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Abstract

This paper examines the asymptotic and finite-sample properties of tests of equal
forecast accuracy and encompassing applied to direct, multi--step predictions from nested
regression models. We first derive the asymptotic distributions of a set of tests of equal
forecast accuracy and encompassing, showing that the tests have non-standard
distributions that depend on the parameters of the data-generating process. We then
conduct a range of Monte Carlo simulations to examine the finite-sample size and power
of the tests. In these simulations, our asymptotic approximation yields good finite--
sample size and power properties for some, but not all, of the tests; a bootstrap works
reasonably well for all tests. The paper concludes with a reexamination of the predictive

content of capacity utilization for core inflation.
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1 Introduction

Researchers often compare multi—step forecasts from nested linear models to deter-
mine whether one variable has predictive content for another. Examples include
Estrella and Hardouvelis’ (1991) examination of the predictive content of spreads for
GDP growth, Mark’s (1995) and Kilian’s (1999) studies of exchange rate models, and
Stock and Watson’s (1999, 2003) analyses of output and inflation forecasting models.
In such applications, forecasts from the model of interest are compared to forecasts
from a benchmark model that is a restricted version of the model of interest. Con-
sequently, the results in studies such as West (1996, 2001) on the asymptotic and
finite-sample properties of tests of equal forecast accuracy and encompassing, based
on non-nested models, may not apply.! Intuitively, with nested models, the null hy-
pothesis that the restrictions imposed in the benchmark model are true implies the
population errors of the competing forecasting models are exactly the same. This
in turn implies, for example, that the population difference between the competing
models’ mean square forecast errors is exactly zero with zero variance. As a result, the
distribution of a t—statistic for equal MSE may be non—standard. Indeed, Clark and
McCracken (2001) and McCracken (2004) show that, for 1-step ahead forecasts from
nested models, the distributions of tests for equal forecast accuracy and encompassing
can be non-standard.

In many comparisons of multi—step forecasts from nested models, the multi—step
predictions are made using horizon—specific, linear models, in which the dependent
variable is the multi-step ahead value being forecast. As described in studies such
as Clements and Hendry (1996), Schorfheide (2003), Chevillon and Hendry (2004),
and Marcellino, Stock, and Watson (2004), an alternative approach is to form multi-
step forecasts by iterating forward projections from one-step ahead models. Both
methods have pros and cons, reviewed in the aforementioned studies. But one of the
key advantages of the direct approach in forecasting is its computational simplicity
— an advantage that no doubt helps account for its common usage, in applications
such as those listed above.

Motivated by the frequency with which researchers compare direct multi-step

predictions from nested linear regression models, this paper examines the asymptotic

! As described explicitly in West’s (2005) survey, the nesting of the models violates a rank condi-
tion required in the asymptotic normality results of West (1996).



and finite-sample properties of tests of equal forecast accuracy and encompassing
applied to such forecasts. Our multi-step analysis builds on the one—step analyses of
Clark and McCracken (2001) and McCracken (2004). Specifically, for direct, multi—
step forecasts from nested models, we first derive the asymptotic distributions of
some standard tests of equal forecast accuracy and encompassing and the variants
proposed in McCracken (2004) and Clark and McCracken (2001). As in our prior
work and other studies such as West (1996, 2001), West and McCracken (1998),
Chao, Corradi, and Swanson (2001), Corradi, Swanson, and Olivetti (2001), and
Gilbert (2001), the distributions explicitly account for the uncertainty introduced
by parameter estimation. In general, the tests have non-standard distributions that
depend on the parameters of the data-generating process.

In light of the dependence of the asymptotic distributions on unknown nuisance
parameters, in our Monte Carlo analysis of finite—sample size and power and in our
empirical application we consider both asymptotic and bootstrap approaches to in-
ference. The asymptotic approach — which could be applied by any researcher —
involves estimating the particular second moments of the data that affect the lim-
iting distributions. Our bootstrap procedure is a slightly simplified version of the
one Kilian (1999) used in analyzing the predictability of exchange rates. The Monte
Carlo results indicate our asymptotic approximation yields good finite—sample size
and power properties for some, but not all, of the tests considered; a bootstrap works
reasonably well for all tests. Most notably, the asymptotics seem to work well for
McCracken’s (2004) F—type test of equal MSE, delivering a test with decent size
and power properties. But the encompassing test proposed by Clark and McCracken
(2001) has superior power (even when based on bootstrap critical values, which gen-
erally yield correctly sized tests).?

Finally, to illustrate how the tests perform in practical settings, the paper con-
cludes with an examination of capacity utilization’s predictive power for core CPI
inflation. Cecchetti (1995), Staiger, Stock, and Watson (1997), and Stock and Wat-
son (1999, 2003) are recent examples of studies in the long literature on this basic
question. Applying our tests and bootstrap approach to inference to simulated out—

of-sample forecasts for 1976-2004, we find that capacity utilization in manufacturing

2(Clark and McCracken (2005) consider how these out-of-sample tests behave under a broad range
of alternatives that include breaks in the causal relationships. See Rossi (2001) and Inoue and Kilian
(2004) for further discussion of the power of out-of-sample tests compared to in—sample tests.



has significant predictive power for core inflation.

Although our results apply only to a setup that some might see as restrictive —
direct, multi-step (DMS) forecasts from nested linear models — the long list of studies
analyzing such forecasts suggests our results should be useful to many researchers.
Recent applications considering DMS forecasts from nested linear models include,
among others: the studies cited at the beginning of this section; Diebold and Li
(2004); Orphanides and van Norden (2004); Rapach and Weber (2004); and Shintani
(2004). Of course, a number of other studies, such as Marcellino (2002), Kilian
and Taylor (2003), Qi and Wu (2003), have considered DMS forecasts from nested
nonlinear models. We leave as an important topic for future research the extension
of our asymptotics to allow nonlinear models.? Similarly, we leave the extension of
our results to iterated multi-step forecasts to future work.*

Section 2 introduces the notation, the forecasting and testing setup, and the as-
sumptions underlying our theoretical results. Section 3 defines the forecast tests
considered, provides the null asymptotic results, and lays out how, in practice, ap-
propriate asymptotic critical values can be calculated. Proofs of the asymptotic re-
sults are provided in the appendix. Section 4 describes our model-based bootstrap
approach and presents Monte Carlo results on the finite—sample performance of the
asymptotics and the bootstrap. Section 5 applies our tests to determine whether

capacity utilization has predictive power for core inflation. Section 6 concludes.

2 Setup

The sample of observations {y, x5 ,}{_, includes a scalar random variable y; to be
predicted, as well as a (k; + k2 = k x 1) vector of predictors o, = (2, T5y,)"
Specifically, for each time t the variable to be predicted is ;,,, where 7 denotes the
forecast horizon. The sample is divided into in—sample and out—of-sample portions.
The total in—sample observations (on y; and x9;) span 1 to R. Letting P — 7 + 1
denote the number of 7—step ahead predictions, the total out-of-sample observations

span R + 7 through R 4+ P. The total number of observations in the sample is

3Corradi and Swanson (2002) develop an encompassing-type test for comparing one-step ahead
forecasts from a pair of nested nonlinear or linear models

4Tteration will mean the multi-step forecasts are affected by polynomials in parameter estimation
error. In contrast, with DMS forecasts, parameter estimation error enters only linearly.



R+P=T.

Forecasts of 1, t = R,...,T — 7, are generated using the two linear models
Yerr = 407 + U1y, (model 1) and y,r = 25,35 + Uss 1~ (model 2). Under the null
hypothesis of equal forecast accuracy or forecast encompassing, model 2 nests model
1 for all ¢ and hence model 2 includes ko excess parameters. Then 33 = (37,0,
and Uy 417 = U2y r = Uy, for all ¢

Both model 1’s and model 2’s forecasts are generated recursively using estimated
parameters. Under this approach both ] and 5 are reestimated with added data
as forecasting moves forward through time: for t = R,..., T — 7, model i’s (i = 1,2)
prediction of 1, is created using the parameter estimate Bm based on data through
period t.°> Models 1 and 2 yield two sequences of P — 7 + 1 forecast errors, denoted
Ul pgr = yt—i-T_‘r/l,tBl,t and g ¢4, = yt+7—x’2’t32,t, respectively. Asymptotic results for
forecasts based on the rolling and fixed schemes, described in West and McCracken
(1998), are provided in Clark and McCracken (2004).

Finally, the asymptotic results presented below use the following additional no-
tation. Let hiir(3;) = (Wear — 18:)Tits Nigyr = higyr(57), Gy = 2iuxi, , Bi =
(Eq;t) tand Eui, = o?. For Hy(t) defined in Assumption 1, J the selection matrix
(Ty s » Oy )'> and a (kg X k) matrix A satisfying A’A = B;l/g(—J’BIJ—I—Bg)BQ_UQ,
let hyr = 0*1435/2h27t+7 and Hy(t) = o YABY?Hy(t). If we define i) =
EiLHJLQH_i, then S;7 = T;7(0) + S0 (T (4) + I[%:(i)). Let W(w) denote a kg x 1
vector standard Brownian motion. For the sequence Uy, defined in Assumption 2,
U(t) is defined analogously to H(t) in Assumption 1.

Given the definitions and forecasting scheme described above, the following as-
sumptions are used to derive the limiting distributions in Theorems 3.1-3.4. The

assumptions are intended to be only sufficient, not necessary and sufficient.

(A1) The parameter estimates Bijt, i =1,2,t = R,....,T — 7, satisfy Bz}t — [ =
Bz(t)HZ(t> where Bz(t)HZ(t) = (til t;‘ll- Qi,j)il(til Z;;g hi7j+7')~

J

(A2) (a) Upr = [Upyr, 2y, — Exh,, by, ]" is covariance stationary, (b) EU,, = 0,

(c) Eqat < oo and is positive definite, (d) For some r > 8, Uy, is uniformly L"

5For the purposes of forecasting, in our setup the largest number of observations used to estimate
each model’s parameters is T'— 27. With the dependent variable y;,,, 7 observations are lost in
forming the dependent variable and another 7 observations are needed for forming the first 7-period
out-of-sample forecast.



bounded, (e) For some r > d > 2, Uy, is strong mixing with coefficients of size
—rd/(r — d), (f) With U,,, denoting the vector of nonredundant elements of Uy,
limg oo T 'E(XI T U ) (217 Uy ) = Q < 00 s positive definite.

(A3) (a) Let K(x) be a continuous kernel such that for all real scalars z, |K(z)| < 1,
K(x) = K(—z) and K(0) =1, (b) For some bandwidth M and constant i € (0,0.5),
M = O(P"), (c) For all j > 7 —1, Ehgyy,hh,,, ; =0, (d) The number of covariance
terms j, used to estimate the long-run covariances S, and Sz defined in Section 3.1,

satisfies 7 — 1 < j < oo.
(A4) limg p_.oo P/R = € (0,00); define A = (1 4+ 7).
(A74/) hmRyp_,oo P/R = O, define A = 1.

The assumptions provided here are broadly similar to those provided in Clark
and McCracken (2001) and McCracken (2004). We restrict attention to forecasts
generated using parameters estimated by OLS (Assumption 1) and we do not allow
for processes with either unit roots or time trends (Assumption 2).° We provide
asymptotic results for situations in which the in-sample and out-of-sample sizes R
and P are of the same order (Assumption 4) as well as when the in-sample size R is
large relative to the out-of-sample size P (Assumption 4).

Assumption 3 is necessitated by the serial correlation in the multi-step (7-step)
forecast errors — errors from even well-specified models exhibit serial correlation, of
an MA(7 — 1) form. Typically, researchers constructing a t-statistic utilizing the
squares of these errors account for serial correlation of at least order 7 — 1 in forming
the necessary standard error estimates. Meese and Rogoff (1988), Groen (1999),

and Kilian and Taylor (2003), among other applications to forecasts from nested

6Qur assumptions do, however, allow y; and s + to be stationary differences of trending variables.
As to other technical aspects of Assumption 2, (a) and (c) together ensure that in large samples,
sample averages of the outer product of the predictors will be invertible and hence the least squares
estimate will be well defined. Part (d) enables the use of Markov inequalities when showing certain
terms are asymptotically negligible. Along with (d), (e) and (f) allow us to use results in Hansen
(1992) and Davidson (1994) regarding the weak convergence of partial sums to Brownian motion
and that functionals of these partial sums converge in distribution to stochastic integrals. To ensure
the variance matrix non-singularity required for weak convergence, in (f) we eliminate the possibility
that UHT has elements that are identical by defining it to include only the nonredundant elements
of Uyyr. For example, if the unrestricted forecasting model includes a constant, Uy, will include
us4, twice, once directly and again as the first element of ho 1.



models, use kernel-based methods to estimate the relevant long-run covariance.” We
therefore impose conditions sufficient to cover applied practices. Parts (a) and (b)
are not particularly controversial. Part (c¢), however, imposes the restriction that
the orthogonality conditions used to identify the parameters form a moving average
of finite order 7 — 1, while part (d) imposes the restriction that this fact is taken into
account when constructing the MSE-T and ENC-T statistics discussed in Section
3.8 Although Assumption 3 and our theoretical results admit a range of kernel and
bandwidth approaches, in our Monte Carlo experiments and empirical application we
compute the variances required by the MSE-T and ENC-T t-statistics (for 7 > 1)
using the Newey and West (1987) estimator with a lag length of 1.5 % 7.

The above assumptions differ importantly from those underlying our previous
work, in that we do not require the forecast errors to form a conditionally homoskedas-
tic martingale difference sequence. Rather, we allow for conditional heteroskedas-
ticity and the effects of serial correlation induced by forecast horizons greater than
one period. In contrast, our prior work considered only conditionally homoskedastic,
serially uncorrelated, one—step ahead forecast errors. Nevertheless, our assumptions
remain strong enough for us to use Hansen’s (1992) and Davidson’s (1994) theoretical
results regarding weak convergence of partial sums to Brownian motion and averages
of these partial sums to stochastic integrals of Brownian motion. As we will see
below, the null limiting distributions bear a strong resemblance to those in Clark
and McCracken (2001) and McCracken (2004), but depend upon unknown nuisance

parameters.

3 Tests and Asymptotic Distributions

We consider a total of four forecast—based tests, two tests of equal forecast accuracy

and two tests for forecast encompassing. In particular, we consider the t—statistic

“For similar uses of kernel-based methods in analyses of non-nested forecasts, see, for example,
Diebold and Mariano (1995) and West (1996).

8We have bounded the numbers of covariances used to construct de and Scc in order to be able
to derive asymptotic results for the MSE-T and ENC-T tests. Technically, without any bounds on
the bandwidth, we would have to find the limiting behavior of a kernel-weighted infinite sum of
individually 0,(1) elements. Because it is unclear how this would be accomplished, for tractability
we restrict the number of autocovariances for which Ehg 1.-h5 . ; # 0 to be finite and take this

into account when constructing both S’CC and de.



for equal MSE developed by Diebold and Mariano (1995) and West (1996) and the
F-statistic proposed by McCracken (2004). We also consider the t-statistic for en-
compassing developed in Harvey, Leybourne, and Newbold (1998) and West (2001)
and the variant proposed by Clark and McCracken (2001). In preliminary Monte
Carlo results, regression—based variants of the t—statistics for equal MSE and forecast
encompassing, proposed respectively by Granger and Newbold (1977) and Ericsson
(1992), performed similarly to the versions considered below. As a result, in the

interest of brevity, we leave these regression—based tests out of the analysis below.

3.1 t{—type tests: MSE-T and ENC-T

In the context of non-nested models, Diebold and Mariano (1995) propose a test for
equal MSE based upon the sequence of loss differentials dy;, = @3 ,,, —43,,,. If we
define MSE; = (P -7+ 1)"' Yl 7 a2, (i=1,2),d= (P -7+ 1) ' Y7 dy, =
MSE; = MSE,, Tua(j) = (P—=7+1) "' S 7 (i — d) (digry = d), Taa(—5) = Taali),
and Sy = 25275 K (5/M)T44(5), the statistic takes the form

MSE-T = (P — 7 +1)"/% x L_ (1)

Sdd
Under the null that x4, has no predictive power for y,;,, the population difference
in MSEs will equal 0. Under the alternative that xg; has predictive power, the
population difference in MSEs will be positive (MSE; < MSE;). As a result, the
MSE-T test and the other equal MSE test described below are one—sided to the right.
Drawing on the methodology of Diebold and Mariano (1995), Harvey, Leybourne,
and Newbold (1998) propose a test of encompassing that uses a t-statistic for the
covariance between uy 44, and uy 44, —Ug ¢+ If we define é4r = Uy 447 (Ug g7 — U 447,
c = (P — T+ 1>_1 tT:_J%- ét+fa fCCO) = (P — T+ 1)_1 EtT:_I%-—kj(étJrT - 5)(6t+7'7j - 5)’

fcc(—j) = fcc(j), and S,. = 251_3 K(j/]\/[)f‘cc(j), the statistic takes the form

ENC-T= (P -7+ 1)"? x i (2)

Sec
Under the null that x99, has no predictive power for v, ., the population covariance
between uy 44, and uy 44, — U2, Will equal 0 (the population forecast errors of the
models will be exactly the same). Under the alternative that zo; does have predictive

power, the covariance will be positive. To see why, consider the forecast combination

7



regression yiyr = (1 —a) f144r +foryr +error, where f; and fo denote forecasts from
the restricted and unrestricted models, respectively.® Subtracting f; ; from both sides,
and making the substitution u 1+r — U244+ = fa.14+ — f1,14+, yields the encompassing
regression Uy 44, = Uy - — U ryr) +error. If o9, does have predictive power, such
that model 2 is true, the population combination coefficient @ equals 1. As a result,
the covariance between uy 1, and (uy ¢4r — u244,) Will be positive. Consequently, the
ENC-T test and the other forecast encompassing test described below are one-sided
to the right.

While West (1996) proves directly that the MSE-T statistic can be asymptotically
standard normal when applied to non—nested forecasts and West’s results suffice to
establish the same for the ENC-T statistic, this is not the case when the models are
nested. In particular, the results in West require that under the null, the population—
level long run variances of cit+7 and ¢;,, be positive. This requirement is violated
with nested models. Intuitively, with nested models, the null hypothesis that the
restrictions imposed in the benchmark model are true implies the population errors
of the competing forecasting models are exactly the same. As a result, in population
di+r = 0 and ¢, = 0 for all ¢, which makes the corresponding variances also equal to
0. Because the sample analogues (for example, d and its variance) converge to zero
at the same rate, the test statistics have non—degenerate null distributions, but they
are non—standard.

Specifically, McCracken (2004) shows that, for 1-step ahead forecasts from well-
specified nested models, the MSE-T test statistic converges in distribution to a func-
tion of stochastic integrals of quadratics of Brownian motion, with a limiting distri-
bution that depends on the sample split parameter m and the number of exclusion
restrictions ky but does not depend upon any unknown nuisance parameters. Under
the same conditions, Clark and McCracken (2001) show that the ENC-T test statistic
converges to the same type of distribution. With direct multi-step forecasts, however,
the limiting distributions are affected by unknown nuisance parameters. (Note that,
for these particular asymptotic results, we present the ENC-T theorem before the
MSE-T theorem because, analytically, it is easiest to first establish the ENC-T re-
sults and then use those in deriving the MSE-T asymptotics.)

9This basic logic is laid out in Harvey, Leybourne, and Newbold (1998), in the context of non—
nested models.



Theorem 3.1. (a) Let Assumptions 1-4 hold. For ENC-T defined in (2), ENC-T
—4 Ty /T4, where Ty = [} s7'W (w)'S;;dW (w) and Ty = [} s AW (w)' S2, W (w)dw.
(b) Let Assumptions 1-3 and 4’ hold and let V4, and V; denote (k2 x 1) independent
standard normal vectors. ENC-T —4 ViS5 Vi /[Vy 52 VA]Y2 ~ N(0,1).

Theorem 3.2. (a) Let Assumptions 1-4 hold and define

Ty = [y s72W(w)'S;; W (w)dw. For MSE-T defined in (1) and T'; and T'; defined in
Theorem 3.1, MSE-T —, (1 — (0.5)T)/T3’%. (b) Let Assumptions 1-3 and 4’ hold.
MSE-T — ENC-T = o,(1).

The results in Theorems 3.1 (a) and 3.2 (a) bear a strong resemblance to those
discussed in Clark and McCracken (2001) and McCracken (2004), but with one major
distinction: the limiting null distributions generally depend upon the unknown nui-
sance parameter Sj; that in turn depends upon the second moments of the forecast
eITors Ui, the regressors 9, and the orthogonality conditions hg .. Algebraically,
this dependence arises because, in the presence of conditional heteroskedasticity or
serial correlation in the forecast errors, an information matrix-type equality fails: the
expected outer product of the predictors is no longer proportional to the long run
variance of hyyi, with constant of proportionality ¢® = Euj,, . Similarly, in the
context of likelihood-ratio statistics, Vuong (1989, Theorem 3.3) shows that the lim-
iting distribution of the likelihood ratio statistic has a representation as a mixture of
independent Xa) variates (in contrast to our integrals of weighted quadratics of Brow-
nian motion). This distribution is free of nuisance parameters when the information
matrix equality holds but in general does depend upon such nuisance parameters.

In Theorems 3.1 and 3.2 there are, however, special cases for which the dependence
on Sj; is asymptotically irrelevant. When ky; = 1 the now scalar S7; can be factored
out of both the numerator and denominator and hence cancels. Also, in the perhaps
unlikely scenario in which each of the eigenvalues of S;; are identical, one can show
that the limiting distributions no longer depend upon the value of S;;. If either
of these special cases hold we obtain McCracken’s (2004) results for MSE-T and
Clark and McCracken’s (2001) results for ENC-T and thus are able to utilize the
estimated asymptotic critical values provided in those papers to conduct inference.

In general, though, the distributions do depend upon Sj; and hence those critical

9



values are no longer relevant. Instead, as described below, we consider estimating the
asymptotically valid critical values both by simulating the asymptotic distribution
implied by a consistent estimate of S;; and by bootstrapping the distribution.

Note also that, in line with the results of Clark and McCracken (2001), for case (b)
we find that the MSE-T and ENC-T statistics are asymptotically equivalent under
the null. They are also asymptotically standard normal. On a practical level this
implies that for instances in which the number of out-of-sample observations P is
small relative to the number of out-of-sample observations R, we should expect these
two test statistics to behave similarly, at least under the null. Moreover, inference is
straightforward since appropriate critical values are readily obtained.

In light of the standard normality that applies when © = limg p_.oo P/R = 0, a
natural question is, in practice, how small must P be relative to R for standard normal
critical values to be reliably used? The answer is that P/R has to be considerably
smaller than it is in most studies. Simulations for one—step ahead forecasts in Clark
and McCracken (2001) suggest that standard normal critical values can reasonably
be used for the MSE-T and ENC-T tests when P/R is about .10.!° Even when P/R
is just .20, our asymptotics are more reliable than a standard normal approximation.
We corroborate this rough cutoff of .10 in the simulations reported in section 4. In
most historical forecast applications, though, P/R seems to be safely above .10. Select
examples from the nested DMS literature include: Estrella and Hardouvelis (1991),
P/R ~ 1.25; Mark (1995), 1.1; Stock and Watson (2003), .6 and 1.3; Diebold and
Li (2004), .8; and Shintani (2004), .6. More generally, suppose we have a forecast
sample of five years — a sample that would be quite short by the standards of the
literature that motivates our work. For P/R to be .10, we would need another 50
years of data for initial model estimation. Few data samples span 55 years, due to
wars, methodological changes in measurement, etc. Accordingly, the non—normality

of the MSE-T and ENC-T tests associated with 7 > 0 is likely to be very relevant.

3.2 F—type tests: MSE-F and ENC-F

Motivated by (i) the degeneracy of the long-run variance of d;, and (ii) the functional

form of the standard in-sample F-test, McCracken (2004) develops an out—of-sample

10Similarly, in the context of non—nested models, West’s (1996) simulations indicate that P/R
needs to be about .10 for parameter estimation error to become irrelevant.

10



F-type test of equal MSE, given by

MSE, — MSE, d
\SE, =(P—-7+1)x NISE,” (3)

MSE-F = (P — 7 + 1) x

Similarly motivated by issues relating to the long-run variance of ¢;, ., Clark and
McCracken (2001) propose a variant of the ENC-T statistic in which the covariance
between ¢y, and @y 41, — Ugysqr is scaled by the estimated variance of one of the
forecast errors (for consistency with the other tests considered, here we replace Clark

and McCracken’s original label “ENC-NEW” with “ENC-F”):

ENC-F = (P —7+1) x

c

MSE, " )

Like the t-type tests, the limiting distributions of these F—type tests are non—
standard when the forecasts are nested under the null. Clark and McCracken (2001)
and McCracken (2004) show that, for one-step ahead forecasts from well-specified
nested models, the MSE-F and ENC-F statistics converge in distribution to functions
of stochastic integrals of quadratics of Brownian motion, with limiting distributions
that depend on the sample split parameter 7 and the number of exclusion restrictions
ko, but not any unknown nuisance parameters. Again, though, this result is specific
to one-step ahead forecasts from well-specified models. For direct multi-step forecasts

the limiting distributions are affected by unknown nuisance parameters.

Theorem 3.3. Let Assumptions 1, 2 and 4 hold. For MSE-F defined in (3) and I'y
and T’y defined in Theorems 3.1 and 3.2, respectively, MSE-F —, 2I'; — T'5. (b) Let

Assumptions 1, 2 and 4’ hold. For the (ks x 1) independent standard normal vectors
Vo and V; defined in Theorem 3.1(b), (R/P)Y? MSE-F —, 2V{S;; V4.

Theorem 3.4. (a) Let Assumptions 1, 2 and 4 hold. For ENC-F defined in (4) and
I’y defined in Theorem 3.1, ENC-F —,; I';. (b) Let Assumptions 1, 2 and 4’ hold.
2(R/P)Y? ENC-F — (R/P)"? MSE-F = 0,(1).

Theorems 3.3 (a) and 3.4 (a) show that, as with the ¢-type tests presented above,
if 7 > 0 the limiting distributions of the MSE-F and ENC-F tests are neither normal

nor chi-square when the forecasts are nested under the null. And again, the limiting

11



distributions are free of nuisance parameters in only very special cases. In particular,
the distributions here are free of nuisance parameters only if S;; = /. If this is the
case — if, for example, 7 = 1 and the forecast errors are conditionally homoskedastic
— the MSE-F representation in Theorem 3.3 simplifies to McCracken’s (2004) and
the ENC-F result in Theorem 3.4 simplifies to Clark and McCracken’s (2001), which
would allow their estimated asymptotic critical values to be used in conducting infer-
ence. Since, in general, that is not the case we again consider both simulating the
asymptotic distribution implied by a consistent estimate of S;; and using bootstrap
methods to estimate the asymptotically valid critical values. Note also that, as in-
dicated in Theorem 3.3 (b) and Theorem 3.4 (b), when the number of out-of-sample
observations P is small relative to the number of in-sample observations R, the MSE-
F and ENC-F statistics require re-scaling in order to obtain non-degenerate limiting

distributions, even though the distributions for the t-type tests do not.

3.3 Constructing Asymptotic Critical Values

As indicated above, the asymptotic distributions of the forecast tests differ from
the conditionally homoskedastic, one—step ahead case considered in Clark and Mc-
Cracken (2001) and McCracken (2004) in that the quadratics in Brownian motion
are weighted by the long-run variance Sj;. Accordingly, appropriate critical values
can be constructed — for any application, by any researcher — using a consistent
estimate of this variance matrix and the numerical methods of Clark and McCracken
and McCracken. For each data set, we calculate asymptotic critical values as follows,
separately for each forecast horizon. Note that, to make the estimate of S;; as precise
as possible, we use the full sample of available (R + P) observations in estimating
the moments that enter the variance. In the case of conditionally homoskedastic,
one-step ahead forecast errors (for which S;; = I), the resulting critical values would

be exactly the same as those of Clark and McCracken and McCracken.!!

1. After fitting the restricted forecasting model (in order to impose the null) to
the full sample of available data and saving the residuals u;,,, estimate ghh =
long run variance(X otsy,) with the Newey and West (1987) estimator and a band-
width of 1.5 % 7 for 7 > 1 and 0 for 7 = 1.

I As noted above, when ko = 1, the critical values of the MSE-T and ENC-T tests are the same
regardless of the presence of conditional heteroskedasticity or serial correlation.
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2. Using estimates B; = (215 Tigwy,) Siy = (DI5RHP To24Th ), &% = residual
variance from the model estimated in step 1, D= E{l — glgﬁlgb, and D = the
Cholesky decomposition of D, form

~ o ~ A A ~ 0 N
Sif =0 2 ( 0k22><k1 D.5 )BZSthZ ( %%5162 > . (5)

3. Compute the eigenvalues of Sﬁﬁ'

4. Construct 5000 independent draws from the asymptotic distribution of each test
statistic, given ks and 7 = P/R. In generating these draws, the necessary ky Brownian
motions are simulated as random walks each using an independent sequence of 10,000
i.i.d. N(0,10,0007%) increments. The integrals are emulated by summing the relevant
weighted quadratics of the random walks, using the eigen values of S”M as weights.
The 10% critical value is calculated as the 90% percentile of the resulting statistics.

4 Monte Carlo Evidence

We use simulations of bivariate DGPs based on common empirical applications to
evaluate the finite sample properties of the above tests for equal forecast MSE and
encompassing. In these simulations, the restricted forecasting model is a simple au-
toregression; the unrestricted model adds lags of some other variable of interest.
Under the null hypothesis, the additional variables incorporated in the unrestricted
model have no predictive content. Because the dependence of the limiting distribu-
tions of the test statistics on unknown nuisance parameters rules out simply looking
up appropriate critical values in a table, we consider two possible approaches, one
based on asymptotics and the other a simple bootstrap. The asymptotic approach,
described in section 3.3, involves estimating the long-run variance matrix S;; that
enters the limiting distribution of each test statistic and simulating Brownian mo-
tions. Because these asymptotic critical values require non-trivial calculations, some
researchers might find simple bootstrap methods, used in such studies as Mark (1995),
Kilian (1999), and Stock and Watson (2003), to be a natural alternative. Of course,
the bootstrap might also be favored for its prospects of better approximating the
small sample distributions of the tests.

We proceed by first describing our Monte Carlo framework and bootstrap proce-
dure. We then present results on the size and power of the forecast—based tests. Note

that, while the analytical results above defined the predictand in the general form
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Yrr to simplify notation, in this section we follow common practice in DMS predic-
tion applications and explicitly define the variable of interest as a 7-period change of
the form Yy, — Y; or, for 7 = 1, AY,,;. The forecasting models relate Y, ., — Y; to

lags of the change in Y and a potentially Granger—causal variable denoted .

4.1 Monte Carlo Design

For two different DGPs (two for both size and power), we generate data using in-
dependent draws of innovations from the normal distribution and the autoregressive
structure of the DGP. The initial observations necessitated by the lag structure of
each DGP are generated with draws from the unconditional normal distribution im-
plied by the DGP. We consider results for a variety of forecast horizons: 7 =1, 2,4, 8,
and 12 periods. Similarly, with quarterly data primarily in mind, we also consider a

range of sample sizes (R, P), ranging from 60,40 to 60,120 to 200,40.

4.1.1 Size design

The first DGP (DGP-1) is motivated by the literature on the predictive content of
spreads for output growth — examples include Estrella and Hardouvelis (1991) and
Estrella, Rodrigues, and Schich (2003). In this case, Y is the log of real GDP (scaled
by 400 to make AY an annualized percentage change) and z is the 10-year government
debt yield less the 1-year government debt rate. The DGP is parameterized using
model estimates based on quarterly 1959:1-2004:3 data:

r, = —.029AY; 1 — .022AY; 5+ 1.141x;_1 — .59524_5 + .7072;_3
— ATTxi_y + 435245 — 428x;_¢ + . 12924 _7 + v,
var <ut> _ (10.265 )
ve)  \—.218 159/

Note that while constants were included in the equations fit to historical data, for
simplicity the intercepts have been dropped from the DGP, without any consequence

for the results. The lag orders were determined on an equation—by—equation basis

using the AIC.'2

12In some instances, we dropped sets of terms in the AIC-determined model that were clearly
insignificant. In DGP-1’s x equation, for example, the optimal lag length (imposing the same lag
length on the both variables in the x equation) was 7. But lags 3-7 of AY were insignificant and
therefore dropped.
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The second DGP is motivated by the inflation forecasting work of Cecchetti (1995),
Staiger, Stock, and Watson (1997), and Stock and Watson (1999, 2003), which relates
inflation to measures of real activity. Following Stock and Watson (1999, 2003), we
presume a unit root in inflation, and make Y the log difference of the quarterly core
CPI (scaled by 400 to make Y an annualized percentage change), so that AY is
the change in quarterly inflation. We specify x as the rate of capacity utilization in

manufacturing. The DGP is parameterized using model estimates based on quarterly

1957:1-2004:3 data:

AY,

— 316AY,_; — 214AY, s + u, (7)
Ty = —193AY2_1 - 242AY;5_2 - 24OAY;5_3 - 119A}/t_4
+ 1.427.1’15,1 — .595.%75,2 + .29433',5,3 — .1741}/74 + Uy
wr <ut> B (1.792 )
vw) T\ 244 1463)
4.1.2 Power design

In our power experiments, the x; equation in each DGP is the same as in the size
experiments. Only the AY; equations and the error variance—covariance matrices
differ. The equation for AY; in DGP-1, based on an estimated regression of GDP
growth on lags of growth and the spread, takes the form

AY, = 197TAY, 1 + .202AY, 5 — .080x,_1 + 2.2337,_5 — 1518235+ u,  (8)
. <ut> B < 9.067 >
v )\ =218 .159)°

In the second DGP, based on an estimated regression of the change in core inflation

on lags of itself and capacity utilization, the AY; equation takes the form

AY, = —.419AY, | — 258AY; , (9)
+.3312 1 — 4233 o + 309243 — 139244 + u,

var (ut) B (1.517 )
v, )\ .244 1.463)°
4.1.3 Forecast evaluation

Each Monte Carlo simulation involves first estimating restricted and unrestricted
DMS forecasting models. We use models of the form common in the literatures

from which we take the applications. For DGP-1, we follow the work of Estrella
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and Hardouvelis (1991) and Stock and Watson (2003) on the GDP growth-spread
relationship and suppose a restricted model that includes lags of AY as predictors

and an unrestricted model that adds lags of x to the baseline specification:

L1

Yier =Y, = a4+ > 7 AY + s (10)
1=0
L1 M-1

Yii, =Y, = a+ Z 7AY g + Z BonTt—m + U tir (11)
=0 m=0

The forecasting equations for DGP-2 take a similar form, except that, as in Stock
and Watson (1999, 2003), the dependent variable is the difference between a 7-period
inflation rate and the lagged quarterly inflation rate (rather than simply a difference

between quarterly inflation rates):

L1

}/tg:)- -Y, = a+ Z NAY 4 Ut gy (12)
1=0
L1 M-1

Y;(JQ -Y, = a+ Z Y AY; + Z BonTt—m + U247, (13)
=0 m=0

where Y;(JQ = (1/7) >0, Yigs. Yt(g corresponds to the average annual rate of price
increase from period ¢ to ¢t + 7. Note that the sets of regressors in (10) and (12)
correspond to x1; in our theoretical setup, while the sets of regressors in (11) and
(13) correspond to a4, with z; and its lags representing oo ;.

For each artificial data set, we follow the precedent of such studies as Stock and
Watson (2003) and Granger and Jeon (2004) and use data—determined lag orders.
Specifically, the lags in the forecasting models are determined by applying the AIC
to models estimated with just the first R observations of the sample (we use just the
first R observations rather than the whole sample to avoid the type of overfitting
that Clark (2004) shows can lead to spurious forecast inference). In the unrestricted
forecasting model, we allow the lag orders of AY and x to differ, from a range of 0
to 8 for AY and 1 to 8 for x. The restricted forecasting model uses the same lag
order for AY that the unrestricted model does. The lag lengths are allowed to differ
across forecast horizons. Of course, the data dependence of the lag orders means
that, as is the case in practical applications, the estimated forecasting models may
be misspecified.

Following the model estimation, the MSE-T, ENC-T, MSE-F, and ENC-F statis-

tics are formed. The heteroskedasticity and autocorrelation—consistent (HAC) vari-
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ances required by the MSE-T and ENC-T t-statistics are calculated using the Newey
and West (1987) estimator with a lag length of 1.5 x 7 for 7 > 1 and 0 for 7 = 1.
The statistics computed with the Monte Carlo data from a given draw represent the
“sample” statistics. We compare these sample statistics against both asymptotic and
bootstrap critical values. Based on 1000 Monte Carlo draws, we report the percent-
age of Monte Carlo trials in which the null of no predictive content is rejected — the
percentage of trials in which the sample test statistics exceed the critical values (re-
porting separate results for asymptotic and bootstrap critical values). In the reported
results, the tests are compared against 10% critical values, so that the nominal size
of the tests is 10%. Using 5% critical values yields similar findings.

To give a sense of how using standard normal critical values may affect inference,
for some tests we also report size and power results based on simply comparing
the “sample” test statistics from our 1000 Monte Carlo draws against the standard
normal distribution. The set of tests for which we report these results are those
researchers sometimes compare against standard critical values: MSE-T and ENC-T .
The limiting distributions of these test statistics are standard normal if the forecasting
models are non—nested, but the distributions are generally non—standard when the

forecasting models are nested.

4.2 Bootstrap Algorithm

Following Berkowitz and Kilian’s (2000) recommendations for time series data, our
bootstrap algorithm — based on Kilian’s (1999) — relies on parametric methods.
Vector autoregressive equations for AY; and x; — restricted to impose the null that
x has no predictive power for Y — are estimated by OLS using the full sample of
observations, with the residuals stored for sampling. Note that the DGP equation for
AY takes exactly the same form as the restricted forecasting model for 7 = 1 (but
estimated with all available data). In the case of the x equation, the lag orders for
AY and z are determined according to the AIC, allowing different lag lengths (from
0 to 8) on each variable. For the system of bivariate (AY, x) equations to be used in
the bootstrap, we adjust the coefficients of the OLS—estimated models for the small—
sample bias that can plague time series models. Specifically, we use the bootstrap
method proposed by Kilian (1998) to adjust the coefficients of the OLS—estimated

models (based on 10,000 bootstrap draws) and then use the bias—adjusted forms as
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the bootstrap DGP equations.

Bootstrapped time series on AY; and z; are generated by drawing with replace-
ment from the sample residuals and using the autoregressive structures of the bias—
adjusted models to iteratively construct data. The initial observations — observations
preceding the sample of data used to estimate the models — necessitated by the lag
structures of the estimated models, are selected by sampling from the actual data.
In particular, following Stine (1987), among others, the initial observations are se-
lected by picking one date at random and then taking the necessary number of initial
observations in order from that date backward.!?

In each of 999 bootstrap replications, the bootstrapped data are used to recursively
estimate the restricted and unrestricted DMS forecasting models on which the sample
results are based. The resulting forecasts are then used to calculate forecast test
statistics. Critical values are simply computed as percentiles of the bootstrapped test
statistics.

Overall, despite the parametric nature of this bootstrap procedure, its success in
our results does not hinge on the bootstrap models being properly specified. For
simplicity, the estimated models for AY and x are taken to be correctly specified
in bootstrapping artificial data. However, those models may in fact be misspecified,
because, as described above, their lag orders were determined with the sample data
(each artificial data set). In this sense, our bootstrap is reflective of the various boot-
strap approaches that have been used in studies such as Mark (1995), Kilian (1999),
Rapach and Weber (2004), and Stock and Watson (2003). Therefore, if a simple,
potentially-misspecified bootstrap proves reliable in our Monte Carlo experiments, it
can be expected to be reliable in practice, in similar settings. All that said, it could
be that nonparametric bootstrap approaches, such as moving block methods, would
perform as well or better. But in light of Berkowitz and Kilian’s (2000) conclusion
that, for time series models, such methods are often dominated by parametric boot-
straps, we leave nonparametric methods as a subject for future research on forecast

evaluation.

13For example, suppose the model is a VAR(4) and the total sample consists of 144 observations,
such that observations 1-4 serve as the initial observations and the regression sample is 5 through
144. Each artificial data set is constructed by: (i) picking a random date ¢y from a range of 5
through 144; (ii) setting the artificial observations 1-4 equal to the sample observations from dates
to — 4 through to — 1; and (iii) constructing artificial observations 5-144 by using the VAR structure,
resamples of the residuals (which span obs. 5-144), and the artificial initial observations 1-4.
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4.3 Monte Carlo Results: Size

The results presented in Tables 1 and 2 indicate that, in some but not all cases,
asymptotic critical values yield tests that are reasonably close to correctly sized. In
particular, the MSE-F test compared against asymptotic critical values seems to have
decent size in most settings. For example, as shown in Table 1’s results for DGP-1,
with R = 100 and P = 40, the size of the MSE-F' test ranges from 10.0 percent for
7 =1 to 12.4 percent for 7 = 12. Admittedly, though, in a few instances the size of
the MSE-F test at longer horizons is subject to slightly larger distortions — such as
size of 15.0 percent with DGP-1, R = 60, P = 40, and 7 = 12. Compared to MSE-
F, the ENC-F test is subject to consistently larger size distortions when asymptotic
critical values are used. For example, with DGP-1, R = 100 and P = 40, the size of
the ENC-F test is roughly 15 percent for all horizons. The larger distortions in the
ENC-F test are consistent with the one-step ahead results of Clark and McCracken
(2001).

The performance of the MSE-T and ENC-T tests based on asymptotic critical val-
ues is generally mixed. The tests (MSE-T more so than ENC-T') can have decent size
properties at short forecast horizons but are dramatically oversized at long horizons.
For instance, as shown in Table 2’s results for DGP-2 with R = 100 and P = 40, the
MSE-T and ENC-T test sizes are 10.7 and 11.8 percent, respectively, for 7 = 1, but
23.9 and 29.7 percent for 7 = 12. At all but the shortest horizons, the sizes of the -T
tests are usually greater than the sizes of the corresponding -F tests. The root of the
problem in the longer-horizon performance of the MSE-T and ENC-T tests compared
against asymptotic critical values seems to be imprecision in estimation of the HAC
variance in the denominator of the test statistics.!* In unreported simulations, the
performance of these tests improved dramatically when R and P were increased sig-
nificantly. Moreover, in applications in which the null forecasting model is a random
walk, Clark and West (2004) find that using the HAC estimator of Hodrick (1992)
rather than the common Newey and West (1987) estimator greatly improves the size
of t-tests for equal MSE and forecast encompassing. Unfortunately, though, the esti-

mator of Hodrick can only be applied when the null forecasting model takes a random

MImprecision in the estimate of S7; used to construct the asymptotic critical values could be
another source of difficulty. But we obtained results similar to those reported when we used an
estimate of Sj; based on a separate, very large sample of artificial data (rather than the small
sample used in computing the test statistics themselves).
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walk or “no change” form (and therefore has no estimated parameters).

Perhaps not surprisingly, using bootstrap critical values instead of asymptotic crit-
ical values yields better size results. Although the encompassing tests are sometimes
modestly oversized at shorter horizons, the other tests are all consistently (reason-
ably) close to being correctly sized when based on bootstrap critical values. As shown
in Table 1, for example, in the case of DGP-1, when 7 =4, R = 60, and P = 80, the
MSE-F, MSE-T, ENC-F, and ENC-T, statistics have size of 10.1, 10.5, 12.1, and 11.1
percent, respectively. Table 2 shows that, with DGP-2, 7 =4, R = 60, and P = 80,
the sizes of the tests (same order) are 10.4, 10.0, 11.5, and 11.4 percent, respectively.
Using the bootstrap is particularly important for improving the small sample prop-
erties of the MSE-T and ENC-T tests at longer horizons — the bootstrapped critical
values seem to reflect the imprecision in small sample estimates of the HAC variance
that enters the test statistics.

In light of the past use of standard normal critical values in applied research
applying t-tests for equal MSE to forecasts from nested models (recent examples
include Clarida, et al. (2003) and Cheung, Chinn, and Pascual (2003)), a natural
question is, how would using standard normal critical values affect inference under
the null? As shown in Table 3 (we present results for just DGP-1 in the interest of
brevity), in our experiment settings standard normal critical values can lead to serious
under—rejection at short horizons and over—rejection at long horizons. For example,
with R = 100 and P = 40, the MSE-T test (corresponding to the so—called Diebold—
Mariano test) has size of about 4 percent for 7 = 1 and 2 but size of 16.1 percent
for 7 = 12. The size of the ENC-T test is consistently higher, but shows the same
pattern of rising sharply with the forecast horizon, such that the test is undersized
or about correctly sized for shorter horizons but oversized for longer horizons.

In general, for standard normal critical values to provide reliable inference, the
forecast horizon needs to be relatively short, and P/R needs to be quite small. Once
the forecast horizon increases beyond a few periods, neither a standard normal ap-
proximation nor our asymptotic distribution yields reliable inference in finite samples;
bootstrap methods are much more reliable. At short horizons, the standard normal
approximation might be seen as acceptable for the ENC-T test, but not the MSE-T
test. In the results reported in Table 3, the size of the ENC-T test for 7 = 1 and 2

ranges from 8.9 to 12.7 percent. The ENC-T statistic’s performance is less favorable
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for 7 = 4, with size rising to 15 percent. For horizons 7 < 4, the MSE-T test is
undersized for all of the P/R settings reported, although less so for small P/R than
large P/R. For longer horizons, the MSE-T test ranges from under- to over-sized,
depending on the horizon and sample sizes.

At shorter horizons, how small does P/R need to be for the MSE-T test to be reli-
ably compared against standard normal critical values? Even with P/R = 40/200 =
.2, the MSE-T test has size of 5.3 percent for 7 = 1 and 6.6 percent for 7 = 2 (Table
3). Some additional simulations indicate that P/R needs to be less than .10 for stan-
dard normal critical values to be reliably used. For example, with DGP-1, R = 400,
and P = 40 (such that P/R = .1) the empirical size of the MSE-T test compared
against standard normal critical values is 6.2, 8.5, and 11.8 percent for 7 = 1, 2, and
4, respectively (using our asymptotic critical values yields a size of about 12 percent).
Doubling R (so P/R = .05) makes the empirical size against standard normal critical
values go up slightly, to 7.2, 9.8, and 13.2 percent for 7 = 1, 2, and 4, respectively.
As noted in section 3.1, in many historical forecast evaluations, P/R is considerably
larger than .10 or .05. As a result, the standard normal approximation seems unlikely

to be accurate for the commonly-used MSE-T (or Diebold-Mariano) test.

4.4 Monte Carlo Results: Power

In evaluating power, we begin with results based on bootstrap critical values, be-
cause the bootstrap—based tests are, for the most part, about correctly sized. The
bootstrap—based power results presented in Tables 4 and 5 indicate the test powers
follow the same general ranking as in Clark and McCracken’s (2001) Monte Carlo
examination of tests based on one-step ahead forecasts: ENC-F > MSE-F, ENC-T >
MSE-T. MSE-F is often more powerful than ENC-T, and sometimes much more so,
but the ranking of these two tests varies with 7 and the R, P setting. For example,
Table 4 shows that, with DGP-1, 7 = 4, R = 100, and P = 40, the bootstrap—based
powers of the MSE-F, MSE-T, ENC-F, and ENC-T tests are 53.1, 34.4, 70.2, and 47.8
percent, respectively. Clark and McCracken (2005) prove that, asymptotically, the
MSE-F and ENC-F tests are more powerful than their ¢-type counterparts because,
under the alternative hypothesis, the F—type tests diverge to infinity at a faster rate.

For both of the DGPs considered, power generally falls as 7 rises, and the power

differences among the tests tend to decline. With DGP-1, R = 100, and P = 40, for
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example, Table 4 shows that the bootstrap—based power of the MSE-T test declines
from 49.8 percent when 7 = 1 to 18.3 percent when 7 = 12. The power of the ENC-T
declines more sharply as 7 rises, from 73.8 percent when 7 = 1 to 21.3 percent when
7 = 12. As a result, the power advantage of ENC-T over MSE-T shrinks as the
forecast horizon grows.!®> As might be expected, power tends to rise with both R and
P. Given P, the powers of the tests tend to rise with R, more so for MSE-F and
ENC-F than the other forecast tests. For example, Table 4 shows that, with DGP-1,
P = 40, and 7 = 2, the bootstrap—based power of the MSE-F test increases from
63.8 percent when R = 100 to 72.9 percent when R = 200. Given R, increases in the
number of forecast observations consistently lead to a rise in power. As reported in
Table 5, with DGP-2, R = 60, and 7 = 4, the power of the MSE-F test rises from 49.7
percent when P = 40 to 68.5 percent when P = 80 and 79.0 percent when P = 120.

Power based on asymptotic critical values produces most of the same basic pat-
terns, although the asymptotics—based powers of some of the tests can differ substan-
tially from their bootstrap—based powers, reflecting the size distortions of the tests.
For the one test that seems to have decent size properties across all forecast horizons
when based on asymptotic critical values, the MSE-F test, power based on asymp-
totic critical values is quite close to the power estimates based on bootstrap methods.
For example, with DGP-2, R = 60, and P = 80, the power of the MSE-F test based
on asymptotic critical values ranges from 44.2 percent for 7 = 12 to 78.7 percent
for 7 = 1, compared to the bootstrap—based powers of 40.5 to 79.2 percent (Table
5). For the other tests, often subject to size distortions at longer forecast horizons,
power based on asymptotic critical values is generally greater than bootstrap—based
power (the differences become especially large for the MSE-T and ENC-T tests at
longer horizons, because, for these tests, size distortions rise sharply with the forecast
horizon). In the same example, the power of the ENC-T test ranges from 42.1 to
93.6 percent with bootstrap critical values but 68.7 to 95.0 percent with asymptotic

critical values.

15Based on prior experiments with other DGPs, it seems that the relationship of power to T
depends on the DGP in important ways, making generalizations difficult. Mark and Sul (2002)
use local asymptotic analysis to show that certain DGP features will cause power to rise with the
forecast horizon.
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5 Application to Inflation Forecasting

In this section we use the tests and inference approaches described above to determine
whether capacity utilization is useful for predicting core CPI inflation. Cecchetti
(1995), Staiger, Stock, and Watson (1997), and Stock and Watson (1999, 2003) are
recent examples of studies in the long literature on this basic question. Like these
other studies, we examine out—of-sample forecasts to gauge the predictive content of
capacity utilization.

Our quarterly data on the core CPI and capacity utilization in manufacturing span
1957:Q1 through 2004:Q3. After allowances for data differencing and a maximum of
four data—determined lags, the sample period available for estimation of a 1-step
ahead prediction model spans 1958:Q3-2004:Q3, for a total of 185 observations. We
begin forecasting in 1976:Q1, so that P = 115.

Following the basic approach of Stock and Watson (1999, 2003), we treat inflation
as having a unit root, and forecast a measure of the direct multi-step change in
inflation as a function of lags of the change in quarterly inflation and lags of capacity
utilization. In particular, using the notation of the last section, we make Y the log
difference of the quarterly core CPI (scaled by 400 to make Y an annualized percentage
change); AY is then the change in quarterly inflation. The predictand is Y}Q - Y,
where Y;(;l denotes the average annual rate of price change from ¢ to t + 7. x denotes
the rate of capacity utilization in manufacturing. The restricted model (model 1)
is autoregressive — the multi-step change in inflation is a function of just lags of
the one—period change in inflation. The unrestricted model (model 2) adds lags of
capacity utilization to the set of regressors. In particular, the competing forecasting
models take the forms of section 4.1.3’s equations (12) and (13). For each forecast
horizon, we use the AIC to determine the lag orders of (13), allowing different lag
lengths for inflation and capacity utilization.!® The baseline AR model (12) uses the
inflation lag order selected for (13). The lag selection is based on just the in—sample
portion of the data (1958-1975 model estimates).

We use both the asymptotic approach described in section 3.3 and the bootstrap
approach described in section 4.2 to draw inferences on capacity utilization’s predic-

tive power for inflation. In bootstrapping, we use the full sample of data to estimate

16Results based on a fixed order of two lags of inflation and four lags of capacity utilization are
similar.
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vector autoregressive equations for the one—quarter change in inflation AY; and ca-
pacity utilization x;, imposing the null that utilization has no predictive power for
inflation. The DGP equation for AY takes exactly the same form as the restricted
forecasting model for 7 = 1 (but estimated with all available data). The lag or-
ders of the capacity utilization equation are determined according to the AIC. The
coefficients of the DGP equations are bias-adjusted with Kilian’s (1998) procedure.
Then bootstrapped time series on AY; and z; are generated by sampling the residu-
als and using the autoregressive structures of the bias—adjusted models to iteratively
construct data.!”

The results reported in Table 6 indicate that, over the 1976-2004 period, capacity
utilization in manufacturing has significant predictive power for core inflation. As
shown in the upper panel of the table, for all horizons considered, forecasts from the
model with capacity utilization (Model 2) have a lower RMSE than forecasts from the
autoregressive model (Model 1). The test statistics and p-values in the lower panel
indicate capacity utilization’s predictive content is statistically significant. Consistent
with our Monte Carlo evidence that the F-type tests are more powerful than their
t-type counterparts, the MSE-F and ENC-F p-values are generally lower than those
of MSE-T and ENC-T. The tendency of the asymptotic p-values to be slightly lower

than the bootstrap p-values is also consistent with the Monte Carlo evidence.

6 Conclusion

In this paper we first derive the limiting distributions of four tests of direct multi-
step forecasts from linear regression models: the t—statistic for equal MSE developed
by Diebold and Mariano (1995) and West (1996); the F-type test of equal MSE
proposed by McCracken (2004); the t—statistic for encompassing developed in Har-
vey, Leybourne, and Newbold (1998) and West (2001); and the encompassing test
proposed by Clark and McCracken (2001). We show that, when the number of ob-
servations used to generate initial estimates of the models and the number of forecast

observations increase at the same rate, all of the tests have non-standard distribu-

"In light of the potential for conditional heteroskedasticity, in this application we slightly modify
the bootstrap procedure used in the Monte Carlo analysis and use the wild bootstrap recommended
by Goncalves and Kilian (2004). Instead of sampling from the residuals with replacement, we use
artificial residuals that are the product of the sample residuals (kept in their original order) and an
i.i.d. draw from the standard normal distribution.
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tions. While these distributions can be free of nuisance parameters when the forecast
horizon is one, they are not free of nuisance parameters for longer forecast horizons.

Using both our asymptotics and a simple model-based bootstrap for estimating
appropriate critical values, we then conduct a range of Monte Carlo simulations to
examine the finite-sample properties of the tests. These results indicate our asymp-
totic approximation yields good finite—sample size and power properties for some,
but not all, of the tests considered. In general, the asymptotics seem to work well for
McCracken’s (2004) F—type test of equal MSE. A simple bootstrap works reasonably
well for all tests. Finally, the encompassing test proposed by Clark and McCracken
(2001) — the ENC-F statistic defined in equation (4) — is most powerful.

In the final part of our analysis, applying our tests shows that capacity utilization
in manufacturing has significant predictive power for core inflation in the U.S. For
out—of-sample forecasts over 1976-2004, all of the tests of equal forecast accuracy and
encompassing indicate that capacity utilization improves forecasts of core inflation at

all horizons.
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7 Appendix: Proofs

The following notation will be used. For any (m X n) matrix G with elements g; ;
and column vectors g; let vec(G) denote the (mn x 1) vector [gll,g'z, ...,g;b}/ and
let |G| denote max; ; |g; ;|. For any sequence z;, 3, z; denotes S/ 7 2, S.. denotes
lim Var(P~'?Y, z;) and sup, |z denotes suppeir |2

For brevity, much of the extensive algebra involved in the proofs of Theorems 3.1-
3.4 is relegated to a not-for-publication technical appendix, Clark and McCracken
(2004). Before proceeding to the proofs we first provide an appendix Lemma.
Lemma A1: Under Assumptions 1, 2, and 4, 3, Hy(t)ho s r —a [y w™ W (w) S5 dW (w).

Proof of Lemma A1: The results are modifications of those in Hansen (1992).
Using Hansen’s notation, let the operator E; X denote E(X|S;), where
Sy =o(T7V250, iLls, iIQ’i 24 < t,T > 1) is the smallest sigma-field containing the
history of {T™Y2Y!_| hog, hoy} V T. Define epr = 35 (Bihogirii — Eimthogirii)
and zyr = Y00 Eihogpriie Then hoyir = ppr + Zepr—1 + 2ot

In the above notation, 3, (T/t)(T~2 127 hoerr) (T~ ?hoyyr)

t+7—1 _ T—l~ N
= S AT/OT Y ho ) (TP hogsr) = > (/Y hoye) hayir
t s=71+1 t 7=1
B L1 t+7—1 V12 t+7—1 , B
= Y (T/t)(T D ha ) (T 2en) + ) (/) D] hos) (Zer—1 — 2esr)
t s=7+1 t s=1+1

- <1/t><§1 Foess e

t—71 Rt+7-2
= ST T Y hanr) (T Peir) + RN By )piras
t s=1 s=1+T1
T+T 1 T-1 t+7' 1
Y hgs 2rir— Y ()Y has) 2eir

s=1+71 t=R s=14T1
T-1 =1 _ ~
Z (1/1) h2 T AT T Z (1/75)(2: haeij) hoeir.
t=R— ¢ j=1

That 3, (T/t) (T2 X120 hoerr) (T~ V%614 2) —a [y w "W/ (w)S;:dW (W) follows
from Theorem 4.1 of Hansen (1992). Lemma Al follows if the sum of the remaining
terms is 0,(1).

Consider the second and third right-hand side terms. Taking their absolute value

we obtain

RS 2B, 2] < (TRl T2 S 2 By [T 22, and
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R ST 0 Ry oael (TR T2 ST5 h  [T22r .

Assumption 4 implies that 7'/ R is bounded while Assumption 2 implies that both
T2 B2 by | and | T2 T4 7 by | are O,(1). That the second and third
right-hand side terms are o, (1) follows from (A.3) of Hansen (1992) wherein he shows
that both [T=Y22p, . 1| and |[T~Y227,4| are o,(1).

Consider the fourth right-hand side term. Taking its absolute value we obtain

T-1 t+7—1
[ D+ o)z
t=R s=1+71
t+7-1
<[(T =1 R)/(B* + R)lka(sup [T D7 ho|)(sup [T72204).
t s=1+71 t<T

Assumption 2 implies (sup, |T~Y2 3177 hy of) = O,(1). That (sup,cy [T~ Y221, |) =
0,(1) follows from (A.3) of Hansen (1992). The result follows since by Assumption 4,
(T —1—-R)/(R*+ R) = 0,(1).
Consider the fifth right-hand side term. We show that it converges in probability

to —In(\) X7-¢ EiLIQt +jiL2,t+T. Rearranging terms we obtain

Rt (1/t)(ﬁl2,t+‘l"zt+7' - Eill2,t+‘rzt+7'> + g (1/t)(Eiz’27t+th+T). Since
Eﬁ27t+Tﬁ’27t+T_j = 0 for all j > 7 it is clear that Y74 (1/15)(Eil’27t+7.2t+7-)
= ST B [52 Bihoarsd)) = (T SE5 (D) (S0} Bl i),
Since for large enough 7, T-* L, (T/t) ~ [y w'dw = —In()), the result will follow

if 3/ g (1/t>(ﬁl2,t+rzt+f — Ehyyyr2iir) = T im (T)1) (ilé,t+7'zt+7' — ERyy 24
= 0,(1). If we define Uy = T/t and e; = iL/Q,tJrTZtJrT — El~z’27t+th+T then the result
follows from Theorem 3.2 of Hansen (1992).

Because of the minus sign, the proof will be complete if the final right-hand side
term converges in probability to — In()) Z;;ll Eiz’Qt Hizg,tﬂ. Rearranging terms yields
S (VOS5 hoge) hoger = T2 T2 (T/8) (B gy shogir — Bl shoyir)+
(T3, (T/6) (=) Eil,27t+jf~lg7t+7). Given Assumption 2, Corollary 29.11 of Davidson
(1994) implies that S7=1 T2, (T/t)(Ry,shoprr — Eblyyhogyr) = Op(1). Since
T-12 = 0,(1) the result is obtained because (T7'%, (T/t))(X7=1 Ehb,, hasir) =
—In(A) 372 Eﬁ’m +jl327t+7 + 0,(1) was established in the preceding paragraph.

Proof of Theorem 3.1: (a) Given Theorem 3.4 and the Continuous Mapping
Theorem it suffices to show that Pzngj K(j/M)Tw(j) —q 0*Ts. Lengthy algebra
and the definition of ha, imply that PTw.(j) = 0% 5, Hy(t)[Ehoprhly, ] Ha(t) +
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0,(1). Substitution, and the fact that j is finite provides PZ] K (j/M)Te(j) =

J

D> K(j/M)[Xt: Hy(6)[Bho,psrlty i yr | Ha()] + 0,(1)

P
. j . .
= o' Y H O Y. K(G/M)(Bhagirhiyyyr )| Ha(t) + 0p(1)
‘ =7
i .
= AT TV © TV vecl Y KG/M)(Eh iy )]+ 0p(1).
: =7
Given Assumption 3, Z;_,g K(j/M)(Ehg.. t+r—j) — Sip. Since Assumption 2

and Corollary 29.19 of Davidson (1994) suffice for T2 Hy(t) = w*181/2W(w), the
Continuous Mapping Theorem implies T-'' S, TV2H)(t) @ TV2H}(t) —
I w*2[W’(w)Sl/2 Q@ W' (w )S;Lé?]dw. Since (fy w’ﬂW’(w)S%ﬁ ® W' (w)S;4 / Jdw)vec[Si;] =
I's, we obtain the desired result.

(b) First consider the numerator of ENC-T. Additional algebra and the definition
of iL27t+T imply
2@y — W giriingar) = (P/R)20* [RYVZHY(R)PT2 3 hos] + 0,(P/R)'?).

¢

t
Now consider the denominator of ENC-T. Similar algebra implies that

T—1

Pl.(j) = Y, (@%,HT Uy pprlingsr — €)(0F 4y p _j = Uggr—jlor—j — C)
t=R+j

= (P/R)o*[RV*H)(R)|[Ehai-lty sy, ;| [RV*Hy(R)] + 0,(P/R).

Substitution, and using the fact that j is finite then provides

(P/R)"?0*[R'*Hy(R)|[P~" 5, haver] + 0p(P/R)'?)

ENC-T = -
(P/R)o*[RV2H(R)][S3_ 5 K (j/M)(Ehi i hiyr )| [RY2Ha(R)] + 0,(P/ R)]!/?

[RI/QH'(R)][P V2 hasie] + 0p(1)
(R RS) 5 KG/M) i oo, )2 ()] + 0y 1]
[R1/2H/(R)][P—1/2 S hotis) +0,(1).
(B2 H (R[S K /M) (B b, )[RV Ho( )V

Given Assumption 2, Corollary 29.19 of Davidson (1994) suffices for
(P25, hhy, ., RM2HY(R)) — (V’S}lf, V’S}ZZ)/ for independent (k x 1) standard
normal vectors Vy and V. Given Assumption 3, we know that
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Z;_ S KG/M )(Eﬁ27t+JL’27t +r—j) — Sip- The result follows immediately from the
Continuous Mapping Theorem.

Proof of Theorem 3.2: (a) Given Theorem 3.3 and the Continuous Mapping
Theorem it suffices to show that Z] -K(j/M )Fdd( ) —q 40%T'5. Extensive algebra
and the definition of Ay, imply that PI‘dd( ) = 4oty Hy(t )[Eﬁz rrhh b ]]flz( )+

0,(1). Substitution, and the fact that j is finite provides P Z] K(j/M)T4q(5) =

10t Y KGN 52 HYO B s 1 F(0)] + 00(1)

j=-7

A S EOLSS KGM) Bhsrly(0) + o)

t J==j

i i
= 40T S S TRl 3K G/ Bl o) + 1)
t

The result follows immediately from the proof of Theorem 3.1 (a).
(b) First consider the numerator of MSE-T. Extensive algebra and the definition
of BQ,HT imply
Z (ﬁiwr Ug t+7) = 2(P/R)1/202[Rl/2}~[£(R)][P—1/2 Z il2,t+7] + Op((P/R)l/Q)-
¢ t
Now consider the denominator of MSE-T. Similar algebra implies that

T—1 B

Prdd(j) = Z (aitJrT Ug AT J) (ﬂitJrT —J U’g R ] d)
t=R+j

= A(P/R)o*[RV?Hy(R)|[Eho il . |[RV? Ho(R)] + 0,(P/R).

Substitution, and using the fact that j is finite then provides

2(P/R)?0*[RV*Hy(R)|[P~Y 4 ha] + 0,((P/R)"?)

MSE-T = -
[4(P/R)o*[RY2 Hy(R)|[X>1_ 5 K (§/M)(Ehesr by )[RV Hy(R)] + 0p(P/R)] /2

BP0
(R E RIS K (/M) ey by BB (R)] 4 0p( 1)1
) [Rl/QH’( )P 1/2Zth2t+1] +0,(1).
(R PT RIS KU /M) Bl by IR (R

Jj==J

The result follows immediately from the proof of Theorem 3.1 (b).
Proof of Theorem 3.3: (a) That P~'Y, 43, . —, o follows from Theo-
rem 4.1 of West (1996). Extensive algebra and the definition of EQ,HT imply that
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S (@ g4y = Wyp) = 207 Sy Hy(Dhogrr — 0*T71 S (T2 Hy (1) (T Hy (1)) + 0,(1).
Since Assumption 2 and Corollary 29.19 of Davidson (1994) suffice for T2 H,(t)
= w‘lS;fW(w), the Continuous Mapping Theorem implies

T4, (TV2H(t))(TY2H)(t)) —4 I'y. The result then follows from Lemma A1l.

(b) That P~'Y,43,,, —p o follows from Theorem 4.1 of West (1996). De-
tailed algebra (see Clark and McCracken (2004)) and the definition of hy,y, imply
that 35 (@3, — 3,y,) = 20°(P/R)V[RVZHy(R)][P™2 Sy hogis] + 0p((P/R)'V?).
Given Assumption 2, Corollary 29.19 of Davidson (1994) suffices for
(P25, bl RV2HY(R)) —q (V{S}}f, VO’S;L,{Q)’ for the independent (ko x 1) stan-
dard normal vectors Vg and V; from Theorem 3.1. Scaling by (R/P)'/? provides the
desired result.

Proof of Theorem 3.4: (a) That P~'Y, 43, . —, o follows from Theo-
rem 4.1 of West (1996). Lengthy algebra and the definition of 712,t+7 imply that
S (@24 — G pgrlingr) = 025 Hy(t)hoysr + 0,(1). The result follows from Lemma
Al

(b) That P~' 32,43, . — o* follows from Theorem 4.1 of West (1996). Extensive
algebra (see Clark and McCracken (2004)) and the definition of hy,y, imply that
S (U pyr — Wi prllngrr) = o?(P/R)\V[RV2Hy(R)[P™Y2 %2y hoyis] + 0,((P/R)Y?).
The result follows immediately from the proof of Theorem 3.3 (b).
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Table 1: Monte Carlo Results on Size, DGP-1

T=1|r=2]r=4]7=8[7=12|r=1|r=2]7=4[7=8[7=12

R =60, P =40 R =100, P =40

Using asymptotic critical values Using asymptotic critical values

MSE-F | 114 | 119 | .125 | .132 .150 100 | 103 | 113 | 125 124
MSE-T | .116 | .130 | .142 | .183 .239 A12 | 123 | 154 | .205 .230
ENC-F | 170 | 172 | .170 | .176 .180 147 | 146 | 152 | .143 144
ENC-T | .141 | .181 | .205 | .286 .350 129 | 159 | 193 | .261 .297
Using bootstrapped critical values Using bootstrapped critical values

MSE-F | .108 | .094 | .093 | .090 121 094 | .088 | .091 | .090 .092
MSE-T | .102 | .094 | .080 | .084 .099 .090 | .090 | .080 | .090 .083
ENC-F | .142 | .126 | .109 | .116 .136 138 | 112 | 113 | .093 .103
ENC-T | .119 | .102 | .096 | .092 105 101 | .096 | .085 | .103 .091
R =60, P =280 R =100, P =80

Using asymptotic critical values Using asymptotic critical values

MSE-F | 132 | .095 | .114 | .117 123 120 | 119 | 135 | .136 126
MSE-T | .125 | .107 | .122 | .137 146 119 | 120 | 142 | .163 157
ENC-F | .181 | .138 | .155 | .161 .140 169 | 169 | 166 | .161 .153
ENC-T | 177 | .162 | .183 | .195 217 145 | 163 | 186 | .215 .226
Using bootstrapped critical values Using bootstrapped critical values

MSE-F | .134 | .098 | .101 | .091 .096 JA21 | 111 | 110 | .098 .098
MSE-T | .126 | .096 | .105 | .087 .098 109 | .098 | .095 | .086 .086
ENC-F | .161 | .124 | .121 | .103 .099 156 | 133 | 129 | 122 .108
ENC-T | .159 | .109 | .111 | .096 .096 132 | 116 | 112 | .103 .089
R =60, P =120 R =200, P =40

Using asymptotic critical values Using asymptotic critical values

MSE-F | .107 | .094 | .087 | .104 114 A13 | 103 | 114 | 132 139
MSE-T | .105 | .087 | .084 | .108 .120 14 | 138 | 167 | .231 270
ENC-F | .182 | .157 | .161 | .161 .149 139 | 129 | 127 | 140 .136
ENC-T | .163 | .146 | .151 | .188 .207 131 | 154 | 185 | .243 .302
Using bootstrapped critical values Using bootstrapped critical values

MSE-F | .111 | .089 | .083 | .092 .100 109 | .089 | .088 | .094 104
MSE-T | .114 | .085 | .076 | .097 .090 092 | .083 | .087 | .085 .086
ENC-F | .167 | .124 | .115 | .117 104 123 | 107 | 099 | .098 103
ENC-T | .148 | .111 | .099 | .115 .099 099 | .091 | .088 | .086 .087

Notes:

1. The data generating process is defined in equation (6).

2. For each artificial data set, forecasts of Y;4- — Y; are formed recursively using estimates of equations (10) and (11).
These forecasts are then used to form the indicated test statistics, defined in Section 3. R and P refer to the number
of in—sample observations and 1-step ahead forecasts, respectively.

3. In each Monte Carlo replication, the simulated test statistics are compared against asymptotic and bootstrapped
critical values, using a significance level of 10%. Sections 3.3 and 4.2 describe the asymptotic and bootstrap procedures.
4. The number of Monte Carlo simulations is 1000; the number of bootstrap draws is 999.
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Table 2: Monte Carlo Results on Size, DGP-2

T=1|r=2]r=4]7=8[7=12|r=1|r=2]7=4[7=8[7=12

R =60, P =40 R =100, P =40

Using asymptotic critical values Using asymptotic critical values

MSE-F | .094 | .107 | .131 | .126 118 098 | 111 | .124 | .122 124
MSE-T | .096 | .119 | .144 | .183 .203 107 | 122 | 153 | .192 .239
ENC-F | 137 | .159 | .174 | .167 146 136 | 149 | 164 | .153 144
ENC-T | 125 | .162 | .213 | .268 .302 118 | 167 | 205 | .250 .297
Using bootstrapped critical values Using bootstrapped critical values

MSE-F | .095 | .094 | .101 | .092 .089 096 | .095 | .104 | .092 .090
MSE-T | .091 | .100 | .114 | .100 .097 088 | .082 | .093 | .088 .086
ENC-F | .109 | .101 | .116 | .109 .091 A25 | 125 | 114 | 113 .106
ENC-T | .108 | .106 | .116 | .100 .096 095 | 105 | 111 | .097 .098
R =60, P =280 R =100, P =80

Using asymptotic critical values Using asymptotic critical values

MSE-F | .077 | .078 | .114 | .101 11 095 | .107 | .114 | .115 131
MSE-T | .074 | .085 | .111 | .116 138 087 | .100 | .112 | .134 164
ENC-F | 119 | .134 | .160 | .137 .138 131 | 149 | 158 | .159 150
ENC-T | 109 | .137 | .179 | .198 224 A17 | 147 | 168 | .209 .233
Using bootstrapped critical values Using bootstrapped critical values

MSE-F | .079 | .084 | .104 | .085 .091 .091 | .101 | .094 | .090 101
MSE-T | .083 | .090 | .100 | .093 .088 084 | .083 | .084 | .081 .097
ENC-F | .102 | .098 | .115 | .089 .091 A18 | 124 | 121 | 112 107
ENC-T | .087 | .100 | .114 | .087 .089 .098 | .114 | .108 | .111 107
R =60, P =120 R =200, P =40

Using asymptotic critical values Using asymptotic critical values

MSE-F | .062 | .069 | .091 | .095 110 103 | 112 | 125 | 118 115
MSE-T | .067 | .070 | .095 | .101 119 A15 | 139 | 169 | 224 270
ENC-F | 115 | .144 | .149 | .160 155 A28 | 141 | 133 | .133 125
ENC-T | .100 | .129 | .146 | .172 .196 A25 | 161 | 194 | 257 314
Using bootstrapped critical values Using bootstrapped critical values

MSE-F | .069 | .072 | .087 | .091 103 101 | .098 | .096 | .094 .088
MSE-T | .078 | .076 | .094 | .094 .106 092 | .088 | .092 | .097 105
ENC-F | .103 | .104 | .107 | .095 .098 115 | 114 | .097 | .095 .090
ENC-T | .092 | .100 | .100 | .090 .092 099 | .098 | .094 | .097 .099

Notes:
1. The data generating process is defined in equation (7).

2. For each artificial data set, forecasts of Yt(T,)r —Y; are formed recursively using estimates of equations (12) and (13).
These forecasts are then used to form the indicated test statistics, defined in Section 3. R and P refer to the number
of in—sample observations and 1-step ahead forecasts, respectively.

3. In each Monte Carlo replication, the simulated test statistics are compared against asymptotic and bootstrapped
critical values, using a significance level of 10%. Sections 3.3 and 4.2 describe the asymptotic and bootstrap procedures.
4. The number of Monte Carlo simulations is 1000; the number of bootstrap draws is 999.
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Table 3: Monte Carlo Results on the Size of
Tests Based on Standard Normal Critical Values, DGP-1

721‘7':2‘7':4‘728‘7212 7':1‘7':2‘7':4‘7':8‘7':12

R =60, P =40 R =100, P =40

MSE-T | .022 .035 .057 | .089 .163 .040 .045 .069 113 .161
ENC-T | .107 | .127 | .154 .226 .299 .093 121 153 .206 .259
R =60, P =280 R =100, P =80

MSE-T | .025 | .020 | .031 | .040 | .063 | .029 | .034 | .047 | .051 | .076
ENC-T | .123 | .111 | .136 | .157 | .174 | .104 | .125 | .130 | .155 | .165
R =60, P =120 R =200, P =40

MSE-T | .014 | .021 018 | .028 .034 053 | .066 | .090 | .144 199
ENC-T | .115 105 107 | 142 155 .089 | .120 | .139 | .209 .259

Notes:

1. The data generating process is defined in equation (6).

2. For each artificial data set, forecasts of Y;4 - — Y: are formed recursively using estimates of equations (10) and (11).
These forecasts are then used to form the indicated test statistics, defined in Section 3. R and P refer to the number
of in—sample observations and 1-step ahead forecasts, respectively.

3. In each Monte Carlo replication, the simulated test statistics (the same as those used in the results in Table 1) are
compared against standard normal critical values (10%).

4. The number of Monte Carlo simulations is 1000.
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Table 4: Monte Carlo Results on Power, DGP-1

T=1|r=2]r=4]7=8[7=12|r=1|r=2]7=4[7=8[7=12

R =60, P =40 R =100, P =40

Using asymptotic critical values Using asymptotic critical values

MSE-F | .610 | .551 | .492 | .399 316 .652 | .632 | .5b48 | .444 .343
MSE-T | .537 | .525 | .481 | .443 415 .b31 | .b54 | 524 | .490 457
ENC-F | .841 | .776 | .647 | .475 .344 903 | .870 | .718 | .555 407
ENC-T | .754 | .735 | .693 | .622 .566 782 | 787 | 728 | .638 .598
Using bootstrapped critical values Using bootstrapped critical values

MSE-F | .602 | .574 | .466 | .361 .247 642 | .638 | .531 | .429 .290
MSE-T | .520 | .451 | .353 | .250 193 498 | 465 | .344 | .248 183
ENC-F | 807 | .749 | .593 | .391 .263 .886 | .857 | 702 | .514 .339
ENC-T | .717 | .610 | .456 | .283 212 738 | 666 | 478 | .307 213
R =60, P =280 R =100, P =80

Using asymptotic critical values Using asymptotic critical values

MSE-F | .751 | .721 | .619 | .522 400 817 | 773 | 689 | 573 453
MSE-T | .733 | .688 | .599 | .536 437 752 | 719 | .640 | .556 474
ENC-F | 950 | 914 | .816 | .650 447 973 | 958 | 883 | .724 .564
ENC-T | 924 | 901 | .819 | .721 581 947 | 938 | 870 | .757 .661
Using bootstrapped critical values Using bootstrapped critical values

MSE-F | .755 | .739 | .613 | .509 .367 821 | 775 | 684 | .546 417
MSE-T | .740 | .676 | .542 | .435 314 751 | 675 | 548 | .431 318
ENC-F | 938 | .909 | .792 | .589 372 970 | 959 | .863 | .688 510
ENC-T | 904 | .851 | .707 | .522 .353 941 | .889 | .750 | .550 .386
R =60, P =120 R =200, P =40

Using asymptotic critical values Using asymptotic critical values

MSE-F | .844 | .810 | .723 | .587 467 744 | 729 | 634 | .526 .398
MSE-T | .840 | .793 | .703 | .573 .483 542 | 589 | 539 | 518 479
ENC-F | 974 | 956 | .895 | .713 .536 946 | 929 | 811 | .656 .498
ENC-T | 962 | .956 | .891 | .749 .629 827 | .848 | 738 | .684 .629
Using bootstrapped critical values Using bootstrapped critical values

MSE-F | .848 | .815 | .719 | .580 .446 738 | 729 | 633 | .520 379
MSE-T | .851 | .804 | .669 | .542 408 b11 | 481 | 352 | .254 174
ENC-F | 969 | .953 | .865 | .641 471 938 | 927 | .809 | .635 .452
ENC-T | 962 | .932 | .811 | .607 438 791 | 728 | 815 | 330 .229

Notes:

1. The data generating process is defined in equations (6) and (8).

2. For each artificial data set, forecasts of Y;4- — Y; are formed recursively using estimates of equations (10) and (11).
These forecasts are then used to form the indicated test statistics, defined in Section 3. R and P refer to the number
of in—sample observations and 1-step ahead forecasts, respectively.

3. In each Monte Carlo replication, the simulated test statistics are compared against asymptotic and bootstrapped
critical values, using a significance level of 10%. Sections 3.3 and 4.2 describe the asymptotic and bootstrap procedures.
4. The number of Monte Carlo simulations is 1000; the number of bootstrap draws is 999.
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Table 5: Monte Carlo Results on Power, DGP-2

T=1|r=2]r=4]7=8[7=12|r=1|r=2]7=4[7=8[7=12

R =60, P =40 R =100, P =40

Using asymptotic critical values Using asymptotic critical values

MSE-F | .617 | .520 | .507 | .368 .283 708 | .611 | .586 | .463 .367
MSE-T | .546 | .481 | .502 | .422 377 585 | .b44 | 558 | .510 478
ENC-F | .856 | .755 | .700 | .481 .326 923 | .834 | .784 | .622 .466
ENC-T | 786 | .730 | .729 | .628 .559 838 | .766 | .783 | .722 .667
Using bootstrapped critical values Using bootstrapped critical values

MSE-F | .624 | .523 | .497 | .345 .239 704 | .612 | .581 | .455 .325
MSE-T | .545 | .437 | 413 | .273 195 .b63 | 461 | 411 | 314 231
ENC-F | .838 | .702 | .626 | .379 .233 914 | 815 | 747 | .562 .387
ENC-T | .755 | .B87 | .523 | .316 214 .806 | .664 | 575 | .397 274
R =60, P =280 R =100, P =80

Using asymptotic critical values Using asymptotic critical values

MSE-F | 787 | .707 | .688 | .567 442 849 | 775 | 753 | 625 518
MSE-T | .762 | .682 | .667 | .568 .480 802 | 723 | .T15 | .612 .b45
ENC-F | 973 | 921 | .873 | .738 .b35 996 | 959 | 926 | .813 .644
ENC-T | .950 | .900 | .880 | .787 .687 978 | 940 | 907 | .843 762
Using bootstrapped critical values Using bootstrapped critical values

MSE-F | .792 | .722 | .685 | .554 405 847 | 784 | 747 | 610 .480
MSE-T | .779 | .692 | .649 | .509 381 802 | 704 | .662 | .513 .398
ENC-F | 960 | .904 | .838 | .654 424 2995 | .950 | .908 | .769 .565
ENC-T | 936 | .857 | .797 | .618 421 967 | .896 | .846 | .668 .516
R =60, P =120 R =200, P =40

Using asymptotic critical values Using asymptotic critical values

MSE-F | .896 | .809 | .780 | .667 .b48 797 | 739 | 700 | .565 .458
MSE-T | .896 | .795 | .770 | .658 .553 627 | .595 | .604 | .565 .533
ENC-F | 987 | 969 | .948 | .817 .641 971 | 922 | 889 | .744 .589
ENC-T | 982 | .962 | .943 | .866 750 .898 | .851 | .843 | .769 732
Using bootstrapped critical values Using bootstrapped critical values

MSE-F | 903 | .823 | .790 | .672 534 790 | 737 | 703 | .569 441
MSE-T | .907 | .820 | .784 | .645 .520 .b98 | 499 | 445 | 284 216
ENC-F | 986 | .960 | .928 | .745 542 965 | 927 | .886 | .725 .559
ENC-T | 981 | .944 | .907 | .766 .556 878 | 789 | .664 | .426 .309

Notes:

1. The data generating process is defined in equations (7) and (9).

2. For each artificial data set, forecasts of Yt(T,)r —Y; are formed recursively using estimates of equations (12) and (13).
These forecasts are then used to form the indicated test statistics, defined in Section 3. R and P refer to the number
of in—sample observations and 1-step ahead forecasts, respectively.

3. In each Monte Carlo replication, the simulated test statistics are compared against asymptotic and bootstrapped
critical values, using a significance level of 10%. Sections 3.3 and 4.2 describe the asymptotic and bootstrap procedures.
4. The number of Monte Carlo simulations is 1000; the number of bootstrap draws is 999.
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Table 6: Tests of Predictive Power of Capacity Utilization for Inflation
1976:Q1-2004:Q3

T=1 T=2 ‘ T=4 ‘ T=28 T=12
Summary statistics
RMSE 1 1.53 1.41 1.41 1.71 1.97
RMSE 2 1.46 1.36 1.31 1.48 1.64
Test statistics (asymptotic p-values, bootstrap p-values)
MSE-F [ 10.92 (.00, .00) | 8. 47 (01, 01) | 17. 69 (.01, .01) | 36. 18 (.01, .00 | 46.21 (.01, .00)
MSE-T | 1.02(.02,.04) | .50 (.07,.10) | .59 (.06,.09) | .98 (.03,.05) | 1.13 (.01, .06)
ENC-F | 1177 (.00, .00) | 14.66 (.00, .00) | 30.86 (.00, .00) | 42.88 (.01, 01) | 41.91 (.02, .01)
ENC-T | 2.09 (.01,.02) | 1.72 (.02,.04) | 1.92 (.01,.03) | 1.75 (.02, .06) | 1.56 (.03, .10)
Notes:
1. As described in section 5, forecasts of the 7-period ahead change in inflation (Yt(+3— Y;) are formed recursively

using estimates of the restricted model (12) and the unrestricted model (13). Inflation is measured in annualized
percentage points. The recursive forecasts are then used to form the indicated test statistics, defined in Section 3.

2. RMSE 1 and RMSE 2 refer to the RMSEs of the restricted and unrestricted models (equations (12) and (13)),
respectively.

3. The p-values reported in the table are computed with the asymptotic and bootstrap procedures described in
sections 3.3 and 4.2.
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