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Abstract 
 
 This paper examines the asymptotic and finite-sample properties of tests of equal 

forecast accuracy and encompassing applied to direct, multi--step predictions from nested 

regression models. We first derive the asymptotic distributions of a set of tests of equal 

forecast accuracy and encompassing, showing that the tests have non-standard 

distributions that depend on the parameters of the data-generating process. We then 

conduct a range of Monte Carlo simulations to examine the finite-sample size and power 

of the tests. In these simulations, our asymptotic approximation yields good finite--

sample size and power properties for some, but not all, of the tests; a bootstrap works 

reasonably well for all tests. The paper concludes with a reexamination of the predictive 

content of capacity utilization for core inflation. 

  

JEL classification:  C53, C12, C52 
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1 Introduction

Researchers often compare multi–step forecasts from nested linear models to deter-

mine whether one variable has predictive content for another. Examples include

Estrella and Hardouvelis’ (1991) examination of the predictive content of spreads for

GDP growth, Mark’s (1995) and Kilian’s (1999) studies of exchange rate models, and

Stock and Watson’s (1999, 2003) analyses of output and inflation forecasting models.

In such applications, forecasts from the model of interest are compared to forecasts

from a benchmark model that is a restricted version of the model of interest. Con-

sequently, the results in studies such as West (1996, 2001) on the asymptotic and

finite-sample properties of tests of equal forecast accuracy and encompassing, based

on non-nested models, may not apply.1 Intuitively, with nested models, the null hy-

pothesis that the restrictions imposed in the benchmark model are true implies the

population errors of the competing forecasting models are exactly the same. This

in turn implies, for example, that the population difference between the competing

models’ mean square forecast errors is exactly zero with zero variance. As a result, the

distribution of a t–statistic for equal MSE may be non–standard. Indeed, Clark and

McCracken (2001) and McCracken (2004) show that, for 1-step ahead forecasts from

nested models, the distributions of tests for equal forecast accuracy and encompassing

can be non-standard.

In many comparisons of multi–step forecasts from nested models, the multi–step

predictions are made using horizon–specific, linear models, in which the dependent

variable is the multi–step ahead value being forecast. As described in studies such

as Clements and Hendry (1996), Schorfheide (2003), Chevillon and Hendry (2004),

and Marcellino, Stock, and Watson (2004), an alternative approach is to form multi–

step forecasts by iterating forward projections from one–step ahead models. Both

methods have pros and cons, reviewed in the aforementioned studies. But one of the

key advantages of the direct approach in forecasting is its computational simplicity

— an advantage that no doubt helps account for its common usage, in applications

such as those listed above.

Motivated by the frequency with which researchers compare direct multi-step

predictions from nested linear regression models, this paper examines the asymptotic

1As described explicitly in West’s (2005) survey, the nesting of the models violates a rank condi-
tion required in the asymptotic normality results of West (1996).
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and finite-sample properties of tests of equal forecast accuracy and encompassing

applied to such forecasts. Our multi–step analysis builds on the one–step analyses of

Clark and McCracken (2001) and McCracken (2004). Specifically, for direct, multi–

step forecasts from nested models, we first derive the asymptotic distributions of

some standard tests of equal forecast accuracy and encompassing and the variants

proposed in McCracken (2004) and Clark and McCracken (2001). As in our prior

work and other studies such as West (1996, 2001), West and McCracken (1998),

Chao, Corradi, and Swanson (2001), Corradi, Swanson, and Olivetti (2001), and

Gilbert (2001), the distributions explicitly account for the uncertainty introduced

by parameter estimation. In general, the tests have non-standard distributions that

depend on the parameters of the data-generating process.

In light of the dependence of the asymptotic distributions on unknown nuisance

parameters, in our Monte Carlo analysis of finite–sample size and power and in our

empirical application we consider both asymptotic and bootstrap approaches to in-

ference. The asymptotic approach — which could be applied by any researcher —

involves estimating the particular second moments of the data that affect the lim-

iting distributions. Our bootstrap procedure is a slightly simplified version of the

one Kilian (1999) used in analyzing the predictability of exchange rates. The Monte

Carlo results indicate our asymptotic approximation yields good finite–sample size

and power properties for some, but not all, of the tests considered; a bootstrap works

reasonably well for all tests. Most notably, the asymptotics seem to work well for

McCracken’s (2004) F–type test of equal MSE, delivering a test with decent size

and power properties. But the encompassing test proposed by Clark and McCracken

(2001) has superior power (even when based on bootstrap critical values, which gen-

erally yield correctly sized tests).2

Finally, to illustrate how the tests perform in practical settings, the paper con-

cludes with an examination of capacity utilization’s predictive power for core CPI

inflation. Cecchetti (1995), Staiger, Stock, and Watson (1997), and Stock and Wat-

son (1999, 2003) are recent examples of studies in the long literature on this basic

question. Applying our tests and bootstrap approach to inference to simulated out–

of–sample forecasts for 1976-2004, we find that capacity utilization in manufacturing

2Clark and McCracken (2005) consider how these out-of-sample tests behave under a broad range
of alternatives that include breaks in the causal relationships. See Rossi (2001) and Inoue and Kilian
(2004) for further discussion of the power of out-of-sample tests compared to in–sample tests.
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has significant predictive power for core inflation.

Although our results apply only to a setup that some might see as restrictive —

direct, multi–step (DMS) forecasts from nested linear models — the long list of studies

analyzing such forecasts suggests our results should be useful to many researchers.

Recent applications considering DMS forecasts from nested linear models include,

among others: the studies cited at the beginning of this section; Diebold and Li

(2004); Orphanides and van Norden (2004); Rapach and Weber (2004); and Shintani

(2004). Of course, a number of other studies, such as Marcellino (2002), Kilian

and Taylor (2003), Qi and Wu (2003), have considered DMS forecasts from nested

nonlinear models. We leave as an important topic for future research the extension

of our asymptotics to allow nonlinear models.3 Similarly, we leave the extension of

our results to iterated multi–step forecasts to future work.4

Section 2 introduces the notation, the forecasting and testing setup, and the as-

sumptions underlying our theoretical results. Section 3 defines the forecast tests

considered, provides the null asymptotic results, and lays out how, in practice, ap-

propriate asymptotic critical values can be calculated. Proofs of the asymptotic re-

sults are provided in the appendix. Section 4 describes our model–based bootstrap

approach and presents Monte Carlo results on the finite–sample performance of the

asymptotics and the bootstrap. Section 5 applies our tests to determine whether

capacity utilization has predictive power for core inflation. Section 6 concludes.

2 Setup

The sample of observations {yt, x
′
2,t}T

t=1 includes a scalar random variable yt to be

predicted, as well as a (k1 + k2 = k × 1) vector of predictors x2,t = (x′1,t, x
′
22,t)

′.

Specifically, for each time t the variable to be predicted is yt+τ , where τ denotes the

forecast horizon. The sample is divided into in–sample and out–of–sample portions.

The total in–sample observations (on yt and x2,t) span 1 to R. Letting P − τ + 1

denote the number of τ–step ahead predictions, the total out-of-sample observations

span R + τ through R + P . The total number of observations in the sample is

3Corradi and Swanson (2002) develop an encompassing–type test for comparing one–step ahead
forecasts from a pair of nested nonlinear or linear models

4Iteration will mean the multi–step forecasts are affected by polynomials in parameter estimation
error. In contrast, with DMS forecasts, parameter estimation error enters only linearly.
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R + P = T .

Forecasts of yt+τ , t = R, . . . , T − τ , are generated using the two linear models

yt+τ = x′1,tβ
∗
1 + u1,t+τ (model 1) and yt+τ = x′2,tβ

∗
2 + u2,t+τ (model 2). Under the null

hypothesis of equal forecast accuracy or forecast encompassing, model 2 nests model

1 for all t and hence model 2 includes k2 excess parameters. Then β∗2 = (β∗′1 , 0′)′,

and u1,t+τ = u2,t+τ ≡ ut+τ for all t.

Both model 1’s and model 2’s forecasts are generated recursively using estimated

parameters. Under this approach both β∗1 and β∗2 are reestimated with added data

as forecasting moves forward through time: for t = R, . . . , T − τ , model i’s (i = 1,2)

prediction of yt+τ is created using the parameter estimate β̂i,t based on data through

period t.5 Models 1 and 2 yield two sequences of P − τ + 1 forecast errors, denoted

û1,t+τ = yt+τ−x′1,tβ̂1,t and û2,t+τ = yt+τ−x′2,tβ̂2,t, respectively. Asymptotic results for

forecasts based on the rolling and fixed schemes, described in West and McCracken

(1998), are provided in Clark and McCracken (2004).

Finally, the asymptotic results presented below use the following additional no-

tation. Let hi,t+τ (βi) = (yt+τ − x′i,tβi)xi,t, hi,t+τ = hi,t+τ (β
∗
i ), qi,t = xi,tx

′
i,t , Bi =

(Eqi,t)
−1and Eu2

t+τ = σ2. For H2(t) defined in Assumption 1, J the selection matrix

(Ik1×k1 , 0k1×k2)
′, and a (k2×k) matrix Ã satisfying Ã′Ã = B

−1/2
2 (−J ′B1J +B2)B

−1/2
2 ,

let h̃t+τ = σ−1ÃB
1/2
2 h2,t+τ and H̃2(t) = σ−1ÃB

1/2
2 H2(t). If we define Γh̃h̃(i) =

Eh̃t+τ h̃
′
t+τ−i, then Sh̃h̃ = Γh̃h̃(0) +

∑τ−1
i=1 (Γh̃h̃(i) + Γ′

h̃h̃
(i)). Let W (ω) denote a k2 × 1

vector standard Brownian motion. For the sequence Ut+τ defined in Assumption 2,

U(t) is defined analogously to H(t) in Assumption 1.

Given the definitions and forecasting scheme described above, the following as-

sumptions are used to derive the limiting distributions in Theorems 3.1-3.4. The

assumptions are intended to be only sufficient, not necessary and sufficient.

(A1) The parameter estimates β̂i,t, i = 1, 2, t = R, ..., T − τ , satisfy β̂i,t − β∗i =

Bi(t)Hi(t) where Bi(t)Hi(t) = (t−1∑t−τ
j=1 qi,j)

−1(t−1∑t−τ
j=1 hi,j+τ ).

(A2) (a) Ut+τ = [ut+τ , x
′
2,t − Ex′2,t, h

′
2,t+τ ]

′ is covariance stationary, (b) EUt+τ = 0,

(c) Eq2,t < ∞ and is positive definite, (d) For some r > 8, Ut+τ is uniformly Lr

5For the purposes of forecasting, in our setup the largest number of observations used to estimate
each model’s parameters is T − 2τ . With the dependent variable yt+τ , τ observations are lost in
forming the dependent variable and another τ observations are needed for forming the first τ -period
out-of-sample forecast.
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bounded, (e) For some r > d > 2, Ut+τ is strong mixing with coefficients of size

−rd/(r − d), (f) With Ũt+τ denoting the vector of nonredundant elements of Ut+τ ,

limT→∞T−1E(
∑T−τ

s=1 Ũs+τ )(
∑T−τ

s=1 Ũs+τ )
′ = Ω < ∞ is positive definite.

(A3) (a) Let K(x) be a continuous kernel such that for all real scalars x, |K(x)| ≤ 1,

K(x) = K(−x) and K(0) = 1, (b) For some bandwidth M and constant i ∈ (0, 0.5),

M = O(P i), (c) For all j > τ − 1, Eh2,t+τh
′
2,t+τ−j = 0, (d) The number of covariance

terms j̄, used to estimate the long–run covariances Scc and Sdd defined in Section 3.1,

satisfies τ − 1 ≤ j̄ < ∞.

(A4) limR,P→∞ P/R = π ∈ (0,∞); define λ = (1 + π)−1.

(A4′) limR,P→∞ P/R = 0; define λ = 1.

The assumptions provided here are broadly similar to those provided in Clark

and McCracken (2001) and McCracken (2004). We restrict attention to forecasts

generated using parameters estimated by OLS (Assumption 1) and we do not allow

for processes with either unit roots or time trends (Assumption 2).6 We provide

asymptotic results for situations in which the in-sample and out-of-sample sizes R

and P are of the same order (Assumption 4) as well as when the in-sample size R is

large relative to the out-of-sample size P (Assumption 4′).

Assumption 3 is necessitated by the serial correlation in the multi-step (τ -step)

forecast errors — errors from even well-specified models exhibit serial correlation, of

an MA(τ − 1) form. Typically, researchers constructing a t-statistic utilizing the

squares of these errors account for serial correlation of at least order τ − 1 in forming

the necessary standard error estimates. Meese and Rogoff (1988), Groen (1999),

and Kilian and Taylor (2003), among other applications to forecasts from nested

6Our assumptions do, however, allow yt and x2,t to be stationary differences of trending variables.
As to other technical aspects of Assumption 2, (a) and (c) together ensure that in large samples,
sample averages of the outer product of the predictors will be invertible and hence the least squares
estimate will be well defined. Part (d) enables the use of Markov inequalities when showing certain
terms are asymptotically negligible. Along with (d), (e) and (f) allow us to use results in Hansen
(1992) and Davidson (1994) regarding the weak convergence of partial sums to Brownian motion
and that functionals of these partial sums converge in distribution to stochastic integrals. To ensure
the variance matrix non-singularity required for weak convergence, in (f) we eliminate the possibility
that Ũt+τ has elements that are identical by defining it to include only the nonredundant elements
of Ut+τ . For example, if the unrestricted forecasting model includes a constant, Ut+τ will include
ut+τ twice, once directly and again as the first element of h2,t+τ .
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models, use kernel-based methods to estimate the relevant long-run covariance.7 We

therefore impose conditions sufficient to cover applied practices. Parts (a) and (b)

are not particularly controversial. Part (c), however, imposes the restriction that

the orthogonality conditions used to identify the parameters form a moving average

of finite order τ − 1, while part (d) imposes the restriction that this fact is taken into

account when constructing the MSE-T and ENC-T statistics discussed in Section

3.8 Although Assumption 3 and our theoretical results admit a range of kernel and

bandwidth approaches, in our Monte Carlo experiments and empirical application we

compute the variances required by the MSE-T and ENC-T t–statistics (for τ > 1)

using the Newey and West (1987) estimator with a lag length of 1.5 ∗ τ .

The above assumptions differ importantly from those underlying our previous

work, in that we do not require the forecast errors to form a conditionally homoskedas-

tic martingale difference sequence. Rather, we allow for conditional heteroskedas-

ticity and the effects of serial correlation induced by forecast horizons greater than

one period. In contrast, our prior work considered only conditionally homoskedastic,

serially uncorrelated, one–step ahead forecast errors. Nevertheless, our assumptions

remain strong enough for us to use Hansen’s (1992) and Davidson’s (1994) theoretical

results regarding weak convergence of partial sums to Brownian motion and averages

of these partial sums to stochastic integrals of Brownian motion. As we will see

below, the null limiting distributions bear a strong resemblance to those in Clark

and McCracken (2001) and McCracken (2004), but depend upon unknown nuisance

parameters.

3 Tests and Asymptotic Distributions

We consider a total of four forecast–based tests, two tests of equal forecast accuracy

and two tests for forecast encompassing. In particular, we consider the t–statistic

7For similar uses of kernel–based methods in analyses of non–nested forecasts, see, for example,
Diebold and Mariano (1995) and West (1996).

8We have bounded the numbers of covariances used to construct Ŝdd and Ŝcc in order to be able
to derive asymptotic results for the MSE-T and ENC-T tests. Technically, without any bounds on
the bandwidth, we would have to find the limiting behavior of a kernel–weighted infinite sum of
individually op(1) elements. Because it is unclear how this would be accomplished, for tractability
we restrict the number of autocovariances for which Eh2,t+τh′2,t+τ−j 6= 0 to be finite and take this
into account when constructing both Ŝcc and Ŝdd.
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for equal MSE developed by Diebold and Mariano (1995) and West (1996) and the

F–statistic proposed by McCracken (2004). We also consider the t–statistic for en-

compassing developed in Harvey, Leybourne, and Newbold (1998) and West (2001)

and the variant proposed by Clark and McCracken (2001). In preliminary Monte

Carlo results, regression–based variants of the t–statistics for equal MSE and forecast

encompassing, proposed respectively by Granger and Newbold (1977) and Ericsson

(1992), performed similarly to the versions considered below. As a result, in the

interest of brevity, we leave these regression–based tests out of the analysis below.

3.1 t–type tests: MSE-T and ENC-T

In the context of non-nested models, Diebold and Mariano (1995) propose a test for

equal MSE based upon the sequence of loss differentials d̂t+τ = û2
1,t+τ − û2

2,t+τ . If we

define MSEi = (P − τ + 1)−1∑T−τ
t=R û2

i,t+τ (i = 1, 2), d̄ = (P − τ + 1)−1∑T−τ
t=R d̂t+τ =

MSE1−MSE2, Γ̂dd(j) = (P−τ +1)−1∑T−τ
t=R+j(d̂t+τ− d̄)(d̂t+τ−j− d̄), Γ̂dd(−j) = Γ̂dd(j),

and Ŝdd =
∑j̄

j=−j̄ K(j/M)Γ̂dd(j), the statistic takes the form

MSE-T = (P − τ + 1)1/2 × d̄√
Ŝdd

. (1)

Under the null that x22,t has no predictive power for yt+τ , the population difference

in MSEs will equal 0. Under the alternative that x22,t has predictive power, the

population difference in MSEs will be positive (MSE2 < MSE1). As a result, the

MSE-T test and the other equal MSE test described below are one–sided to the right.

Drawing on the methodology of Diebold and Mariano (1995), Harvey, Leybourne,

and Newbold (1998) propose a test of encompassing that uses a t–statistic for the

covariance between u1,t+τ and u1,t+τ−u2,t+τ . If we define ĉt+τ = û1,t+τ (û1,t+τ−û2,t+τ ),

c̄ = (P − τ + 1)−1∑T−τ
t=R ĉt+τ , Γ̂cc(j) = (P − τ + 1)−1∑T−τ

t=R+j(ĉt+τ − c̄)(ĉt+τ−j − c̄),

Γ̂cc(−j) = Γ̂cc(j), and Ŝcc =
∑j̄

j=−j̄ K(j/M)Γ̂cc(j), the statistic takes the form

ENC-T = (P − τ + 1)1/2 × c̄√
Ŝcc

. (2)

Under the null that x22,t has no predictive power for yt+τ , the population covariance

between u1,t+τ and u1,t+τ − u2,t+τ will equal 0 (the population forecast errors of the

models will be exactly the same). Under the alternative that x22,t does have predictive

power, the covariance will be positive. To see why, consider the forecast combination

7



regression yt+τ = (1−α)f1,t+τ +αf2,t+τ +error, where f1 and f2 denote forecasts from

the restricted and unrestricted models, respectively.9 Subtracting f1,t from both sides,

and making the substitution u1,t+τ − u2,t+τ = f2,t+τ − f1,t+τ , yields the encompassing

regression u1,t+τ = α(u1,t+τ − u2,t+τ ) + error. If x22,t does have predictive power, such

that model 2 is true, the population combination coefficient α equals 1. As a result,

the covariance between u1,t+τ and (u1,t+τ −u2,t+τ ) will be positive. Consequently, the

ENC-T test and the other forecast encompassing test described below are one–sided

to the right.

While West (1996) proves directly that the MSE-T statistic can be asymptotically

standard normal when applied to non–nested forecasts and West’s results suffice to

establish the same for the ENC-T statistic, this is not the case when the models are

nested. In particular, the results in West require that under the null, the population–

level long run variances of d̂t+τ and ĉt+τ be positive. This requirement is violated

with nested models. Intuitively, with nested models, the null hypothesis that the

restrictions imposed in the benchmark model are true implies the population errors

of the competing forecasting models are exactly the same. As a result, in population

dt+τ = 0 and ct+τ = 0 for all t, which makes the corresponding variances also equal to

0. Because the sample analogues (for example, d̄ and its variance) converge to zero

at the same rate, the test statistics have non–degenerate null distributions, but they

are non–standard.

Specifically, McCracken (2004) shows that, for 1–step ahead forecasts from well-

specified nested models, the MSE-T test statistic converges in distribution to a func-

tion of stochastic integrals of quadratics of Brownian motion, with a limiting distri-

bution that depends on the sample split parameter π and the number of exclusion

restrictions k2 but does not depend upon any unknown nuisance parameters. Under

the same conditions, Clark and McCracken (2001) show that the ENC-T test statistic

converges to the same type of distribution. With direct multi-step forecasts, however,

the limiting distributions are affected by unknown nuisance parameters. (Note that,

for these particular asymptotic results, we present the ENC-T theorem before the

MSE-T theorem because, analytically, it is easiest to first establish the ENC-T re-

sults and then use those in deriving the MSE-T asymptotics.)

9This basic logic is laid out in Harvey, Leybourne, and Newbold (1998), in the context of non–
nested models.
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Theorem 3.1. (a) Let Assumptions 1-4 hold. For ENC-T defined in (2), ENC-T

→d Γ1/Γ
1/2
3 , where Γ1 =

∫ 1
λ s−1W (ω)′Sh̃h̃dW (ω) and Γ3 =

∫ 1
λ s−2W (ω)′S2

h̃h̃
W (ω)dω.

(b) Let Assumptions 1-3 and 4′ hold and let V0 and V1 denote (k2 × 1) independent

standard normal vectors. ENC-T →d V ′
0Sh̃h̃V1/[V

′
0S

2
h̃h̃

V1]
1/2 ∼ N(0, 1).

Theorem 3.2. (a) Let Assumptions 1-4 hold and define

Γ2 =
∫ 1
λ s−2W (ω)′Sh̃h̃W (ω)dω. For MSE-T defined in (1) and Γ1 and Γ3 defined in

Theorem 3.1, MSE-T →d (Γ1 − (0.5)Γ2)/Γ
1/2
3 . (b) Let Assumptions 1-3 and 4′ hold.

MSE-T – ENC-T = op(1).

The results in Theorems 3.1 (a) and 3.2 (a) bear a strong resemblance to those

discussed in Clark and McCracken (2001) and McCracken (2004), but with one major

distinction: the limiting null distributions generally depend upon the unknown nui-

sance parameter Sh̃h̃ that in turn depends upon the second moments of the forecast

errors ut+τ , the regressors x2,t, and the orthogonality conditions h2,t+τ . Algebraically,

this dependence arises because, in the presence of conditional heteroskedasticity or

serial correlation in the forecast errors, an information matrix-type equality fails: the

expected outer product of the predictors is no longer proportional to the long run

variance of h2,t+τ with constant of proportionality σ2 = Eu2
2,t+τ . Similarly, in the

context of likelihood-ratio statistics, Vuong (1989, Theorem 3.3) shows that the lim-

iting distribution of the likelihood ratio statistic has a representation as a mixture of

independent χ2
(1) variates (in contrast to our integrals of weighted quadratics of Brow-

nian motion). This distribution is free of nuisance parameters when the information

matrix equality holds but in general does depend upon such nuisance parameters.

In Theorems 3.1 and 3.2 there are, however, special cases for which the dependence

on Sh̃h̃ is asymptotically irrelevant. When k2 = 1 the now scalar Sh̃h̃ can be factored

out of both the numerator and denominator and hence cancels. Also, in the perhaps

unlikely scenario in which each of the eigenvalues of Sh̃h̃ are identical, one can show

that the limiting distributions no longer depend upon the value of Sh̃h̃. If either

of these special cases hold we obtain McCracken’s (2004) results for MSE-T and

Clark and McCracken’s (2001) results for ENC-T and thus are able to utilize the

estimated asymptotic critical values provided in those papers to conduct inference.

In general, though, the distributions do depend upon Sh̃h̃ and hence those critical
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values are no longer relevant. Instead, as described below, we consider estimating the

asymptotically valid critical values both by simulating the asymptotic distribution

implied by a consistent estimate of Sh̃h̃ and by bootstrapping the distribution.

Note also that, in line with the results of Clark and McCracken (2001), for case (b)

we find that the MSE-T and ENC-T statistics are asymptotically equivalent under

the null. They are also asymptotically standard normal. On a practical level this

implies that for instances in which the number of out-of-sample observations P is

small relative to the number of out-of-sample observations R, we should expect these

two test statistics to behave similarly, at least under the null. Moreover, inference is

straightforward since appropriate critical values are readily obtained.

In light of the standard normality that applies when π = limR,P→∞ P/R = 0, a

natural question is, in practice, how small must P be relative to R for standard normal

critical values to be reliably used? The answer is that P/R has to be considerably

smaller than it is in most studies. Simulations for one–step ahead forecasts in Clark

and McCracken (2001) suggest that standard normal critical values can reasonably

be used for the MSE-T and ENC-T tests when P/R is about .10.10 Even when P/R

is just .20, our asymptotics are more reliable than a standard normal approximation.

We corroborate this rough cutoff of .10 in the simulations reported in section 4. In

most historical forecast applications, though, P/R seems to be safely above .10. Select

examples from the nested DMS literature include: Estrella and Hardouvelis (1991),

P/R ≈ 1.25; Mark (1995), 1.1; Stock and Watson (2003), .6 and 1.3; Diebold and

Li (2004), .8; and Shintani (2004), .6. More generally, suppose we have a forecast

sample of five years — a sample that would be quite short by the standards of the

literature that motivates our work. For P/R to be .10, we would need another 50

years of data for initial model estimation. Few data samples span 55 years, due to

wars, methodological changes in measurement, etc. Accordingly, the non–normality

of the MSE-T and ENC-T tests associated with π > 0 is likely to be very relevant.

3.2 F–type tests: MSE-F and ENC-F

Motivated by (i) the degeneracy of the long-run variance of dt+τ and (ii) the functional

form of the standard in-sample F-test, McCracken (2004) develops an out–of–sample

10Similarly, in the context of non–nested models, West’s (1996) simulations indicate that P/R
needs to be about .10 for parameter estimation error to become irrelevant.
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F–type test of equal MSE, given by

MSE-F = (P − τ + 1)× MSE1 −MSE2

MSE2

= (P − τ + 1)× d̄

MSE2

. (3)

Similarly motivated by issues relating to the long-run variance of ct+τ , Clark and

McCracken (2001) propose a variant of the ENC-T statistic in which the covariance

between û1,t+τ and û1,t+τ − û2,t+τ is scaled by the estimated variance of one of the

forecast errors (for consistency with the other tests considered, here we replace Clark

and McCracken’s original label “ENC-NEW” with “ENC-F”):

ENC-F = (P − τ + 1)× c̄

MSE2

. (4)

Like the t-type tests, the limiting distributions of these F–type tests are non–

standard when the forecasts are nested under the null. Clark and McCracken (2001)

and McCracken (2004) show that, for one–step ahead forecasts from well-specified

nested models, the MSE-F and ENC-F statistics converge in distribution to functions

of stochastic integrals of quadratics of Brownian motion, with limiting distributions

that depend on the sample split parameter π and the number of exclusion restrictions

k2, but not any unknown nuisance parameters. Again, though, this result is specific

to one-step ahead forecasts from well-specified models. For direct multi-step forecasts

the limiting distributions are affected by unknown nuisance parameters.

Theorem 3.3. Let Assumptions 1, 2 and 4 hold. For MSE-F defined in (3) and Γ1

and Γ2 defined in Theorems 3.1 and 3.2, respectively, MSE-F →d 2Γ1 − Γ2. (b) Let

Assumptions 1, 2 and 4′ hold. For the (k2 × 1) independent standard normal vectors

V0 and V1 defined in Theorem 3.1(b), (R/P )1/2 MSE-F →d 2V ′
0Sh̃h̃V1.

Theorem 3.4. (a) Let Assumptions 1, 2 and 4 hold. For ENC-F defined in (4) and

Γ1 defined in Theorem 3.1, ENC-F →d Γ1. (b) Let Assumptions 1, 2 and 4′ hold.

2(R/P )1/2 ENC-F − (R/P )1/2 MSE-F = op(1).

Theorems 3.3 (a) and 3.4 (a) show that, as with the t-type tests presented above,

if π > 0 the limiting distributions of the MSE-F and ENC-F tests are neither normal

nor chi-square when the forecasts are nested under the null. And again, the limiting
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distributions are free of nuisance parameters in only very special cases. In particular,

the distributions here are free of nuisance parameters only if Sh̃h̃ = I. If this is the

case — if, for example, τ = 1 and the forecast errors are conditionally homoskedastic

— the MSE-F representation in Theorem 3.3 simplifies to McCracken’s (2004) and

the ENC-F result in Theorem 3.4 simplifies to Clark and McCracken’s (2001), which

would allow their estimated asymptotic critical values to be used in conducting infer-

ence. Since, in general, that is not the case we again consider both simulating the

asymptotic distribution implied by a consistent estimate of Sh̃h̃ and using bootstrap

methods to estimate the asymptotically valid critical values. Note also that, as in-

dicated in Theorem 3.3 (b) and Theorem 3.4 (b), when the number of out-of-sample

observations P is small relative to the number of in-sample observations R, the MSE-

F and ENC-F statistics require re-scaling in order to obtain non-degenerate limiting

distributions, even though the distributions for the t-type tests do not.

3.3 Constructing Asymptotic Critical Values

As indicated above, the asymptotic distributions of the forecast tests differ from

the conditionally homoskedastic, one–step ahead case considered in Clark and Mc-

Cracken (2001) and McCracken (2004) in that the quadratics in Brownian motion

are weighted by the long–run variance Sh̃h̃. Accordingly, appropriate critical values

can be constructed — for any application, by any researcher — using a consistent

estimate of this variance matrix and the numerical methods of Clark and McCracken

and McCracken. For each data set, we calculate asymptotic critical values as follows,

separately for each forecast horizon. Note that, to make the estimate of Sh̃h̃ as precise

as possible, we use the full sample of available (R + P ) observations in estimating

the moments that enter the variance. In the case of conditionally homoskedastic,

one–step ahead forecast errors (for which Sh̃h̃ = I), the resulting critical values would

be exactly the same as those of Clark and McCracken and McCracken.11

1. After fitting the restricted forecasting model (in order to impose the null) to

the full sample of available data and saving the residuals ût+τ , estimate Ŝhh =
long run variance(Xt,2ût+τ ) with the Newey and West (1987) estimator and a band-
width of 1.5 ∗ τ for τ > 1 and 0 for τ = 1.

11As noted above, when k2 = 1, the critical values of the MSE-T and ENC-T tests are the same
regardless of the presence of conditional heteroskedasticity or serial correlation.
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2. Using estimates B̂i = (
∑T=R+P

t=1 xi,tx
′
i,t)

−1, Ŝ12 = (
∑T=R+P

t=1 x22,tx
′
1,t), σ̂2 = residual

variance from the model estimated in step 1, D̂ = B̂−1
2 − Ŝ12B̂1Ŝ

′
12, and D̂.5 = the

Cholesky decomposition of D̂, form

Ŝh̃h̃ = σ̂−2
(

0k2×k1 D̂.5
)
B̂2ŜhhB̂2

(
0k1×k2

D̂.5

)
. (5)

3. Compute the eigenvalues of Ŝh̃h̃.

4. Construct 5000 independent draws from the asymptotic distribution of each test
statistic, given k2 and π̂ = P/R. In generating these draws, the necessary k2 Brownian
motions are simulated as random walks each using an independent sequence of 10,000
i.i.d. N(0, 10, 000−.5) increments. The integrals are emulated by summing the relevant

weighted quadratics of the random walks, using the eigen values of Ŝh̃h̃ as weights.
The 10% critical value is calculated as the 90% percentile of the resulting statistics.

4 Monte Carlo Evidence

We use simulations of bivariate DGPs based on common empirical applications to

evaluate the finite sample properties of the above tests for equal forecast MSE and

encompassing. In these simulations, the restricted forecasting model is a simple au-

toregression; the unrestricted model adds lags of some other variable of interest.

Under the null hypothesis, the additional variables incorporated in the unrestricted

model have no predictive content. Because the dependence of the limiting distribu-

tions of the test statistics on unknown nuisance parameters rules out simply looking

up appropriate critical values in a table, we consider two possible approaches, one

based on asymptotics and the other a simple bootstrap. The asymptotic approach,

described in section 3.3, involves estimating the long–run variance matrix Sh̃h̃ that

enters the limiting distribution of each test statistic and simulating Brownian mo-

tions. Because these asymptotic critical values require non-trivial calculations, some

researchers might find simple bootstrap methods, used in such studies as Mark (1995),

Kilian (1999), and Stock and Watson (2003), to be a natural alternative. Of course,

the bootstrap might also be favored for its prospects of better approximating the

small sample distributions of the tests.

We proceed by first describing our Monte Carlo framework and bootstrap proce-

dure. We then present results on the size and power of the forecast–based tests. Note

that, while the analytical results above defined the predictand in the general form
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yt+τ to simplify notation, in this section we follow common practice in DMS predic-

tion applications and explicitly define the variable of interest as a τ -period change of

the form Yt+τ − Yt or, for τ = 1, ∆Yt+1. The forecasting models relate Yt+τ − Yt to

lags of the change in Y and a potentially Granger–causal variable denoted x.

4.1 Monte Carlo Design

For two different DGPs (two for both size and power), we generate data using in-

dependent draws of innovations from the normal distribution and the autoregressive

structure of the DGP. The initial observations necessitated by the lag structure of

each DGP are generated with draws from the unconditional normal distribution im-

plied by the DGP. We consider results for a variety of forecast horizons: τ = 1, 2, 4, 8,

and 12 periods. Similarly, with quarterly data primarily in mind, we also consider a

range of sample sizes (R,P ), ranging from 60,40 to 60,120 to 200,40.

4.1.1 Size design

The first DGP (DGP-1) is motivated by the literature on the predictive content of

spreads for output growth — examples include Estrella and Hardouvelis (1991) and

Estrella, Rodrigues, and Schich (2003). In this case, Y is the log of real GDP (scaled

by 400 to make ∆Y an annualized percentage change) and x is the 10-year government

debt yield less the 1-year government debt rate. The DGP is parameterized using

model estimates based on quarterly 1959:1-2004:3 data:

∆Yt = .242∆Yt−1 + .149∆Yt−2 + ut (6)

xt = −.029∆Yt−1 − .022∆Yt−2 + 1.141xt−1 − .595xt−2 + .707xt−3

− .477xt−4 + .435xt−5 − .428xt−6 + .129xt−7 + vt

var
(

ut

vt

)
=
(

10.265
−.218 .159

)
.

Note that while constants were included in the equations fit to historical data, for

simplicity the intercepts have been dropped from the DGP, without any consequence

for the results. The lag orders were determined on an equation–by–equation basis

using the AIC.12

12In some instances, we dropped sets of terms in the AIC–determined model that were clearly
insignificant. In DGP-1’s x equation, for example, the optimal lag length (imposing the same lag
length on the both variables in the x equation) was 7. But lags 3-7 of ∆Y were insignificant and
therefore dropped.
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The second DGP is motivated by the inflation forecasting work of Cecchetti (1995),

Staiger, Stock, and Watson (1997), and Stock and Watson (1999, 2003), which relates

inflation to measures of real activity. Following Stock and Watson (1999, 2003), we

presume a unit root in inflation, and make Y the log difference of the quarterly core

CPI (scaled by 400 to make Y an annualized percentage change), so that ∆Y is

the change in quarterly inflation. We specify x as the rate of capacity utilization in

manufacturing. The DGP is parameterized using model estimates based on quarterly

1957:1-2004:3 data:

∆Yt = −.316∆Yt−1 − .214∆Yt−2 + ut (7)

xt = −.193∆Yt−1 − .242∆Yt−2 − .240∆Yt−3 − .119∆Yt−4

+ 1.427xt−1 − .595xt−2 + .294xt−3 − .174xt−4 + vt

var
(

ut

vt

)
=
(

1.792
.244 1.463

)
.

4.1.2 Power design

In our power experiments, the xt equation in each DGP is the same as in the size

experiments. Only the ∆Yt equations and the error variance–covariance matrices

differ. The equation for ∆Yt in DGP-1, based on an estimated regression of GDP

growth on lags of growth and the spread, takes the form

∆Yt = .197∆Yt−1 + .202∆Yt−2 − .080xt−1 + 2.233xt−2 − 1.518xt−3 + ut (8)

var
(

ut

vt

)
=
(

9.067
−.218 .159

)
.

In the second DGP, based on an estimated regression of the change in core inflation

on lags of itself and capacity utilization, the ∆Yt equation takes the form

∆Yt = −.419∆Yt−1 − .258∆Yt−2 (9)

+.331xt−1 − .423xt−2 + .309xt−3 − .139xt−4 + ut

var
(

ut

vt

)
=
(

1.517
.244 1.463

)
.

4.1.3 Forecast evaluation

Each Monte Carlo simulation involves first estimating restricted and unrestricted

DMS forecasting models. We use models of the form common in the literatures

from which we take the applications. For DGP-1, we follow the work of Estrella
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and Hardouvelis (1991) and Stock and Watson (2003) on the GDP growth–spread

relationship and suppose a restricted model that includes lags of ∆Y as predictors

and an unrestricted model that adds lags of x to the baseline specification:

Yt+τ − Yt = α +
L−1∑
l=0

γl∆Yt−l + u1,t+τ (10)

Yt+τ − Yt = α +
L−1∑
l=0

γl∆Yt−l +
M−1∑
m=0

βmxt−m + u2,t+τ . (11)

The forecasting equations for DGP-2 take a similar form, except that, as in Stock

and Watson (1999, 2003), the dependent variable is the difference between a τ -period

inflation rate and the lagged quarterly inflation rate (rather than simply a difference

between quarterly inflation rates):

Y
(τ)
t+τ − Yt = α +

L−1∑
l=0

γl∆Yt−l + u1,t+τ (12)

Y
(τ)
t+τ − Yt = α +

L−1∑
l=0

γl∆Yt−l +
M−1∑
m=0

βmxt−m + u2,t+τ , (13)

where Y
(τ)
t+τ = (1/τ)

∑τ
s=1 Yt+s. Y

(τ)
t+τ corresponds to the average annual rate of price

increase from period t to t + τ . Note that the sets of regressors in (10) and (12)

correspond to x1,t in our theoretical setup, while the sets of regressors in (11) and

(13) correspond to x2,t, with xt and its lags representing x22,t.

For each artificial data set, we follow the precedent of such studies as Stock and

Watson (2003) and Granger and Jeon (2004) and use data–determined lag orders.

Specifically, the lags in the forecasting models are determined by applying the AIC

to models estimated with just the first R observations of the sample (we use just the

first R observations rather than the whole sample to avoid the type of overfitting

that Clark (2004) shows can lead to spurious forecast inference). In the unrestricted

forecasting model, we allow the lag orders of ∆Y and x to differ, from a range of 0

to 8 for ∆Y and 1 to 8 for x. The restricted forecasting model uses the same lag

order for ∆Y that the unrestricted model does. The lag lengths are allowed to differ

across forecast horizons. Of course, the data dependence of the lag orders means

that, as is the case in practical applications, the estimated forecasting models may

be misspecified.

Following the model estimation, the MSE-T, ENC-T, MSE-F, and ENC-F statis-

tics are formed. The heteroskedasticity and autocorrelation–consistent (HAC) vari-
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ances required by the MSE-T and ENC-T t–statistics are calculated using the Newey

and West (1987) estimator with a lag length of 1.5 ∗ τ for τ > 1 and 0 for τ = 1.

The statistics computed with the Monte Carlo data from a given draw represent the

“sample” statistics. We compare these sample statistics against both asymptotic and

bootstrap critical values. Based on 1000 Monte Carlo draws, we report the percent-

age of Monte Carlo trials in which the null of no predictive content is rejected — the

percentage of trials in which the sample test statistics exceed the critical values (re-

porting separate results for asymptotic and bootstrap critical values). In the reported

results, the tests are compared against 10% critical values, so that the nominal size

of the tests is 10%. Using 5% critical values yields similar findings.

To give a sense of how using standard normal critical values may affect inference,

for some tests we also report size and power results based on simply comparing

the “sample” test statistics from our 1000 Monte Carlo draws against the standard

normal distribution. The set of tests for which we report these results are those

researchers sometimes compare against standard critical values: MSE-T and ENC-T .

The limiting distributions of these test statistics are standard normal if the forecasting

models are non–nested, but the distributions are generally non–standard when the

forecasting models are nested.

4.2 Bootstrap Algorithm

Following Berkowitz and Kilian’s (2000) recommendations for time series data, our

bootstrap algorithm — based on Kilian’s (1999) — relies on parametric methods.

Vector autoregressive equations for ∆Yt and xt — restricted to impose the null that

x has no predictive power for Y — are estimated by OLS using the full sample of

observations, with the residuals stored for sampling. Note that the DGP equation for

∆Y takes exactly the same form as the restricted forecasting model for τ = 1 (but

estimated with all available data). In the case of the x equation, the lag orders for

∆Y and x are determined according to the AIC, allowing different lag lengths (from

0 to 8) on each variable. For the system of bivariate (∆Y, x) equations to be used in

the bootstrap, we adjust the coefficients of the OLS–estimated models for the small–

sample bias that can plague time series models. Specifically, we use the bootstrap

method proposed by Kilian (1998) to adjust the coefficients of the OLS–estimated

models (based on 10,000 bootstrap draws) and then use the bias–adjusted forms as
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the bootstrap DGP equations.

Bootstrapped time series on ∆Yt and xt are generated by drawing with replace-

ment from the sample residuals and using the autoregressive structures of the bias–

adjusted models to iteratively construct data. The initial observations — observations

preceding the sample of data used to estimate the models — necessitated by the lag

structures of the estimated models, are selected by sampling from the actual data.

In particular, following Stine (1987), among others, the initial observations are se-

lected by picking one date at random and then taking the necessary number of initial

observations in order from that date backward.13

In each of 999 bootstrap replications, the bootstrapped data are used to recursively

estimate the restricted and unrestricted DMS forecasting models on which the sample

results are based. The resulting forecasts are then used to calculate forecast test

statistics. Critical values are simply computed as percentiles of the bootstrapped test

statistics.

Overall, despite the parametric nature of this bootstrap procedure, its success in

our results does not hinge on the bootstrap models being properly specified. For

simplicity, the estimated models for ∆Y and x are taken to be correctly specified

in bootstrapping artificial data. However, those models may in fact be misspecified,

because, as described above, their lag orders were determined with the sample data

(each artificial data set). In this sense, our bootstrap is reflective of the various boot-

strap approaches that have been used in studies such as Mark (1995), Kilian (1999),

Rapach and Weber (2004), and Stock and Watson (2003). Therefore, if a simple,

potentially–misspecified bootstrap proves reliable in our Monte Carlo experiments, it

can be expected to be reliable in practice, in similar settings. All that said, it could

be that nonparametric bootstrap approaches, such as moving block methods, would

perform as well or better. But in light of Berkowitz and Kilian’s (2000) conclusion

that, for time series models, such methods are often dominated by parametric boot-

straps, we leave nonparametric methods as a subject for future research on forecast

evaluation.

13For example, suppose the model is a VAR(4) and the total sample consists of 144 observations,
such that observations 1-4 serve as the initial observations and the regression sample is 5 through
144. Each artificial data set is constructed by: (i) picking a random date t0 from a range of 5
through 144; (ii) setting the artificial observations 1-4 equal to the sample observations from dates
t0−4 through t0−1; and (iii) constructing artificial observations 5-144 by using the VAR structure,
resamples of the residuals (which span obs. 5–144), and the artificial initial observations 1-4.
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4.3 Monte Carlo Results: Size

The results presented in Tables 1 and 2 indicate that, in some but not all cases,

asymptotic critical values yield tests that are reasonably close to correctly sized. In

particular, the MSE-F test compared against asymptotic critical values seems to have

decent size in most settings. For example, as shown in Table 1’s results for DGP-1,

with R = 100 and P = 40, the size of the MSE-F test ranges from 10.0 percent for

τ = 1 to 12.4 percent for τ = 12. Admittedly, though, in a few instances the size of

the MSE-F test at longer horizons is subject to slightly larger distortions — such as

size of 15.0 percent with DGP-1, R = 60, P = 40, and τ = 12. Compared to MSE-

F, the ENC-F test is subject to consistently larger size distortions when asymptotic

critical values are used. For example, with DGP-1, R = 100 and P = 40, the size of

the ENC-F test is roughly 15 percent for all horizons. The larger distortions in the

ENC-F test are consistent with the one–step ahead results of Clark and McCracken

(2001).

The performance of the MSE-T and ENC-T tests based on asymptotic critical val-

ues is generally mixed. The tests (MSE-T more so than ENC-T) can have decent size

properties at short forecast horizons but are dramatically oversized at long horizons.

For instance, as shown in Table 2’s results for DGP-2 with R = 100 and P = 40, the

MSE-T and ENC-T test sizes are 10.7 and 11.8 percent, respectively, for τ = 1, but

23.9 and 29.7 percent for τ = 12. At all but the shortest horizons, the sizes of the -T

tests are usually greater than the sizes of the corresponding -F tests. The root of the

problem in the longer-horizon performance of the MSE-T and ENC-T tests compared

against asymptotic critical values seems to be imprecision in estimation of the HAC

variance in the denominator of the test statistics.14 In unreported simulations, the

performance of these tests improved dramatically when R and P were increased sig-

nificantly. Moreover, in applications in which the null forecasting model is a random

walk, Clark and West (2004) find that using the HAC estimator of Hodrick (1992)

rather than the common Newey and West (1987) estimator greatly improves the size

of t-tests for equal MSE and forecast encompassing. Unfortunately, though, the esti-

mator of Hodrick can only be applied when the null forecasting model takes a random

14Imprecision in the estimate of Sh̃h̃ used to construct the asymptotic critical values could be
another source of difficulty. But we obtained results similar to those reported when we used an
estimate of Sh̃h̃ based on a separate, very large sample of artificial data (rather than the small
sample used in computing the test statistics themselves).
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walk or “no change” form (and therefore has no estimated parameters).

Perhaps not surprisingly, using bootstrap critical values instead of asymptotic crit-

ical values yields better size results. Although the encompassing tests are sometimes

modestly oversized at shorter horizons, the other tests are all consistently (reason-

ably) close to being correctly sized when based on bootstrap critical values. As shown

in Table 1, for example, in the case of DGP-1, when τ = 4, R = 60, and P = 80, the

MSE-F, MSE-T, ENC-F, and ENC-T, statistics have size of 10.1, 10.5, 12.1, and 11.1

percent, respectively. Table 2 shows that, with DGP-2, τ = 4, R = 60, and P = 80,

the sizes of the tests (same order) are 10.4, 10.0, 11.5, and 11.4 percent, respectively.

Using the bootstrap is particularly important for improving the small sample prop-

erties of the MSE-T and ENC-T tests at longer horizons — the bootstrapped critical

values seem to reflect the imprecision in small sample estimates of the HAC variance

that enters the test statistics.

In light of the past use of standard normal critical values in applied research

applying t-tests for equal MSE to forecasts from nested models (recent examples

include Clarida, et al. (2003) and Cheung, Chinn, and Pascual (2003)), a natural

question is, how would using standard normal critical values affect inference under

the null? As shown in Table 3 (we present results for just DGP-1 in the interest of

brevity), in our experiment settings standard normal critical values can lead to serious

under–rejection at short horizons and over–rejection at long horizons. For example,

with R = 100 and P = 40, the MSE-T test (corresponding to the so–called Diebold–

Mariano test) has size of about 4 percent for τ = 1 and 2 but size of 16.1 percent

for τ = 12. The size of the ENC-T test is consistently higher, but shows the same

pattern of rising sharply with the forecast horizon, such that the test is undersized

or about correctly sized for shorter horizons but oversized for longer horizons.

In general, for standard normal critical values to provide reliable inference, the

forecast horizon needs to be relatively short, and P/R needs to be quite small. Once

the forecast horizon increases beyond a few periods, neither a standard normal ap-

proximation nor our asymptotic distribution yields reliable inference in finite samples;

bootstrap methods are much more reliable. At short horizons, the standard normal

approximation might be seen as acceptable for the ENC-T test, but not the MSE-T

test. In the results reported in Table 3, the size of the ENC-T test for τ = 1 and 2

ranges from 8.9 to 12.7 percent. The ENC-T statistic’s performance is less favorable
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for τ = 4, with size rising to 15 percent. For horizons τ ≤ 4, the MSE-T test is

undersized for all of the P/R settings reported, although less so for small P/R than

large P/R. For longer horizons, the MSE-T test ranges from under- to over-sized,

depending on the horizon and sample sizes.

At shorter horizons, how small does P/R need to be for the MSE-T test to be reli-

ably compared against standard normal critical values? Even with P/R = 40/200 =

.2, the MSE-T test has size of 5.3 percent for τ = 1 and 6.6 percent for τ = 2 (Table

3). Some additional simulations indicate that P/R needs to be less than .10 for stan-

dard normal critical values to be reliably used. For example, with DGP-1, R = 400,

and P = 40 (such that P/R = .1) the empirical size of the MSE-T test compared

against standard normal critical values is 6.2, 8.5, and 11.8 percent for τ = 1, 2, and

4, respectively (using our asymptotic critical values yields a size of about 12 percent).

Doubling R (so P/R = .05) makes the empirical size against standard normal critical

values go up slightly, to 7.2, 9.8, and 13.2 percent for τ = 1, 2, and 4, respectively.

As noted in section 3.1, in many historical forecast evaluations, P/R is considerably

larger than .10 or .05. As a result, the standard normal approximation seems unlikely

to be accurate for the commonly–used MSE-T (or Diebold–Mariano) test.

4.4 Monte Carlo Results: Power

In evaluating power, we begin with results based on bootstrap critical values, be-

cause the bootstrap–based tests are, for the most part, about correctly sized. The

bootstrap–based power results presented in Tables 4 and 5 indicate the test powers

follow the same general ranking as in Clark and McCracken’s (2001) Monte Carlo

examination of tests based on one–step ahead forecasts: ENC-F > MSE-F, ENC-T >

MSE-T. MSE-F is often more powerful than ENC-T, and sometimes much more so,

but the ranking of these two tests varies with τ and the R,P setting. For example,

Table 4 shows that, with DGP-1, τ = 4, R = 100, and P = 40, the bootstrap–based

powers of the MSE-F, MSE-T, ENC-F, and ENC-T tests are 53.1, 34.4, 70.2, and 47.8

percent, respectively. Clark and McCracken (2005) prove that, asymptotically, the

MSE-F and ENC-F tests are more powerful than their t-type counterparts because,

under the alternative hypothesis, the F–type tests diverge to infinity at a faster rate.

For both of the DGPs considered, power generally falls as τ rises, and the power

differences among the tests tend to decline. With DGP-1, R = 100, and P = 40, for
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example, Table 4 shows that the bootstrap–based power of the MSE-T test declines

from 49.8 percent when τ = 1 to 18.3 percent when τ = 12. The power of the ENC-T

declines more sharply as τ rises, from 73.8 percent when τ = 1 to 21.3 percent when

τ = 12. As a result, the power advantage of ENC-T over MSE-T shrinks as the

forecast horizon grows.15 As might be expected, power tends to rise with both R and

P . Given P , the powers of the tests tend to rise with R, more so for MSE-F and

ENC-F than the other forecast tests. For example, Table 4 shows that, with DGP-1,

P = 40, and τ = 2, the bootstrap–based power of the MSE-F test increases from

63.8 percent when R = 100 to 72.9 percent when R = 200. Given R, increases in the

number of forecast observations consistently lead to a rise in power. As reported in

Table 5, with DGP-2, R = 60, and τ = 4, the power of the MSE-F test rises from 49.7

percent when P = 40 to 68.5 percent when P = 80 and 79.0 percent when P = 120.

Power based on asymptotic critical values produces most of the same basic pat-

terns, although the asymptotics–based powers of some of the tests can differ substan-

tially from their bootstrap–based powers, reflecting the size distortions of the tests.

For the one test that seems to have decent size properties across all forecast horizons

when based on asymptotic critical values, the MSE-F test, power based on asymp-

totic critical values is quite close to the power estimates based on bootstrap methods.

For example, with DGP-2, R = 60, and P = 80, the power of the MSE-F test based

on asymptotic critical values ranges from 44.2 percent for τ = 12 to 78.7 percent

for τ = 1, compared to the bootstrap–based powers of 40.5 to 79.2 percent (Table

5). For the other tests, often subject to size distortions at longer forecast horizons,

power based on asymptotic critical values is generally greater than bootstrap–based

power (the differences become especially large for the MSE-T and ENC-T tests at

longer horizons, because, for these tests, size distortions rise sharply with the forecast

horizon). In the same example, the power of the ENC-T test ranges from 42.1 to

93.6 percent with bootstrap critical values but 68.7 to 95.0 percent with asymptotic

critical values.

15Based on prior experiments with other DGPs, it seems that the relationship of power to τ
depends on the DGP in important ways, making generalizations difficult. Mark and Sul (2002)
use local asymptotic analysis to show that certain DGP features will cause power to rise with the
forecast horizon.
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5 Application to Inflation Forecasting

In this section we use the tests and inference approaches described above to determine

whether capacity utilization is useful for predicting core CPI inflation. Cecchetti

(1995), Staiger, Stock, and Watson (1997), and Stock and Watson (1999, 2003) are

recent examples of studies in the long literature on this basic question. Like these

other studies, we examine out–of–sample forecasts to gauge the predictive content of

capacity utilization.

Our quarterly data on the core CPI and capacity utilization in manufacturing span

1957:Q1 through 2004:Q3. After allowances for data differencing and a maximum of

four data–determined lags, the sample period available for estimation of a 1–step

ahead prediction model spans 1958:Q3–2004:Q3, for a total of 185 observations. We

begin forecasting in 1976:Q1, so that P = 115.

Following the basic approach of Stock and Watson (1999, 2003), we treat inflation

as having a unit root, and forecast a measure of the direct multi-step change in

inflation as a function of lags of the change in quarterly inflation and lags of capacity

utilization. In particular, using the notation of the last section, we make Y the log

difference of the quarterly core CPI (scaled by 400 to make Y an annualized percentage

change); ∆Y is then the change in quarterly inflation. The predictand is Y
(τ)
t+τ − Yt,

where Y
(τ)
t+τ denotes the average annual rate of price change from t to t+ τ . x denotes

the rate of capacity utilization in manufacturing. The restricted model (model 1)

is autoregressive — the multi-step change in inflation is a function of just lags of

the one–period change in inflation. The unrestricted model (model 2) adds lags of

capacity utilization to the set of regressors. In particular, the competing forecasting

models take the forms of section 4.1.3’s equations (12) and (13). For each forecast

horizon, we use the AIC to determine the lag orders of (13), allowing different lag

lengths for inflation and capacity utilization.16 The baseline AR model (12) uses the

inflation lag order selected for (13). The lag selection is based on just the in–sample

portion of the data (1958–1975 model estimates).

We use both the asymptotic approach described in section 3.3 and the bootstrap

approach described in section 4.2 to draw inferences on capacity utilization’s predic-

tive power for inflation. In bootstrapping, we use the full sample of data to estimate

16Results based on a fixed order of two lags of inflation and four lags of capacity utilization are
similar.
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vector autoregressive equations for the one–quarter change in inflation ∆Yt and ca-

pacity utilization xt, imposing the null that utilization has no predictive power for

inflation. The DGP equation for ∆Y takes exactly the same form as the restricted

forecasting model for τ = 1 (but estimated with all available data). The lag or-

ders of the capacity utilization equation are determined according to the AIC. The

coefficients of the DGP equations are bias–adjusted with Kilian’s (1998) procedure.

Then bootstrapped time series on ∆Yt and xt are generated by sampling the residu-

als and using the autoregressive structures of the bias–adjusted models to iteratively

construct data.17

The results reported in Table 6 indicate that, over the 1976-2004 period, capacity

utilization in manufacturing has significant predictive power for core inflation. As

shown in the upper panel of the table, for all horizons considered, forecasts from the

model with capacity utilization (Model 2) have a lower RMSE than forecasts from the

autoregressive model (Model 1). The test statistics and p-values in the lower panel

indicate capacity utilization’s predictive content is statistically significant. Consistent

with our Monte Carlo evidence that the F-type tests are more powerful than their

t-type counterparts, the MSE-F and ENC-F p-values are generally lower than those

of MSE-T and ENC-T. The tendency of the asymptotic p-values to be slightly lower

than the bootstrap p-values is also consistent with the Monte Carlo evidence.

6 Conclusion

In this paper we first derive the limiting distributions of four tests of direct multi-

step forecasts from linear regression models: the t–statistic for equal MSE developed

by Diebold and Mariano (1995) and West (1996); the F–type test of equal MSE

proposed by McCracken (2004); the t–statistic for encompassing developed in Har-

vey, Leybourne, and Newbold (1998) and West (2001); and the encompassing test

proposed by Clark and McCracken (2001). We show that, when the number of ob-

servations used to generate initial estimates of the models and the number of forecast

observations increase at the same rate, all of the tests have non-standard distribu-

17In light of the potential for conditional heteroskedasticity, in this application we slightly modify
the bootstrap procedure used in the Monte Carlo analysis and use the wild bootstrap recommended
by Goncalves and Kilian (2004). Instead of sampling from the residuals with replacement, we use
artificial residuals that are the product of the sample residuals (kept in their original order) and an
i.i.d. draw from the standard normal distribution.
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tions. While these distributions can be free of nuisance parameters when the forecast

horizon is one, they are not free of nuisance parameters for longer forecast horizons.

Using both our asymptotics and a simple model–based bootstrap for estimating

appropriate critical values, we then conduct a range of Monte Carlo simulations to

examine the finite–sample properties of the tests. These results indicate our asymp-

totic approximation yields good finite–sample size and power properties for some,

but not all, of the tests considered. In general, the asymptotics seem to work well for

McCracken’s (2004) F–type test of equal MSE. A simple bootstrap works reasonably

well for all tests. Finally, the encompassing test proposed by Clark and McCracken

(2001) — the ENC-F statistic defined in equation (4) — is most powerful.

In the final part of our analysis, applying our tests shows that capacity utilization

in manufacturing has significant predictive power for core inflation in the U.S. For

out–of–sample forecasts over 1976-2004, all of the tests of equal forecast accuracy and

encompassing indicate that capacity utilization improves forecasts of core inflation at

all horizons.
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7 Appendix: Proofs

The following notation will be used. For any (m × n) matrix G with elements gi,j

and column vectors gj let vec(G) denote the (mn × 1) vector
[
g

′
1, g

′
2, ..., g

′
n

]′
and

let |G| denote maxi,j |gi,j|. For any sequence zt,
∑

t zt denotes
∑T−τ

t=R zt, Szz denotes

lim V ar(P−1/2∑
t zt) and supt |zt| denotes supR≤t≤T |zt|.

For brevity, much of the extensive algebra involved in the proofs of Theorems 3.1–

3.4 is relegated to a not-for-publication technical appendix, Clark and McCracken

(2004). Before proceeding to the proofs we first provide an appendix Lemma.

Lemma A1: Under Assumptions 1, 2, and 4,
∑

t H̃
′
2(t)h̃2,t+τ →d

∫ 1
λ ω−1W ′(ω)Sh̃h̃dW (ω).

Proof of Lemma A1: The results are modifications of those in Hansen (1992).

Using Hansen’s notation, let the operator EiX denote E(X|=i), where

=t ≡ σ(T−1/2∑i
s=1 h̃2,s, h̃2,i : i ≤ t, T ≥ 1) is the smallest sigma-field containing the

history of {T−1/2∑t
s=1 h̃2,s, h̃2,t} ∀ T . Define εt+τ =

∑∞
i=0 (Eih̃2,t+τ+i − Ei−1h̃2,t+τ+i)

and zt+τ =
∑∞

i=1 Eih̃2,t+τ+i. Then h̃2,t+τ = εt+τ + zt+τ−1 + zt+τ .

In the above notation,
∑

t (T/t)(T−1/2∑t−τ
s=1 h̃2,s+τ )

′(T−1/2h̃2,t+τ )

=
∑

t

(T/t)(T−1/2
t+τ−1∑
s=τ+1

h̃2,s)
′(T−1/2h̃2,t+τ )−

∑
t

(1/t)(
τ−1∑
j=1

h̃2,t+j)
′h̃2,t+τ

=
∑

t

(T/t)(T−1/2
t+τ−1∑
s=τ+1

h̃2,s)
′(T−1/2εt+τ ) +

∑
t

(1/t)(
t+τ−1∑
s=τ+1

h̃2,s)
′(zt+τ−1 − zt+τ )

−
∑

t

(1/t)(
τ−1∑
j=1

h̃2,t+j)
′h̃2,t+τ

=
∑

t

(T/t)(T−1/2
t−τ∑
s=1

h̃2,s+τ )
′(T−1/2εt+τ ) + R−1(

R+τ−2∑
s=1+τ

h̃′2,s)zR+τ−1

−T−1(
T+τ−1∑
s=1+τ

h̃′2,s)zT+τ −
T−1∑
t=R

(t2 + t)−1(
t+τ−1∑
s=1+τ

h̃2,s)
′zt+τ

+
T−1∑

t=R−1

(1/t)h̃′2,t+τzt+τ −
∑

t

(1/t)(
τ−1∑
j=1

h̃2,t+j)
′h̃2,t+τ .

That
∑

t (T/t)(T−1/2∑t−τ
s=1 h̃2,s+τ )

′(T−1/2εt+τ ) →d

∫ 1
λ ω−1W ′(ω)Sh̃h̃dW (ω) follows

from Theorem 4.1 of Hansen (1992). Lemma A1 follows if the sum of the remaining

terms is op(1).

Consider the second and third right-hand side terms. Taking their absolute value

we obtain

|R−1(
∑R+τ−2

s=1+τ h̃′2,s)zR+τ−1| ≤ (T/R)k2|T−1/2∑R+τ−2
s=1+τ h̃2,s||T−1/2zR+τ−1|, and
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|R−1(
∑T+τ−1

s=1+τ h̃′2,s)zT+τ | ≤ (T/R)k2|T−1/2∑T+τ−1
s=1+τ h̃2,s||T−1/2zT+τ |.

Assumption 4 implies that T/R is bounded while Assumption 2 implies that both

|T−1/2∑R+τ−2
s=1+τ h̃2,s| and |T−1/2∑T+τ−1

s=1+τ h̃2,s| are Op(1). That the second and third

right-hand side terms are op(1) follows from (A.3) of Hansen (1992) wherein he shows

that both |T−1/2zR+τ−1| and |T−1/2zT+t| are op(1).

Consider the fourth right-hand side term. Taking its absolute value we obtain

|
T−1∑
t=R

(t2 + t)−1(
t+τ−1∑
s=1+τ

h̃2,s)
′zt+τ |

≤ [(T − 1−R)/(R2 + R)]k2(sup
t
|T−1/2

t+τ−1∑
s=1+τ

h̃2,s|)(sup
t≤T

|T−1/2zt+τ |).

Assumption 2 implies (supt |T−1/2∑t+τ−1
s=1+τ h̃2,s|) = Op(1). That (supt≤T |T−1/2zt+τ |) =

op(1) follows from (A.3) of Hansen (1992). The result follows since by Assumption 4,

(T − 1−R)/(R2 + R) = op(1).

Consider the fifth right-hand side term. We show that it converges in probability

to − ln(λ)
∑τ−1

j=1 Eh̃′2,t+jh̃2,t+τ . Rearranging terms we obtain∑T−1
t=R−1 (1/t)(h̃′2,t+τzt+τ − Eh̃′2,t+τzt+τ ) +

∑T−1
t=R−1 (1/t)(Eh̃′2,t+τzt+τ ). Since

Eh̃2,t+τ h̃
′
2,t+τ−j = 0 for all j ≥ τ it is clear that

∑T−1
t=R−1 (1/t)(Eh̃′2,t+τzt+τ )

=
∑T−1

t=R−1 (1/t)(Eh̃′2,t+τ [
∑∞

i=1 Eih̃2,t+τ+i]) = (T−1∑T−1
t=R−1 (T/t))(

∑τ−1
j=1 Eh̃′2,t+jh̃2,t+τ ).

Since for large enough T , T−1∑T
t=R (T/t) ∼

∫ 1
λ ω−1dω = − ln(λ), the result will follow

if
∑T−1

t=R−1 (1/t)(h̃′2,t+τzt+τ − Eh̃′2,t+τzt+τ ) = T−1∑T−1
t=R−1 (T/t)(h̃′2,t+τzt+τ − Eh̃′2,t+τzt+τ )

= op(1). If we define UTt ≡ T/t and et ≡ h̃′2,t+τzt+τ − Eh̃′2,t+τzt+τ then the result

follows from Theorem 3.2 of Hansen (1992).

Because of the minus sign, the proof will be complete if the final right-hand side

term converges in probability to − ln(λ)
∑τ−1

j=1 Eh̃′2,t+jh̃2,t+τ . Rearranging terms yields∑
t (1/t)(

∑τ−1
j=1 h̃2,t+j)

′h̃2,t+τ = T−1/2∑τ−1
j=1 T−1/2∑

t (T/t)(h̃′2,t+jh̃2,t+τ − Eh̃′2,t+jh̃2,t+τ )+

(T−1∑
t (T/t))(

∑τ−1
j=1 Eh̃′2,t+jh̃2,t+τ ). Given Assumption 2, Corollary 29.11 of Davidson

(1994) implies that
∑τ−1

j=1 T−1/2∑
t (T/t)(h̃′2,t+jh̃2,t+τ − Eh̃′2,t+jh̃2,t+τ ) = Op(1). Since

T−1/2 = op(1) the result is obtained because (T−1∑
t (T/t))(

∑τ−1
j=1 Eh̃′2,t+jh̃2,t+τ ) =

− ln(λ)
∑τ−1

j=1 Eh̃′2,t+jh̃2,t+τ + op(1) was established in the preceding paragraph.

Proof of Theorem 3.1: (a) Given Theorem 3.4 and the Continuous Mapping

Theorem it suffices to show that P
∑j̄

j=−j̄ K(j/M)Γ̂cc(j) →d σ4Γ3. Lengthy algebra

and the definition of h̃2,t+τ imply that P Γ̂cc(j) = σ4∑
t H̃

′
2(t)[Eh̃2,t+τ h̃

′
2,t+τ−j]H̃2(t) +
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op(1). Substitution, and the fact that j̄ is finite provides P
∑j̄

j=−j̄ K(j/M)Γ̂cc(j) =

σ4
j̄∑

j=−j̄

K(j/M)[
∑

t

H̃ ′
2(t)[Eh̃2,t+τ h̃

′
2,t+τ−j]H̃2(t)] + op(1)

= σ4
∑

t

H̃ ′
2(t)[

j̄∑
j=−j̄

K(j/M)(Eh̃2,t+τ h̃
′
2,t+τ−j)]H̃2(t) + op(1)

= σ4(T−1
∑

t

[T 1/2H̃ ′
2(t)⊗ T 1/2H̃ ′

2(t)])vec[
j̄∑

j=−j̄

K(j/M)(Eh̃2,t+τ h̃
′
2,t+τ−j)] + op(1).

Given Assumption 3,
∑j̄

j=−j̄ K(j/M)(Eh̃2,t+τ h̃
′
2,t+τ−j) → Sh̃h̃. Since Assumption 2

and Corollary 29.19 of Davidson (1994) suffice for T 1/2H̃2(t) ⇒ ω−1S
1/2

h̃h̃
W (ω), the

Continuous Mapping Theorem implies T−1∑
t T

1/2H̃ ′
2(t)⊗ T 1/2H̃ ′

2(t) →d∫ 1
λ ω−2[W ′(ω)S

1/2

h̃h̃
⊗W ′(ω)S

1/2

h̃h̃
]dω. Since (

∫ 1
λ ω−2[W ′(ω)S

1/2

h̃h̃
⊗W ′(ω)S

1/2

h̃h̃
]dω)vec[Sh̃h̃] =

Γ3, we obtain the desired result.

(b) First consider the numerator of ENC-T. Additional algebra and the definition

of h̃2,t+τ imply

∑
t

(û2
1,t+τ − û1,t+τ û2,t+τ ) = (P/R)1/2σ2[R1/2H̃ ′

2(R)][P−1/2
∑

t

h̃2,t+τ ] + op((P/R)1/2).

Now consider the denominator of ENC-T. Similar algebra implies that

P Γ̂cc(j) =
T−τ∑

t=R+j

(û2
1,t+τ − û1,t+τ û2,t+τ − c̄)(û2

1,t+τ−j − û1,t+τ−jû2,t+τ−j − c̄)

= (P/R)σ4[R1/2H̃ ′
2(R)][Eh̃2,t+τ h̃

′
2,t+τ−j][R

1/2H̃2(R)] + op(P/R).

Substitution, and using the fact that j̄ is finite then provides

ENC-T =
(P/R)1/2σ2[R1/2H̃ ′

2(R)][P−1/2∑
t h̃2,t+τ ] + op((P/R)1/2)

[(P/R)σ4[R1/2H̃ ′
2(R)][

∑j̄
j=−j̄ K(j/M)(Eh̃t+τ h̃′t+τ−j)][R

1/2H̃2(R)] + op(P/R)]1/2

=
[R1/2H̃ ′

2(R)][P−1/2∑
t h̃2,t+τ ] + op(1)

[[R1/2H̃ ′
2(R)][

∑j̄
j=−j̄ K(j/M)(Eh̃t+τ h̃′t+τ−j)][R

1/2H̃2(R)] + op(1)]1/2

=
[R1/2H̃ ′

2(R)][P−1/2∑
t h̃2,t+τ ]

[[R1/2H̃ ′
2(R)][

∑j̄
j=−j̄ K(j/M)(Eh̃t+τ h̃′t+τ−j)][R

1/2H̃2(R)]]1/2
+ op(1).

Given Assumption 2, Corollary 29.19 of Davidson (1994) suffices for

(P−1/2∑
t h̃
′
2,t+τ , R

1/2H̃ ′
2(R))′ →d (V ′

1S
1/2

h̃h̃
, V ′

0S
1/2

h̃h̃
)′ for independent (k × 1) standard

normal vectors V0 and V1. Given Assumption 3, we know that
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∑j̄
j=−j̄ K(j/M)(Eh̃2,t+τ h̃

′
2,t+τ−j) → Sh̃h̃. The result follows immediately from the

Continuous Mapping Theorem.

Proof of Theorem 3.2: (a) Given Theorem 3.3 and the Continuous Mapping

Theorem it suffices to show that
∑j̄

j=−j̄ K(j/M)Γ̂dd(j) →d 4σ4Γ3. Extensive algebra

and the definition of h̃2,t+τ imply that P Γ̂dd(j) = 4σ4∑
t H̃

′
2(t)[Eh̃2,t+τ h̃

′
2,t+τ−j]H̃2(t)+

op(1). Substitution, and the fact that j̄ is finite provides P
∑j̄

j=−j̄ K(j/M)Γ̂dd(j) =

4σ4
j̄∑

j=−j̄

K(j/M)[
∑

t

H̃ ′
2(t)[Eh̃2,t+τ h̃

′
2,t+τ−j]H̃2(t)] + op(1)

= 4σ4
∑

t

H̃ ′
2(t)[

j̄∑
j=−j̄

K(j/M)(Eh̃2,t+τ h̃
′
2,t+τ−j)]H̃2(t) + op(1)

= 4σ4(T−1
∑

t

[T 1/2H̃ ′
2(t)⊗ T 1/2H̃ ′

2(t)])vec[
j̄∑

j=−j̄

K(j/M)(Eh̃2,t+τ h̃
′
2,t+τ−j)] + op(1).

The result follows immediately from the proof of Theorem 3.1 (a).

(b) First consider the numerator of MSE-T. Extensive algebra and the definition

of h̃2,t+τ imply

∑
t

(û2
1,t+τ − û2

2,t+τ ) = 2(P/R)1/2σ2[R1/2H̃ ′
2(R)][P−1/2

∑
t

h̃2,t+τ ] + op((P/R)1/2).

Now consider the denominator of MSE-T. Similar algebra implies that

P Γ̂dd(j) =
T−τ∑

t=R+j

(û2
1,t+τ − û2

2,t+τ − d̄)(û2
1,t+τ−j − û2

2,t+τ−j − d̄)

= 4(P/R)σ4[R1/2H̃ ′
2(R)][Eh̃2,t+τ h̃

′
2,t+τ−j][R

1/2H̃2(R)] + op(P/R).

Substitution, and using the fact that j̄ is finite then provides

MSE-T =
2(P/R)1/2σ2[R1/2H̃ ′

2(R)][P−1/2∑
t h̃2,t+1] + op((P/R)1/2)

[4(P/R)σ4[R1/2H̃ ′
2(R)][

∑j̄
j=−j̄ K(j/M)(Eh̃t+τ h̃′t+τ−j)][R

1/2H̃2(R)] + op(P/R)]1/2

=
[R1/2H̃ ′

2(R)][P−1/2∑
t h̃2,t+1] + op(1)

[[R1/2H̃ ′
2(R)][

∑j̄
j=−j̄ K(j/M)(Eh̃t+τ h̃′t+τ−j)][R

1/2H̃2(R)] + op(1)]1/2

=
[R1/2H̃ ′

2(R)][P−1/2∑
t h̃2,t+1]

[[R1/2H̃ ′
2(R)][

∑j̄
j=−j̄ K(j/M)(Eh̃t+τ h̃′t+τ−j)][R

1/2H̃2(R)]]1/2
+ op(1).

The result follows immediately from the proof of Theorem 3.1 (b).

Proof of Theorem 3.3: (a) That P−1∑
t û

2
2,t+τ →p σ2 follows from Theo-

rem 4.1 of West (1996). Extensive algebra and the definition of h̃2,t+τ imply that
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∑
t (û2

1,t+τ − û2
2,t+τ ) = 2σ2∑

t H̃
′
2(t)h̃2,t+τ − σ2T−1∑

t (T 1/2H̃ ′
2(t))(T

1/2H̃ ′
2(t)) + op(1).

Since Assumption 2 and Corollary 29.19 of Davidson (1994) suffice for T 1/2H̃2(t)

⇒ ω−1S
1/2

h̃h̃
W (ω), the Continuous Mapping Theorem implies

T−1∑
t (T 1/2H̃ ′

2(t))(T
1/2H̃ ′

2(t)) →d Γ2. The result then follows from Lemma A1.

(b) That P−1∑
t û

2
2,t+τ →p σ2 follows from Theorem 4.1 of West (1996). De-

tailed algebra (see Clark and McCracken (2004)) and the definition of h̃2,t+τ imply

that
∑

t (û2
1,t+τ − û2

2,t+τ ) = 2σ2(P/R)1/2[R1/2H̃ ′
2(R)][P−1/2∑

t h̃2,t+τ ] + op((P/R)1/2).

Given Assumption 2, Corollary 29.19 of Davidson (1994) suffices for

(P−1/2∑
t h̃
′
2,t+τ , R

1/2H̃ ′
2(R))′ →d (V ′

1S
1/2

h̃h̃
, V ′

0S
1/2

h̃h̃
)′ for the independent (k2× 1) stan-

dard normal vectors V0 and V1 from Theorem 3.1. Scaling by (R/P )1/2 provides the

desired result.

Proof of Theorem 3.4: (a) That P−1∑
t û

2
2,t+τ →p σ2 follows from Theo-

rem 4.1 of West (1996). Lengthy algebra and the definition of h̃2,t+τ imply that∑
t (û2

1,t+τ − û1,t+τ û2,t+τ ) = σ2∑
t H̃

′
2(t)h̃2,t+τ + op(1). The result follows from Lemma

A1.

(b) That P−1∑
t û

2
2,t+τ →p σ2 follows from Theorem 4.1 of West (1996). Extensive

algebra (see Clark and McCracken (2004)) and the definition of h̃2,t+τ imply that∑
t (û2

1,t+τ − û1,t+τ û2,t+τ ) = σ2(P/R)1/2[R1/2H̃ ′
2(R)][P−1/2∑

t h̃2,t+τ ] + op((P/R)1/2).

The result follows immediately from the proof of Theorem 3.3 (b).

30



References

Berkowitz, Jeremy, and Lutz Kilian, 2000, “Recent Developments in Bootstrapping

Time Series,” Econometric Reviews 19, pp. 1-48.

Cecchetti, Stephen G., 1995, “Inflation Indicators and Inflation Policy,” NBER Macroe-

conomics Annual, pp. 189-219.

Chao, John, Valentina Corradi, and Norman R. Swanson, 2001, “An Out of Sample

Test for Granger Causality,” Macroeconomic Dynamics 5, pp. 598-620.

Cheung, Yin-Wong, Menzie D. Chinn, and Antonio Garcia Pascual, 2003, “Empirical

Exchange Rate Models of the Nineties: Are Any Fit to Survive?” Journal of

International Money and Finance, forthcoming.

Chevillon, Guillaume, and David F. Hendry, 2004, “Non-Parametric Direct Multi-

Step Estimation for Forecasting Economic Processes,” International Journal of

Forecasting, forthcoming.

Clarida, Richard H., Lucio Sarno, Mark P. Taylor, and Giorgio Valente, 2003, “The

Out–of–Sample Success of Term Structure Models as Exchange Rate Predictors:

A Step Beyond,” Journal of International Economics 60, pp. 61-83.

Clark, Todd E., 2004, “Can Out-of-Sample Forecast Comparisons Help Prevent Over-

fitting?” Journal of Forecasting 23, pp. 115-39.

Clark, Todd E., and Michael W. McCracken, 2001, “Tests of Equal Forecast Accuracy

and Encompassing for Nested Models,” Journal of Econometrics 105, pp. 85-110.

Clark, Todd E., and Michael W. McCracken, 2004, “Technical Appendix to ‘Evalu-

ating Long–Horizon Forecasts’,” manuscript, available at

www.kansascityfed.org/Econres/staff/tec.htm.

Clark, Todd E., and Michael W. McCracken, 2005, “The Power of Tests of Predictive

Ability in the Presence of Structural Breaks,” Journal of Econometrics 124, pp.

1-31. ‘ Clark, Todd E., and Kenneth D. West, 2004, “Using Out–of–Sample Mean

Squared Prediction Errors to Test the Martingale Difference Hypothesis,” Journal

of Econometrics, forthcoming.

Clements, Michael P., and David F. Hendry, “Multi–Step Estimation for Forecasting,”

Oxford Bulletin of Economics and Statistics 58, pp. 657-84.

Corradi, Valentina, and Norman R. Swanson, 2002, “A Consistent Test for Nonlinear

Out–of–Sample Predictive Accuracy,” Journal of Econometrics 110, pp. 353-81.

Corradi, Valentina, Norman R. Swanson, and Claudia Olivetti, 2001, “Predictive

31



Ability with Cointegrated Variables,” Journal of Econometrics 105, pp. 315-58.

Davidson, Russell, 1994, Stochastic Limit Theory, New York: Oxford University

Press.

Diebold, Francis X., and Canlin Li, 2004, “Forecasting the Term Structure of Gov-

ernment Bond Yields,” Journal of Econometrics, forthcoming.

Diebold, Francis X., and Roberto S. Mariano, 1995, “Comparing Predictive Accu-

racy,” Journal of Business and Economic Statistics 13, pp. 253-63.

Ericsson, Neil R., 1992, “Parameter Constancy, Mean Square Forecast Errors, and

Measuring Forecast Performance: An Exposition, Extensions, and Illustration,”

Journal of Policy Modeling 14, pp. 465-95.

Estrella, Arturo, and Gikas A. Hardouvelis, 1991, “The Term Structure as a Predictor

of Real Economic Activity,” Journal of Finance 46, pp. 555-76.

Estrella, Arturo, Anthony P. Rodrigues, and Sebastian Schich, 2003, “How Stable is

the Predictive Power of the Yield Curve? Evidence from Germany and the United

States,” Review of Economics and Statistics 85, pp. 629-44.

Gilbert, Scott, 2001, “Sampling Schemes and Tests of Regression Models,” manuscript,

Southern Illinois University-Carbondale.

Goncalves, Silvia, and Lutz Kilian, 2004, “Bootstrapping Autoregressions with Con-

ditional Heteroskedasticity of Unknown Form,” Journal of Econometrics 123, pp.

89-120.

Granger, C.W.J., and Yongil Jeon, 2004, “Forecasting Performance of Information

Criteria with Many Macro Series,” Journal of Applied Statistics 31, pp. 1227-40.

Granger, C.W.J., and Paul Newbold, 1977, Forecasting Economic Time Series, New

York: Academic Press.

Groen, Jan J.J., 1999, “Long Horizon Predictability of Exchange Rates: Is It for

Real?” Empirical Economics 24, pp. 451-469.

Hansen, Bruce E., 1992, “Convergence to Stochastic Integrals for Dependent Hetero-

geneous Processes, Econometric Theory 8, 489-500.

Harvey, David I., Stephen J. Leybourne, and Paul Newbold, 1998, “Tests for Forecast

Encompassing,” Journal of Business and Economic Statistics 16, pp. 254-59.

Hodrick, Robert J., 1992, “Dividend Yields and Expected Stock Returns: Alternative

Procedures for Inference and Measurement,” Review of Financial Studies 5, pp.

357-86.

32



Inoue, Atsushi, and Lutz Kilian, 2004, “In–Sample or Out–of–Sample Tests of Pre-

dictability? Which One Should We Use?” Econometric Reviews 23, pp. 371-402.

Kilian, Lutz, 1998, “Small–Sample Confidence Intervals for Impulse Response Func-

tions,” Review of Economics and Statistics 80, pp. 218-30.

Kilian, Lutz, 1999, “Exchange Rates and Monetary Fundamentals: What Do We

Learn From Long–Horizon Regressions?,” Journal of Applied Econometrics 14,

pp. 491-510.

Kilian, Lutz, and Mark P. Taylor, 2003, “Why Is It So Difficult to Beat the Random

Walk Forecast of Exchange Rates?” Journal of International Economics 60, pp.

85-107.

Marcellino, Massimiliano, 2002, “Instability and Non–Linearity in the EMU,” IGIER

working paper no. 211.

Marcellino, Massimiliano, James H. Stock, and Mark W. Watson, 2004, “A Compari-

son of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic

Time Series,” manuscript, Princeton University.

Mark, Nelson C., 1995, “Exchange Rates and Fundamentals: Evidence on Long–

Horizon Predictability,” American Economic Review 85, pp. 201-18.

Mark, Nelson C., and Donggyu Sul, 2002, “Asymptotic Power Advantages of Long–

Horizon Regressions,” manuscript, Ohio State University.

McCracken, Michael W., 2004, “Asymptotics for Out–of–Sample Tests of Causality,”

manuscript, University of Missouri.

Meese, Richard, and Kenneth Rogoff, 1988, “Was It Real? The Exchange Rate–

Interest Differential Relation Over The Modern Floating–Rate Period,” Journal

of Finance 43, pp. 933-948.

Newey, Whitney K., and Kenneth D. West, 1987, “A Simple, Positive Semi-definite,

Heteroskedasticity and Autocorrelation Consistent Covariance Matrix,” Econo-

metrica 55, pp. 703-08.

Orphanides, Athanasios, and Simon van Norden, 2004, “The Reliability of Inflation

Forecasts Based on Output Gap Estimates in Real Time,” Journal of Money,

Credit, and Banking, forthcoming.

Qi, Min, and Jangru Wu, 2003, “Nonlinear Prediction of Exchange Rates with Mon-

etary Fundamentals,” Journal of Empirical Finance 10, pp. 623-40.

Rapach, David E., and Christian E. Weber, 2004, “Financial Variables and the Sim-

33



ulated Out–of–Sample Forecastability of U.S. Output Growth Since 1985: An

Encompassing Approach,” Economic Inquiry 42, pp. 717-38.

Rossi, Barbara, 2001, “Optimal Tests for Nested Model Selection with Underlying

Parameter Instability,” manuscript, Duke University.

Schorfheide, Frank, 2003, “VAR Forecasting Under Misspecification,” Journal of

Econometrics, forthcoming.

Shintani, Mototsugu, 2004, ”Nonlinear Forecasting Analysis Using Diffusion Indexes:

An Application to Japan,” Journal of Money, Credit, and Banking, forthcoming.

Staiger, Douglas, James H. Stock and Mark W. Watson, 1997, “The NAIRU, Unem-

ployment and Monetary Policy, Journal of Economic Perspectives 11, pp. 33-49.

Stine, Robert A., 1987, “Estimating Properties of Autoregressive Forecasts,” Journal

of the American Statistical Association 82, pp. 1072-78.

Stock, James H., and Mark W. Watson, 1999, “Forecasting Inflation,” Journal of

Monetary Economics 44, pp. 293-335.

Stock, James H., and Mark W. Watson, 2003, “Forecasting Output and Inflation:

The Role of Asset Prices,” Journal of Economic Literature 41, pp. 788-829.

Vuong, Quang H., 1989, “Likelihood Ratio Tests for Model Selection and Non-Nested

Hypotheses,” Econometrica 57, pp. 307-33.

West, Kenneth D., 1996, “Asymptotic Inference About Predictive Ability,” Econo-

metrica 64, pp. 1067-84.

West, Kenneth D., 2001, “Tests for Forecast Encompassing When Forecasts Depend

on Estimated Regression Parameters,” Journal of Business and Economic Statis-

tics 19, pp. 29-33.

West, Kenneth D., 2005, “Forecast Evaluation,” in Handbook of Economic Fore-

casting, Elliott, Graham, Granger, Clive W.J., and Timmermann, Allan, eds.,

forthcoming.

West, Kenneth D., and Michael W. McCracken, 1998, “Regression–Based Tests of

Predictive Ability,” International Economic Review 39, pp. 817-40.

34



Table 1: Monte Carlo Results on Size, DGP-1
τ = 1 τ = 2 τ = 4 τ = 8 τ = 12 τ = 1 τ = 2 τ = 4 τ = 8 τ = 12

R = 60, P = 40 R = 100, P = 40
Using asymptotic critical values Using asymptotic critical values

MSE-F .114 .119 .125 .132 .150 .100 .103 .113 .125 .124
MSE-T .116 .130 .142 .183 .239 .112 .123 .154 .205 .230
ENC-F .170 .172 .170 .176 .180 .147 .146 .152 .143 .144
ENC-T .141 .181 .205 .286 .350 .129 .159 .193 .261 .297

Using bootstrapped critical values Using bootstrapped critical values
MSE-F .108 .094 .093 .090 .121 .094 .088 .091 .090 .092
MSE-T .102 .094 .080 .084 .099 .090 .090 .080 .090 .083
ENC-F .142 .126 .109 .116 .136 .138 .112 .113 .093 .103
ENC-T .119 .102 .096 .092 .105 .101 .096 .085 .103 .091

R = 60, P = 80 R = 100, P = 80
Using asymptotic critical values Using asymptotic critical values

MSE-F .132 .095 .114 .117 .123 .120 .119 .135 .136 .126
MSE-T .125 .107 .122 .137 .146 .119 .120 .142 .163 .157
ENC-F .181 .138 .155 .161 .140 .169 .169 .166 .161 .153
ENC-T .177 .162 .183 .195 .217 .145 .163 .186 .215 .226

Using bootstrapped critical values Using bootstrapped critical values
MSE-F .134 .098 .101 .091 .096 .121 .111 .110 .098 .098
MSE-T .126 .096 .105 .087 .098 .109 .098 .095 .086 .086
ENC-F .161 .124 .121 .103 .099 .156 .133 .129 .122 .108
ENC-T .159 .109 .111 .096 .096 .132 .116 .112 .103 .089

R = 60, P = 120 R = 200, P = 40
Using asymptotic critical values Using asymptotic critical values

MSE-F .107 .094 .087 .104 .114 .113 .103 .114 .132 .139
MSE-T .105 .087 .084 .108 .120 .114 .138 .167 .231 .270
ENC-F .182 .157 .161 .161 .149 .139 .129 .127 .140 .136
ENC-T .163 .146 .151 .188 .207 .131 .154 .185 .243 .302

Using bootstrapped critical values Using bootstrapped critical values
MSE-F .111 .089 .083 .092 .100 .109 .089 .088 .094 .104
MSE-T .114 .085 .076 .097 .090 .092 .083 .087 .085 .086
ENC-F .167 .124 .115 .117 .104 .123 .107 .099 .098 .103
ENC-T .148 .111 .099 .115 .099 .099 .091 .088 .086 .087

Notes:
1. The data generating process is defined in equation (6).
2. For each artificial data set, forecasts of Yt+τ −Yt are formed recursively using estimates of equations (10) and (11).
These forecasts are then used to form the indicated test statistics, defined in Section 3. R and P refer to the number
of in–sample observations and 1-step ahead forecasts, respectively.
3. In each Monte Carlo replication, the simulated test statistics are compared against asymptotic and bootstrapped
critical values, using a significance level of 10%. Sections 3.3 and 4.2 describe the asymptotic and bootstrap procedures.
4. The number of Monte Carlo simulations is 1000; the number of bootstrap draws is 999.
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Table 2: Monte Carlo Results on Size, DGP-2
τ = 1 τ = 2 τ = 4 τ = 8 τ = 12 τ = 1 τ = 2 τ = 4 τ = 8 τ = 12

R = 60, P = 40 R = 100, P = 40
Using asymptotic critical values Using asymptotic critical values

MSE-F .094 .107 .131 .126 .118 .098 .111 .124 .122 .124
MSE-T .096 .119 .144 .183 .203 .107 .122 .153 .192 .239
ENC-F .137 .159 .174 .167 .146 .136 .149 .164 .153 .144
ENC-T .125 .162 .213 .268 .302 .118 .167 .205 .250 .297

Using bootstrapped critical values Using bootstrapped critical values
MSE-F .095 .094 .101 .092 .089 .096 .095 .104 .092 .090
MSE-T .091 .100 .114 .100 .097 .088 .082 .093 .088 .086
ENC-F .109 .101 .116 .109 .091 .125 .125 .114 .113 .106
ENC-T .108 .106 .116 .100 .096 .095 .105 .111 .097 .098

R = 60, P = 80 R = 100, P = 80
Using asymptotic critical values Using asymptotic critical values

MSE-F .077 .078 .114 .101 .111 .095 .107 .114 .115 .131
MSE-T .074 .085 .111 .116 .138 .087 .100 .112 .134 .164
ENC-F .119 .134 .160 .137 .138 .131 .149 .158 .159 .150
ENC-T .109 .137 .179 .198 .224 .117 .147 .168 .209 .233

Using bootstrapped critical values Using bootstrapped critical values
MSE-F .079 .084 .104 .085 .091 .091 .101 .094 .090 .101
MSE-T .083 .090 .100 .093 .088 .084 .083 .084 .081 .097
ENC-F .102 .098 .115 .089 .091 .118 .124 .121 .112 .107
ENC-T .087 .100 .114 .087 .089 .098 .114 .108 .111 .107

R = 60, P = 120 R = 200, P = 40
Using asymptotic critical values Using asymptotic critical values

MSE-F .062 .069 .091 .095 .110 .103 .112 .125 .118 .115
MSE-T .067 .070 .095 .101 .119 .115 .139 .169 .224 .270
ENC-F .115 .144 .149 .160 .155 .128 .141 .133 .133 .125
ENC-T .100 .129 .146 .172 .196 .125 .161 .194 .257 .314

Using bootstrapped critical values Using bootstrapped critical values
MSE-F .069 .072 .087 .091 .103 .101 .098 .096 .094 .088
MSE-T .078 .076 .094 .094 .106 .092 .088 .092 .097 .105
ENC-F .103 .104 .107 .095 .098 .115 .114 .097 .095 .090
ENC-T .092 .100 .100 .090 .092 .099 .098 .094 .097 .099

Notes:
1. The data generating process is defined in equation (7).

2. For each artificial data set, forecasts of Y
(τ)
t+τ −Yt are formed recursively using estimates of equations (12) and (13).

These forecasts are then used to form the indicated test statistics, defined in Section 3. R and P refer to the number
of in–sample observations and 1-step ahead forecasts, respectively.
3. In each Monte Carlo replication, the simulated test statistics are compared against asymptotic and bootstrapped
critical values, using a significance level of 10%. Sections 3.3 and 4.2 describe the asymptotic and bootstrap procedures.
4. The number of Monte Carlo simulations is 1000; the number of bootstrap draws is 999.
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Table 3: Monte Carlo Results on the Size of
Tests Based on Standard Normal Critical Values, DGP-1

τ = 1 τ = 2 τ = 4 τ = 8 τ = 12 τ = 1 τ = 2 τ = 4 τ = 8 τ = 12
R = 60, P = 40 R = 100, P = 40

MSE-T .022 .035 .057 .089 .163 .040 .045 .069 .113 .161
ENC-T .107 .127 .154 .226 .299 .093 .121 .153 .206 .259

R = 60, P = 80 R = 100, P = 80
MSE-T .025 .020 .031 .040 .063 .029 .034 .047 .051 .076
ENC-T .123 .111 .136 .157 .174 .104 .125 .130 .155 .165

R = 60, P = 120 R = 200, P = 40
MSE-T .014 .021 .018 .028 .034 .053 .066 .090 .144 .199
ENC-T .115 .105 .107 .142 .155 .089 .120 .139 .209 .259

Notes:
1. The data generating process is defined in equation (6).
2. For each artificial data set, forecasts of Yt+τ −Yt are formed recursively using estimates of equations (10) and (11).
These forecasts are then used to form the indicated test statistics, defined in Section 3. R and P refer to the number
of in–sample observations and 1-step ahead forecasts, respectively.
3. In each Monte Carlo replication, the simulated test statistics (the same as those used in the results in Table 1) are
compared against standard normal critical values (10%).
4. The number of Monte Carlo simulations is 1000.
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Table 4: Monte Carlo Results on Power, DGP-1
τ = 1 τ = 2 τ = 4 τ = 8 τ = 12 τ = 1 τ = 2 τ = 4 τ = 8 τ = 12

R = 60, P = 40 R = 100, P = 40
Using asymptotic critical values Using asymptotic critical values

MSE-F .610 .551 .492 .399 .316 .652 .632 .548 .444 .343
MSE-T .537 .525 .481 .443 .415 .531 .554 .524 .490 .457
ENC-F .841 .776 .647 .475 .344 .903 .870 .718 .555 .407
ENC-T .754 .735 .693 .622 .566 .782 .787 .728 .638 .598

Using bootstrapped critical values Using bootstrapped critical values
MSE-F .602 .574 .466 .361 .247 .642 .638 .531 .429 .290
MSE-T .520 .451 .353 .250 .193 .498 .465 .344 .248 .183
ENC-F .807 .749 .593 .391 .263 .886 .857 .702 .514 .339
ENC-T .717 .610 .456 .283 .212 .738 .666 .478 .307 .213

R = 60, P = 80 R = 100, P = 80
Using asymptotic critical values Using asymptotic critical values

MSE-F .751 .721 .619 .522 .400 .817 .773 .689 .573 .453
MSE-T .733 .688 .599 .536 .437 .752 .719 .640 .556 .474
ENC-F .950 .914 .816 .650 .447 .973 .958 .883 .724 .564
ENC-T .924 .901 .819 .721 .581 .947 .938 .870 .757 .661

Using bootstrapped critical values Using bootstrapped critical values
MSE-F .755 .739 .613 .509 .367 .821 .775 .684 .546 .417
MSE-T .740 .676 .542 .435 .314 .751 .675 .548 .431 .318
ENC-F .938 .909 .792 .589 .372 .970 .959 .863 .688 .510
ENC-T .904 .851 .707 .522 .353 .941 .889 .750 .550 .386

R = 60, P = 120 R = 200, P = 40
Using asymptotic critical values Using asymptotic critical values

MSE-F .844 .810 .723 .587 .467 .744 .729 .634 .526 .398
MSE-T .840 .793 .703 .573 .483 .542 .589 .539 .518 .479
ENC-F .974 .956 .895 .713 .536 .946 .929 .811 .656 .498
ENC-T .962 .956 .891 .749 .629 .827 .848 .738 .684 .629

Using bootstrapped critical values Using bootstrapped critical values
MSE-F .848 .815 .719 .580 .446 .738 .729 .633 .520 .379
MSE-T .851 .804 .669 .542 .408 .511 .481 .352 .254 .174
ENC-F .969 .953 .865 .641 .471 .938 .927 .809 .635 .452
ENC-T .962 .932 .811 .607 .438 .791 .728 .515 .330 .229

Notes:
1. The data generating process is defined in equations (6) and (8).
2. For each artificial data set, forecasts of Yt+τ −Yt are formed recursively using estimates of equations (10) and (11).
These forecasts are then used to form the indicated test statistics, defined in Section 3. R and P refer to the number
of in–sample observations and 1-step ahead forecasts, respectively.
3. In each Monte Carlo replication, the simulated test statistics are compared against asymptotic and bootstrapped
critical values, using a significance level of 10%. Sections 3.3 and 4.2 describe the asymptotic and bootstrap procedures.
4. The number of Monte Carlo simulations is 1000; the number of bootstrap draws is 999.
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Table 5: Monte Carlo Results on Power, DGP-2
τ = 1 τ = 2 τ = 4 τ = 8 τ = 12 τ = 1 τ = 2 τ = 4 τ = 8 τ = 12

R = 60, P = 40 R = 100, P = 40
Using asymptotic critical values Using asymptotic critical values

MSE-F .617 .520 .507 .368 .283 .708 .611 .586 .463 .367
MSE-T .546 .481 .502 .422 .377 .585 .544 .558 .510 .478
ENC-F .856 .755 .700 .481 .326 .923 .834 .784 .622 .466
ENC-T .786 .730 .729 .628 .559 .838 .766 .783 .722 .667

Using bootstrapped critical values Using bootstrapped critical values
MSE-F .624 .523 .497 .345 .239 .704 .612 .581 .455 .325
MSE-T .545 .437 .413 .273 .195 .563 .461 .411 .314 .231
ENC-F .838 .702 .626 .379 .233 .914 .815 .747 .562 .387
ENC-T .755 .587 .523 .316 .214 .806 .664 .575 .397 .274

R = 60, P = 80 R = 100, P = 80
Using asymptotic critical values Using asymptotic critical values

MSE-F .787 .707 .688 .567 .442 .849 .775 .753 .625 .518
MSE-T .762 .682 .667 .568 .480 .802 .723 .715 .612 .545
ENC-F .973 .921 .873 .738 .535 .996 .959 .926 .813 .644
ENC-T .950 .900 .880 .787 .687 .978 .940 .907 .843 .762

Using bootstrapped critical values Using bootstrapped critical values
MSE-F .792 .722 .685 .554 .405 .847 .784 .747 .610 .480
MSE-T .779 .692 .649 .509 .381 .802 .704 .662 .513 .398
ENC-F .960 .904 .838 .654 .424 .995 .950 .908 .769 .565
ENC-T .936 .857 .797 .618 .421 .967 .896 .846 .668 .516

R = 60, P = 120 R = 200, P = 40
Using asymptotic critical values Using asymptotic critical values

MSE-F .896 .809 .780 .667 .548 .797 .739 .700 .565 .458
MSE-T .896 .795 .770 .658 .553 .627 .595 .604 .565 .533
ENC-F .987 .969 .948 .817 .641 .971 .922 .889 .744 .589
ENC-T .982 .962 .943 .866 .750 .898 .851 .843 .769 .732

Using bootstrapped critical values Using bootstrapped critical values
MSE-F .903 .823 .790 .672 .534 .790 .737 .703 .569 .441
MSE-T .907 .820 .784 .645 .520 .598 .499 .445 .284 .216
ENC-F .986 .960 .928 .745 .542 .965 .927 .886 .725 .559
ENC-T .981 .944 .907 .766 .556 .878 .759 .664 .426 .309

Notes:
1. The data generating process is defined in equations (7) and (9).

2. For each artificial data set, forecasts of Y
(τ)
t+τ −Yt are formed recursively using estimates of equations (12) and (13).

These forecasts are then used to form the indicated test statistics, defined in Section 3. R and P refer to the number
of in–sample observations and 1-step ahead forecasts, respectively.
3. In each Monte Carlo replication, the simulated test statistics are compared against asymptotic and bootstrapped
critical values, using a significance level of 10%. Sections 3.3 and 4.2 describe the asymptotic and bootstrap procedures.
4. The number of Monte Carlo simulations is 1000; the number of bootstrap draws is 999.
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Table 6: Tests of Predictive Power of Capacity Utilization for Inflation
1976:Q1–2004:Q3

τ = 1 τ = 2 τ = 4 τ = 8 τ = 12
Summary statistics

RMSE 1 1.53 1.41 1.41 1.71 1.97
RMSE 2 1.46 1.36 1.31 1.48 1.64

Test statistics (asymptotic p-values, bootstrap p-values)
MSE-F 10.92 (.00, .00) 8.47 (.01, .01) 17.69 (.01, .01) 36.18 (.01, .00) 46.21 (.01, .01)
MSE-T 1.02 (.02, .04) .50 (.07, .10) .59 (.06, .09) .98 (.03, .05) 1.13 (.01, .06)
ENC-F 11.77 (.00, .00) 14.66 (.00, .00) 30.86 (.00, .00) 42.88 (.01, .01) 41.91 (.02, .01)
ENC-T 2.09 (.01, .02) 1.72 (.02, .04) 1.92 (.01, .03) 1.75 (.02, .06) 1.56 (.03, .10)

Notes:
1. As described in section 5, forecasts of the τ -period ahead change in inflation (Y

(τ)
t+τ − Yt) are formed recursively

using estimates of the restricted model (12) and the unrestricted model (13). Inflation is measured in annualized
percentage points. The recursive forecasts are then used to form the indicated test statistics, defined in Section 3.
2. RMSE 1 and RMSE 2 refer to the RMSEs of the restricted and unrestricted models (equations (12) and (13)),
respectively.
3. The p-values reported in the table are computed with the asymptotic and bootstrap procedures described in
sections 3.3 and 4.2.
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