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Abstract 
 
 This paper sifts through potential explanations for the weakness of the existing 

out-of-sample evidence on the Phillips curve relative to the in-sample evidence, focusing 

on models relating inflation to the output gap.  The out-of-sample evidence could be 

weaker because, even when the models are stable over time, out-of-sample metrics are 

less powerful than the usual in-sample Granger causality tests.  The weakness of the out-

of-sample evidence could also be due to model instability—shifts in the coefficients or 

residual variance of the inflation-output gap model.  This paper evaluates these 

explanations on the basis of comparisons of the sample forecasting results to results from 

Monte Carlo simulations of DGPs that either assume stability or allow empirically-

identified breaks in the coefficients of the DGP. This analysis shows that most of the 

weakness of the out-of-sample evidence relative to the in-sample evidence is attributable 

to instabilities in the model, particularly in the coefficients on the output gap. Theoretical 

analysis, based on a local alternatives framework, confirms that breaks in the output gap 

coefficients, but not breaks in residual variances or AR coefficients, can lead to a 

breakdown in the power of tests of equal forecast accuracy and forecast encompassing. 
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1 Introduction

The Phillips curve — broadly defined here and in other studies such as Stock and Watson

(1999b) as a model relating inflation to the unemployment rate, output gap, or capacity

utilization — remains one of the most widely used and studied models in macroeconomics.

In particular, variants of the Phillips curve continue to appear in efforts to model and

understand business cycle fluctuations, forecast inflation, and analyze monetary policy.1

Historically, while many have contended the basic model warrants a key place in macroeco-

nomics (a recent example is Blinder (1997)), others have argued otherwise (a recent example

is Rogerson (1997)). References to the considerable historical debate over the Phillips curve

are provided in such summaries as Gordon (1990), King and Watson (1994), and Atkeson

and Ohanian (2001). In recent years, the Phillips curve in the form of a model relating

inflation to the output gap has enjoyed something of a renaissance, in part because the sup-

ply side of the standard dynamic, stochastic general equilibrium model with sticky prices

reduces to an expectational form of a Phillips curve (see, for example, Rotemberg and

Woodford (1997), King (2000), and McCallum and Nelson (1999)).2

A common metric for evaluating Phillips curve models is their performance in out–of–

sample forecasting. The models are, after all, often used for forecasting. In fact, some

studies — examples include Kuttner (1994), St-Amant and van Norden (1997), Gerlach

and Smets (1999), and Peersman and Smets (1999) — explicitly estimate or define the

output gap as the component of output that has predictive power for inflation. Moreover,

even if forecasting is not an explicit objective, out–of–sample forecast performance has

come to be widely viewed as a useful metric for evaluating the validity of a model.3 For

example, since the work of Meese and Rogoff (1983, 1988) it has become standard in the

empirical exchange rate literature to use forecast performance as a metric for evaluating

models of the exchange rate; recent examples include Mark (1995), Clarida, Sarno, Taylor,
1Examples of studies focused on output gap–based models include Roberts (1995), Fisher, Mahadeva, and

Whitley (1997), St-Amant and van Norden (1997), Gerlach and Smets (1999), Peersman and Smets (1999),
Reifschneider, Tetlow, and Williams (1999), Rotemberg and Woodford (1997), Rudebusch and Svensson
(1999), Claus (2000), and McCallum and Nelson (1999). Recent unemployment rate–based examples include
Gordon (1998) and Eller and Gordon (2002).

2In the more general form, the standard DSGE model implies inflation is a function of expected future
inflation and current marginal cost (see, for example, Gali and Gertler (1999) and Sbordone (2002)). Un-
der certain assumptions, the marginal cost variable can be replaced by the output gap. Although many
studies implicitly or explicitly impose the necessary assumptions, some have argued the assumptions are
unreasonable (see, for example, Gali, Gertler, and Lopez-Salido (2001)).

3Although forecast performance is often used as a general metric of model validity, some (such as Clements
(2002) and Inoue and Kilian (2002)) question the practice.

1



and Valente (2003), and Kilian and Taylor (2003). A number of Phillips curve analyses have

also explicitly treated forecast performance as a test of model validity. Examples include

Fisher, Mahadeva, and Whitley (1997), Atkeson and Ohanian (2001), and Camba–Mendez

and Rodriguez–Palenzuela (2001).

As is the case with so many relationships of interest in macroeconomics, there is now

considerable evidence that, despite seemingly good in–sample fits, the out-of-sample fore-

cast performance of Phillips curve models is mixed. While the generalized Phillips curve

literature is far too long to be tractably surveyed here, recent examples of studies document-

ing a good in–sample fit of reduced form inflation–output gap specifications include Kuttner

(1994), Gerlach and Smets (1999), Peersman and Smets (1999), Rudebusch and Svensson

(1999), and Orphanides (2003). Of analyses that consider out–of–sample performance, some

conclude that Phillips curve formulations generally forecast well; recent examples include

Staiger, Stock, and Watson (1997), Stock and Watson (1999b), and Fisher, Liu, and Zhu

(2002). Other studies reach the opposite conclusion. For example, Atkeson and Ohanian

(2001) conclude that Phillips curve models using the unemployment rate or the real ac-

tivity index developed by Stock and Watson (1999b) fail to out–forecast a random walk.

Orphanides and van Norden (2003) show that estimates of the output gap made in real

time often fail to improve forecasts from a simple autoregression.4

In this paper we sift through potential explanations for the weakness of the out–of–

sample evidence on the Phillips curve relative to the in–sample evidence, focusing on mod-

els relating inflation to the output gap because this particular formulation seems to have

garnered the greatest interest in recent years. One potential explanation — referred to as

just the power explanation for simplicity — is that although the models are stable over

time, out–of–sample metrics are less powerful than the usual in–sample Granger causality

tests. Stressing the lower power of out–of–sample tests, Inoue and Kilian (2002) advocate

the use of in–sample tests for model evaluation. This power explanation might be espe-

cially relevant to the extent that the relative power of out–of-sample metrics declines as the

forecast horizon increases, because in–sample evaluations of models relating inflation to the

output gap routinely use quarterly inflation rates while forecast evaluations often include

longer forecast horizons.5

4Camba–Mendez and Rodriguez–Palenzuela (2001) and Runstler (2002) report similar findings, though
their analyses abstract from source data revisions.

5The relationship of power to forecast horizon (in an absolute sense, rather than in the relative sense of
out-of-sample compared to in–sample power) has been the subject of debate in the exchange rate literature.
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A second potential explanation is model instability — shifts in the coefficients or resid-

ual variance of the inflation–output gap model. Stock and Watson (1996, 1999a, 2001)

document pervasive instabilities in reduced–form macroeconomic relationships; Banerjee

and Marcellino (2002), Cecchetti (1995), and Stock and Watson (2001) present evidence of

instabilities in forecast performance. Clark and McCracken (2002b) provide analytical and

Monte Carlo evidence on how shifts in coefficients can affect tests of equal forecast accu-

racy and encompassing. Instabilities that lower the power of out–of–sample forecast tests

relative to in–sample tests could account for the relative weakness of the out–of–sample

evidence on the Phillips curve. But the existing evidence for the Phillips curve suggests

little role for instability.6 Stock and Watson (1999b) report that although there is evidence

of instability in the AR coefficients of an inflation–unemployment rate model, the apparent

shifts don’t affect forecast performance much, and the coefficients on unemployment appear

stable.7 Rudebusch and Svensson (1999) apply stability tests to the full set of coefficients

of an inflation–output gap model and are unable to reject stability. Estrella and Fuhrer

(2003) find little evidence of instability in joint tests of a (backward–looking) Phillips curve

relating inflation to the output gap and an IS model of output.8 Similarly, detailed test

results reported in Stock and Watson (2001) show inflation–output gap models to be largely

stable.

Our results show that while simple power differences associated with stable models can

account for some part of the relatively weak out–of–sample performance of the Phillips

curve, most of the weakness is explained by power differences created by instabilities in

the model, particularly in the coefficients on the output gap. We arrive at this conclusion

See, for example, Mark (1995), Kilian (1999), and Mark and Sul (2002).
6A variety of studies have found that apparent instabilities in particular models can be overcome with

modifications of the benchmark model. For example, Staiger, Stock, and Watson (2002) show that models
relating inflation to the rate of unemployment or capacity utilization can be made stable by allowing an
appropriate univariate trend in the measure of economic activity. Related examples include Lown and Rich
(1997) and Brayton, Roberts, and Williams (1999). Demers (2003) presents strong evidence of instability in
an inflation–output gap model for Canada.

7A growing literature is debating the persistence of inflation and whether persistence has declined, with
part of the answer seeming to hinge on the treatment of shifts in mean inflation. For example, while Stock
(2001) and Pivetta and Reis (2002) find persistence is and has remained high, Levin and Piger (2003) find
that persistence is much lower once mean shifts identified by break tests are allowed. See Levin and Piger
for additional references.

8Using a simulation approach, Rudebusch (2003) finds that structural changes in policy don’t seem to
produce identifiable shifts in a reduced form model for the economy that includes an inflation–output gap
form of the Phillips curve. Estrella and Fuhrer (2003) suggest that a reduced form model including a Phillips
curve may be “structural” in the sense that policy changes do not affects its value for forecasting, as changes
in the conduct of monetary policy in response to structural changes in the economy may offset the structural
changes.
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by comparing sample results for a range of inflation and output gap measures to results

of Monte Carlo simulations of empirically–based data–generating processes that (i) assume

stability or (ii) allow various types of discrete breaks in the model parameters. The imposed

shifts in the DGPs are based on the results of extensive break test analysis applied to the

empirical models in question. As we document, the break tests provide strong evidence of

shifts in the residual variances of the inflation equations, modest evidence of shifts in the

AR parameters of the inflation equations, and only very limited evidence of shifts in the

output gap coefficients. However, simulations show that breaks in residual variances or AR

parameters cannot account for the out–of–sample breakdown in the output gap’s predictive

power observed in the data. Simulations show instead that the sample forecasting results are

best explained by discrete shifts in the output gap coefficients — shifts that, in most cases,

the break tests have only modest power to identify. Building on Clark and McCracken

(2002b), we conclude the paper by showing analytically that breaks in the output gap

coefficients, but not breaks in residual variances or AR coefficients, lead to a breakdown in

the power of tests of equal forecast accuracy and forecast encompassing. We do so using a

local alternatives framework, like that of Hansen (2000).

The paper proceeds as follows. Section 2 reviews the data and model specifications.

Section 3 explains our forecast evaluation methodology, including the data sample and

forecasting scheme, forecast tests, and inference approach. Section 4 presents the sample

forecasting results. Section 5 uses Monte Carlo simulations of stable models to examine the

ability of simple power differences to account for the gap between the in–sample and out–of–

sample evidence. Section 6 presents evidence on structural instabilities in the Phillips curve.

Section 7 uses Monte Carlo simulations to examine whether in–sample vs. out–of–sample

power differences due to the identified breaks account for the sample results. Section 8 then

presents our theoretical analysis of the effects of breaks on forecast–based tests.

2 Data and Model Specifications

2.1 Data

As previous analyses have relied on a range of inflation measures and gap definitions, we

present complete results for two measures of inflation and two measures of the output gap.

Inflation is measured using the GDP (chain) price index and the CPI excluding food and

energy, or core CPI. The GDP price index (or, equivalently, the deflator) and CPI seem

4



to be the most commonly used measures in the recent generalized Phillips curve literature.

We use the core CPI in lieu of the overall CPI because policymakers tend to focus on ex

food and energy inflation and because using the core CPI mitigates the role of energy price

shocks. Results not reported for the chain price index for consumption excluding food and

energy (the core PCE price index) are qualitatively similar.

For the output gap, we use the measures most common in the recent Phillips curve liter-

ature: (1) actual GDP less the CBO’s estimate of potential GDP (in logs) and (2) Hodrick

and Prescott (1997)–filtered GDP. In results not reported, we also considered the output

gap computed with a one–sided version of the HP filter. Stock and Watson (1999b,2001)

explicitly use the one–sided filter because it produces the gap that would be estimated in

real time with a given data set. While our one–sided output gap estimate yielded results

that are in many respects qualitatively similar to those we report, we found the one–sided

measure has less predictive power for inflation (in–sample and out–of–sample), and we were

somewhat less successful in accounting for its inconsistent forecast performance. Presum-

ably, the lower and less consistent predictive power of the one–sided gap reflects not only

the greater volatility of the one–sided measure but also some added difficulty of forecasting

in real time, highlighted by Orphanides and van Norden (2003), among others.

All data except the CBO’s estimate of potential GDP were obtained from the FAME

database. The potential GDP series was downloaded from the Federal Reserve Bank of St.

Louis’ website. The data span 1957:Q1 through 2001:Q4, except that data on the core PCE

price index used in some supplemental results don’t begin until 1959:Q1.

2.2 Models

Following Stock and Watson (1999b,2001), among many others, we treat inflation as be-

ing close enough to I(1) to warrant imposing I(1) and compare forecasts of the change in

inflation from a Phillips curve specification including the output gap to forecasts from a

simple autoregressive model. While not reported, models specified in inflation levels yield

qualitatively similar forecast results. We report forecast results for the two horizons that

seem to be most widely used in previous studies and most interesting to policymakers: one

quarter and four quarters.

Letting τ denote the forecast horizon (in quarters), we use reduced–form Phillips curves

π
(τ)
t+τ − πt = α0 +

L−1∑

l=0

αl∆πt−l +
M−1∑

m=0

βmyt−m + u2,t+τ , (1)
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where inflation is π
(τ)
t ≡ (400/τ) ∗ ln(pt/pt−τ ), π

(1)
t ≡ πt, and yt is the output gap in

percentage terms (in logs multiplied by 100). The same basic model specification has been

used in studies such as Stock and Watson (1999b,2001). In our forecast evaluation, we focus

on comparing projections from this model to those from a model without the output gap.

This AR specification takes the form

π
(τ)
t+τ − πt = α0 +

L−1∑

l=0

αl∆πt−l + u1,t+τ . (2)

In results not reported in the interest of brevity, we also compare our Phillips curve forecasts

against a random walk benchmark, as some inflation studies have used a random walk (no

change) forecast as a benchmark (examples include Atkeson and Ohanian (2001) and Stock

and Watson (1999b)).9 We have omitted these results because they are qualitatively very

similar to those reported.

For simplicity, we use the same lag lengths across forecast horizons and all time periods.

In particular, for both the GDP price index and the core CPI, we always include two lags

of the change in inflation (L = 2) and one lag of the output gap (M = 1).10 Allowing two

lags of inflation minimizes the AIC for full–sample estimates of the autoregression (2) for

both τ = 1 and τ = 4. For τ = 1, two lags is also always the SIC-minimizing specification.

We used just one lag of the output gap in the Phillips curve (1) to be consistent with most

other studies of inflation and output gap relationships. For our data, allowing just one lag

of the output gap minimizes the SIC for full–sample estimates of (1) for τ = 1. In most

cases, one lag of the gap is also the SIC–preferred choice when τ = 4. In results not reported

in the interest of brevity, we allowed the lag lengths to be chosen at each point in time as

forecasting proceeds, and obtained qualitatively similar results.

3 Forecast Evaluation Methodology

3.1 Sample and scheme

We evaluate out–of–sample forecasts over the long period 1977:Q1 to 2001:Q4 and several

subdivisions of that period. The first out–of–sample forecast at horizon τ is for the period

ending in 1977:Q1 + τ - 1. After allowing for initial observations set aside for data dif-

ferencing and lag determination, the first forecast is based on models estimated with data
9Under this benchmark, the “random walk” forecast of π

(τ)
t+τ is just π

(τ)
t . Translated into the changes in

inflation that are the predictands in our analysis, the random walk–based forecast of π
(τ)
t+τ − πt is π

(τ)
t − πt.

In the τ = 1 case, of course, the random walk forecast of the relevant change is 0.
10For the core PCE price index, L = 1 and M = 1.
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from 1958:Q3 + τ - 1 through 1976:Q4. Therefore, our forecast sample includes a total of

100 one–step ahead forecasts, the first of which is generated from a model estimated with

74 “in–sample” observations. 11 Because prior studies have considered a variety of forecast

samples and because subsample analysis can help with identification of structural breaks,

we divide the full forecast period into subsamples of: 1977-89, 1990-2001; and 1977-84,

1985-92, 1993-2001.

In our reported results, out–of–sample forecasts from models (1) and (2) are generated

recursively. Under this recursive scheme, the parameters of the models are reestimated

with added data as forecasting moves forward through time.12 From these models, we

obtain two sequences of forecast errors, denoted û1,t+τ and û2,t+τ , respectively. Given our

sample specifications, we have a total of 100− τ + 1 forecasts for horizon τ . To generalize

our definitions of test statistics to take into account our analysis over various samples and

subsamples, we let P refer to the number of τ–step ahead forecasts under consideration for

the sample period spanning observations R + τ to R + τ + P − 1, where R corresponds

to the last observation used in the regression estimates underlying the first forecast of the

period under consideration. In results not reported in the interest of brevity, we found

that a rolling forecast scheme — estimating the model parameters with a rolling window of

observations — yields similar results.13

3.2 Tests

We base our forecast evaluation on simple RMSE comparisons and four formal tests, in-

cluding two tests of equal forecast accuracy and two tests for forecast encompassing. In

particular, we consider the t–statistic for equal MSE developed by Diebold and Mariano

(1995) and West (1996) and the F–statistic proposed by McCracken (2000). We also con-

sider the t–statistic for encompassing developed in Harvey, Leybourne, and Newbold (1998)

and West (2001) and the F–type encompassing test proposed by Clark and McCracken

(2001). In discussing the results, we focus on the F–type tests proposed by McCracken

(2000) and Clark and McCracken (2001) (denoted MSE-F and ENC-F below), as Clark and

McCracken (2001,2002a,b) have shown them to be more powerful than their t–type coun-
11In the notation used in Clark and McCracken (2001, 2002a,b), the number of “in–sample” and “out–

of–sample” observations are, respectively, R = 74 and P = 100. In the case of the core PCE price index,
R, P = 66, 100.

12Formally, for t = R, . . . , T − τ , forecasts of π
(τ)
t+τ − πt use parameter estimates based on data from the

beginning of the sample through period t.
13In this analysis, we use a window size of 74− τ + 1 observations.
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terparts. To provide something of a benchmark for the forecast tests, we provide results

for a standard, full–sample test of Granger causality — the t–statistic on the output gap in

(1).

As detailed in the original sources and Clark and McCracken (2002a), the t–statistic for

equal MSE takes the form

MSE-t = P 1/2 × d̄√
Ŝdd

, (3)

where d̂t+τ = û2
1,t+τ − û2

2,t+τ , d̄ = P−1 ∑R+P−1
t=R d̂t+τ = MSE1 −MSE2, Γ̂dd(j) =

P−1 ∑R+P−1
t=R+j (d̂t+τ − d̄)(d̂t+τ−j − d̄), and Ŝdd = Γ̂dd(0) + 2

∑J
j=1(1− j

J+1)Γ̂dd(j). As defined

here, we compute the long–run covariance Ŝdd using the Newey and West (1987) HAC

estimator with a bandwidth of J = 1.5 ∗ τ , except that in the case of τ = 1, we impose

J = 0. The F–type test of equal MSE takes the form

MSE-F = P × MSE1 −MSE2

MSE2
= P × d̄

MSE2
. (4)

The t–statistic for forecast encompassing — a t–statistic for the covariance between

u1,t+τ and u1,t+τ − u2,t+τ — is computed as

ENC-t = P 1/2 × c̄√
Ŝcc

, (5)

where ĉt+τ = û1,t+τ (û1,t+τ − û2,t+τ ), c̄ = P−1 ∑R+P−1
t=R ĉt+τ , Γ̂cc(j) = P−1 ∑R+P−1

t=R+j (ĉt+τ −
c̄)(ĉt+τ−j − c̄), and Ŝcc = Γ̂cc(0) + 2

∑J
j=1(1 − j

J+1)Γ̂cc(j). In this case, too, the long–

run covariance Ŝcc in the denominator is the Newey and West (1987) estimator. The

encompassing test developed by Clark and McCracken (2001) takes the form

ENC-F = P × c̄

MSE2
. (6)

3.3 Inference

We compare the MSE-F, MSE-t, ENC-F, and ENC-t statistics against critical values gen-

erated with the simple parametric bootstrap described in Clark and McCracken (2002a).14

McCracken (2000) and Clark and McCracken (2001) show that, for one–step ahead fore-

casts, under the null that the restrictions imposed on model 2 relative to model 1 are true,

the tests generally have non–standard, pivotal asymptotic distributions.15 In particular, the
14The bootstrap is similar to those in Mark (1995) and Kilian (1999).
15Clark and McCracken (2002b) and Inoue and Kilian (2002) work out the limiting distributions under

certain alternative hypotheses.
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tests converge in distribution to a function of stochastic integrals of quadratics of Brownian

motion. Clark and McCracken (2002a) show that, for multi–step forecasts from long–horizon

regressions like those in (1) and (2), the tests converge to similar, non–standard null distri-

butions, but that the distributions are not generally pivotal. Clark and McCracken (2002a)

go on to show that the simple bootstrap yields good size and power properties for a range

of realistic DGPs. We have also verified that, for (stable) data–generating processes based

on the inflation models considered in this paper, the bootstrap approach yields tests with

good size properties.16

Our bootstrap algorithm consists of sampling from the residuals of restricted vector

autoregressive equations for the one–quarter change in inflation (∆πt) and the output gap

(yt). The inflation equation of this bootstrap DGP imposes the null that the output gap has

no predictive power for inflation, taking the form of the restricted model (2) with τ = 1. The

output gap equation also takes the form of a simple AR model, because when different lag

orders for the lagged change in inflation and the output gap are allowed, the data indicate

the SIC is minimized for 0 lags of inflation. The DGP equations are estimated by OLS using

the full sample of data. The initial observations — those preceding the sample of data used

to estimate the models — necessitated by the lag structures of the estimated models are

selected by sampling from the actual data. In particular, following Stine (1987), the initial

observations are selected by picking one date at random and then taking the necessary

number of observations in order from that date backward. Each bootstrap replication

concludes with forming artificial forecasts using the models and forecasting scheme described

above and then constructing artificial test statistics. Following Kilian (1999) and Clark and

McCracken (2002a), the number of bootstrap draws is 2000.

We treat the standard Granger causality test and all of the forecast–based tests as one–

sided. In our nested model environment, if the restrictions imposed on (2) are true, there is

no reason to expect forecasts from that model to be more accurate than those from (1). As

a result, for the equal accuracy tests, the alternative hypothesis is that MSE1 > MSE2,

making the test one-sided to the right; the null hypothesis is MSE1 ≤ MSE2. For the
16We have also conducted Monte Carlo experiments to verify empirically that, even when the data–

generating process includes shifts in the lagged inflation coefficients and residual variance (but the DGP
has no output gap terms, as under the null), our bootstrap approach based on stable models still yields
reasonably accurately sized tests. In principle, though, because a model with such breaks is misspecified
under the null on which the asymptotics are based, the breaks in the lagged inflation coefficients will affect
the sizes of the predictability tests, as shown by Inoue and Kilian (2002). Extending the existing asymptotic
theory to models misspecified under the null is an important, difficult topic for future research.
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encompassing tests, Harvey, Leybourne, and Newbold (1998) point out that, under the

alternative that the output gap contains added information, the covariance in the numerator

of the encompassing tests should be positive. Under the null that (2) forecast encompasses

(1), the covariance of interest will be less than or equal to 0. So the encompassing tests are

also one–sided, to the right. Finally, as with the forecast tests, the in–sample t-statistic for

Granger causality is one–sided, because the sensible alternative hypothesis is that the gap

coefficient should be positive. Inoue and Kilian (2002) show that, in such cases, one–sided

t–tests have potentially important power advantages over two–sided tests.

4 Sample Forecasting Results

Using the metrics described above, we obtain sample results consistent with a broad reading

of the literature cited in the introduction: on an in–sample basis, the output gap has highly

significant explanatory power for inflation, but out–of–sample, the predictive power of the

output gap is intermittent. As shown in Table 1’s full–sample estimates of (1), the coefficient

on the output gap is highly significant, for both measures of inflation and both measures

of the output gap, at both the one and four quarter forecast horizons.17 Because the

CBO–based gap measure is more volatile than the HP–filtered series, the gap coefficient is

considerably larger for the HP–filtered series, while the R̄2’s are little different.

Despite having statistically strong in–sample explanatory power, on an out–of–sample

basis the predictive content of the output gap is prone to breakdowns over some subsamples.

While the Phillips curve/AR model RMSE ratios are less than 1 and the test p–values are

below 10% in many of the entries in Tables 2 and 3, it is also frequently the case that the

RMSE ratios and p–values exceed 1 and 10%, respectively. For example, the left half of

Table 2 shows that, with the GDP price index measure of inflation and the CBO measure

of the output gap, the gap has forecasting power until the 1990s. With a forecast horizon

of τ = 1, the RMSE ratio for the Phillips curve relative to the AR model is .973 for 1977-84

and .947 for 1985-92 but .995 for 1993-01; with a horizon of τ = 4, the RMSE ratio rises

from .897 over 1977-84 and .841 over 1985-92 to 1.070 over 1993-01. Similarly, the MSE-F

test has a p–value of 3 percent or less for all samples but 1993-01, the one sample for which

the test fails to reject the null of equal forecast accuracy. The ENC-F test, on the other

hand, rejects for all samples. To take another example, the right half of Table 3 shows that,
17Unreported bootstrap p-values for the t–statistics are consistently 1 percent or less.
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with core CPI inflation and the HP output gap, the gap’s predictive content breaks down

sharply in the mid-1980s and, to a lesser extent, the 1990s. At the one–quarter horizon, the

RMSE ratio is .951 for 1977-84 but 1.025 for 1985-92 and 1.009 for 1993-01, and the MSE-F

test rejects the null of equal MSE for all samples shown except 1985-92 and 1993-01. At the

four–quarter horizon, the RMSE ratio rises from .978 over 1977-84 to 1.230 over 1985-92

and declines to .925 over 1993-01. The MSE-F test fails to reject the null for samples except

1990-01 and 1993-01.

Tables 2 and 3 yield two other notable results. First, even when the output gap has

significant out–of–sample explanatory power, the forecast gains are quantitatively modest.

For example, over the full forecast sample of 1977-2001, including the CBO output gap in

the models for forecasting inflation in the GDP price index and core CPI yields a roughly

3% reduction in RMSE at the one–quarter horizon. At the four-quarter horizon, including

the CBO output gap in the model lowers the RMSE about 10% for inflation in the GDP

price index and 5% for core CPI inflation. Second, the ENC-F test of forecast encompassing

rejects the null of no predictive content in the gap much more frequently than the MSE-F

test does. Of the 48 tests reported in Tables 2 and 3 (these observations are of course

not independent), there are 16 instances in which the ENC-F test rejects the null at 10%

confidence but the MSE-F does not. For example, in the case of the GDP price index and

HP–filtered gap, at the four–quarter horizon the MSE-F test rejects the null for only the

1990-01 and 1993-01 samples, while the ENC-F test rejects the null for all six samples.

5 Evaluating the Simple Power Explanation

Especially in light of the evidence that the output gap only modestly improves the accuracy

of inflation forecasts, the weakness of our out–of–sample evidence relative to the in–sample

evidence could simply be due to out–of–sample tests having lower power. In particular, the

explanation could lay in power differences that arise a simple stable model environment.

Out–of–sample tests tend to be less powerful than the usual in–sample Granger causality

test, as shown by Inoue and Kilian (2002).

In this section we use simulation methods to evaluate the extent to which, with stable

models, power differences can account for the patterns in our sample results. In particular,

we specify data–generating processes based on models fit to our full sample of data, in which

the gap has significant (in–sample) explanatory power for inflation, and conduct Monte
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Carlo simulations to evaluate the power of our forecast metrics. The inflation equations in

the DGPs, which assume stability, are those given in Table 1 for τ = 1. The gap equation

in each DGP takes a simple autoregressive form; in sample estimates of gap equations,

allowing separate lag lengths on the change in inflation and the output gap, the SIC always

selects 0 lags of inflation. Artificial data for 1958:Q3–2001:Q4 are generated by drawing

normally distributed innovations, with a variance–covariance matrix equal to that estimated

from the sample data. The initial observations of the artificial data on ∆π and y are taken

from draws of the unconditional normal distribution implied by the parameterization of the

DGP.

In each Monte Carlo draw, we first form artificial forecasts using models (1) and (2)

and compute the test statistics of interest. For each artificial data set, we then apply our

bootstrap method and compute 10% bootstrap critical values against which the “sample”

test statistics from the artificial data set are compared. Power is then measured as the

percentage of Monte Carlo simulations in which the artificial “sample” test statistics exceed

their bootstrapped critical values.

In broad terms, the simulation results in Tables 4 and 5 show that only a modest

portion of the weakness of our out–of–sample evidence relative to the in–sample evidence

can be attributed to in–sample vs. out–of–sample power differences associated with stable

models. The simulated power of the in–sample t–statistic is at least 97 percent for all of

the DGPs and forecast horizons covered in Tables 4 and 5. In some instances, especially

over subsamples, the powers of the out–of–sample tests over fall well below that of the

in–sample test. For example, in the DGP based on the GDP price index and CBO output

gap, the MSE-F test has power of 66.7% for 1–step forecasts and 63.5% for 4–step forecasts

over 1977-84 (Table 4, row 1). The corresponding figures fall to 62.5% and 54.8% when

the core CPI replaces the GDP price index (Table 5, row 1). But, overall, the powers of

the forecast–based tests seem quite good, in many instances coming near the power of the

in–sample t–test. In the GDP price index and CBO output gap example, the MSE-F test

for 1–step ahead forecasts has power of 90.8% over the full forecast sample of 1977-01 and

79.2% over the subsample of 1990-01 (Table 4, row 1, left panel). Consistent with the results

in Clark and McCracken (2001,2002a), the power of the ENC-F test exceeds that of the

MSE-F test. The differences are small in some cases and large in others.18 Accordingly, the
18Consider, for example, the DGP based on the GDP price index and HP gap and a forecast horizon of τ

= 1. With a forecast sample of 1977-01, the MSE-F and ENC-F powers are 95.1% and 98.8%, respectively.
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sample finding that the ENC-F test rejects more often than the MSE-F test does is partly

a function of an underlying difference in the powers of the tests.

The results in Tables 4 and 5 confirm the relationships of power to data sample sizes

and to forecast horizon described in Clark and McCracken (2001,2002a). The powers of the

tests generally fall as the forecast horizon rises from τ = 1 to τ = 4. The powers of the

tests also rise with the number of forecast observations. For example, rejection rates are

greater for the forecast sample of 1977-01 than for 1977-89, and for 1977-89 than 1977-84.

Given the number of out–of–sample observations, power also tends to rise with the number

of in–sample observations (denoted R in our previous work) used to estimate the forecasting

model. For instance, the powers of the tests are slightly higher for the forecast subsample

of 1993-01 than for 1985-92.

The power properties of the out–of–sample tests — especially MSE-F — are reflected

in the summary statistics for the RMSE ratio distribution reported in Tables 4 and 5.

On average, including the output gap in the forecasting model only modestly lowers the

forecast RMSE. The gains in accuracy indicated by the median RMSE ratios range from

3% to 5% for τ = 1 and 7% to 10% for τ = 4. But reflecting the generally good power of

the equal MSE and encompassing tests, the probability of the RMSE ratio being less than 1

is reasonably high. The probability is highest for the full 1977-01 forecast sample, ranging

from 87% to 96% (including both forecast horizons), but still decent over the subsamples,

falling no lower than 70%. Nonetheless, the 90% confidence bands for the RMSE ratios

are wide enough that they almost always include a value of 1. For example, as reported

in Table 5 for a DGP based on the core CPI and CBO output gap, the 90% confidence

band for the 1977-01 RMSE ratio is (.912,1.010) for 1–step ahead forecasts, with a median

of .970. The 90% bands are considerably wider for 4–step ahead RMSEs, with most of the

widening coming in the left tail. For the same DGP and sample period, the 90% confidence

band for the 4–step ahead RMSE ratio is (.788,1.033), with a median of .919.

Finally, a detailed comparison of the simulation results in Tables 4 and 5 with the sample

results in Tables 2 and 3 confirms that a stable DGP can only account for a portion of the

sample results. In the case of the GDP price index and CBO output gap, the sample results

seem at least partly consistent with the stable DGP simulations. The sample RMSE ratios

all fall within the simulated 90% bands. Nonetheless, the simulations show that a stable

But with a sample of 1993-01, the MSE-F and ENC-F powers are 76.3% and 93.3%.
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DGP is unlikely to produce a breakdown in the 1990s: there is no falloff in simulated power

from 1977-84 or 1985-92 to 1993-01, and the MSE-F test has power of more than 72 percent

in 1993-01. When inflation is measured with the core CPI, the stable DGP has similar

difficulty in explaining a similar sample breakdown in predictive power in the 1990s. In

this case, though, the shortcomings of the stable DGP are greater: the sample values of the

RMSE ratios for 1993-01 greatly exceed the upper ranges of the simulated 90% bands.

With the HP measure of the output gap, the sample results are clearly at odds with the

simulation results. For the GDP price index and HP output gap combination, the sample

RMSE ratios exceed the upper range of the simulated 90% bands in five instances: for 1–

step forecasts over 1977-01, 1977-89, and 1977-84 and for 4–step forecasts over 1977-01 and

1977-89. Moreover, while the data show that the MSE-F test overwhelmingly fails to reject

the null for 1977-01, the stable DGP simulations indicate the test has power of 90 percent

or more. When inflation is measured with the core CPI, there is one instance in which the

sample RMSE ratio exceeds the simulated 90% band: 4–step ahead forecasts over 1993-01.

In this case, too, the simulated powers of the tests seem too high to be consistent with the

breakdowns observed in the sample results. For example, in the data, the MSE-F test for

τ = 1 rejects the null over 1977-84 but not 1985-92 or 1993-01. But the simulated power of

the test rises from 72.3% for 1977-84 to 75.9% for 1985-92 and 77.6% for 1993-01.

6 Evidence of Structural Breaks

With in–sample vs. out–of–sample power differences in stable DGPs explaining only a por-

tion of our empirical results on the predictive content of the output gap for inflation, we turn

now to an alternative explanation: discrete breaks in the parameters of the Phillips curve.

On the surface, at least, the rolling estimates of output gap coefficients shown in Figure 1

suggest important instabilities in the gap coefficient (the figure reports the gap coefficient

from estimates of (1) for τ = 1 based on a rolling window of 74 observations). Clark and

McCracken (2002b) present theoretical and Monte Carlo evidence on how breaks in the

Granger–causal coefficients of interest can lead to out–of–sample breakdowns in predictive

content, with empirical examples that use financial variables to predict output growth.

Here, we more generally consider the effects of shifts in not only the Granger–causal coeffi-

cients of interest (those on the output gap) but also shifts in the lagged dependent variable

coefficients (those on lagged inflation) and the residual variance. And, in this case, we take
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a detailed look at a different empirical relationship, the Phillips curve.

We limit our attention in the discussion below to discrete breaks rather than stochastic

time variation in the parameters (TVP) for several reasons. First, in unreported results,

we found little evidence of TVP in the full–sample estimates of our Phillips curve. Nyblom

(1989) tests for the null of stability against the alternative of unit root variation yielded

virtually no rejections of the null. Second, auxiliary Monte Carlo analysis provided little

evidence that TVP can account for the sample results. Simulations of DGPs in which the

output gap coefficient follows a random walk show that TVP is unlikely to generate the

breakdowns in out–of–sample predictive content found in the data over certain subsam-

ples.19 Finally, it is worth noting that, in line with the evidence in Stock and Watson

(1996), allowing TVP failed to yield more accurate sample forecasts of inflation.

In the results reported in this section, we test for breaks in the coefficients and residual

variances of the models under consideration using Andrews’ (1993) extremum Wald test and

Bai and Perron’s (1998, 2003) tests for multiple breaks. In light of the strong evidence in

Stock and Watson (2002) of shifts in the volatility of inflation, we follow Stock and Watson

(2002) and use heteroskedasticity–robust variances in forming Andrews’ Wald statistics for

shifts in the regression coefficients. Break tests are computed for individual coefficients and

the set of lagged inflation coefficients in each equation, as well as the residual variance. We

focus on comparing the test statistics for a single break against Andrews’ asymptotic critical

values and report p-values computed with Hansen’s (1997) asymptotic approximation. For

robustness of the Andrews test results, we also report p-values generated with Hansen’s

(2000) heteroskedastic bootstrap procedure, which are qualitatively similar in most, though

not all, cases. In investigating multiple breaks, we follow the recommendations of Bai and

Perron (2003) and use their UDmax and WDmax tests to determine whether there are any

significant breaks and their supF (l + 1|l) statistics to determine the number. In reporting

Bai–Perron test results, we simply provide the test statistics and significance levels indicated

by the Bai-Perron critical values. In all cases, for simplicity we apply the breaks tests to

just the models for 1-step ahead forecasting.

Overall, our break test analysis yields stronger evidence of shifts in the autoregressive

coefficients of the Phillips curve than of shifts in the coefficient on the output gap, in line
19In these experiments, we impose the residual variance and discrete AR coefficient breaks described

below. The output gap coefficient follows a random walk process with initial value equal to the full–sample
OLS estimate of the gap coefficient and innovation variance equal to that of the residual in a regression of
the rolling sample estimate of the gap coefficient on one lag of itself.
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with the results of Stock and Watson (1999b, 2001). Given the imprecision in break dating,

in this section we include some additional evidence, for the core PCE price index. As

reported in Table 6’s Andrews test results, asymptotic p–values indicate the four models

using either the core CPI or core PCE measures of inflation have significant breaks in the

set of coefficients on lagged inflation. The break in the CPI coefficients is estimated to occur

in 1980, while the break in the PCE coefficients is estimated in 1983. It should be noted,

though, that these breaks are not statistically significant based on p-values computed with

Hansen’s (2000) heteroskedastic bootstrap procedure. While Andrews’ (1993) asymptotic

critical values remain the default in studies conducting breaks testing, Hansen’s bootstrap

offers the advantage of generally and appropriately accounting for the presence of lagged

dependent variables as regressors. Even when gauged against asymptotic critical values,

the two models using the GDP price index measure of inflation do not suffer a significant

break in the set of AR coefficients. In results not reported in the interest of brevity, Bai–

Perron tests show that the number of breaks in the autoregressive coefficients is at most

1. Collectively, there appears to be modest evidence of a single break in the autoregressive

coefficients of our Phillips curve formulations.

The results in Table 6 show that formal evidence of breaks in the output gap coeffi-

cients is even weaker. With inflation measured using the GDP or core PCE price index,

the asymptotic p–values of the Andrews test range from .27 to .73. In some unreported es-

timates, we also found that redoing the tests imposing a single break in the AR coefficients

in the early 1980s does not alter this result. In some other unreported results for these

models, applying the Bai–Perron tests failed to yield any evidence of multiple breaks. The

only formal evidence of instability in the output gap coefficient is obtained with the core

CPI measure of inflation. As shown in Table 6, the Andrews test identifies a significant

break in the output gap coefficient in 1983, for both the CBO and HP estimates of the gap.

In the CBO case, unreported Bai–Perron tests even provide some evidence of two significant

breaks in the gap coefficient, with one break in 1983 and the other in the early 1970s.

We find much stronger evidence of breaks — indeed, multiple breaks — in the residual

variance of the Phillips curve.20 As shown in Table 7, Bai–Perron tests provide strong

evidence of at least one break in the residual variance of the models. In these reported

results, we have imposed the regression coefficient break specifications described below in
20These tests use the HAC correction option built into the Bai–Perron program.
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section 7.2, but the results are insensitive to the specification of breaks in the regression

coefficients. For example, testing for breaks in the residuals of stable AR models for inflation

yields very similar results. As shown in the table, the UDmax and WDmax tests are all

highly significant. The supF (l + 1|l) tests indicate there are three breaks in the variances

of the core CPI equations, with estimated dates of 1974:1, 1984:1, and 1991:4.21 These

dates seem to capture the low–frequency movements in inflation volatility suggested by the

squared residuals plotted in the upper panel of Figure 2. For the GDP price index equations,

the evidence on the number of breaks is a bit less clear, but overall there appear to be two

breaks. Again, highly significant UDmax and WDmax tests indicate the presence of some

breaks. As to the number, the supF (2|1) statistic is significant at the 10% level when the

CBO–based output gap is used and not quite significant at 10% when the HP–filtered gap

is used. While the supF (1) test is not at all significant, the supF (2) statistic rejects the

null of no breaks against the alternative of two breaks at the 1% level. The estimated dates

of the two breaks are 1970:2 and 1976:2. As shown in the lower panel of Figure 2, these

break dates capture the elevated volatility of the early 1970s.

7 Evaluating the Structural Breaks Explanation

In this section we use the break test results described above in evaluating whether power

differences generated by structural breaks can account for the in–sample and out–of–sample

results presented in section 4. With the evidence of breaks strongest for the residual vari-

ances, a natural starting point is to consider models with stable coefficients but residual

variances having the breaks identified above. But it turns out that such breaks, by them-

selves, do little to improve upon the stable DGP explanation for our sample results. In

results not reported in the interest of brevity, we conducted simulations like those described

in section 5, with DGPs having the same, stable coefficients, but residual variances with

breaks. These simulations show that, when inflation is measured with the GDP price index,

the variance breaks might be seen as helping a little to explain the sample results, but not

much. Introducing breaks in residual variances into the DGP serves to lower the power of

the forecast tests over both 1985-92 and 1993-01 relative to 1977-84. Such changes help,

but still fall short of accounting for the sample results. For example, the simulations fail to
21These dates globally minimize the sum of squared errors. The dates are the same for the CBO and HP

measures of the gap, except that the HP–based gap specification puts the middle break a quarter earlier, at
1983:4.
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show the kind of distinct falloff in predictive power over 1993-01 seen in the sample results

for the CBO gap case. When inflation is measured with the core CPI, the variance breaks

widen the gap between the sample and simulation results. For example, introducing the

breaks causes the power of the forecast–based tests to rise sharply from 1977-84 to 1985-92

and in turn to 1993-01.

7.1 Breaks in just AR coefficients

With breaks in residual variances unable to generate the patterns seen in the sample results,

in this section we consider whether breaks in the autoregressive coefficients of the Phillips

curve can account for the sample results. We report the results of simulations of DGPs that

allow for the identified breaks in the residual variances and identified or imposed breaks

in the autoregressive coefficients of the inflation equation. Our simulation methodology is

the same as described in section 5, except that the DGPs now incorporate shifts in the AR

coefficients.

In simulating models with breaks in the coefficients on lagged inflation, we use empirically–

identified dates and model estimates, (the latter) reported in Table 8. In particular, for the

core CPI, we use a break date of 1980:2, as identified by the significant (based on asymptotic

critical values) break tests discussed above. For the GDP price index, we simply impose

a break date of 1983:1, even though the formal tests fail to identify a significant break.

Our rationale for imposing the break is three-fold. First, break tests for the core PCE price

index, which represents more than half of the GDP price index, indicate a significant (again,

based on asymptotic critical values) break in 1983. Second, point estimates allowing a 1983

break in the GDP price index coefficients suggest a quantitatively large shift. Finally, our

simulations of models with breaks in the AR coefficients indicate that the finite–sample

power of the break test is at best modest. For example, in the GDP price index and CBO

gap case, simulations of the DGP with the 1983 break in the AR coefficients show that the

Andrews test for a break in the set of AR coefficients has empirical power of just 46% (using

the 10% asymptotic critical value). Note that, in the AR model for the output gap used

in the simulated DGPs, we treat the coefficients as stable and allow a single break in the

residual variance in 1984:1. Tests for the stability of the AR coefficients yield mixed results,

with some evidence of stability and some evidence of a break. With the evidence mixed,

we treat the gap equation coefficients as stable for simplicity. Tests for the stability of the

residual variance of the gap equation provide strong evidence of a break, in 1982 or 1984
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depending on the gap measure and test particulars. With the core CPI having a variance

break in 1984:1, for simplicity we impose the same break date on the output gap equation’s

residual variance.

The simulation results reported in Tables 9 and 10 show that breaks in the AR coeffi-

cients and residual variances cannot account for the sample forecast results. While intro-

ducing the breaks in the AR coefficients helps along some dimensions, it hurts along others.

With inflation measured using the GDP price index, introducing the breaks helps in the

sense that power is flat or declines a bit from 1977-84 to 1985-92 to 1993-01, while the stable

DGP simulations show power rising across subsamples. Nonetheless, the AR and residual

variance breaks fall far short of generating the kind of 1993-01 breakdown in forecast test

power seen so dramatically in the sample results for the CBO output gap. Moreover, with

the HP–filtered output gap, introducing the AR breaks fails to account for the large RMSE

ratios in the sample data including the late 1970s and early-to-mid 1980s: a number of the

sample RMSE ratios significantly exceed the upper range of the simulated 90% band. With

inflation measured by the core CPI, introducing the breaks helps account for some of the

RMSE ratios that exceed 1 in the sample, but fails to account for the sample pattern of

test results. As shown in Table 10, the simulated powers of the tests rise significantly from

1977-84 to 1985-92 to 1993-01. Yet, in the data, the predictive content of the CBO out-

put gap breaks down in 1993-01, while the predictive power of the HP–filtered gap suffers

breakdowns in both 1985-92 and 1993-01.

7.2 Breaks in both AR and output gap coefficients

With breaks in the lagged inflation coefficients and residual variances helping little, and with

the results in Clark and McCracken (2002b) highlighting the potential effects of breaks in

Granger–causal coefficients, we now turn to examining whether breaks in the output gap

coefficients can account for our sample results. As noted in the discussion of the break test

results in section 6, there is only weak direct evidence of breaks in the gap coefficients,

with the only rejections of stability occurring for the core CPI equations. We nonetheless

pursue the gap coefficient break route because (1) such breaks seem to be a potentially

good explanation for the sample forecasting results and (2) our simulations show that the

finite–sample power of tests for a break in the gap coefficient is often modest, a point we

return to below. In this section we report the results of simulations of DGPs that allow for

discrete breaks in not only the residual variances and autoregressive coefficients but also
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the output gap coefficient.

In light of the weak test results, often modest power of the break test, and well–known

imprecision in estimates of break dates, we have cast a wide net in trying to come up with

plausible breaks–based explanations for the sample results. We generally started out with

break dates corresponding to least squares estimates of the dates. We considered both

single breaks identified by Andrews tests and dual breaks identified with the Bai-Perron

methodology. In some cases, we also tried break dates suggested by results for another

model — for example, imposing on the GDP price index a break date actually identified

for the core PCE price index (again, the core PCE price index amounts to about half of

the GDP price index). Our choices have also been guided by a preference for a simple and

consistent set of breaks or explanations. For instance, in some cases, while a two–break

specification could explain the sample results nearly as well as a one–break specification,

we favor the one–break specification for its simplicity. As a particular example, for the core

CPI and CBO output gap model, Bai–Perron tests provide some evidence of two breaks in

the gap coefficient, which we date as 1973 and 1983. But we find that a single break in

1994 explains the sample results for this inflation-gap combination somewhat better and

also provides an explanation for the GDP price index–CBO gap and core PCE price index–

CBO gap results. For simplicity, we report results for just those break specifications that

best and most simply account for the sample patterns and explain in the discussion how we

arrived at the break specifications.

In light of this approach, we must stress that our results should simply be viewed as

general evidence that discrete breaks in the output gap coefficient can account for the sample

results, rather than as definitive explanations for the sample results. Breaks identification

is fraught with small sample problems (Diebold and Chen (1996) document size and power

problems in testing; a number of authors have noted the imprecision in dates estimates).

Moreover, as this discussion indicates, we have engaged in a considerable specification search

in trying to account for the sample results, trying a range of possible break dates and

reporting, in effect, the “best” results.

7.2.1 Break specifications

Table 11 reports Phillips curve estimates that impose the break dates that prove to best

explain our sample results on the predictive content of the output gap. The models also

incorporate the breaks in the AR coefficients considered above, 1983:1 in the case of the
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GDP price index and 1980:2 in the case of the core CPI. For models that use the CBO

output gap, the estimates in the table impose a single break in the gap coefficient in 1994:1.

We initially considered this date because, for the core PCE price index, it corresponded to

the least squares date estimate, at which the regression estimates indicated a quantitatively

large coefficient shift, despite the insignificance of the supWald statistic. In the case of the

GDP price index, Table 11’s regression estimates show that the gap coefficient declines only

slightly (and insignificantly) over 1994-01, but is very imprecisely estimated. Accounting

for the sample breakdown in predictive power in the 1990s requires a larger coefficient

break. With the standard error so large, we simply use a DGP with a gap coefficient of 0,

corresponding to an estimated regression with the coefficient restricted to 0 over 1994-01

(imposing the restriction leaves the other coefficients hardly changed from those reported

in the table). A DGP with a coefficient restricted to a small, positive value such as .04 over

1994-01 yields very similar simulation results. In the case of the core CPI, the regression

estimates show a much larger, more precisely estimated decline in the CBO gap coefficient.22

For consistency, we restrict the 1994-01 gap coefficient to 0 in the equation used in the

simulated DGP for the core CPI and CBO gap.

For models that use the HP–filtered output gap, the estimates in Table 11 impose a

single break in the gap coefficient corresponding to the least squares date estimate. In

particular, the estimates for the GDP price index impose a break in 1976:2, producing a

fall in the gap coefficient from .328 over 1958-76 to .119 over 1976-2001. The estimates

for the core CPI impose a break in 1983:1, one which the Andrews test results in Table

6 identified as statistically significant. The estimated gap coefficient falls from .359 before

the break to essentially 0 after the break, with a large standard error. But a reduction in

the coefficient to 0 turns out to be inconsistent with the sample results in which the gap

retains some predictive power for inflation in the late 1980s and 1990s. Given that, and

the imprecision of the regression estimate of the post 1983 coefficient, in our simulations

we impose a smaller break in the HP gap coefficient. In particular, in the simulated DGP

we restrict the 1983-01 coefficient to have a value of .10, with virtually no effect on the

restricted estimates of the other coefficients of the model.

Notwithstanding the considerable uncertainty surrounding the specification of break

dates, simulations of these DGPs yield break test results that suggest our break date con-
22In a result not shown in the table, the standard error on the -.120 change in the coefficient is .062.
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figurations to be reasonable. Consistent with the sample evidence that showed no significant

break in the gap coefficient in the GDP price index–CBO gap case, the break test appears

to have little power to identify the imposed break in 1994. Using 10% asymptotic critical

values, the simulated rejection rate is only 26%. But in the GDP price index–HP gap case,

the simulated power of the test is much higher — 73%, with an average date estimate of

1975:3.23 On the one hand, this rate is high enough that, if there were such a break, it

should have been evident in the test in the data. On the other hand, while the sample

test fails to indicate a significant break, the estimated regression shows a large coefficient

change. For the core CPI–based models, the simulated behavior of the break test is fully

consistent with the sample evidence. In the data, the Andrews test indicates a significant

break in the early 1980s. In simulations of a DGP with a 1994:1 break in the CBO output

gap coefficient, a break test applied to the gap coefficient rejects the null of stability with

a frequency of 61% in the case of the CBO gap, with an average break date estimate of

1978:2. Simulations of a DGP with a 1983:1 break in the HP gap coefficient put the power

of the break test at 90%, with an average estimated date of 1980:1.

7.2.2 Simulation evidence on the breaks explanation

Though not necessarily definitive explanations of the sample results presented in section 4,

the breaks we have identified or imposed on the output gap coefficients reasonably account

for the sample results. As shown in the simulation results reported in Tables 12 and 13,

the sample RMSE ratios all lay within the simulated 90% bands (in contrast, in the stable

DGP case, three of the four models had sample RMSEs outside the simulated bands). This

finding implies that each of the sample RMSE ratios is consistent with the distribution the

ratio would have if the true DGP had the imposed break in the output gap coefficient.

Moreover, in the two models using the CBO output gap, the break in the gap coefficient in

1994 induces a significant falloff in the power of the forecast–based tests for 1993-01, more

so for MSE-F than ENC-F, in line with the sample finding that ENC-F rejects but MSE-F

does not in the 1993-01 period. For example, as shown in Table 12, with inflation measured

by the GDP price index, the simulated power of the MSE-F test for 1–step ahead forecasts

declines from 79.7% in 1977-84 and 76.0% in 1985-92 to 46.9% in 1993-01, while the power

of the ENC-F test declines from 91.7% to 86.8% to 69.1% over the same periods. Table 13
23The average date estimate is a median of the distribution of least squares break date estimates generated

in the 1000 Monte Carlo simulations.
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shows that, with inflation measured by the core CPI, power rises from 1977-84 to 1985-92

and then falls sharply in 1993-01; the rise in power from 1977-84 to 1985-92 stems from the

sharp reduction in innovation variance in 1984 imposed in the DGP.

Similarly, in the two models using the HP output gap, the imposed breaks in the output

gap coefficient appear to largely account for the sample results. As reported in Table 12,

when inflation is measured by the GDP price index, the simulated power of the MSE-F test

is significantly higher for 1990-01 (66.6%) than 1977-89 (43.6%) and much higher for 1985-

92 (64.9%) and 1993-01 (62.2%) than 1977-84 (35.5%), in line with the sample results for

1–step forecasts that show MSE-F rejecting the null for only 1990-01, 1985-92, and 1993-01.

And, consistent with the sample results in which the ENC-F test rejects for all samples, the

simulated power of ENC-F is always at least 20 percentage points greater than the power of

MSE-F. The same basic characterization applies to the results for 4–step ahead forecasts.

For core CPI inflation, the simulation results in Table 13 show the power of MSE-F declining

sharply from 1977-84 (77.4% for τ = 1) to 1985-92 (48.0%) and modestly further in 1993-01

(35.0%), while the power of ENC-F is little changed, remaining above 90% across all 1–step

ahead subsamples. These simulation results for τ = 1 are consistent with the sample results

that show predictive power as gauged by MSE-F, but not ENC-F, falling off in 1985-92

and 1993-01. Admittedly, though, the DGP has a harder time accounting for the 4–step

ahead CPI forecasts. In the sample, the MSE-F test rejects the null for only the 1990-01

and 1993-01 periods, but the simulated power of the test is only about 20 percent over

these periods. Imposing a gap coefficient slightly larger than the value of .10 we use would

boost simulated power over the 1990s period, but would also boost power over the 1985-92

period. Ultimately, in the core CPI–HP gap case, the differences across forecast horizons

in the mix of rejections over some subsamples but not others evident in the sample results

prove difficult to fully explain.

8 Predictive Ability and Unmodeled Breaks

In this section we consider whether the asymptotic behavior of the tests of predictive ability

used above is consistent with our empirical and Monte Carlo evidence. In particular we are

interested in whether structural breaks in the residual variance, breaks in the parameters

associated with lagged inflation and breaks in the parameters associated with the output

gap can affect the power of tests for predictive ability. Since structural breaks are a major
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component of our argument we also consider whether structural breaks themselves can

distort the size and power of structural break tests. For example it may be that unmodeled

structural breaks in the regression parameters distort the power of tests for a break in the

residual variance. Similarly, breaks in the residual variance may distort the power of tests

for breaks in the regression parameters.

We analyze the power of tests for predictive ability and structural breaks by considering

the magnitudes of their noncentrality parameters. We begin with tests for structural breaks,

examining the power of a simple Chow test for a single shift in regression coefficients and a

simple Goldfeld-Quandt (hereafter, GQ) test for a single change in residual variance. Using

these simple tests for a known break point rather than the Andrews (1993) and Bai and

Perron (1998, 2003) generalizations used in our empirical and Monte Carlo work greatly

simplifies the analysis without affecting the basic conclusions. Similarly, in examining the

power of the usual in–sample test for whether the output gap has explanatory power, we

focus on the simple F–test (hereafter referred to as the GC test) rather than the one–sided

t–test actually used in our results above. Finally, we consider the power of the MSE-F

and ENC-F tests for, respectively, equal forecast accuracy and encompassing. For each

of these five test statistics we derive the noncentrality parameters implied by a particular

sequence of local alternatives and analyze the power of the test through its magnitude. The

local alternative allows for the output gap to have predictive content and for the regression

parameters and the residual variance to suffer structural breaks.

In this analysis, we extend the results of Clark and McCracken (2002b) in several ways.

Clark and McCracken (2002b) consider the limiting distributions of the GC, MSE-F, and

ENC-F tests under a general alternative that allows any number of discrete breaks in the

coefficient vector. The special case of a single break in the Granger–causal coefficient of

interest in a rudimentary DGP is used to simplify the results. In this paper, we focus on a

sequence of local alternatives featuring a single break and disentangle the effects of breaks in

the Granger–causal coefficient of interest from the effects of breaks in the other coefficients

of the model. This paper also extends Clark and McCracken (2002b) by examining how

breaks in one set of coefficients or the residual variance affect the size and power of tests

for breaks in the coefficients of interest and how breaks in the coefficients affect tests for

breaks in the residual variance.

Below we introduce some notation and give a broad overview regarding assumptions. In
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order to focus on the substantive issues of predictive ability we omit the detailed assumptions

and restrict attention to models designed for 1-step ahead prediction. Detailed assumptions

and proofs can be found in a not-for-publication technical appendix, Clark and McCracken

(2003).

8.1 Setup

Suppose we are interested in predicting the covariance stationary scalar yt+1 using a (k1 +

k2 = k × 1) vector of covariance stationary covariates x2,t = (x′1,t, x
′
22,t)

′. The problem

is that we are unsure whether x22,t is useful for prediction given the conditioning variable

x1,t. For this paper we have in mind that yt+1 is the change in inflation, x1,t is a vector

including an intercept and lagged changes in inflation and x22,t is a vector including lags of

the output gap. To test this hypothesis it is common to posit that yt+1 = x′2,tβ
∗
2 +ut+1 with

β∗2 = (β∗′1 , β∗′22)
′ and ut+1 a conditionally homoskedastic martingale difference sequence with

Eu2
t+1 = σ2

u and E(u2
t+1 − σ2

u)2 = V . A test is then constructed for determining whether

β∗22 = 0.

The standard F–test is constructed using the residual sum of squares implied by two

linear models, x′i,tβi, i = 1,2, each estimated by OLS, with model 1 excluding the output

gap variables included in model 2. We denote these residuals as v̂i,s+1 = ys+1 − x′i,sβ̂i,T ,

s = 1, . . . , T for models 1 and 2, respectively. In contrast, the out-of-sample tests (MSE-F

and ENC-F) are constructed using the forecast errors and their squares implied by the

same two linear models, each estimated by OLS. We denote these forecast errors as ûi,t+1 =

yt+1 − x′i,tβ̂i,t, t = R, . . . , T for models 1 and 2, respectively.

As mentioned above, in this section we are interested in the behavior of these three

tests of predictive ability in the non-standard environment in which there may be different

types of unmodeled structural change occurring in the background. To analyze this issue

we consider the data generating process

yt+1 = x′1,t(β
∗
1 + T−1/2∆β∗1 1(t ≥ TB))

+x′22,t(T
−1/2β∗22 + T−1/2∆β∗22 1(t ≥ TB))

+(1 + T−1/2 δ 1(t ≥ TB))ut+1

= x′2,tβ
∗
2,T + x′2,t∆β∗2,t,T + ut+1

= x′2,tβ
∗
2,t,T + ut+1, where TB < T denotes a break point.

By doing so we capture many non-standard conditions which may interact to distort

the power of the tests of predictive ability and for that matter, the tests for structural
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breaks. These non-standard conditions include breaks in the parameters associated with

the conditioning variables (T−1/2∆β∗1 1(t ≥ TB)), breaks in the parameters associated

with those variables whose predictive content is in doubt (T−1/2∆β∗22 1(t ≥ TB)), and

breaks in the residual variance (T−1/2 δ 1(t ≥ TB)). The term that captures the fact that

the output gap may have predictive ability is given by T−1/2β∗22 (and to a lesser extent

T−1/2∆β∗22 1(t ≥ TB)). Let the location of the break(s) TB and forecast sample split

parameter R (R represents the last observation used in estimating the model on which the

first forecast is based) satisfy limT→∞ TB/T = λB ∈ (0, 1) and limT→∞R/T = λ ∈ (0, 1).

For ease of presentation we restrict the timing of the breaks so they occur simultaneously.

Note that, for simplicity, we have omitted the subscript T that is associated with the

observable variables of the DGP. For the dependent variable yt+1, the (implicit) subscript

T captures the fact that y is being generated using parameter sequences that depend

upon the sample size. The predictors x1,t and x22,t have the (implicit) subscript T im-

plicit because we do not want to make the additional assumption that these variables

are strictly exogenous to the system. Such an assumption would eliminate the possibility

that lagged changes in inflation were used as predictors and the possibility that lagged

changes in inflation were useful for predicting the output gap. Ultimately, the depen-

dence of the observable variables and their marginal distributions on the sample size T

is not particularly important when the sample size is large. Because the models are lin-

ear and the test statistics are formed using sample averages of quadratics of the residuals

and forecast errors, we are able to take advantage of the concept of asymptotic mean

square stationarity as discussed in Hansen (2000). For example, when deriving the stan-

dard F–test we work with sample averages of quadratics of the observables. Consider

the probability limit of T−1 ∑T
s=1 x1,s,T x′1,s,T , where the appropriate subscript T made

implicit above and below has been added to clarify our point here. Under mild condi-

tions on the marginal distributions of these variables we obtain plim T−1 ∑T
s=1 x1,s,T x′1,s,T

= limT→∞ T−1 ∑T
s=1 E(x1,s,T x′1,s,T ). But for each s, limT→∞E(x1,s,T x′1,s,T ) = E(x1,sx

′
1,s)

and hence limT→∞ T−1 ∑T
s=1 E(x1,s,T x′1,s,T ) = limT→∞ T−1 ∑T

s=1 E(x1,sx
′
1,s). Since x1,s is

covariance stationary we find that plim T−1 ∑T
s=1 x1,s,T x′1,s,T = E(x1,sx

′
1,s) and we obtain

the result we would have obtained if the observables did not depend on T .
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8.2 Propositions

In the following 5 Propositions we derive the non-centrality parameters for each of the GC,

MSE-F, ENC-F, Chow and GQ test statistics. For each of these we use the notation and

data generating process described above. Since the possible presence of breaks is the central

focus of our discussion we begin with the Chow and GQ tests and then proceed to the tests

of predictive ability.

Consider the Chow test for a break in a single regression coefficient from the model

x′2,tβ2. To construct this test we estimate two models using OLS and compare the residual

sum of squares in the standard way. The restricted model is x′2,tβ2 while the unrestricted

model is x′3,tβ3, where x3,t = (x′2,t, wt 1(t ≥ TB))′ for wt a scalar element of x2,t and β3 =

(β′2, β33)′. Note that in this notation β∗33 takes the value of an element of ∆β∗1 if the test

is for a break in the parameter associated with an element of the conditioning variables

x1,t and takes the value of an element of ∆β∗22 if the test is for a break in the parameter

associated with an element of the predictive variables x22,t.

Proposition 1 (Chow test): The Chow test has noncentrality parameter

(1−λB)

(
[λB(∆β∗′2 Ex2,twt − β∗33Ew2

t ) + β∗33(Ew2
t − (1− λB)(Ex2,twt)′(Ex2,tx

′
2,t)

−1(Ex2,twt))]2

σ2
u(Ew2

t − (1− λB)(Ex2,twt)′(Ex2,tx′2,t)−1(Ex2,twt))

)
.

There are a number of interesting aspects of this term that are relevant to us. First note

that the noncentrality parameter is unaffected by breaks in the residual variance (embodied

in the coefficient δ in our notation). We interpret this to mean not that there can be no

effects on the power of the test but rather that those effects are of lower order importance

than other aspects of the data generating process. The most important item of interest

is that although the test can have power to detect breaks, whether or not that power is

large depends in a complicated way upon a number of factors. Of particular note is that

the test can be subject to both “spurious” and “hidden” breaks, because the noncentrality

parameter depends not only on the break in the regression parameter being tested (i.e.

β∗33 = 0) but also on all the other breaks that have occurred (those non-zero elements of

∆β∗2 not associated with wt). A spurious break occurs when β∗33 = 0 but the noncentrality

parameter is still positive. In this case the test will reject the null that there is no break in

the particular regression coefficient of interest even if there is none. A hidden break occurs
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when β∗33 6= 0 but other breaks interact to cause the noncentrality parameter to be zero (or

small). In this case the test fails to reject the null that there is no break in the particular

regression coefficient when there is one. It is for this reason that in Section 6 we note that

in our empirical work we implement our (Andrews) break tests for a given set of parameters

both with and without conditioning on breaks in the other regression parameters.

Proposition 2 (Goldfeld-Quandt): The GQ test has noncentrality parameter 4(δσ2
u)2/V .

The noncentrality parameter associated with the Goldfeld-Quandt test isn’t nearly as

complex as that for the Chow test. In particular whether or not it is non-zero is primarily

determined by the magnitude of the variance break parameter δ. For our purposes this is

important only in so far as we can express some confidence that our finding of breaks in

the residual variance is not an artifact of unmodeled breaks in the regression parameters.

Proposition 3 (GC test): Let A = Ex2,tx
′
2,t − Ex2,tx

′
1,t(Ex1,tx

′
1,t)

−1Ex1,tx
′
2,t. The

GC test has noncentrality parameter [β∗22 + (1− λB)∆β∗22]
′A[β∗22 + (1− λB)∆β∗22]/σ2

u.

Proposition 3 gives us our first glimpse into the asymptotic power of tests of predictive

ability. As was the case for the Chow test, the noncentrality parameter provides a number of

interesting items of note. In particular we find that when using the standard in-sample test

of predictive ability, breaks in the parameters associated with the conditioning variables and

breaks in the residual variance are asymptotically irrelevant. Again we interpret this not

as meaning that such breaks can have no effect but rather that their effect is of lower order

importance than other aspects of the data generating process. Even so, this is important for

our analysis of the predictive content of the output gap since our empirical work indicates

the potential for breaks in the parameters associated with the lagged changes in inflation

and the residual variance. The absence of a dependence of the Granger causality test’s

noncentrality parameter on ∆β∗1 or δ lends support to our argument that the out-of-sample

breakdown in the predictive content of the output gap for inflation is not driven by breaks

in the parameters associated with the conditioning variables or the residual variance.

It is also important to note that structural change in the parameters associated with

the output gap would likely not change whether the in-sample F–test indicated predictive
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ability. So long as β∗22 + (1 − λB)∆β∗22 6= 0 — that is, the weighted average of the pre–

and post–break gap coefficients is non-zero — the F-test will reject with probability one in

large samples. This implies that unmodeled breaks in the parameters associated with the

output gap are unlikely to have an effect on whether or not the F–test rejects. Again this is

important for our empirical analysis since we find that although graphically there appears

to be substantial variation in the parameter estimates associated with the output gap, in

most cases this variation is insufficient to lead standard break tests to reject the null of no

structural change. We interpret this result as indicating that the output gap does contain

predictive content for inflation though perhaps not on a consistent basis. This possibility

is made clearer using the two out-of-sample tests of predictive ability.

Proposition 4 (MSE-F): Let A = Ex2,tx
′
2,t − Ex2,tx

′
1,t(Ex1,tx

′
1,t)

−1Ex1,tx
′
2,t. (a)

If TB < R, MSE-F has noncentrality parameter (1 − λ){β∗′22Aβ∗22 + 2β∗′22A∆β∗22 + (1 −
λ2

B/λ)∆β∗′22A∆β∗22}/σ2
u, (b) If TB ≥ R, MSE-F has noncentrality parameter {(1−λ)β∗′22Aβ∗22+

2(1− λB)β∗′22A∆β∗22 + (1− λB)2∆β∗′22A∆β∗22}/σ2
u.

Proposition 5 (ENC-F): Let A = Ex2,tx
′
2,t − Ex2,tx

′
1,t(Ex1,tx

′
1,t)

−1Ex1,tx
′
2,t. (a) If

TB < R, ENC-F has noncentrality parameter {(1−λ)β∗′22Aβ∗22+(2(1−λ)+λB ln λ)β∗′22A∆β∗22+

(1 − λ + λB lnλ)∆β∗′22A∆β∗22}/σ2
u, (b) If TB ≥ R, ENC-F has noncentrality parameter

{(1−λ)β∗′22Aβ∗22 + (2(1−λB) + λB lnλB)β∗′22A∆β∗22 + (1−λB + λB lnλB)∆β∗′22A∆β∗22}/σ2
u.

Propositions 4 and 5 provide the noncentrality parameters associated with the two out-

of-sample tests of predictive ability. As was the case for the in–sample GC test, we find

that breaks in the parameters associated with the conditioning variables and breaks in the

residual variance are asymptotically irrelevant. Again we interpret this not as meaning that

such breaks can have no effect but rather that their effect is of lower order importance than

other aspects of the data generating process. Even so, the absence of a dependence of the

noncentrality parameter on ∆β∗1 or δ lends support to our argument that the out-of-sample

breakdown in the predictive content of the output gap for inflation is not driven by breaks

in the parameters associated with the conditioning variables or the residual variance.

What makes these noncentrality parameters most interesting, relative to that for the

GC test, is that they can take both positive and negative values. Recall that the upper tail
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of the null distribution of these tests is used as the critical region (as discussed in section

3.3). This is a natural choice since if β∗22 6= 0 and ∆β∗22 = 0 (so the DGP is stable and

includes the output gap as a regressor), both noncentrality parameters are strictly positive.

This argument can fail when there are structural breaks. For a given value of β∗22, structural

breaks (i.e. ∆β∗22 6= 0) can occur that cause either of the noncentrality parameters to be

negative and hence we would “fail to reject” the null that the output gap has no predictive

ability for inflation. This implies that unmodeled breaks in the parameters associated with

the output gap can very well be an explanation for the finding of in-sample but not out-of-

sample predictive ability of the output gap for inflation.

9 Conclusions

In this paper we have sought to explain how the seemingly good in–sample fits of Phillips

curve models fail to translate into consistently good out-of-sample forecast performance.

We focus on models relating inflation to the output gap because this particular formula-

tion seems to have garnered the greatest interest in recent years, in part because of the

development of dynamic, stochastic, general equilibrium models that yield a Phillips curve

formulation relating inflation to expected future inflation and the output gap.

After presenting our own sample forecast evidence for a range of inflation and output

gap measures, we use Monte Carlo simulations to examine the extent to which the in–

sample and out–of–sample evidence can be explained by the potentially lower power of

out–of–sample metrics in stable models or instabilities in the model. In particular, we

compare our sample estimates to results of Monte Carlo simulations of empirically–based

data–generating processes that (i) assume stability or (ii) allow various types of discrete

breaks in the model parameters. The imposed shifts in the DGPs are based on the results

of extensive break test analysis applied to the empirical models in question. The break tests

provide strong evidence of shifts in the residual variances of the inflation equations, modest

evidence of shifts in the AR parameters of the inflation equations, and only very limited

evidence of shifts in the output gap coefficients.

Our simulation results show that while simple power differences associated with stable

models can account for some part of the relatively weak out–of–sample performance of

the Phillips curve, most of the weakness is attributable to power differences created by

instabilities in the coefficients on the output gap. Even though formal break tests yield
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little evidence of such breaks, the simulations show the power of the tests is typically only

modest. The types of breaks for which the formal test evidence is stronger — breaks in

residual variances and the AR parameters — generally fail to generate a breakdown in the

predictive content of the output gap.

Building on Clark and McCracken (2002b), we conclude the paper by showing analyt-

ically that breaks in the output gap coefficients, but not breaks in residual variances or

AR coefficients, lead to a breakdown in the power of tests of equal forecast accuracy and

forecast encompassing. We do so using a local alternatives framework, like that of Hansen

(2000).

In light of our findings, an important outstanding question — beyond the scope of this

paper — is, what forecast methods work well in the face of instability? One approach,

considered in such studies as Stock and Watson (1996), Canova (2002), and Marcellino

(2002), is to allow time-varying parameters. But consistent with the mixed existing evidence

on the efficacy of TVP, we have found that allowing TVP fails to improve the forecast

performance of the Phillips curve models considered in this paper. Alternatively, based

on a wide battery of results, Stock and Watson (2001, 2003) have suggested that forecast

combination — a particular form of shrinkage — may be a way of overcoming instabilities.

For a small number of inflation models relying on just the output gap, though, we have

found that forecast combination offers some improvement, but not enough to consistently

and significantly improve on the simple AR model benchmark forecast. For this combination

analysis, we constructed the average of forecasts generated with a total of six measures of

the output gap, based on the CBO’s potential output series, a quadratic trend in output

allowing a trend break in 1973, and trend output estimated with Watson’s (1986) model and

the Hodrick and Prescott (1997), Baxter and King (1999), and Christiano and Fitzgerald

(2003) filters. Finally, Pesaran and Timmermann (2002) have proposed a two-step method

of working backward in time to identify the most recent break and then using just the

post-break data to estimate a model and forecast. With such an approach, though, it could

well be breaks in its coefficient cause the output gap to have no forecasting power.
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Table 1: Full–Sample Model Estimates

Dependent variable: π
(τ)
t+τ − πt

Sample: 1958:3+τ − 1 to 2001:4

GDP price index
CBO Gap HP Gap
coef. (s.e.) coef. (s.e.)

τ = 1 τ = 4 τ = 1 τ = 4
constant .023 (.074) .076 (.111) -.012 (.074) .008 (.116)
∆πt -.332 (.093) -.439 (.059) -.338 (.090) -.432 (.067)
∆πt−1 -.279 (.074) -.294 (.061) -.288 (.074) -.290 (.080)
gapt .128 (.030) .223 (.056) .223 (.053) .341 (.101)
R̄2 .154 .318 .165 .284

Core CPI
CBO Gap HP Gap
coef. (s.e.) coef. (s.e.)

τ = 1 τ = 4 τ = 1 τ = 4
constant .051 (.094) .093 (.155) .009 (.098) .014 (.153)
∆πt -.392 (.135) -.482 (.108) -.423 (.134) -.515 (.098)
∆πt−1 -.292 (.119) -.311 (.080) -.327 (.120) -.350 (.084)
gapt .158 (.052) .261 (.085) .304 (.083) .450 (.147)
R̄2 .167 .272 .189 .280

Notes:
1. As indicated in equation (1), π

(τ)
t ≡ (400/τ) ∗ ln(pt/pt−τ ).

2. The reported standard errors are robust with respect to heteroskedasticity.
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Table 2: Sample Forecasting Results for the GDP Price Index

CBO Gap HP Gap
RMSEs, τ = 1 RMSEs, τ = 1

77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01
RMSE ratio 0.973 0.976 0.968 0.973 0.947 0.995 1.011 1.072 0.923 1.092 0.969 0.937
RMSE,AR 0.884 0.924 0.839 0.989 0.840 0.822 0.884 0.924 0.839 0.989 0.840 0.822

Bootstrapped p-values of tests, τ = 1 Bootstrapped p-values of tests, τ = 1
MSE-F 0.002 0.021 0.004 0.031 0.004 0.170 0.834 0.998 0.000 0.994 0.022 0.000
MSE-t 0.039 0.136 0.088 0.172 0.051 0.275 0.274 0.764 0.010 0.758 0.148 0.040
ENC-F 0.000 0.001 0.003 0.000 0.004 0.021 0.000 0.018 0.000 0.025 0.007 0.000
ENC-t 0.001 0.026 0.031 0.026 0.032 0.138 0.026 0.152 0.006 0.165 0.061 0.028

RMSEs, τ = 4 RMSEs, τ = 4
77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01

RMSE ratio 0.905 0.894 0.946 0.897 0.841 1.070 1.082 1.115 0.946 1.108 1.079 0.922
RMSE,AR 0.890 1.115 0.575 1.313 0.757 0.484 0.890 1.115 0.575 1.313 0.757 0.484

Bootstrapped p-values of tests, τ = 4 Bootstrapped p-values of tests, τ = 4
MSE-F 0.001 0.010 0.032 0.023 0.005 0.904 0.984 0.970 0.027 0.927 0.932 0.017
MSE-t 0.069 0.137 0.190 0.196 0.053 0.474 0.631 0.801 0.155 0.700 0.538 0.095
ENC-F 0.000 0.001 0.000 0.003 0.005 0.003 0.003 0.022 0.002 0.030 0.083 0.002
ENC-t 0.030 0.082 0.017 0.098 0.040 0.052 0.050 0.112 0.017 0.115 0.237 0.009

Notes:
1. The RMSE ratio is the ratio of the RMSE of the model including the output gap (equation (1)) to the RMSE of the AR
model (equation (2)), which is reported in the row labeled RMSE,AR. τ refers to the forecast horizon.
2. The test statistics MSE-F, MSE-t, ENC-F, and ENC-t are defined in section 3.2. The bootstrap procedure used to
construct p–values is detailed in section 3.3.
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Table 3: Sample Forecasting Results for the Core CPI

CBO Gap HP Gap
RMSEs, τ = 1 RMSEs, τ = 1

77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01
RMSE ratio 0.967 0.966 0.976 0.964 0.960 1.105 0.958 0.960 0.926 0.951 1.025 1.009
RMSE,AR 1.527 2.055 0.534 2.567 0.740 0.364 1.527 2.055 0.534 2.567 0.740 0.364

Bootstrapped p-values of tests, τ = 1 Bootstrapped p-values of tests, τ = 1
MSE-F 0.001 0.008 0.019 0.015 0.011 0.999 0.000 0.005 0.000 0.007 0.908 0.746
MSE-t 0.048 0.082 0.207 0.098 0.127 0.641 0.041 0.084 0.082 0.084 0.411 0.335
ENC-F 0.002 0.005 0.000 0.012 0.003 0.001 0.000 0.002 0.000 0.007 0.010 0.000
ENC-t 0.040 0.068 0.023 0.062 0.071 0.100 0.027 0.051 0.008 0.054 0.137 0.022

RMSEs, τ = 4 RMSEs, τ = 4
77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01

RMSE ratio 0.953 0.954 0.930 0.955 0.787 1.338 0.998 1.006 0.870 0.978 1.230 0.925
RMSE,AR 1.416 1.925 0.517 2.465 0.673 0.325 1.416 1.925 0.517 2.465 0.673 0.325

Bootstrapped p-values of tests, τ = 4 Bootstrapped p-values of tests, τ = 4
MSE-F 0.021 0.059 0.021 0.096 0.001 0.998 0.168 0.384 0.002 0.165 0.990 0.024
MSE-t 0.129 0.192 0.222 0.236 0.072 0.807 0.185 0.293 0.076 0.258 0.682 0.200
ENC-F 0.003 0.013 0.000 0.026 0.001 0.004 0.003 0.025 0.000 0.033 0.134 0.000
ENC-t 0.086 0.136 0.026 0.159 0.067 0.058 0.057 0.117 0.012 0.062 0.368 0.002

Notes:
1. See the notes to Table 2.
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Table 4: Simulated Power Results from Stable DGPs for the GDP Price Index

CBO Gap
τ = 1 τ = 4

77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01
MSE-F .908 .756 .792 .667 .695 .737 .877 .714 .752 .635 .656 .722
MSE-t .870 .635 .598 .498 .481 .508 .811 .573 .556 .447 .420 .458
ENC-F .966 .883 .921 .788 .844 .897 .949 .835 .898 .739 .803 .875
ENC-t .948 .812 .815 .672 .673 .736 .923 .714 .750 .560 .563 .649
RMSE ratio results:
median .962 .967 .964 .968 .967 .965 .902 .913 .900 .913 .915 .902
prob.<1 .927 .834 .856 .761 .767 .814 .902 .801 .815 .763 .763 .796
5%ile .903 .890 .879 .874 .860 .870 .754 .718 .711 .681 .662 .693
95%ile 1.005 1.025 1.024 1.044 1.051 1.030 1.025 1.098 1.080 1.181 1.158 1.114

full-sample t-test .990 .984

HP Gap
τ = 1 τ = 4

77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01
MSE-F .951 .831 .813 .730 .753 .763 .900 .768 .757 .664 .722 .714
MSE-t .910 .705 .627 .563 .519 .510 .831 .598 .549 .447 .458 .430
ENC-F .988 .948 .954 .874 .908 .933 .964 .873 .910 .782 .852 .866
ENC-t .983 .880 .842 .744 .751 .764 .937 .739 .756 .573 .639 .633
RMSE ratio results:
median .955 .957 .954 .955 .955 .957 .912 .918 .911 .916 .908 .914
prob.<1 .959 .871 .861 .811 .825 .833 .931 .852 .836 .787 .813 .800
5%ile .898 .883 .874 .853 .860 .865 .793 .761 .753 .713 .738 .732
95%ile .996 1.017 1.021 1.037 1.035 1.032 1.006 1.064 1.059 1.115 1.101 1.099

full-sample t-test .998 .990

Notes:
1. The data generating process is based on empirical estimates of equation (1) for the forecast horizon τ = 1 and a simple AR
model for the output gap. The inflation equations are given in Table 1. All of the DGPs suppose stability in the coefficients
and residual variances. In each of these “true” models, the output gap has predictive power for inflation, in the sense of
having a significant regression coefficient.

2. For each artificial data set, forecasts of π
(τ)
t+τ

− πt are formed recursively using estimates of equations (1) and (2). These

forecasts are then used to form the indicated test statistics, defined in Section 3.2, as well as the ratio of the RMSE of the
model including the output gap to the RMSE of the AR model. In each Monte Carlo replication, the simulated test statistics
are compared against bootstrapped null critical values (with a significance level of 10%), computed using the procedure
described in section 3.3.
3. For the test statistics of interest, the table reports the percentage of Monte Carlo simulations in which the null of equal MSE
or forecast encompassing is rejected. For the RMSE ratio, the table reports several summary statistics for the distribution of
the ratio in the Monte Carlo trials: the median; the percent of the Monte Carlo ratios that are less than 1 (labeled prob.<1);
and a 90% interval (given by the 5%ile and 95%ile figures). Full-sample t-test refers to the usual t–test of the null that the
output gap coefficient is less than or equal to zero.
4. The number of Monte Carlo simulations is 1000; the number of bootstrap draws is 2000.
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Table 5: Simulated Power Results from Stable DGPs for the Core CPI

CBO Gap
τ = 1 τ = 4

77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01
MSE-F .858 .739 .712 .625 .635 .637 .827 .674 .695 .548 .620 .629
MSE-t .810 .616 .535 .455 .453 .442 .753 .528 .476 .387 .410 .388
ENC-F .931 .842 .854 .739 .780 .819 .916 .788 .837 .664 .756 .783
ENC-t .913 .767 .730 .619 .612 .631 .878 .663 .662 .498 .523 .540
RMSE ratio results:
median .970 .970 .972 .975 .972 .974 .919 .930 .927 .938 .929 .932
prob.<1 .890 .804 .783 .733 .746 .751 .866 .787 .786 .725 .729 .757
5%ile .912 .897 .889 .880 .876 .883 .788 .756 .750 .722 .709 .724
95%ile 1.010 1.023 1.030 1.043 1.044 1.037 1.033 1.079 1.096 1.148 1.136 1.106

full-sample t-test .978 .966

HP Gap
τ = 1 τ = 4

77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01
MSE-F .937 .823 .836 .723 .759 .776 .889 .741 .765 .633 .697 .711
MSE-t .887 .702 .636 .541 .548 .514 .823 .575 .523 .432 .437 .437
ENC-F .987 .941 .945 .860 .905 .928 .959 .856 .913 .760 .837 .870
ENC-t .975 .877 .872 .739 .757 .785 .925 .731 .746 .542 .584 .624
RMSE ratio results:
median .953 .957 .954 .958 .954 .956 .917 .921 .916 .926 .912 .915
prob.<1 .954 .869 .874 .808 .827 .828 .923 .827 .838 .756 .798 .793
5%ile .900 .873 .877 .852 .863 .865 .803 .758 .762 .720 .720 .745
95%ile .999 1.018 1.024 1.046 1.034 1.031 1.012 1.066 1.059 1.125 1.106 1.097

full-sample t-test .997 .993

Notes:
1. See the notes to Table 4.
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Table 6: Break Test Results, τ = 1
(p–values and break dates)

GDP price index Core CPI Core PCE index
CBO Gap HP Gap CBO Gap HP Gap CBO Gap HP Gap

p-values date p-values date p-values date p-values date p-values date p-values date
asy bs asy bs asy bs asy bs asy bs asy bs

constant .74 .75 95:1 .20 .22 74:4 .41 .46 72:4 .39 .41 80:1 .94 .92 72:4 .36 .38 74:3
∆π coefs. .46 .61 72:3 .57 .71 72:3 .02 .12 80:2 .03 .14 80:1 .06 .16 83:2 .07 .16 83:2
gapt−1 .59 .72 76:2 .27 .38 76:2 .05 .07 83:1 .01 .01 83:1 .73 .81 94:1 .33 .49 75:2
σ2: homo. .24 81:2 .18 82:1 .01 84:1 .02 83:4 .26 70:3 .26 70:3
σ2: hetero. .00 .00 .00 .00 .00 .00

Notes:
1. The table reports p–values for Andrews’ (1993) supWald test applied to the coefficients and residual variance of estimates
of equation (1) with τ = 1 (regression estimates supposing stability are given in Table 1), as well as the supWald date. Tests
are applied separately to the intercept, the set of coefficients on lagged inflation, the coefficient on the output gap, and the
residual variance. In testing the stability of a given parameter or set of coefficients, the other coefficients in the model are
assumed stable. Asymptotic p–values — labeled with asy in the table — are computed using Hansen’s (1997) approximation.
The table also provides p–values computed with Hansen’s (2000) heteroskedastic bootstrap, labeled with bs in the table. The
date entries in the table are least squares estimates of break dates (each is the date at which the residual sum of squares is
minimized).
2. The Wald tests are computed with heteroskedasticity–robust variance estimates. In the case of the tests for the residual
variance, the table reports results both allowing for heteroskedasticity and imposing homoskedasticity.
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Table 7: Tests of Multiple Breaks in Residual Variances, τ = 1

GDP price index Core CPI
CBO Gap HP Gap CBO Gap HP Gap

SupF(1) 5.323 5.317 11.451 ** 9.741 **
SupF(2) 15.517 *** 12.784 *** 20.945 *** 17.051 ***
SupF(3) 10.652 *** 9.009 *** 14.006 *** 11.407 ***
UDmax 15.517 *** 12.784 *** 20.945 *** 17.051 ***
WDmax(1%) 20.374 *** 16.786 *** 27.501 *** 22.388 ***
SupF(2|1) 9.332 * 8.353 15.363 *** 17.309 ***
SupF(3|2) 1.614 2.815 14.962 *** 20.373 ***

Notes:
1. The table reports the results of Bai and Perron (1998, 2003) tests for multiple breaks applied to the residual variances of
the inflation equation (1) with τ = 1. The squared regression residuals on which the tests are based are taken from models
that impose the breaks in the regression coefficients described in section 7.2.
2. The SupF(i) statistics are tests of the null of no breaks against the alternative of i breaks. The UDmax and WDmax
statistics are general tests for the presence of some number of breaks. The SupF(i+1|i) statistics are tests of the null of i
breaks against the alternative of i +1 breaks. ***, **, and * denote statistics that are statistically significant at the 1%, 5%,
and 10% levels, respectively.
3. The reported test statistics use the HAC correction built into the Bai–Perron computer code.
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Table 8: Estimates of Models with Breaks in AR Coefficients
Dependent variable: ∆πt

Sample: 1958:3 to 2001:4

GDP price index Core CPI
coef. (s.e.) coef. (s.e.)

CBO Gap HP Gap CBO Gap HP Gap
constant .017 (.073) -.016 (.073) -.015 (.088) -.052 (.095)
∆πt−1, t ≤ BPπ -.259 (.118) -.268 (.115) -.107 (.145) -.151 (.143)
∆πt−2, t ≤ BPπ -.259 (.090) -.269 (.093) -.038 (.140) -.085 (.135)
∆πt−1, t > BPπ -.548 (.098) -.543 (.100) -.661 (.142) -.659 (.149)
∆πt−2, t > BPπ -.371 (.110) -.370 (.110) -.538 (.154) -.542 (.154)
gapt−1 .126 (.030) .218 (.052) .158 (.052) .275 (.077)
R̄2 .159 .169 .261 .266

Notes:
1. The table reports estimates of equation (1) allowing a single break in the set of coefficients on lagged inflation. The break
date BPπ is specified as 1983:1 for the GDP price index and 1980:2 for the core CPI.
2. The reported standard errors are robust with respect to heteroskedasticity.
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Table 9: Simulated Power Results for the GDP Price Index with Breaks in AR Coefs.

CBO Gap
τ = 1 τ = 4

77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01
MSE-F .930 .856 .818 .789 .753 .771 .866 .789 .720 .728 .661 .689
MSE-t .895 .761 .650 .605 .552 .551 .808 .642 .534 .501 .443 .469
ENC-F .980 .953 .920 .911 .863 .881 .961 .915 .863 .857 .812 .827
ENC-t .975 .905 .809 .808 .694 .723 .935 .817 .737 .679 .617 .645
RMSE ratio results:
median .958 .953 .968 .945 .967 .969 .894 .876 .919 .862 .919 .921
prob.<1 .955 .898 .889 .855 .855 .852 .897 .842 .801 .815 .770 .795
5%ile .897 .861 .906 .828 .890 .903 .727 .651 .728 .605 .684 .720
95%ile .999 1.015 1.011 1.035 1.022 1.020 1.041 1.076 1.083 1.143 1.127 1.104

full-sample t-test .990 .971

HP Gap
τ = 1 τ = 4

77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01
MSE-F .957 .883 .837 .810 .809 .762 .879 .785 .704 .709 .658 .659
MSE-t .930 .790 .680 .616 .596 .575 .803 .602 .511 .457 .448 .437
ENC-F .983 .966 .932 .947 .902 .900 .961 .919 .864 .872 .820 .806
ENC-t .977 .917 .826 .842 .746 .716 .934 .800 .698 .630 .611 .604
RMSE ratio results:
median .953 .945 .963 .937 .961 .963 .913 .898 .938 .885 .926 .938
prob.<1 .975 .917 .890 .862 .898 .838 .907 .853 .789 .815 .772 .761
5%ile .900 .865 .912 .822 .897 .905 .784 .720 .796 .656 .757 .776
95%ile .994 1.009 1.014 1.034 1.015 1.023 1.020 1.065 1.085 1.123 1.113 1.101

full-sample t-test .994 .977

Notes:
1. The data generating process is based on empirical estimates of equation (1) for the forecast horizon τ = 1 and a simple AR
model for the output gap, allowing breaks in the coefficients on lagged inflation in the inflation equation and in the residual
variance–covariance matrix. The break in the inflation coefficients occurs in 1983:1. The residual variance of the inflation
equation has breaks in 1970:2 and 1976:2; the variance of the gap equation has a break in 1984:1. The inflation equations
are given in Table 8. In each of these “true” models, the output gap has predictive power for inflation, in the sense of having
a significant regression coefficient.

2. For each artificial data set, forecasts of π
(τ)
t+τ

− πt are formed recursively using estimates of equations (1) and (2). These

forecasts are then used to form the indicated test statistics, defined in Section 3.2, as well as the ratio of the RMSE of the
model including the output gap to the RMSE of the AR model. In each Monte Carlo replication, the simulated test statistics
are compared against bootstrapped null critical values (with a significance level of 10%), computed using the procedure
described in section 3.3.
3. For the test statistics of interest, the table reports the percentage of Monte Carlo simulations in which the null of equal MSE
or forecast encompassing is rejected. For the RMSE ratio, the table reports several summary statistics for the distribution of
the ratio in the Monte Carlo trials: the median; the percent of the Monte Carlo ratios that are less than 1 (labeled prob.<1);
and a 90% interval (given by the 5%ile and 95%ile figures). Full-sample t-test refers to the usual t–test of the null that the
output gap coefficient is less than or equal to zero.
4. The number of Monte Carlo simulations is 1000; the number of bootstrap draws is 2000.
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Table 10: Simulated Power Results for the Core CPI with Breaks in AR Coefs.

CBO Gap
τ = 1 τ = 4

77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01
MSE-F .828 .716 .852 .619 .765 .821 .735 .631 .716 .518 .661 .702
MSE-t .766 .607 .672 .488 .525 .596 .654 .464 .553 .362 .435 .498
ENC-F .889 .773 .976 .672 .916 .975 .868 .744 .951 .626 .895 .934
ENC-t .806 .660 .921 .573 .760 .875 .784 .643 .872 .533 .679 .787
RMSE ratio results:
median .967 .974 .937 .976 .953 .934 .938 .948 .868 .954 .900 .862
prob.<1 .867 .808 .871 .780 .829 .847 .779 .727 .761 .700 .728 .754
5%ile .899 .897 .787 .901 .811 .770 .765 .754 .583 .757 .582 .545
95%ile 1.011 1.018 1.044 1.022 1.056 1.058 1.073 1.100 1.274 1.119 1.263 1.314

full-sample t-test .976 .957

HP Gap
τ = 1 τ = 4

77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01
MSE-F .849 .764 .848 .695 .804 .824 .731 .647 .670 .551 .667 .643
MSE-t .776 .635 .643 .513 .557 .543 .632 .492 .417 .370 .394 .353
ENC-F .921 .849 .993 .772 .955 .986 .880 .784 .961 .674 .909 .944
ENC-t .846 .708 .952 .630 .794 .918 .798 .668 .851 .531 .670 .773
RMSE ratio results:
median .965 .968 .937 .972 .947 .931 .945 .948 .914 .953 .902 .915
prob.<1 .884 .827 .878 .799 .858 .846 .771 .738 .717 .712 .748 .693
5%ile .899 .898 .835 .897 .859 .810 .810 .796 .703 .788 .699 .664
95%ile 1.012 1.017 1.035 1.024 1.040 1.065 1.069 1.086 1.198 1.100 1.209 1.276

full-sample t-test .988 .963

Notes:
1. The data generating process is based on empirical estimates of equation (1) for the forecast horizon τ = 1 and a simple AR
model for the output gap, allowing breaks in the coefficients on lagged inflation in the inflation equation and in the residual
variance–covariance matrix. The break in the inflation coefficients occurs in 1980:2. The residual variance of the inflation
equation has breaks in 1974:1, 1984:1, and 1991:4; the variance of the gap equation has a break in 1984:1. The inflation
equations are given in Table 8. In each of these “true” models, the output gap has predictive power for inflation, in the sense
of having a significant regression coefficient.
2. See notes 2-4 of Table 9.

47



Table 11: Estimates of Models with Breaks in All Slope Coefficients
Dependent variable: ∆πt

Sample: 1958:3 to 2001:4

GDP price index Core CPI
coef. (s.e.) coef. (s.e.)

CBO Gap HP Gap CBO Gap HP Gap
constant .021 (.074) -.003 (.071) -.002 (.088) -.039 (.094)
∆πt−1, t ≤ BPπ -.260 (.118) -.293 (.114) -.111 (.145) -.187 (.142)
∆πt−2, t ≤ BPπ -.260 (.090) -.298 (.090) -.043 (.140) -.126 (.131)
∆πt−1, t > BPπ -.548 (.097) -.520 (.100) -.662 (.142) -.676 (.141)
∆πt−2, t > BPπ -.370 (.109) -.336 (.106) -.540 (.154) -.532 (.145)
gapt−1, t ≤ BPy .128 (.031) .328 (.085) .165 (.055) .359 (.080)
gapt−1, t > BPy .096 (.113) .119 (.057) .045 (.044) .005 (.122)
R̄2 .154 .187 .259 .285

Notes:
1. The table reports estimates of equation (1) allowing a single break in the set of coefficients on lagged inflation and a single
break in the coefficient on the output gap. The inflation coefficient break date BPπ is specified as 1983:1 for the GDP price
index and 1980:2 for the core CPI. The output gap coefficient break date BPy is specified as: 1994:1 for models including
the CBO output gap; 1976:2 for the model relating the GDP price index to the HP output gap; and 1983:1 for the model
relating core CPI inflation to the HP gap.
2. The reported standard errors are robust with respect to heteroskedasticity.
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Table 12: Simulated Power Results for the GDP Price Index with Breaks in All Slope Coefs.

CBO Gap
τ = 1 τ = 4

77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01
MSE-F .876 .861 .565 .797 .760 .469 .804 .791 .495 .733 .671 .415
MSE-t .820 .765 .409 .610 .557 .272 .715 .644 .314 .503 .442 .246
ENC-F .968 .954 .791 .917 .868 .691 .947 .922 .724 .865 .815 .628
ENC-t .948 .911 .583 .815 .699 .435 .903 .821 .532 .687 .630 .420
RMSE ratio results:
median .967 .952 .987 .943 .966 .992 .916 .873 .975 .859 .916 .993
prob.<1 .902 .900 .681 .859 .856 .611 .846 .846 .599 .818 .775 .523
5%ile .905 .858 .929 .825 .889 .931 .743 .648 .789 .602 .681 .787
95%ile 1.007 1.015 1.038 1.035 1.022 1.062 1.070 1.074 1.181 1.139 1.127 1.237

full-sample t-test .983 .961

HP Gap
τ = 1 τ = 4

77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01
MSE-F .590 .436 .666 .355 .649 .622 .404 .355 .520 .329 .489 .484
MSE-t .453 .254 .441 .152 .398 .368 .297 .203 .312 .133 .265 .275
ENC-F .962 .917 .882 .869 .861 .821 .914 .854 .781 .765 .754 .742
ENC-t .902 .775 .701 .623 .625 .580 .791 .613 .583 .478 .522 .494
RMSE ratio results:
median .990 1.000 .978 1.014 .971 .978 1.010 1.034 .972 1.057 .970 .975
prob.<1 .634 .498 .740 .423 .750 .694 .463 .420 .627 .402 .595 .612
5%ile .929 .908 .919 .883 .905 .910 .853 .788 .832 .737 .776 .811
95%ile 1.049 1.101 1.044 1.191 1.046 1.058 1.193 1.329 1.160 1.489 1.219 1.181

full-sample t-test .998 .989

Notes:
1. The data generating process is based on empirical estimates of equation (1) for the forecast horizon τ = 1 and a simple
AR model for the output gap, allowing breaks in the coefficients on lagged inflation in the inflation equation, the output
gap, and the residual variance–covariance matrix. The break in the inflation coefficients occurs in 1983:1. The break in the
output gap coefficient occurs in 1994:1 in the case of the CBO gap and in 1976:2 in the case of the HP gap. The residual
variance of the inflation equation has breaks in 1970:2 and 1976:2; the variance of the gap equation has a break in 1984:1.
The inflation equations are given in Table 11.

2. For each artificial data set, forecasts of π
(τ)
t+τ

− πt are formed recursively using estimates of equations (1) and (2). These

forecasts are then used to form the indicated test statistics, defined in Section 3.2, as well as the ratio of the RMSE of the
model including the output gap to the RMSE of the AR model. In each Monte Carlo replication, the simulated test statistics
are compared against bootstrapped null critical values (with a significance level of 10%), computed using the procedure
described in section 3.3.
3. For the test statistics of interest, the table reports the percentage of Monte Carlo simulations in which the null of equal MSE
or forecast encompassing is rejected. For the RMSE ratio, the table reports several summary statistics for the distribution of
the ratio in the Monte Carlo trials: the median; the percent of the Monte Carlo ratios that are less than 1 (labeled prob.<1);
and a 90% interval (given by the 5%ile and 95%ile figures). Full-sample t-test refers to the usual t–test of the null that the
output gap coefficient is less than or equal to zero.
4. The number of Monte Carlo simulations is 1000; the number of bootstrap draws is 2000.
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Table 13: Simulated Power Results for the Core CPI with Breaks in All Slope Coefs.

CBO Gap
τ = 1 τ = 4

77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01
MSE-F .750 .682 .491 .598 .727 .369 .662 .602 .417 .494 .656 .337
MSE-t .669 .572 .301 .457 .498 .195 .563 .448 .268 .345 .420 .193
ENC-F .846 .737 .854 .646 .900 .778 .825 .711 .811 .598 .884 .715
ENC-t .736 .635 .662 .545 .729 .488 .733 .619 .606 .510 .655 .488
RMSE ratio results:
median .977 .977 .993 .978 .957 1.013 .958 .953 1.018 .959 .906 1.076
prob.<1 .806 .782 .540 .750 .807 .417 .713 .714 .462 .679 .713 .391
5%ile .911 .902 .859 .906 .817 .871 .795 .763 .698 .762 .592 .686
95%ile 1.017 1.020 1.167 1.024 1.054 1.249 1.087 1.100 1.577 1.119 1.277 1.800

full-sample t-test .958 .931

HP Gap
τ = 1 τ = 4

77-01 77-89 90-01 77-84 85-92 93-01 77-01 77-89 90-01 77-84 85-92 93-01
MSE-F .823 .805 .352 .774 .480 .350 .645 .662 .204 .639 .357 .211
MSE-t .729 .653 .152 .580 .198 .126 .525 .453 .095 .390 .136 .088
ENC-F .963 .930 .947 .902 .904 .921 .931 .878 .864 .828 .847 .829
ENC-t .884 .811 .714 .752 .615 .628 .832 .745 .603 .644 .512 .513
RMSE ratio results:
median .961 .954 1.018 .952 .991 1.021 .953 .935 1.139 .927 1.047 1.150
prob.<1 .850 .852 .387 .847 .555 .401 .690 .732 .242 .741 .420 .255
5%ile .886 .874 .914 .863 .887 .902 .805 .767 .837 .739 .758 .816
95%ile 1.018 1.023 1.190 1.025 1.163 1.230 1.109 1.113 1.576 1.117 1.554 1.688

full-sample t-test .998 .987

Notes:
1. The data generating process is based on empirical estimates of equation (1) for the forecast horizon τ = 1 and a simple
AR model for the output gap, allowing breaks in the coefficients on lagged inflation in the inflation equation, the output gap,
and the residual variance–covariance matrix. The break in the inflation coefficients occurs in 1980:2. The break in the output
gap coefficient occurs in 1994:1 in the case of the CBO gap and 1983:1 in the case of the HP gap. The residual variance of
the inflation equation has breaks in 1974:1, 1984:1, and 1991:4; the variance of the gap equation has a break in 1984:1. The
inflation equations are given in Table 11. In each of these “true” models, the output gap has predictive power for inflation,
in the sense of having a significant regression coefficient.
2. See notes 2-4 of Table 12.
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Figure 1:  Rolling Estimates of the Output Gap Coefficient

(coef. est. and 90% confidence interval)
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Figure 2:  Squared Residuals from Phillips Curve Models

(3 quarter centered moving average)
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