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            Abstract

This paper shows that out-of-sample forecast comparisons can help prevent data mining-induced

overfitting.  The basic results are drawn from simulations of a simple Monte Carlo design

and a real data-based design similar to those in Lovell (1983) and Hoover and Perez (1999).  In each

simulation, a general-to-specific procedure is used to arrive at a model.  If the selected specification

includes any of the candidate explanatory variables, forecasts from the model are compared to

forecasts from a benchmark model that is nested within the selected model.  In particular, the competing

forecasts are tested for equal MSE and encompassing.  The simulations indicate most of the

post-sample tests are roughly correctly sized, as long as just the in-sample portion of the data are used in

model selection.  Moreover, the tests have relatively good power, although some are

consistently more powerful than others.  The paper concludes with an application, modeling quarterly U.S.

inflation.
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1. Introduction

It is widely recognized that empirical modeling is prone to overÞtting. In particular, various

forms of data mining may lead a researcher to falsely conclude that some variable x has explanatory

power for another variable y.1 As discussed by Lovell (1983) and Hoover and Perez (1999), the

data mining may take the form of a search across candidate models for y. For example, a researcher

might search across 10 different x variables to Þnd the one that has the most explanatory power

for y. The data mining may also more generally reßect the results of a profession�wide search that

has affected the set of candidate variables, a possibility noted by West (1996) and considered in

some detail by Denton (1985).

In the hope of reducing the probability of overÞtting, many researchers examine out�of�sample

forecasts for evidence of predictive power. In the simplest case, if in�sample evidence suggests some

x has explanatory power for y, a researcher may construct competing forecasts of y, using one model

of y that includes x and another that does not. If x truly has explanatory power for y, forecasts

from the model including x should be superior. Accordingly, Ashley, Granger, and Schmalensee

(1980) advocate using out�of�sample forecast comparisons to test Granger causality. In practice,

using forecast comparisons to determine whether one variable has explanatory power for another

has been common since at least the inßuential work of Meese and Rogoff (1983, 1988).

Although out�of�sample forecast comparisons are widely used, little is known about their

effectiveness in preventing overÞtting. The extant research on forecasts from nested models has

generally focused on a framework in which two pre�speciÞed models are simply compared.2 In this

setting, McCracken (1999) and Clark and McCracken (2000) derive the asymptotic distributions

of some basic tests of equal forecast accuracy and forecast encompassing, respectively. Monte

1 While the term �data mining� in this paper simply refers to searching across candidate models contained
within some general speciÞcation, Hand (1999) stresses that there are many other forms of data mining.

2 Although there is now a large literature on the asymptotic and Þnite�sample properties of equal accuracy
and encompassing tests, much of it is focused on non�nested models. The forecasts considered in this paper,
however, are from nested models. As noted by McCracken (1999) and Clark and McCracken (2000), for most
standard tests whether the models are nested signiÞcantly affects the asymptotic distribution.
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Carlo simulations in Clark and McCracken show that, in an environment without data mining, the

tests considered have good size and power properties. In the same setting, Chao, Corradi, and

Swanson (2000) develop an encompassing�type out�of�sample test of causality that has a standard

distribution, and show the test also has reasonable Þnite�sample size and power properties. The

results of McCracken (2000) suggest the effectiveness of post�sample tests in these previous studies

may carry over to environments with data mining. McCracken establishes conditions under which

some simple forms of out�of�sample inference are free from data mining�induced biases, and then

shows that, with data mining, an out�of�sample ARCH test has better Þnite�sample size and power

properties than the standard in�sample test.3

Accordingly, this paper examines the effectiveness of out�of�sample forecast comparisons in

preventing data mining�induced overÞtting in Þnite samples. The basic results are drawn from

simulations of a simple Monte Carlo design and a real data�based design similar to those in Lovell

(1983) and Hoover and Perez (1999). In each simulation draw, a simple general�to�speciÞc modeling

procedure is used to arrive at a model. If that selected speciÞcation includes any of the candidate

explanatory variables x, forecasts from the model are compared to forecasts from a benchmark

model that is restricted to exclude all x variables. In particular, the forecasts are tested for equal

MSE and encompassing. This paper presents simulation evidence on the frequency with which,

in Þnite samples, the tests correctly indicate the selected x variables have no predictive power

(evidence on �size�), as well as on the frequency with which the tests correctly determine that

some x variables have explanatory power (evidence on �power�).

The simulation results show that out�of�sample forecast comparisons can help avoid overÞt-

ting. Most of the post�sample tests � which are only conducted if the model selection procedure

indicates some x variables have explanatory power � are roughly correctly sized in both of the

3 McCracken�s (2000) asymptotic results do not cover the complicated problem posed by the out�of�sample
forecast comparisons considered in this paper.
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simulation designs considered in this paper. To be useful, though, the forecast comparisons must

be made in the way recommended by Ashley, Granger, and Schmalensee (1980). In particular, the

available data should be divided into in�sample and out�of�sample portions, and just the in�sample

portion should be used in the speciÞcation search. The approach used by many researchers, in which

all of the data are Þrst used in some form of model determination and then an in�sample portion

is used to reestimate the chosen models and generate out�of�sample forecasts, is of relatively little

help in preventing overÞtting.4 Finally, the simulations in this paper show that the powers of the

post�sample forecast tests follow a simple ranking. Overall, power appears to be relatively good.

To provide further evidence on the effectiveness of out�of�sample forecast comparisons in the

presence of data mining, the paper concludes with an application � developing a simple model for

quarterly U.S. inßation. A general�to�speciÞc search procedure yields a model relating consumer

price inßation to lags of inßation, energy and import price inßation, and the rate of capacity

utilization. Tests of equal forecast accuracy and encompassing based on out�of�sample projections

for 1990:Q1 through 1999:Q4 indicate energy and import price inßation and capacity utilization

have signiÞcant predictive power.

While this study focuses on the out�of�sample forecast comparisons that have become com-

monplace, there are of course other potentially effective strategies for avoiding data mining�induced

overÞtting.5 One related strategy, developed by White (2000), is to form post�sample forecast

statistics for all models under consideration (not just the best in�sample model and a benchmark

model) and then bootstrap p-values. Another strategy is to try to adjust the critical values used

in model evaluation. Suppose, for example, that a researcher intends to search across N different

x variables to Þnd the best model for y as a function of a single x, and wants the test to have size

4 Recent examples of studies using all data to select a model and then examining out�of�sample forecasts for
a portion of the dataset include Amano and van Norden (1995), Chinn and Meese (1995), Evans and Lyons
(1999), and Lettau and Ludvigson (2000).

5 An additional strategy, advocated by Ericsson and Campos (1999), is to examine recursive t-statistics for
evidence of a breakdown in any relationship.
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of α percent. Lovell (1983) suggests a reasonable t-statistic to use in gauging the signiÞcance of

any single x variable is the standard normal critical value for α/N percent.6 Yet another strategy,

advocated by Hansen (1999), is to use a consistent information criterion with a penalty for ad-

ditional parameters big enough to eliminate overÞtting. Admittedly, some researchers may prefer

these kinds of alternatives to the post�sample forecast strategy. This study does not deny the

usefulness of these other strategies; it simply focuses on the commonly used approach of comparing

post�sample forecasts from the selected model to those from a benchmark model.

2. Data mining and forecast evaluation frameworks

2.1 Data mining framework

In practice, developing a model for a predictand y may involve several different forms of

data mining. Some researchers start with a general model, including a variety of explanatory

variables, and then sequentially drop variables to arrive at some best speciÞcation. The so-called

LSE methodology described in, among others, Hendry (1995) and Mizon (1995) reÞnes and extends

this practice, subjecting each model speciÞcation to not only tests of the signiÞcance of individual

variables but also tests of heteroskedasticity, stability, normality, etc.7 Others, including Granger,

King, and White (1995) and Hansen (1999), advocate using an information criterion such as the

BIC to determine which of all candidate models is best.8 Alternatively, researchers such as Ashley,

Granger, and Schmalensee (1980) begin by estimating a general model and then drop, as a block,

all variables with insigniÞcant t-statistics. Still other researchers focus on Þnding a single variable

x with explanatory power for y and search across a set of candidate x variables. Finally, apart from

any data mining conducted in the course of a single study, the model speciÞcation adopted by a

6 In this study�s simulations, the Lovell (1983) rule of thumb proves effective for eliminating overÞtting, consis-
tently yielding empirical size of roughly α. But only an occasional study, such as Baba, Hendry, and Starr
(1992), adjusts critical values as suggested by Lovell. In practice researchers typically just base results on 5
or 10 percent critical values, even though some sort of speciÞcation search has been conducted.

7 Hendry and Krolzig (1999) and Krolzig and Hendry (2000) suggest reÞnements of LSE methodology, such as
using more stringent critical values, designed to reduce the probability of overÞtting.

8 In addition, studies such as George and McCullough (1993) have developed Bayesian methods for model
selection.
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particular researcher may reßect the results of a profession�wide search.

The results presented below focus on a single form of data mining � a simple general�to�

speciÞc modeling procedure. This procedure begins with estimating a general model, regressing

y on a total of K different x variables. The x variable with the smallest insigniÞcant t�statistic

is then dropped, and the model is reestimated. Variables are dropped one�by�one, based on the

ordering of t-statistics, until all variables remaining in the model are signiÞcant. This general�

to�speciÞc procedure, which amounts to the stepwise regression described in Theil (1971), is a

simpliÞed version of the algorithm used in Hoover and Perez (1999). The more involved Hoover

and Perez algorithm and the reÞnements developed in Hendry and Krolzig (1999) and Krolzig and

Hendry (2000) are designed to address the ability of LSE methodology to arrive at a correct model.

The simpler algorithm used here is designed to reßect the less sophisticated model search commonly

conducted in practice.

While not presented in the interest in brevity, Monte Carlo results for several other model

selection approaches are similar to the general�to�speciÞc results reported below. SpeciÞcally,

broadly similar results are obtained for algorithms that consist of: (1) searching across all possible

combinations of variables to Þnd the model that minimizes the BIC; (2) estimating a general model

and then dropping, as a block, all variables with insigniÞcant t-statistics; and (3) searching to Þnd

the single x with the greatest explanatory power for y.9

2.2 Forecast evaluation framework

Following McCracken (1999) and Clark and McCracken (2000), suppose a sample of observa-

tions fyt, z01,tgT+1t=1 that includes a scalar random variable yt to be predicted and a (k0+k1 = k£1)

vector of predictors z1,t = (z
0
0,t, z

0
11,t)

0
. The sample is divided into in�sample and out�of�sample

portions. Abstracting from the initial observations necessitated by the lags included in the esti-

9 Admittedly, the probability of in�sample overÞtting is lower for model selection based on the BIC than for
the other approaches. But, consistent with the results in Hansen (1999), in small samples even the BIC has
a considerable probability of overÞtting.
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mated models, the in�sample observations span 1 to R. Letting P denote the number of 1-step

ahead predictions, the out�of�sample observations span R+ 1 through R+ P .

Forecasts of yt, t = R + 1, . . . , R + P , are generated using two linear models of the form

z
0
i,t−1β

∗
i , i = 0, 1, each of which is estimated. Model 1 is the speciÞcation selected by the general�

to�speciÞc search procedure. Model 0 is a restricted version of model 1; the exact form of this

restricted model, which varies across experiments, is detailed in the next section. Under the null,

model 1 nests the restricted model 0 and hence model 1 includes k1 excess parameters. Under the

alternative hypothesis, the k1 restrictions are not true, and model 1 is correct.

The forecasts are recursive, 1-step ahead predictions. Under the recursive scheme, each

model�s parameters, β∗i , i = 0, 1, are estimated with added data as forecasting moves forward

through time: for t = R + 1, . . . , R + P , model i�s prediction of yt, z
0
i,t−1 �βi,t−1, is created using

the parameter estimate �βi,t−1 based on data from 1 to t ¡ 1. Generating forecasts by the rolling

and Þxed schemes considered in West and McCracken (1998) yields similar results. This analysis

focuses on 1-step ahead forecasts because, as noted by McCracken (1999) and Clark and McCracken

(2000), for multi-step forecasts, the asymptotic distributions of the forecast tests generally depend

on the parameters of the data-generating process.

Forecasts from models 0 and 1 are compared using the following four tests: (1) the F�type

test of equal MSE developed by McCracken (1999), denoted MSE-F; (2) the regression�based t�test

for equal MSE proposed by Granger and Newbold (1977), labeled MSE-REG; (3) the ENC-NEW

encompassing test developed by Clark and McCracken (2000); and (4) the regression�based t�

test for encompassing proposed by Ericsson (1992), denoted ENC-REG.10 The appendix provides

detail on the computation of each statistic. Under the null that the restrictions imposed in model

10 Clark and McCracken (2000) Þnd the regression�based tests for equal MSE and encompassing perform slightly
better than the analogous GMM�based t-tests proposed by Diebold and Mariano (1995) and Harvey, Ley-
bourne, and Newbold (1998), respectively. In addition, simulations using Clark and McCracken�s DGP-I
indicate the Þnite�sample powers of the tests considered in this paper generally exceed the power of the
out�of�sample test of causality developed by Chao, Corradi, and Swanson (2000).
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0 are correct, the MSE for model 0 should be less than or equal to the MSE for model 1, and

the encompassing regression coefficient should be less than or equal to 0. The MSE-F and MSE-

REG statistics are compared against asymptotic critical values tabulated by McCracken (1999);

the ENC-NEW and ENC-REG tests are compared against asymptotic critical values tabulated by

Clark and McCracken (2000).

3. Simulation design

This study uses simulations to Þrst evaluate the �size� performance of the model search pro-

cedure and out�of�sample forecast comparisons. In the size analysis, in truth the x regressands

considered have no predictive power for the dependent variable. Each simulated data set is sub-

jected to the general�to�speciÞc search procedure, and in the event the data mining yields a model

with at least one signiÞcant x regressand, out�of�sample forecasts from the selected model are

compared to forecasts from a restricted model that corresponds to the true data-generating model.

In this analysis, �size� measures the frequency with which the tests indicate some x variables have

predictive power for the dependent variable, when there are no x variables in the DGP.

Simulations are then used to evaluate the �power� performance of the model search and out�

of�sample forecast comparisons. In this analysis, in truth some x regressands have explanatory

power for the dependent variable. Again, each simulated data set is subjected to a general�to�

speciÞc model search, and in the event the search yields a model including the x regressands that

appear in the DGP, out�of�sample forecasts from the selected model are compared to forecasts

from a restricted model. �Power� corresponds to the frequency with which the tests Þnd that the

x variables included in the DGP have predictive power.

This study relies on two different simulation approaches � simple Monte Carlo experiments

and an alternative simulation framework patterned on those of Lovell (1983) and Hoover and Perez

(1999). This section describes these approaches in turn.
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3.1 Monte Carlo simulations

The DGP used in the Monte Carlo analysis takes the form

yt = .3yt−1 + b x1,t−1 + ut

xi,t = .5xi,t−1 + vi,t, i = 1, . . . ,K,
(1)

where K is the number of candidate explanatory variables (x) for y, and the error terms are

all independently and identically distributed standard normal variables. In the size results, the

coefficient b is set to 0. In the power results, in the interest of brevity b is set at just 0.2. Power

results for other coefficient values and for DGPs incorporating two rather than just one x variable

are qualitatively similar to those reported. In each Monte Carlo simulation, an initial observation

is drawn from the unconditional normal distribution implied by the model parameterization and

then R+P observations are constructed using the autoregressive model structure and draws of the

error terms from the standard normal distribution.11

In each simulation draw, the general�to�speciÞc model selection procedure begins with an

estimate of the regression

yt = α+ βyt−1 +
KX
i=1

φixi,t−1 + ²t. (2)

This basic speciÞcation is designed with 1-step ahead prediction in mind.12 As described in section

2, individual x variables are dropped sequentially until all remaining have signiÞcant t-statistics (a

constant and one lag of y are always included in the estimated equation). The number of x variables

considered, K, takes on a range of values: 3, 5, 10, and 20. In the reported results, models are

selected using the signiÞcance levels most common in practice, 10% and 5%.

If one or more x variables remain in the model selected by the general�to�speciÞc algorithm,

out�of�sample forecasts of y are generated from the selected model (in section 2�s notation, model

11 Data are generated such that, for a given R, the in�sample data (the Þrst R observations) are the same across
experiments using different settings of P .

12 Studies such as Stock and Watson (1998) and Knox, Stock, and Watson (2000) use the same basic regression.
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1) using the last P observations of the sample. These forecasts are compared to predictions from

an estimate of the restricted model (in section 2�s notation, model 0)

yt = δ + γyt−1 + et. (3)

In the size experiments, the restrictions that model 0 imposes on model 1 are correct. In the power

results, in which the coefficient b in (1) is non-zero, the restrictions are not true.

In the size results presented below, the model speciÞcation search is conducted using two

different sample periods. The main set of results is generated by using just the ÞrstR observations in

the model speciÞcation search, following the recommendation of Ashley, Granger, and Schmalensee

(1980). Another set of results is generated by using all R+P observations in the model speciÞcation

search, following common practice. In this case, generating forecasts requires reestimating the

forecasting models with just the Þrst R observations and then iterating forward.

Results are reported for selected, empirically relevant combinations of P and R: R = 100

with P = 20, 40, and 100; and R = 200 with P = 20, 40, and 200.

3.2 LHP simulations

Additional evidence on whether post�sample forecast tests can help prevent data mining�

induced overÞtting is generated using an alternative simulation framework patterned on those of

Lovell (1983) and Hoover and Perez (1999). In this framework, a general�to�speciÞc model search

is applied to an artiÞcial dependent variable and a set of candidate regressands that are standard,

quarterly macroeconomic data series. The artiÞcial dependent variable y is generated using three

different DGPs:

yt =.267yt−1 + 3.460ut (4)

yt =.267yt−1 + .263∆ lnPCEt−1 + 3.375ut (5)

yt =.267yt−1 + .180∆ lnPCEt−1 + .031∆ lnDJIAt−1 + 3.306ut (6)
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where ut is a standard normal random variate, PCE denotes real personal consumption expendi-

tures, and DJIA denotes the Dow Jones Industrial Average index deßated by the chain price index

for GDP. The DGP (4) is drawn from an AR(1) estimated for quarterly GDP growth from 1959:3

to 2000:1. The DGPs (5) and (6) are drawn from regressions of GDP growth on lagged growth

in GDP, consumption spending, and the DJIA, with the restriction that the coefficient on lagged

GDP growth remain the same as in (4).

In each simulation draw, the general�to�speciÞc model selection procedure begins with an

estimate of the regression

yt = α+ βyt−1 +
19X
i=1

φixi,t−1 + ²t, (7)

where, in this case, the x variables are the standard, quarterly macroeconomic data series listed

in Table 1. These variables are the same as those considered by Hoover and Perez (1999) and

essentially the same as those considered by Lovell (1983). As described above, the individual x

variables are dropped sequentially until all remaining are statistically signiÞcant (a constant and

one lag of y are always included in the estimated equation).

In this analysis, the data are again divided into in�sample and out�of�sample portions, using

just the in�sample portion for model selection and reserving the out�of�sample portion for fore-

cast evaluation. With the macroeconomic data series available from 1959:3 through 2000:1 (after

differencing), R and P are set to 135 and 27, respectively. Accordingly, in the model selection

procedure applied in each simulation, the sample period of the dependent variable spans 1959:4

through 1993:2. If one or more x variables remain in the model selected by the general�to�speciÞc

algorithm, forecasts are generated for 1993:3 through 2000:1. This sample split produces a ratio

P/R for which McCracken (1999) and Clark and McCracken (2000) provide asymptotic critical

values for the forecast test statistics considered.

In the �size� analysis, the DGP is model (4), and forecasts from the model determined by the
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general�to�speciÞc search (model 1) are compared to predictions from an estimate of the restricted

speciÞcation (model 0)

yt = δ + γyt−1 + et. (8)

As described above, the comparison takes the form of testing whether forecasts from (8) have the

same MSE as predictions from the general�to�speciÞc�determined model and whether forecasts

from (8) encompass predictions from the more general model. In the �power� analysis, the DGP is

either model (5) or (6). In simulation draws in which the selected model includes some x variables,

forecasts from the selected model are compared to projections from an estimate of the restricted

model (8).

4. Results

Three key size results emerge from the Monte Carlo and LHP simulations.

4.1 Size

Size result 1. The Monte Carlo results in Table 2 conÞrm that data mining in the form

of the model selection procedure used in this paper generally leads to overÞtting. Consider, for

example, the case in which the number of regressands included in the search (K) equals 10, and

the 10% signiÞcance level is used in determining whether a variable belongs in the model. In these

experiments, the search procedure yields an overÞt model � a model including some x variables

even though the DGP does not � in nearly 70% of the simulations (see the in-sample row of the

third panel). As would be expected, for a given signiÞcance level, overÞtting becomes more likely

as the number of variables included in the search increases. When K rises to 20, empirical size

rises to roughly 90% (see the in-sample row of the fourth panel). As would also be expected, for

a given K, lowering the signiÞcance level used in model selection to 5% reduces the probability of

overÞtting.

The LHP simulation results in Table 3 provide further evidence that searches across real
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macroeconomic data sets are likely to yield overÞt models. In these simulations, when a 10%

signiÞcance level is used in model selection, the general�to�speciÞc search yields an overÞt model in

87.3% of the simulations. Although using a more stringent 5% signiÞcance level improves matters

somewhat, the probability of overÞtting remains high, at 62.6%.

Size result 2. When just the in�sample portion of the data (the Þrst R observations) are used

in model selection, post�sample forecast evaluations can provide a very useful tool for avoiding

overÞtting. Conditioned on the selection procedure yielding a model that includes some regressands

x with in�sample explanatory power, several of the post�sample forecast tests are close to being

correctly sized.

More speciÞcally, consider the Monte Carlo experiment in which the number of regressands

included in the search (K) equals 10, the variable selection signiÞcance level is 10%, and R =

100 and P = 20. As reported in Table 2, in this experiment the MSE-REG and ENC-REG tests

are roughly correctly sized: the tests indicate the selected regressands have predictive power in,

respectively, 4.6% and 8.1% of the simulations in which the search procedure yields a model with

some x regressands (see the Þrst column of Þgures in the third panel). The MSE-F and ENC-

NEW tests are subject to somewhat larger distortions, the latter more so than the former. In the

same experiment, these statistics have size of 11.9% and 20.2%, respectively. The sizes of the tests

remain largely unchanged as either K or the signiÞcance level used in the in�sample model selection

change, but the size performance of the tests improves somewhat as the number of post�sample

observations (P ) increases.

LHP simulations conÞrm that post�sample forecast evaluations may be useful for avoiding

overÞtting in model searches involving typical macroeconomic data sets. For example, as shown in

Table 3, both MSE-REG and ENC-REG are roughly correctly sized. When the model search uses

the 10% level in determining whether a variable is signiÞcant, these two tests indicate the regres-

sands in a selected model have predictive power in, respectively, 4.4% and 6.4% of the simulations

12



in which the search procedure yields a model with some x regressands.

Size result 3. As shown in Table 4, when the full sample of data is used in model selection,

post�sample forecast evaluations are of limited help in avoiding overÞtting. Using the full sample

of data in the model search leads to a considerable chance that even forecast tests will spuriously

indicate some x variables have predictive power. Consider again a Monte Carlo experiment in

which the number of regressands included in the search (K) equals 10, the 10% signiÞcance level

is used in variable selection, and R = 100 and P = 20. In this example, the MSE-F test indicates

the selected regressands have predictive power in 40.6% of the simulations in which the full-sample

search procedure yields a model with some x regressands (see the Þrst column of Þgures in the third

panel). The corresponding sizes of the MSE-REG, ENC-NEW, and ENC-REG tests are 22.4%,

50.6%, and 30.3%, respectively. The performance of the post�sample tests changes little as K �

the dimension of the search � increases.

Out of concern that using the full sample of data in model selection might distort forecast�

based inferences, Ashley, Granger and Schmalensee (1980) recommend using just in�sample data

in the selection procedure and saving a portion of the data for out�of�sample forecast evaluation.

Nonetheless, in practice, many researchers Þrst use the full sample of data to select a model and

then evaluate forecast performance. The results in Table 4 show that, under this approach, forecast

comparison is unlikely to be an effective tool for avoiding overÞtting.

4.2 Power

This section evaluates the frequency with which out�of�sample tests correctly determine that

the x variables included in the data mining�determined model have predictive power for the de-

pendent variable y. In particular, this section presents separate �power� results for the case in

which the selected model corresponds to the DGP, which includes some x variables, and the case

in which the selected model nests the DGP (the deÞnition of nested here means that some of the

models included in this category match the DGP exactly while others include some additional x
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variables).13 In both cases, �power� corresponds to the frequency with which the post�sample tests

correctly Þnd that the x variables included in the selected model have predictive power.

In order to provide a power benchmark, another out�of�sample test is added to the battery of

tests considered. This additional statistic, denoted OOS GC, is simply a standard Granger causality

test based on estimating the selected model using just the out�of�sample data. In particular, the

OOS GC statistic is an F -test of exclusion restrictions on the x variables in the model yielded

by the general�to�speciÞc search, reestimated with just the out�of�sample data. In practice, of

course, it is rare that a researcher conducts such a test (even though it is a very simple way of

testing hypotheses without contamination from pre�test search), but in many respects this test

provides a useful benchmark for the power of the forecast�based tests.14

Power result 1. The frequency with which the in�sample search procedure yields a model

matching the DGP falls as the number of variables included in the search (K) increases. Consider,

for example, Monte Carlo experiments with R = 100, P = 20, and a variable selection signiÞcance

level of 10%. As shown in Table 5, the probability of the model search identifying the true model

falls from 45.6% whenK = 5 to 26.0% whenK = 10 (see the in-sample entries of the Þrst column, in

the second and third panels). This Þnding conforms with what might be expected: the probability

of identifying the true model falls as the dimension of the search expands.

Moreover, the frequency with which the in�sample search procedure yields a model matching

the DGP typically rises as the signiÞcance level used in variable selection is reduced from 10%

to 5%. Continuing with the same example, given K = 10, the probability of identifying the true

model increases from 26.0% to 35.6% when the signiÞcance level used in model selection is reduced

from 10% to 5%. But results not presented in the interest of brevity show that the effects of

13 Results not reported in the interest of brevity conÞrm that, as expected, the probability of the in�sample model
search yielding a completely �wrong� model � one that includes x variables but not the variable actually in
the DGP � rises with K. Conditioned on model selection yielding a �wrong� speciÞcation, rejection rates for
the post�sample forecast tests are broadly comparable to the sizes reported in Table 2.

14 While not reported in the size results of Tables 2-4, the OOS GC test is about correctly sized.
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using even more stringent signiÞcance levels are not monotone. Reducing the variable selection

signiÞcance level to 1% raises the probability of selecting the true model in some cases and reduces

the probability in other cases.

Power result 2. The probability of the in�sample search procedure yielding a model nesting

the DGP remains unchanged as the number of variables included in the search rises, but falls as

the variable selection signiÞcance level is reduced from 10% to 5%. Consider again the Monte Carlo

example with R = 100, P = 20, and a variable selection signiÞcance level of 10%. As reported in

Table 6, the probability of selecting a model nesting the DGP is roughly 71% for all values of K

considered (see the in-sample entries of the Þrst column, for panels 1-4). Because the probability

of selecting a nesting model is unchanged but the probability of selecting the true model declines

as K rises, the likelihood of overÞtting increases with K. But reducing the signiÞcance level used

in model selection from 10% to 5% causes the probability of selecting a nesting model to fall to

about 60%. The more stringent signiÞcance level reduces overÞtting.

Power result 3. The Þnite�sample powers of the post�sample forecast tests generally follow

a simple ranking: ENC-NEW > MSE-F, ENC-REG > MSE-REG. These rankings apply to both

of the in�sample model selection outcomes considered � the search yielding a model matching the

DGP and nesting the DGP. For example, in Table 5�s Monte Carlo results for R = 100, P = 20,

K = 10, and a variable selection signiÞcance level of 10%, the ENC-NEW, MSE-F, ENC-REG, and

MSE-REG test powers are 60.7%, 46.0%, 34.6%, and 20.8%, respectively (see the Þrst column of

Þgures in the third panel). So, in this example, the ENC-NEW and MSE-F tests correctly indicate

the included x variables have predictive content in approximately one-half of those simulations in

which the in�sample speciÞcation search yields a model matching the DGP. While the MSE-F and

ENC-REG test powers do not follow a single ranking, the simulation results in Tables 5-7 show

that, when P is small, the MSE-F test is typically more powerful. But when P is relatively large,

the ENC-REG statistic is usually more powerful. For instance, when R = 100, K = 10, and the
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variable selection signiÞcance level is 10%, but P = 100, the ENC-REG test has power of 79.1%,

compared to 72.0% for MSE-F (see the third column in the third panel of Table 5).

Using the simple OOS GC test as a benchmark, the post�sample forecast tests appear to have

good power. The powers of the ENC-NEW and ENC-REG tests consistently exceed that of the

OOS GC statistic, and in most settings, the MSE-F test is also more powerful than the OOS GC

test.15 As an example, if model selection based on 5% signiÞcance levels yields the �true� model,

the powers of the ENC-NEW, MSE-F, ENC-REG, and OOS GC tests are 63.6%, 46.4%, 34.7%,

and 16.5%, respectively, when R = 100, P = 20, and K = 5 (see the seventh column in the second

panel of Table 5). Similarly, if the selected model nests the DGP, the powers of the ENC-NEW,

MSE-F, ENC-REG, and OOS GC tests are 60.8%, 43.1%, 32.7%, and 15.7%, respectively, when

R = 100, P = 20, and K = 5 (see the seventh column in the second panel of Table 6).

Simulations based on the real�data LHP framework yield similar results. As shown in Table

7, for DGPs (5) and (6), the power of the ENC-NEW statistic is generally greater than the power

of the MSE-F test, which in turn dominates the ENC-REG statistic and, last, the MSE-REG test.

All of the forecast tests are more powerful than the OOS GC statistic. For example, using DGP

(5) and a variable selection signiÞcance level of 5%, when the selected model matches the DGP

the ENC-NEW, MSE-F, MSE-REG, ENC-REG, and OOS GC tests have power of 29.4%, 28.2%,

17.9%, 20.6%, and 8.0%.

While the reported power Þgures are not size�adjusted, the qualitative results � in particular,

the general ranking of the tests and the Þnding of good power � are unlikely to be affected by size

distortions. The MSE-F, MSE-REG, and ENC-REG tests are sufficiently close to being correctly

sized that adjusting for size distortions would have only modest effects on power levels. Moreover,

unreported Monte Carlo results for a simpler model search procedure that makes size adjustment

15 In this paper�s simulations, if the selected model matches the DGP, MSE-F is uniformly more powerful than
OOS GC. If the selected model nests the DGP, MSE-F is more powerful when P is small but less powerful
when P is large.
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tractable yield the same basic power ranking of the tests.16 This alternative search procedure

consists of a simple, one�by�one search across the set of candidate x variables to Þnd the single

variable that has the greatest explanatory power for y (the biggest t�statistic). While a variety

of factors would make size adjustment very difficult in the case of general�to�speciÞc selection,

size adjustment is relatively simple under the alternative form of data mining. Empirical critical

values are generated in size experiments using the simpler model selection procedure, and then the

empirical critical values from a given size experiment are used to compute adjusted power in the

corresponding power experiment.

Power result 4. Finally, whether the dimension of the model search affects the powers of the

post�sample tests depends on whether the selected model matches or nests the DGP. If the in�

sample selection procedure yields the �true� model, the powers of the post�sample tests remain

unchanged as the number of variables in the search (K) rises. For example, as shown in Table

5�s Monte Carlo results for R = 100 and P = 20, when the selected model matches the DGP, the

power of the MSE-F test is roughly 46% for all K values considered (see the Þrst column of Þgures

in panels 1-4). But if the selected model nests the DGP, the powers of the post�sample tests fall as

K rises. As reported in Table 6�s results for R = 100 and P = 20, when 10% signiÞcance levels are

used in model selection, the power of the MSE-F test declines from 42.0% for K = 3 to 23.0% for

K = 20 (see the Þrst column of Þgures in the Þrst and fourth panels). The decline in power in this

case, as well as the difference in power between the matching and nesting cases, reßects a greater

degree of overÞtting.

4.3 Optimal sample split

For a researcher interested in using out�of�sample forecast comparisons to reduce the chances

of data mining�induced overÞtting, an important practical issue is the split of data into in�sample

16 Without adjustment, power results for the alternative model selection procedure are very similar to those
for the general�to�speciÞc approach. As expected, adjusted power for the alternative selection procedure is
somewhat lower than unadjusted power (more so for small P than large P ). Moreover, size�adjusted power
differences are somewhat smaller than the unadjusted power differences.
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and out�of�sample portions. Unfortunately, however, the complexity of the issue rules out providing

simple advice on how much data to reserve for post�sample forecast comparison. What is optimal

will depend on how the researcher views the tradeoffs that exist and the sizes of the search and the

sample.

The key tradeoff associated with the sample split is power. Monte Carlo results not reported

in the interest of brevity indicate the sample split has little impact on size but signiÞcant effects

on power. In these simulations, total sample sizes of R + P = 160 and R + P = 400 were each

split six different ways, so as to produce P/R ratios between 0.2 and 2.0. In these experiments, the

empirical �size� of the in�sample selection procedure is essentially unchanged as more of the data

sample is used for forecasting, and less is used for in�sample model selection. But the �powers� of

the in�sample selection procedure and the post�sample forecast tests do change with the sample

split. As expected, as more of a data set is used for out�of�sample forecasts, the probability of the

in�sample selection procedure correctly Þnding x has predictive power falls, while the powers of

the post�sample forecast tests rise.

The auxiliary simulations conducted for this study show that using more data for forecasting

sometimes, but not always, produces gains in forecast test power that exceed in�sample power

loss.17 The power effects of using more of a data sample for forecasting appear to depend on the

particular forecast test, the dimension of the in�sample speciÞcation search, and the size of the

sample. Given this Þnding and the reality that different researchers will have different objectives,

it is impossible to provide any simple advice on the optimal sample split.

5. Application

This section uses an illustrative application to provide further evidence on the effectiveness

of out�of�sample forecast comparisons in the presence of data mining. In particular, this section

17 An additional difficulty in weighing power tradeoffs is that the test powers are not size�adjusted, as such
adjustment would be very difficult.
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uses the general�to�speciÞc procedure described above to develop a model for core consumer price

inßation in the United States, and then compares out�of�sample forecasts from the selected model

to forecasts from a simple autoregressive model to determine if the selected explanatory variables

in fact have predictive power for core inßation.

The inßation variable to be modeled is speciÞed as a quarterly inßation rate less trend inßation.

The trend, computed using Cogley�s (1998) adaptive measure, captures low�frequency changes in

monetary policy and inßation regimes. More speciÞcally, inßation is measured using the chain

price index for personal consumption expenditures (PCE) excluding food and energy. Letting πt

denote the log difference in the price index (in annualized percentage terms), detrended inßation is

deÞned as πt¡ π̄t−1, where, following Cogley, π̄t−1 is computed using exponential smoothing (with

a smoothing coefficient of 0.125). Because the trend entering this inßation variable is lagged, 1-step

ahead forecasts of detrended inßation are equivalent to 1-step ahead forecasts of actual inßation.

The model selection procedure begins with a general speciÞcation relating detrended inßation

to a constant and four lags of: detrended inßation, relative food price inßation, relative energy price

inßation, relative import price inßation, the log change in unit labor costs, and the rate of capacity

utilization in manufacturing.18 Food and energy prices are measured using chain price indexes for

the food and energy components of PCE. Import prices are measured using the chain price index

for total imports. Relative inßation rates for food, energy, and imports are deÞned as log changes

in the corresponding price indexes less core PCE inßation. As described above, the model selection

procedure begins with an estimate of the general model and then sequentially deletes variables with

insigniÞcant t�statistics, using a signiÞcance level of 5%.

The available data, which start in 1959:Q1, are divided into in-sample and out-of-sample

portions so as to produce a modest P/R value for which McCracken (1999) and Clark and Mc-

18 Watson (2000) points out that movements in capacity utilization parallel movements in the Þrst factor index
used for forecasting in Stock andWatson (1998, 1999) and Knox, Stock, andWatson (2000). In this application,
replacing capacity utilization with unemployment produces very similar results.
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Cracken (2000) report corresponding asymptotic critical values. After allowing for model lags and

using roughly Þve years of data to initialize the trend series, the in�sample and out�of�sample

periods are deÞned as 1965:Q1-1989:Q4 and 1990:Q1-1999:Q4, respectively. With this sample split,

R = 100 and P = 40, so P/R = 0.4.

As shown in the upper panel of Table 8, in this application the in�sample selection procedure

yields a model (denoted model 1) in which the explanatory variables are the Þrst lag of the depen-

dent variable, the second lag of relative energy price inßation, the Þrst lag of relative import price

inßation, and the fourth lag of capacity utilization. At least in�sample, this selected model Þts the

data better than the AR(1) model (denoted model 0) it nests.19

As reported in the lower panel of the table, the out�of�sample evidence indicates that relative

energy and import price inßation and capacity utilization indeed have predictive power for inßation.

The MSE-F, MSE-REG, ENC-NEW, and ENC-REG tests all reject the null of no predictive power.

In this application, then, forecast comparisons show that the in�sample explanatory power of

relative energy and import price inßation and capacity utilization is not a spurious result of the

data mining used to select the model.

6. Conclusions

Building on McCracken (1999) and Clark and McCracken�s (2000) recent work on the eval-

uation of forecasts from pre�speciÞed nested models and Lovell�s (1983) and Hoover and Perez�s

(1999) work on data mining, this paper examines the performance of out�of�sample forecast com-

parisons when the nesting model is the result of data mining. The basic results are drawn from

simulations of a simple Monte Carlo design and a real data�based design similar to those in Lovell

(1983) and Hoover and Perez (1999). The data mining takes the form of a general�to�speciÞc

modeling procedure. In each simulation, if the selected speciÞcation includes any of the candidate

explanatory variables, tests of equal MSE and encompassing are applied to competing forecasts

19 The use of one lag in model 0 minimizes both the AIC and SIC (for an AR model).
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from the selected model and a benchmark model.

The simulations indicate out�of�sample forecast comparisons can help prevent overÞtting.

Most of the post�sample tests � which are only conducted if the model selection procedure indicates

some of the considered variables have explanatory power � are roughly correctly sized. For forecast

comparisons to be useful, though, they must be based on data not used in the speciÞcation search;

as recommended by Ashley, Granger, and Schmalensee (1980), the data must be divided into in�

sample and out�of�sample portions, with the latter reserved for forecast comparison. First using

all of the data in the model search and then using an in�sample portion to reestimate the chosen

model and an out�of�sample portion to generate forecasts is of relatively little help in avoiding

overÞtting. Finally, the post�sample forecast tests have relatively good power, although some are

consistently more powerful than others.

The analysis concludes with an application, modeling quarterly U.S. inßation. In this example,

a general�to�speciÞc search procedure yields a model in which lagged energy price inßation, import

price inßation, and capacity utilization have explanatory power for inßation. Tests of equal forecast

accuracy and encompassing conÞrm the predictive content in energy and import price inßation and

capacity utilization.
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Appendix: The Forecast Test Statistics

Let �u0,t = yt ¡ z00,t−1 �β0,t−1 and �u1,t = yt ¡ z01,t−1 �β1,t−1 denote the 1-step ahead forecast

errors for models 0 and 1, respectively, where model 1 is selected by the model search and model

0 is a restricted version of model 1. To simplify notation, for any variable wt, let
P
twt denotePR+P

t=R+1 wt.

The MSE-F and ENC-NEW tests are computed as follows:

MSE¡F = P ¢ P
−1P

t �u
2
0,t ¡ P−1

P
t �u

2
1,t

P−1
P
t �u

2
1,t

= P ¢ MSE0 ¡MSE1
MSE1

(A1)

ENC¡NEW = P ¢ P
−1P

t(�u
2
0,t ¡ �u0,t�u1,t)

P−1
P
t �u

2
1,t

. (A2)

The MSE-REG test is simply the t-statistic associated with the coefficient α from the OLS regression

(over the sample R+ 1 to R+ P )

(�u0,t ¡ �u1,t) = α(�u0,t + �u1,t) + error term. (A3)

Similarly, the ENC-REG test is the t-statistic for the coefficient α from the regression

�u0,t = α(�u0,t ¡ �u1,t) + error term. (A4)

As established by McCracken (1999) and Clark and McCracken (2000), the asymptotic dis-

tributions of the MSE-F, MSE-REG, ENC-NEW, and ENC-REG statistics do not depend on the

parameters of the data-generating process, but do depend on two elements. The Þrst is the num-

ber of restrictions model 0 imposes on model 1 (the number of excess variables in model 1 under

the null, or k1). The second is π ´ limP,R→∞ P/R. For each combination of R and P consid-

ered, the simulations use asymptotic critical values from McCracken and Clark and McCracken for

π = �π ´ P/R.
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Table 1

Macroeconomic Variables Used in Simulations

Variable Transformation

1. GDP (1996$) ∆ln

2. Disposable personal income (1996$) ∆ln

3. Personal consumption expenditures (1996$) ∆ln

4. Gross private domestic investment (1996$) ∆ln

5. Government spending (1996$) ∆ln

6. Federal government spending (1996$) ∆ln

7. Federal government receipts, total ∆ln

8. Chain price index for GDP ∆2ln

9. Composite index of coincident indicators ∆ln

10. Total reserves (adjusted for changes in reserve requirements) ∆ln

11. Monetary base (St. Louis Fed measure) ∆2ln

12. M1 ∆ln

13. M2 ∆ln

14. Dow Jones Industrial Average (index) ∆ln

15. Moody�s Aaa seasoned corporate bond yield ∆

16. Civilian labor force ∆ln

17. Civilian unemployment rate ∆

18. New orders (all manufacturing industries) ∆ln

19. UnÞlled orders (all manufacturing industries) ∆ln

Notes:
1. Variables 1-6 are chain-weight series.
2. Series 9-19 are constructed as within-quarter averages of the source monthly data.
3. Following Hoover and Perez (1999), the quantity variables available only in nominal terms � variables 7, 10, 11, 12,
13, 14, 18, and 19 � are deßated using the chain price index for GDP.
4. The integration orders reßected in the transformations reported in the last column generally match the orders used
by Hoover and Perez (1999). The only differences are that, based on augmented Dickey-Fuller tests applied to the log
series, variables 5, 7, 10, and 18 are treated as I(1) rather than I(2).
5. The raw data sample (prior to transformation) spans 1959:1 through 2000:1.

26



Table 2: Monte Carlo Results on Empirical Size

Model Selection Based on In�Sample Data

Nominal Size of Forecast Tests = 5%

R = 100 R = 200 R = 100 R = 200

P = 20 P = 40 P = 100 P = 20 P = 40 P = 200 P = 20 P = 40 P = 100 P = 20 P = 40 P = 200

Nominal Size Used in Model Selection = 10% Nominal Size Used in Model Selection = 5%

K = 3

In-sample .276 .276 .276 .277 .277 .277 .144 .144 .144 .151 .151 .151

MSE-F .128 .098 .062 .148 .133 .058 .147 .096 .050 .160 .135 .056

MSE-REG .054 .049 .027 .061 .047 .025 .051 .044 .021 .060 .042 .020

ENC-NEW .199 .171 .154 .198 .195 .154 .244 .191 .186 .229 .208 .178

ENC-REG .081 .081 .073 .081 .082 .066 .093 .086 .074 .082 .089 .070

K = 5

In-sample .442 .442 .442 .418 .418 .418 .250 .250 .250 .235 .235 .235

MSE-F .144 .105 .058 .151 .118 .046 .142 .109 .057 .153 .121 .046

MSE-REG .062 .042 .026 .052 .045 .019 .058 .040 .021 .052 .044 .018

ENC-NEW .229 .191 .154 .200 .178 .132 .246 .207 .170 .214 .191 .157

ENC-REG .096 .081 .071 .074 .073 .058 .097 .082 .074 .075 .074 .060

K = 10

In-sample .695 .695 .695 .673 .673 .673 .438 .438 .438 .416 .416 .416

MSE-F .119 .080 .048 .133 .110 .052 .127 .086 .048 .150 .127 .061

MSE-REG .046 .028 .020 .047 .041 .020 .047 .030 .019 .048 .043 .022

ENC-NEW .202 .178 .154 .191 .183 .148 .227 .193 .167 .222 .208 .165

ENC-REG .081 .071 .068 .065 .072 .067 .088 .080 .069 .073 .075 .074

K = 20

In-sample .918 .918 .918 .891 .891 .891 .697 .697 .697 .661 .661 .661

MSE-F .096 .063 .024 .124 .094 .032 .116 .071 .034 .145 .108 .038

MSE-REG .032 .022 .010 .045 .031 .014 .037 .024 .014 .046 .035 .016

ENC-NEW .202 .171 .151 .204 .194 .165 .224 .195 .176 .226 .212 .181

ENC-REG .070 .063 .054 .072 .068 .064 .080 .065 .059 .077 .072 .067

Notes:
1. The DGP takes the form given in equation (1), with the coefficient b set to 0.
2. In each simulation, a general�to�speciÞc procedure is used to identify the best model for y. The algorithm begins by
estimating model (2) and then sequentially deletes any insigniÞcant x variables until only signiÞcant variables remain.
3. R and P refer to the number of in�sample observations and post�sample predictions, respectively.
4. The signiÞcance level used in the model selection procedure is either 10% or 5%, and just the in�sample portion of
the data is used in the model search.
5. In each simulation that the model yielded by the general-to-speciÞc procedure includes at least one x variable, 1�step
ahead out-of-sample forecasts are generated from the selected model and from an estimated AR(1) equation for y.
6. The In-sample row of the table reports the percent of the simulations in which the selected model includes at least
one x variable. The remaining rows report the frequency with which, in simulations where the selected model includes
at least one x variable, forecasts from the AR model are as accurate as or encompass those from the selected model.
The post�sample test statistics are deÞned in section 2.2.
7. The number of simulations is 5000.
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Table 3: LHP Simulation Results on Empirical Size

Model Selection Based on In�Sample Data

Nominal Size of Forecast Tests = 5%

Nominal Size Used in Model Selection

10% 5%

In-sample .873 .626

MSE-F .086 .100

MSE-REG .044 .050

ENC-NEW .140 .160

ENC-REG .064 .072

Notes:
1. Each simulation uses artiÞcial data for the dependent variable y and the 19 quarterly macroeconomic variables listed
in Table 1 for the x regressands to be considered. The DGP for y is given in equation (4).
2. In each simulation, a general�to�speciÞc procedure is used to identify the best model for y. The algorithm begins by
estimating model (7) and then sequentially deletes any insigniÞcant x variables until only signiÞcant variables remain.
3. With the 19 macroeconomic variables available from 1959:Q3 through 2000:Q1 (after transformation), the number of
in�sample observations R and post�sample predictions P are set to 135 and 27, respectively, to obtain �π = .2.
4. The signiÞcance level used in the model selection procedure is either 10% or 5%, and just the in�sample portion of
the data is used in the model search.
5. In each simulation that the model yielded by the general-to-speciÞc procedure includes at least one x variable, 1�step
ahead out-of-sample forecasts are generated from the selected model and from an estimated AR(1) equation for y.
6. The In-sample row of the table reports the percent of the simulations in which the selected model includes at least
one x variable. The remaining rows report the frequency with which, in simulations where the selected model includes
at least one x variable, forecasts from the AR model are as accurate as or encompass those from the selected model.
The post�sample test statistics are deÞned in section 2.2.
7. The number of simulations is 5000.
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Table 4: Monte Carlo Results on Empirical Size

Model Selection Based on Full Data Sample

Nominal Size of Forecast Tests = 5%

R = 100 R = 200 R = 100 R = 200

P = 20 P = 40 P = 100 P = 20 P = 40 P = 200 P = 20 P = 40 P = 100 P = 20 P = 40 P = 200

Nominal Size Used in Model Selection = 10% Nominal Size Used in Model Selection = 5%

K = 3

In-sample .278 .284 .277 .277 .276 .271 .148 .158 .144 .154 .145 .145

MSE-F .349 .411 .463 .319 .360 .488 .405 .498 .572 .354 .437 .599

MSE-REG .201 .265 .379 .176 .200 .375 .213 .307 .453 .181 .225 .441

ENC-NEW .428 .494 .527 .380 .438 .545 .524 .620 .753 .434 .562 .778

ENC-REG .254 .343 .454 .215 .256 .472 .294 .416 .582 .225 .307 .592

K = 5

In-sample .437 .414 .424 .412 .429 .419 .237 .239 .232 .221 .239 .228

MSE-F .358 .431 .472 .312 .359 .495 .416 .514 .577 .370 .430 .594

MSE-REG .215 .278 .361 .158 .201 .386 .223 .322 .415 .179 .232 .444

ENC-NEW .451 .525 .572 .377 .439 .561 .542 .662 .768 .454 .554 .776

ENC-REG .277 .369 .467 .192 .253 .492 .311 .443 .581 .226 .306 .610

K = 10

In-sample .686 .665 .672 .665 .657 .671 .430 .412 .419 .403 .404 .411

MSE-F .406 .447 .519 .332 .370 .507 .453 .522 .591 .378 .446 .600

MSE-REG .224 .277 .410 .169 .211 .385 .241 .313 .454 .188 .239 .440

ENC-NEW .506 .563 .644 .414 .476 .630 .582 .674 .797 .479 .566 .804

ENC-REG .303 .388 .538 .216 .284 .531 .347 .453 .620 .243 .333 .634

K = 20

In-sample .898 .901 .895 .898 .889 .877 .679 .683 .674 .678 .662 .641

MSE-F .427 .490 .592 .353 .418 .570 .470 .535 .643 .391 .459 .624

MSE-REG .242 .313 .478 .167 .227 .455 .256 .331 .498 .183 .246 .475

ENC-NEW .579 .696 .784 .464 .572 .762 .622 .737 .853 .496 .615 .843

ENC-REG .357 .493 .673 .240 .336 .638 .371 .506 .698 .258 .345 .670

Notes:
1. The full sample of data (R+ P observations) are used in selecting the model.
2. See the notes to Table 2.

29



Table 5: Monte Carlo Results on Power � Selected Model is True Model

Model Selection Based on In-Sample Data

Nominal Size of Forecast Tests = 5%

R = 100 R = 200 R = 100 R = 200

P = 20 P = 40 P = 100 P = 20 P = 40 P = 200 P = 20 P = 40 P = 100 P = 20 P = 40 P = 200

Nominal Size Used in Model Selection = 10% Nominal Size Used in Model Selection = 5%

K = 3

In-sample .556 .556 .556 .761 .761 .761 .528 .528 .528 .809 .809 .809

MSE-F .451 .532 .714 .509 .605 .905 .453 .534 .707 .516 .604 .903

MSE-REG .217 .307 .530 .223 .319 .769 .207 .296 .508 .225 .315 .764

ENC-NEW .601 .728 .902 .665 .795 .991 .624 .749 .915 .674 .802 .991

ENC-REG .348 .500 .785 .346 .517 .961 .350 .511 .793 .353 .515 .960

OOS GC .157 .281 .608 .160 .287 .888 .156 .288 .614 .163 .288 .888

K = 5

In-sample .456 .456 .456 .616 .616 .616 .480 .480 .480 .723 .723 .723

MSE-F .465 .525 .688 .504 .595 .905 .464 .518 .675 .507 .601 .904

MSE-REG .216 .301 .505 .217 .306 .773 .209 .285 .478 .211 .309 .767

ENC-NEW .615 .711 .898 .664 .775 .991 .636 .735 .909 .670 .787 .991

ENC-REG .345 .490 .757 .340 .498 .960 .347 .494 .763 .338 .510 .961

OOS GC .167 .278 .587 .157 .275 .884 .165 .276 .586 .158 .281 .889

K = 10

In-sample .260 .260 .260 .341 .341 .341 .356 .356 .356 .537 .537 .537

MSE-F .460 .516 .720 .506 .597 .904 .465 .524 .719 .505 .595 .902

MSE-REG .208 .285 .512 .224 .322 .788 .217 .286 .513 .212 .314 .774

ENC-NEW .607 .721 .897 .651 .787 .993 .634 .742 .914 .661 .785 .991

ENC-REG .346 .479 .791 .336 .507 .962 .355 .495 .801 .333 .506 .962

OOS GC .156 .278 .607 .150 .282 .885 .162 .280 .624 .149 .276 .886

K = 20

In-sample .072 .072 .072 .108 .108 .108 .193 .193 .193 .301 .301 .301

MSE-F .465 .546 .681 .510 .616 .909 .469 .550 .708 .510 .613 .904

MSE-REG .238 .324 .493 .215 .306 .770 .243 .299 .513 .215 .309 .764

ENC-NEW .612 .717 .911 .657 .788 .996 .620 .727 .914 .667 .786 .993

ENC-REG .343 .518 .762 .347 .508 .970 .360 .524 .786 .346 .524 .963

OOS GC .139 .299 .593 .152 .284 .898 .167 .298 .624 .163 .279 .888

Notes:
1. The DGP takes the form given in equation (1), with the coefficient b set to 0.2.
2. In each simulation, a general�to�speciÞc procedure is used to identify the best model for y. The algorithm begins by
estimating model (2) and then sequentially deletes any insigniÞcant x variables until only signiÞcant variables remain.
3. R and P refer to the number of in�sample observations and post�sample predictions, respectively.
4. The signiÞcance level used in the model selection procedure is either 10% or 5%, and just the in�sample portion of
the data is used in the model search.
5. In each simulation that the model yielded by the general-to-speciÞc procedure matches the DGP for y, 1�step ahead
out-of-sample forecasts are generated from this selected model and from an estimated AR(1) equation for y.
6. The In-sample row of the table reports the percent of the simulations in which the selected model matches the DGP
for y. The remaining rows report the frequency with which, in those simulations where the selected model corresponds to
the DGP, forecasts from the AR model are as accurate as or encompass those from the selected model. The forecast test
statistics are deÞned in section 2.2. The OOS GC test is an F -test of Granger causality based on just the post�sample
data.
7. The number of simulations is 5000.
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Table 6: Monte Carlo Results on Power � Selected Model Nests True Model

Model Selection Based on In-Sample Data

Nominal Size of Forecast Tests = 5%

R = 100 R = 200 R = 100 R = 200

P = 20 P = 40 P = 100 P = 20 P = 40 P = 200 P = 20 P = 40 P = 100 P = 20 P = 40 P = 200

Nominal Size Used in Model Selection = 10% Nominal Size Used in Model Selection = 5%

K = 3

In-sample .710 .710 .710 .942 .942 .942 .598 .598 .598 .898 .898 .898

MSE-F .420 .493 .662 .489 .577 .882 .435 .508 .674 .504 .588 .890

MSE-REG .197 .276 .482 .212 .298 .741 .196 .276 .482 .218 .301 .746

ENC-NEW .586 .705 .886 .647 .775 .988 .614 .732 .905 .664 .790 .990

ENC-REG .324 .470 .756 .332 .495 .952 .337 .490 .773 .344 .503 .956

OOS GC .151 .266 .580 .155 .276 .879 .153 .277 .599 .160 .284 .886

K = 5

In-sample .717 .717 .717 .938 .938 .938 .607 .607 .607 .890 .890 .890

MSE-F .405 .442 .594 .459 .536 .850 .431 .471 .620 .485 .565 .868

MSE-REG .185 .240 .419 .185 .262 .709 .190 .248 .425 .196 .280 .725

ENC-NEW .572 .667 .860 .622 .740 .983 .608 .704 .886 .649 .766 .985

ENC-REG .311 .432 .704 .302 .456 .941 .327 .462 .730 .322 .483 .948

OOS GC .153 .246 .542 .143 .251 .854 .157 .260 .560 .151 .269 .871

K = 10

In-sample .709 .709 .709 .938 .938 .938 .599 .599 .599 .890 .890 .890

MSE-F .347 .373 .522 .408 .473 .774 .382 .426 .587 .446 .519 .818

MSE-REG .149 .188 .349 .162 .230 .633 .175 .221 .404 .172 .254 .679

ENC-NEW .529 .630 .822 .576 .709 .967 .579 .681 .862 .620 .745 .982

ENC-REG .276 .382 .669 .276 .411 .909 .306 .425 .721 .296 .452 .933

OOS GC .133 .227 .514 .132 .231 .821 .145 .244 .562 .138 .250 .852

K = 20

In-sample .712 .712 .712 .923 .923 .923 .605 .605 .605 .878 .878 .878

MSE-F .230 .242 .320 .329 .369 .633 .315 .342 .446 .401 .462 .738

MSE-REG .096 .122 .214 .120 .163 .497 .134 .166 .303 .149 .210 .575

ENC-NEW .438 .546 .740 .523 .635 .943 .516 .623 .813 .594 .702 .969

ENC-REG .210 .302 .556 .232 .343 .856 .262 .382 .645 .266 .408 .895

OOS GC .122 .205 .436 .123 .201 .773 .137 .234 .517 .135 .232 .827

Notes:
1. The DGP takes the form given in equation (1), with the coefficient b set to 0.2.
2. In each simulation, a general�to�speciÞc procedure is used to identify the best model for y. The algorithm begins by
estimating model (2) and then sequentially deletes any insigniÞcant x variables until only signiÞcant variables remain.
3. R and P refer to the number of in�sample observations and post�sample predictions, respectively.
4. The signiÞcance level used in the model selection procedure is either 10% or 5%, and just the in�sample portion of
the data is used in the model search.
5. In each simulation that the model yielded by the general-to-speciÞc procedure nests the DGP for y, 1�step ahead
out-of-sample forecasts are generated from this selected model and from an estimated AR(1) equation for y.
6. The In-sample row of the table reports the percent of the simulations in which the selected model nests the DGP for
y. The remaining rows report the frequency with which, in those simulations where the selected model nests the DGP,
forecasts from the AR model are as accurate as or encompass those from the selected model. The forecast test statistics
are deÞned in section 2.2. The OOS GC test is an F -test of Granger causality based on just the post�sample data.
7. The number of simulations is 5000.
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Table 7: LHP Simulation Results on Power

Model Selection Based on In-Sample Data

Nominal Size of Forecast Tests = 5%

Nominal Size Used in Model Selection

10% 5% 10% 5%

Selected Model is True Model

DGP(5) DGP(6)

In-sample .081 .194 .035 .060

MSE-F .281 .282 .514 .510

MSE-REG .185 .179 .237 .265

ENC-NEW .274 .294 .699 .715

ENC-REG .215 .206 .399 .430

OOS GC .101 .080 .121 .114

Selected Model Nests True Model

DGP(5) DGP(6)

In-sample .565 .509 .280 .195

MSE-F .165 .210 .332 .395

MSE-REG .083 .112 .172 .192

ENC-NEW .249 .278 .563 .625

ENC-REG .121 .148 .306 .350

OOS GC .067 .072 .090 .106

Notes:
1. Each simulation uses artiÞcial data for the dependent variable y and the 19 quarterly macroeconomic variables listed
in Table 1 for the x regressands to be considered. The DGPs used for y are given in equations (5) and (6).
2. In each simulation, a general�to�speciÞc procedure is used to identify the best model for y. The algorithm begins
by estimating the model (7) and then sequentially deletes any insigniÞcant x variables until only signiÞcant variables
remain.
3. With the 19 macroeconomic variables available from 1959:Q3 through 2000:Q1 (after transformation), the number of
in�sample observations R and post�sample predictions P are set to 135 and 27, respectively, to obtain �π = .2.
4. The signiÞcance level used in the model selection procedure is either 10% or 5%, and just the in�sample portion of
the data is used in the model search.
5. In each simulation that the model yielded by the general-to-speciÞc procedure either matches or nests the DGP for
y, 1�step ahead out-of-sample forecasts are generated from the selected model and from an estimated AR(1) equation
for y.
6. In the upper panel, the In-sample row reports the percent of the simulations in which the selected model matches
the DGP for y. The remaining rows report the frequency with which, in those simulations where the selected model
corresponds to the DGP, forecasts from the AR model are as accurate as or encompass those from the selected model.
The forecast test statistics are deÞned in section 2.2. The OOS GC test is an F -test of Granger causality based on just
the post�sample data.
7. In the lower panel, the In-sample row reports the percent of the simulations in which the selected model nests the
DGP for y. The remaining rows report the frequency with which, in those simulations where the selected model nests
the DGP, forecasts from the AR model are as accurate as or encompass those from the selected model.
8. The number of simulations is 5000.
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Table 8

Modeling Core Inßation: Estimates and Forecast Comparisons

In�Sample Model Estimates, 1965:Q1 to 1989:Q4 (R = 100)

Explanatory Dependent variable = πt ¡ π̄t−1
variable Model 0 Model 1

πt−1 ¡ π̄t−2 .786 (.062) .395 ( .072)

Relative energy price inflationt−2 .016 ( .008)

Relative import price inflationt−1 .042 ( .009)

Capacity utilizationt−4 .087 ( .018)

SEE .905 .717

R̄2 .615 .758

Out�of�Sample Tests of Predictive Power,

1990:Q1 to 1999:Q4 (P = 40)

Test 5% Asymptotic

statistics critical values

MSE (RMSE), Model 1 .438 (.662)

MSE (RMSE), Model 2 .360 (.600)

MSE-F 8.635 2.062

MSE-REG 1.092 .968

ENC-NEW 12.092 1.865

ENC-REG 3.057 1.529

Notes:
1. The dependent variable (and predictand) πt ¡ π̄t−1 is inßation in the core chain price index for consumption (πt) in
quarter t less lagged trend inßation. Section 5 of the text explains the variables in detail.
2. As detailed in Section 5, Model 1 is the result of applying a general�to�speciÞc modeling procedure, beginning with
a general model relating πt ¡ π̄t−1 to lags of itself and lags of food price inßation, energy price inßation, import price
inßation, growth in unit labor costs, and capacity utilization in manufacturing.
4. The signiÞcance level used in the model selection procedure is 5%, and just the in�sample portion of the data is used
in the model search.
5. The Þgures in parentheses in the upper panel of the table are OLS standard errors for the reported coefficient
estimates.
6. The forecast results in the lower panel are based on 1�step ahead out-of-sample predictions of πt¡ π̄t−1 from models 0
and 1. The forecast test statistics are deÞned in section 2.2. The asymptotic critical values for the MSE-F and MSE-REG
tests are taken from McCracken (1999); the asymptotic critical values for the ENC-NEW and ENC-REG tests are from
Clark and McCracken (2000).
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