα)
Aφ

.

We can simplify expression (7) further. Define β ≡ 1/(1 + r) and the

nominal interest rate (1 + i) = (1 + z)(1 + r). Then we can write

1 +
i

σ
=

αu′(qα)

g′α(qα)
.

The price φ can be obtained through the money market clearing condition∫
mαdG(α) = M , since the qα’s are determined by equation (7).

Now let m̂α denote the money with which an agent of type α enters the

centralized market. m̂α will depend on the type of meeting the agent was in

during the previous decentralized market. In that market, the agent might

have been either a seller, or a buyer, or no trade occurred. Hence,

m̂α =


0 with probability σ,

mα with probability 1− 2σ,

mα + mα̃ with probability σG(α̃).

Since m̂α varies across agents according to their type, so must Hα. Indeed,

we can rewrite equation (1) as follows

ωHα = X − φ(m̂α + τ −m+
α ).

A similar expression must hold for the average m̂α across type α agents,

which is given by m̄α = (1− σ)mα + σM . Hence, we have

ωH̄α = X − φ(m̄α + τ −m+
α )

11



= X − φ(σ + z)(M −mα), (8)

where we have made use of the fact that m+
α = (1 + z)mα, in steady state,

and τ = zM .

Note that X is the same across type and is thus independent of the rate

of growth of the money supply z. Assuming φ is fixed for a moment, for any

type α holding less than the average money balances M an increase in z will

reduce expected hours H̄α. Since H enters the utility function linearly this

increases expected utility. Clearly the opposite is true for any type holding

more than the average money balances.

This can be illustrated by a simple example. Assume preferences are

ln(X) − H in the centralized market and αi ln(x) − h in the decentralized

market, with αi ∈ {αL, αH}, αL < αH . The two types L and H have equal

mass. We also assume θ = 1 so buyers make take-it-or-leave-it offers. Under

this assumption, equation (5) implies

m
φ

ω
= q.

It is easy to verify that equation (7) becomes

1 + z = β

[
σα

1

qα

+ (1− σ)

]
.

Thus the expressions for qα and mα are given by

qα =
αβσ

[1 + z − β(1− σ)]

and

mα =
ω

φ

αβσ

[1 + z − β(1− σ)]
.
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The money market clearing condition is

M =
1

2

βσ

[1 + z − β(1− σ)]

ω

φ
(αL + αH) .

This determines the price φ. With a little algebra we can write equation (8)

for type L as

H̄αL
= 1− 1

2

βσ(σ + z)

[1 + z − β(1− σ)]
(αH − αL) .

Let Γ ≡ (σ + z)/ [1 + z − β(1− σ)]. Since αH > αL, average hours for type

L will decrease if ∂Γ/∂z > 0.

∂Γ

∂z
=

1 + z − β(1− σ)− (σ + z)

[1 + z − β(1− σ)]2
,

which is positive for β ∈ (0, 1).

We can summarize these result in the following proposition.

Proposition 1 Increasing the rate of the money supply creates a transfer

from types with high α to types with low α which can make types with low α

better off.

If φ is kept fixed, it is easy to see how the transfer operates; a higher

z allows types with low α to work less. Of course, in equilibrium, φ will

decrease, which makes all types worse off. However, for α sufficiently low,

the redistributive effect more than compensate for the rate-of-return effect.

Agents with such low values of α are made better off by a deviation from

the Friedman rule. Hence, different values of z give Pareto incomparable

allocations. It is easy, by putting sufficient weight on the utility of types

with a low α to write a social welfare function that is not maximized at

z = β − 1.
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This is true despite the fact that, as in LW, it can be shown from equation

(7) that the Friedman rule generates the second best equilibrium in terms of

efficiency. Further, if θ = 1, so that there is no hold up problem associated

with bargaining, then equation (7) yields gα(q) = c(q) whenever z = β. This

implies the first best, αu′(qα) = c′(qα).

Because increasing z reduces the utility of both types of agents, the Fried-

man rule would be optimal if it were possible to achieve the transfer from

types with high α to types with low α through other, less distorting, means.

For example, assume type-specific lump-sum taxes and subsidies are avail-

able. It is possible to implement a transfer, by taxing high-α types and

subsidizing low-α types, without increasing z. Hence a necessary condition

for the Friedman rule to be suboptimal ex-post is that changes in the rate of

growth of the money supply have redistributive effects.

3 A Turnpike Model

This section studies a version of the turnpike model developed in Townsend

(1980) and described in Ljungqvist and Sargent (2000). Time is indexed by

t = 0, 1, 2, ..., there is a single, perishable consumption good and a countably

infinite number of infinitely-lived agents. There are two types of agents dif-

fering in their endowment patterns. Specifically, type-E agents are endowed

with 1 unit of the consumption good at even dates and nothing at odd dates.

Type-O agents are endowed with 1 unit of the consumption good at odd

dates and nothing at even dates. Each type-O agent is endowed with M0

units of fiat money at date 0.
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We restrict market participation in two ways. First, at each date t, there

is a single pairing of one type-E and one type-O populating a market. Sec-

ond, a type-E will be paired with the specific type-O agents only once.4

These restrictions, combined with the absence of any common agent or in-

termediary, eliminates the possibility of debt issues. In what follows, the

utility function u is assumed to be CRRA and is described as

u(c) =
c1−ρ

1− ρ
(9)

where c is consumption.

3.1 The type E agent’s problem

The problem of type E agents can be written recursively as follows:

v(m) = max u(c) + βu(c′) + β2v(m′′),

subject to

c + πm′ = 1 + τ + m, (10)

c′ + πm′′ = τ + m′, (11)

where c is consumption in even periods and c′ is consumption in odd periods,

m is the amount of real money balances the agent holds at the beginning of

an even period, τ is a real lump-sum money transfer from the government

which is positive if the money supply grows and negative if it shrinks, and

π is the inflation rate (the ratio of tomorrow’s price to today’s price; in this

stationary environment, it is also the rate of growth of the money supply).

4We define IE = [1E , 2E , ...] and JO = [1O, 2O, ...]. Let iE ∈ IE and jO ∈ JO. Then iE

is paired with jO only once.
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We know if π > β, then m = m′′ = 0. The first order conditions imply

πu′(c) = βu′(c′), (12)

which using (9) yields
c′

c
=

(
β

π

)ρ

, (13)

while (11) yields

c + πc′ = I (14)

where I ≡ 1 + τ + πτ . It is easy to verify that

c =
I

1 + π
(

β
π

)ρ , (15)

c′ =

(
β

π

)ρ
I

1 + π
(

β
π

)ρ . (16)

3.2 The type O agent’s problem

Similarly, the problem of type O agents can be written as

v(m̄) = max u(c̄) + βu(c̄′) + β2v(m̄′′),

subject to

c̄ + πm̄′ = τ + m̄, (17)

c̄′ + πm̄′′ = 1 + τ + m̄′, (18)

where c̄ is consumption in even periods and c̄′ is consumption in odd periods,

m̄ is the real money balances the agent holds at the beginning of an even

period, and τ and π are as defined above.
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We know if π > β, then m̄′ = 0. Standard aforedescribed arguments yield

c̄ =
I

π +
(

π
β

)ρ , (19)

c̄′ =

(
π

β

)ρ
I

π +
(

π
β

)ρ . (20)

We can combine equations (15) and (19) to get

c̄

[
π +

(
π

β

)ρ]
= c

[
1 + π

(
β

π

)ρ]
.

Feasibility requires that c + c̄ = 1, and so

c =
π +

(
π
β

)ρ

π +
(

π
β

)ρ

+ 1 + π
(

β
π

)ρ
,

c′ =
1 + π

(
β
π

)ρ

π +
(

π
β

)ρ

+ 1 + π
(

β
π

)ρ
.

It can be shown that c → c′ as π → β. Moreover, the gap between c and c′

increases as π increases. Why is there a gap between c and c′? The reason

has to do with the odd-even endowment pattern. If the return on money

is less than 1/β, agents prefer to consume a unit of good today than to

consume tomorrow goods they have bought with the cash equivalent of a

unit of goods today. Hence they consume more at dates when they receive

their endowments than at other dates. As π increases, the return to money

falls thereby increasing the gap between odd and even period consumption.

3.3 Evaluating type E agents’ welfare

Consider the start of an even date. At such a date, the type E agent would

prefer a contraction in the money growth rate while a type O agent would
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prefer no inflation. A contraction would enable the type E agent to get a high

return on his investment in money and he enjoys that in a period in which

he gets a high endowment. Neither agent likes positive inflation though.

Formally, the welfare of a type E agent is given by

UE =
∞∑

t=0

β2t [u(c) + βu(c′)] =
1

1− β2
[u(c) + βu(c′)] . (21)

For future use, note that

∂u(c)

∂π
=

[
π +

(
β

π

)ρ]−ρ

ρ

[
1 + π

(
β
π

)ρ
] [

1 + 1
π

(
π
β

)ρ]
[
π +

(
π
β

)ρ

+ 1 + π
(

β
π

)ρ
]2−ρ

and

∂u(c′)

∂π
= −

[
1 + π

(
β

π

)ρ]−ρ

ρ

[
1 + π

(
β
π

)ρ
] [

1 + 1
π

(
π
β

)ρ]
[
π +

(
π
β

)ρ

+ 1 + π
(

β
π

)ρ
]2−ρ . (22)

Since
∂UE

∂π
=

1

1− β2
[
∂u(c)

∂π
+ β

∂u(c′)

∂π
], (23)

we have

∂UE

∂π
= 0 ⇔

[
π +

(
β

π

)ρ]−ρ

− β

[
1 + π

(
β

π

)ρ]−ρ

= 0. (24)

Below we prove the welfare of type-E agents is not maximized at π = β.

Proposition 2 If ρ = 1, or u(c) = ln(c), then ∂UE/∂π = 0 ⇔ π = 1. If

ρ < 1 , then ∂UE/∂π = 0 for some value of π > 1. Conversely, if ρ > 1,

then ∂UE/∂π = 0 for some value of π ∈ (β, 1).

Proof. These results are immediate from equation (24).
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Proposition 2 shows type-E agents benefit if the central bank chooses a

money growth rate greater than that prescribed by the Friedman rule. Thus,

if the central bank puts enough weight on the welfare of type-E agents, it

will choose z > β.

As in the economy of the previous section an increase in the rate of growth

of the money supply has two effects. First, it reduces the utility of all agents

as it makes their consumption more volatile (c deviates more from c′, which

hurts any risk-averse agent). On the other hand, it creates a transfer from

type-O to type-E agents. If the money stock does not grow too fast, the

value of the transfer to type-E agents exceeds the cost in terms of volatility

of consumption.

Also, as in the previous economy, the Friedman rule would be optimal

if it were possible to make transfers that are less distorting. The type of

transfer described in the previous section can be implemented if type-specific

lump-sum transfers are feasible. Hence, again, a necessary condition for the

Friedman rule to be suboptimal ex-post is that changes in the rate of growth

of the money supply have redistributive effects.

4 A OG Model with random relocation

We consider a model economy in which money is valued because of limited

communication across two spatially separated locations. Only a succinct

description of the economic environment is provided; the interested reader is

referred to Schreft and Smith (2002) and Bhattacharya, Haslag, and Russell

(2004) for more details.
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Time is discrete and denoted by t = 1, 2... The world is divided into two

spatially separated locations. Each location is populated by a continuum of

agents of unit mass. Agents live for two periods and receive an endowment

of ω units of the single consumption good when young and nothing when

old. There also is an initial old generation whose members are endowed with

an amount of cash M0. Only old-age consumption is valued. Let ct denote

old-age consumption of the members of the generation born at date t; their

lifetime utility is given by u(ct) =
c1−ρ
t

1−ρ
, where ρ ∈ (0, 1).

After receiving their endowment and placing it into a bank, agents learn

whether they must move to the other location or not. Let α denote the

probability that an individual will be relocated. We assume a law of large

number holds so α is also the measure of agents that are relocated. α is the

same on both islands so that moves across location are symmetric. Movers

redeem their bank deposits in the form of money as this is the only way for

them to acquire goods in the new location. In contrast, nonmovers redeem

their deposits in the form of goods. Goods deposited in the bank can be

used to acquire money from old agents belonging to the previous generation

or put into storage. Each unit of the consumption good put into storage at

date t yields x > 1 units of the consumption good at date t + 1, where x is

a known constant.

The CB can levy lump-sum taxes τ on the endowment of agents by col-

lecting the tax in the form of money balances removed from the economy. In

contrast, a lump-sum subsidy is received in the form of a money injection.

The money supply evolves according to Mt+1 = (1 + z) Mt and z is chosen

by the CB in a manner that will be explained below. We assume x ≥ 1
1+z
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implying that money is a bad asset. Let pt denote the time t price level; in

steady states, pt+1 = (1 + z) pt. Also, since we focus on steady-states, we

drop the time subscript in what follows.

Agents deposit their entire after-tax/transfer endowments with a bank.

The bank chooses the gross real return it pays to movers, dm, and to non-

movers, dn. In addition, the bank chooses values m (real value of money

balances) and s (storage investment) respectively. These choices must sat-

isfy the bank’s balance sheet constraint

m + s ≤ ω − τ. (25)

Banks behave competitively, so they take as given the return on their in-

vestments. In particular, the return on real money balances is pt/pt+1. If

x > pt/pt+1 banks will want to hold as little liquidity as possible since money

is dominated in rate of return. If x = pt/pt+1, banks are indifferent be-

tween money and storage. In this case, we consider the limiting economy as

pt/pt+1 → x.

Banks must have sufficient liquidity to meet the needs of movers. This is

captured by the following expression:

αdm(ω − τ) ≤ m

1 + z
. (26)

A similar condition for non-movers, who consume all the proceeds from the

storage technology, is given by

(1− α)dn(ω − τ) ≤ xs. (27)

Banks maximize profits. Because of free entry, banks choose in equilibrium

their portfolio in a way that maximizes the expected utility of a representative
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depositor. The bank’s problem is written as

max
dm,dn

(ω − τ)1−ρ

1− ρ

{
α (dm)1−ρ + (1− α) (dn)1−ρ} (28)

subject to equations (25), (26), and (27).

Let γ ≡ m
ω−τ

denote the bank’s reserve-to-deposit ratio. Then, since equa-

tions (25), (26), and (27) hold with equality, the bank’s objective function is

to choose γ to maximize

(ω − τ)1−ρ

1− ρ

{
αρ

[
γ

1 + z

]1−ρ

+ (1− α)ρ [(1− γ)x]1−ρ

}
. (29)

Bhattacharya, Guzman, Huybens, and Smith (1997) show that the reserve

to deposit ratio chosen by the bank is given by

γ =
1[

1 + 1−α
α
{(1 + z) x}

1−ρ
ρ

] (30)

and that it increases as 1 + z decreases. For the initial old, consumption

is equal to the real value of money balances. Let M0 denote the quantity

of nominal money balances held by a member of the initial old generation.

Then, c0
1 = M0

p1
, where p1 = (1+z)M0

γ(ω−τ) . Note, in equilibrium, the reserve-

to-deposit ratio and the lump-sum tax are functions of the money growth

rate. At a steady state, the central bank maximizes the following objective

function

W (z) = (1− β)

(
M0

p1

)1−ρ

1− ρ
+ β

{Ω(z)}1−ρ

1− ρ
Γ(z)

where Ω(z) := ω− τ (z), and Γ(z) := αρ
[

γ(z)
1+z

]1−ρ

+(1−α)ρ [(1− γ (z))x]1−ρ.

This allows us to find the rate of growth of the money supply chosen by

the central bank under different assumptions about the weight of the initial
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old generation and, in a steady state, all other generations. For example,

if β = 0, then the central bank only considers the utility of the initial old.

Conversely, as β → 1, the weight of the initial old goes to zero and so the

central bank maximizes the utility of a representative generation (in steady

states) and completely ignores the initial old.

Proposition 3 The optimal rate of growth of the money supply is given by

z = 1 +
1− β

β

γ

αρ
,

where γ is computed from (30), along with the constraint that 1 + z ≥ 1
x
.

Proof. See Appendix.

It is straightforward to see that if β → 1, then z → 1. As β → 0, in the

limit the weight is all on the initial old; the constraint 1 + z ≥ 1
x

eventually

binds and the central bank implements the Friedman rule.

Bhattacharya, Haslag, and Russell (2004) and Haslag and Martin (2003)

study how an increase in the rate of growth of the money supply away from

the Friedman rule creates a transfer from agents who hold money to those

who do not. Indeed this effect may dominate the negative effects of a higher

money growth rate and can render the Friedman rule suboptimal. As in

the previous economies, deviations from the Friedman rule also come at a

cost here since the difference in consumption between movers and nonmovers

increases as the rate of growth of the money supply increase. When the

money stock does not grow too fast, the value of the transfer exceeds the cost

created by the volatility in consumption. Edmonds (2002) has a comparable

result. Again, the sub-optimality of the Friedman rule hinges crucially on the
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assumption that it is not possible to undo the transfers created by changes

in the rate of growth of the money supply. Bhattacharya, Haslag and Russell

(2004) show that when these transfers can be undone, the Friedman rule is

once again optimal. Hence, once again, a key component of the explanation

for why the Friedman rule is suboptimal (ex-post) is that changes in the rate

of growth of the money supply have unremovable redistributive effects. Note

also that unlike in the two economies studied above, here the Friedman rule

is additionally sub-optimal ex-ante as shown in Smith (2002).

5 Summary and conclusion

In this paper, we consider steady state monetary policy in several alterna-

tive economic environments: two economies with infinitely-lived agents and

an overlapping-generations economy. We provide examples where the Fried-

man rule is not the ex-post welfare maximizing monetary policy in these

economies. To varying degrees, these results are known in the literature.

Certainly this is true in the overlapping generations economy. Our aim is to

explain why the welfare maximizing policy is not the Friedman rule in each

case. Indeed, our main contribution is to offer one common explanation to

account for the shared monetary policy results.

An key characteristic of the models we considered is that agents have

heterogenous money holding. This heterogeneity arises from differences in

agents’ preferences in the Lagos-Wright (2002) framework (as well as in the

money-in-the-utility-function economy). It is generated by differences in en-

dowment patterns in the turnpike economy. Finally, differences in the age of
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agents living during the same period are responsible for this heterogeneity

in the OG framework (old agents may hold money while young agents do

not). In each case, a change in the rate of growth of the money supply has a

redistributive effect. The intuition for our results in all three models studied

in this paper can be described as follows: Suppose the money supply doubles,

then we expect the price level to approximately double. In a representative

agent model, this would have no effect on welfare. In a model where agents

have heterogenous money holdings, the increase in the price level will hurt

those holding small amounts of money less than those holding large amounts,

even if the newly-issued money is distributed equally. In fact, the increase in

the price level might benefit those who hold little money.5 In each case, we

provided an example where an increase in the rate of growth of the money

supply creates Pareto incomparable allocations.

Heterogeneity, therefore, plays an important role in explaining why the

Friedman rule does not maximize ex-post steady-state welfare in a variety of

economic settings. A second important assumption in each of the economies

considered is that markets are incomplete so agents, or the monetary author-

ity, are unable to undo the redistribution caused by an increase in the rate of

growth of the money supply away from the Friedman rule. For example, in

each of the environments we consider, the Friedman rule would be optimal

if type-specific lump-sum taxes were available.

5We thank an anonymous referee for suggesting this intuition.
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Appendix

Proof of proposition 3

For future reference, note that, in steady states,

−τ =
Mt −Mt−1

pt

= −m

(
z

1 + z

)

m = γ (ω − τ) =
γω (1 + z)

(1 + z)− γz

and hence,
M0

p1

=
M1

p1

M0

M1

= m
1

1 + z
=

γω

(1 + z)− γz
.

Substitute M0/p1 into the central bank’s objective function. Take the

derivative with respect to z, obtaining(
γω

1 + z − zγ

)−ρ [
γ′ω (1 + z − zγ)− γω (1− γ − zγ′)

(1 + z − zγ)2

]
+

β

1− β

Ω1−ρΓ

1 + z

[
1 + z

Ω

∂Ω

∂z
+

1

1− ρ

1 + z

Γ

∂Γ

∂z

]
= 0

It can be verified that
1

1− ρ

1 + z

Γ

∂Γ

∂z
= −γ

and
1 + z

Ω

∂Ω

∂z
=

γ + (1 + z)zγ′

1 + z − γz
.

After rearranging, we get(
γω

1 + z − zγ

)−ρ

ω

[
γ′ (1 + z)− γ (1− γ)

(1 + z − zγ)2

]
= − β

1− β
Γ

(ω (1 + z))1−ρ

(1 + z − zγ)1−ρ

(1− γ) z

ρ (1 + z − zγ)
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which simplifies to

γ1−ρ = − β

1− β
Γ (1 + z)1−ρ z

Note Γ = αρ
(

γ
1+z

)1−ρ
+ (1− α)ρ [(1− γ) x]1−ρ =

(
α
γ

)ρ [
γ

(1+z)1−ρ + 1−γ
x1−ρ

]
.

From the bank’s maximization we have, αρ 1
1+z

(
γ

1+z

)−ρ −
(

1−α
1−γ

)ρ

x1−ρ = 0,

so that

γ =
β

1− β
zαρ

which can be rewritten as

1 + z = 1 +
1− β

β

γ

αρ
.
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