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Abstract

A pitfall of expectational stability (E-stability) analysis can arise in models with multi-

period expectations: if an auxiliary variable is introduced as substitute for an expectational

endogenous variable in such a model, this shrinks the region of the model parameters that

guarantee E-stability of a fundamental rational expectations equilibrium. Moreover, in the

model representation with no auxiliary variable, the same E-stability region as in that with

the auxiliary variable is obtained if economic agents are assumed to make multiple fore-

casts in an inconsistent manner. Therefore, we argue that the introduction of an auxiliary

variable as substitute for an expectational endogenous variable in models with multi-period

expectations can induce misleading implications that are biased toward E-instability.
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1 Introduction

Learning has been analyzed extensively in modern macroeconomics. In particular, adaptive

learning has received much attention since the seminal work by Evans and Honkapohja (1999,

2001). Under this learning, economic agents are supposed to form expectations by estimating

and updating their forecasting models in real time. In relation to rational expectations (RE),

expectational stability (E-stability) of RE equilibrium has been investigated in a number of

macroeconomic areas, including monetary policy analysis. For the RE equilibrium in question,

E-stability examines whether an associated equilibrium in which economic agents form expec-

tations under adaptive learning reaches over time that RE equilibrium. E-stability is therefore

one of the most important concepts of stability to assess equilibrium under non-RE or learning.

This paper shows a pitfall of E-stability analysis. The pitfall can arise in models with

multi-period expectations: if an auxiliary variable is introduced as substitute for an expecta-

tional endogenous variable in such a model, this shrinks the region of the model parameters

that guarantee E-stability of a fundamental RE equilibrium.1 This pitfall is demonstrated in

E-stability analysis of a simple univariate model with two-period expectations and a dynamic

stochastic general equilibrium (DSGE) model with trend inflation that has been widely used

in the recent literature.2 In the univariate model, if an auxiliary variable is incorporated as

substitute for a two-period-ahead forcast, this shrinks the region of the model parameters that

ensure E-stability of a fundamental RE equilibrium. As for the DSGE model, the recent lit-

erature employs two representations of the log-linearized model. One representation contains

a two-period-ahead inflation forecast as well as a one-period-ahead one in a generalized New

Keynesian Phillips curve. The other representation introduces an auxiliary variable as substi-

tute for the two-period-ahead forecast in the curve. Under plausible calibrations of parameters

in the DSGE model, (local) determinacy of RE equilibrium is always identical between the two

representations, but E-stability of a fundamental RE equilibrium is more likely in the repre-

sentation with no auxiliary variable. In particular, the interest rate rule with the inflation and

1The term “fundamental RE equilibrium” refers to Evans and Honkapohja (2001)’s minimal state variable

(MSV) solutions to linear RE models to distinguish them from McCallum (1983)’s original MSV solution.

2See, e.g., Ascari, Castelnuovo, and Rossi (2011), Ascari, Florio, and Gobbi (2014), Ascari and Ropele (2007,

2009), Cogley and Sbordone (2008), Coibion and Gorodnichenko (2011), Kobayashi and Muto (2013), Kurozumi

(2013, 2014), and Kurozumi and Van Zandweghe (2012b, 2013). Ascari and Sbordone (2014) review this strand

of literature.
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output coefficients estimated by Taylor (1993) ensures E-stability in the representation with no

auxiliary variable, whereas in that with the auxiliary variable it induces no E-stable fundamen-

tal RE equilibrium when trend inflation is high. This result demonstrates that the different

model representations can cause opposite implications of E-stability for monetary policy.

Which model representation is appropriate for E-stability analysis, that with or without

auxiliary variables? In both the univariate model and the calibrated versions of the DSGE

model, this paper shows that the same E-stability region as in the representation with the

auxiliary variable is obtained in that with no such variable if economic agents are assumed

to make multiple forecasts in an inconsistent manner. The absence of the consistency in the

forecasts makes it more difficult for agents to learn the RE and therefore E-stability is less

likely. Because such inconsistent forecasts are problematic, we argue that the introduction of an

auxiliary variable as substitute for an expectational endogenous variable in models with multi-

period expectations can induce misleading implications that are biased toward E-instability.

The remainder of the paper proceeds as follows. Section 2 outlines a pitfall of E-stability

analysis using a simple univariate model. Section 3 presents a DSGE model with trend inflation

and two representations of the log-linearized model, and analyzes E-stability of a fundamental

RE equilibrium. Section 4 concludes.

2 E-stability Analysis of a Simple Univariate Model

This section outlines the pitfall of E-stability analysis using a simple univariate model with

two-period expectations.

The model relates an endogenous variable xt to its one- and two-period-ahead forecasts

Êtxt+1, Êtxt+2 and an exogenous variable ut according to

xt = β1Êtxt+1 + β2Êtxt+2 + ut, (1)

where Êt is a possibly non-RE operator and ut is a white noise. Note that by the Cohn-Schur

criterion (see, e.g., LaSalle, 1986) the condition for determinacy of equilibrium in this model

consists of |β2| < 1 and |β1| < 1 − β2. The fundamental RE equilibrium is given by

xt = c̄x + Γ̄xut, (c̄x, Γ̄x) = (0, 1).

Following Section 10.3 of Evans and Honkapohja (2001), E-stability of the fundamental RE

equilibrium is analyzed. Corresponding to this equilibrium, economic agents are assumed to
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be endowed with the perceived law of motion (PLM) of xt given by xt = cx + Γxut. Then, the

model implies that the actual law of motion (ALM) of xt is given by xt = (β1 +β2)cx +ut. The

mapping Tx from the PLM to the ALM can thus be defined as Tx(cx,Γx) = ((β1+β2)cx, 1). For

the fundamental RE equilibrium (c̄x, Γ̄x) to be E-stable, the differential equation d
dτ (cx,Γx) =

T (cx,Γx) − (cx,Γx), where τ denotes a notional time, must have local asymptotic stability at

the equilibrium, that is, DcTx(c̄x, Γ̄x) = β1 + β2 and DΓTx(c̄x, Γ̄x) = 0 are less than unity.

Hence, the E-stability condition is β1 + β2 < 1.3

Next, we consider an alternative representation of the model (1) using the auxiliary variable

ψt = Êtxt+1. The representation is given by

x1,t = AÊtx1,t+1 +But, x1,t =

⎡
⎣ xt

ψt

⎤
⎦ , A =

⎡
⎣ β1 β2

1 0

⎤
⎦ , B =

⎡
⎣ 1

0

⎤
⎦ . (2)

Note that the determinacy condition for this representation is the same as that for representa-

tion (1). The fundamental RE equilibrium in representation (2) is given by

x1,t = c̄x1 + Γ̄x1ut, (c̄x1, Γ̄x1) = (02×1, B), (3)

so that the fundamental RE equilibrium is the same as above. As is similar to E-stability

analysis of representation (1), assuming that the PLM of x1t is given by x1,t = cx1 + Γx1ut

corresponding to the fundamental RE equilibrium (3), the representation (2) yields the ALM of

x1,t given by x1,t = Acx1+But, and thus the mapping Tx1 from the PLM to the ALM is defined

as Tx1(cx1,Γx1) = (Acx1, B). Therefore, it follows that the fundamental RE equilibrium (3) is E-

stable if and only if all eigenvalues of the matrices DcTx1(c̄x1, Γ̄x1) = A and DΓTx1(c̄x1, Γ̄x1) =

02×2 have real parts less than unity. By the Routh-Hurwitz theorem (see, e.g., Samuelson,

1947), the E-stability condition for representation (2) consists of β1 < 2 and β1 + β2 < 1.4

The two E-stability conditions for the two representations (1) and (2) imply that the region

of the model parameters ensuring E-stability of the fundamental RE equilibrium is smaller in

the representation with the auxiliary variable. Moreover, the same E-stability region as in the

representation with the auxiliary variable is obtained in that with no such variable if economic

agents are assumed to make forecasts in the following inconsistent manner. The model (1) can

3This E-stability condition is implied by the determinacy condition |β1| < 1 − β2, so that a determinate RE

equilibrium is always E-stable in the model.

4This E-stability condition is also implied by the determinacy condition presented above.
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be rewritten as

x̃t = AÊtx̃t+1 +But, x̃t =

⎡
⎣ xt

Êtxt+1

⎤
⎦ , (4)

which is the same as representation (2) when the expectational variable Êtxt+1 is substituted

for the auxiliary variable ψt in (2). Therefore, if economic agents are assumed to be endowed

with the PLM of x̃t given by x̃t = cx1+Γx1ut corresponding to the fundamental RE equilibrium

x̃t = c̄x1 + Γ̄x1ut, then the E-stability condition for representation (4) is the same as that for

representation (2). Here, the agents’ forecasting is inconsistent in that in the PLM of x̃t the

one-period-ahead forecast is Êtxt+1 = cx1,2 + Γx1,2ut, where cx1,2 and Γx1,2 are the second

elements of the vectors cx1 and Γx1, while in the forecast Êtx̃t+1 it is Êtxt+1 = cx1,1, where

cx1,1 is the first element of cx1.

The remainder of the paper shows that a similar issue as presented in this section can arise

in a DSGE model that has been widely used in the recent literature, and that the introduction

of an auxiliary variable as substitute for an expectational endogenous variable in the model

can induce misleading implications for monetary policy, which are biased toward E-instability.

3 E-stability Analysis of a DSGE Model with Trend Inflation

This section presents E-stability analysis of a DSGE model with trend inflation. The model

is a Calvo (1983)-style sticky price model with the Taylor (1993) rule and no price indexation

to past or trend inflation, based on Ascari and Ropele (2009) and Kurozumi (2014). The

absence of price indexation is consistent not only with micro evidence that each period a

fraction of prices is kept unchanged under a positive trend inflation,5 but also with recent

empirical macroeconomic studies, such as Ascari, Castelnuovo, and Rossi (2011) and Cogley

and Sbordone (2008).

In the model economy, there are a representative household, two types of firms, and a

monetary policymaker. This section describes each agent’s behavior in turn.

5For recent micro evidence on price adjustment, see, e.g., Bils and Klenow (2004), Kehoe and Midrigan

(2012), Klenow and Kryvtsov (2008), Klenow and Malin (2010), and Nakamura and Steinsson (2008).
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3.1 Representative household

The representative household consumes final goods ct, purchases one-period riskless bonds

Bt, and supplies labor nt to maximize the utility function E0
∑∞

t=0 β
t{log(ct) − n1+σn

t /(1 +

σn) exp(ũt)} subject to the budget constraint Ptct +Bt = Ptwtnt + it−1Bt−1 + Tt, where Et is

the RE operator conditional on information available in period t, β ∈ (0, 1) is the subjective

discount factor, σn ≥ 0 is the inverse of the elasticity of labor supply, ũt is a shock to labor

disutility relative to contemporaneous consumption utility, Pt is the price of final goods, wt is

the real wage, it is the gross interest rate on bonds, which is assumed to equal the monetary

policy rate, and Tt consists of lump-sum public transfers and firm profits. The shock ũt is

assumed to follow a stationary first-order autoregressive process with the persistence parameter

ρ ∈ [0, 1).

The first-order conditions for utility maximization with respect to consumption, labor sup-

ply, and bond holdings are

λt =
1
ct
, (5)

wt =
nσn

t exp(ũt)
λt

, (6)

1 = Et
β λt+1

λt

it
πt+1

, (7)

where λt is the marginal utility of consumption and πt = Pt/Pt−1 is the gross inflation rate

of the final-good price. Throughout the section, the trend inflation rate is assumed to be

nonnegative, i.e., π ≥ 1.

3.2 Firms

There are a representative final-good firm and a continuum of intermediate-good firms j ∈ [0, 1].

The final-good firm produces homogeneous goods yt by choosing a combination of differen-

tiated intermediate inputs {yt(j)} to maximize profit Ptyt−
∫ 1
0 Pt(j)yt(j) dj subject to the CES

production technology yt = {∫ 1
0 (yt(j))(θ−1)/θdj}θ/(θ−1), where Pt(j) is the price of intermediate

good j and θ > 1 is the price elasticity of demand for each intermediate good.

The first-order condition for profit maximization yields the final-good firm’s demand curve

for intermediate good j

yt(j) = yt

(
Pt(j)
Pt

)−θ

, (8)
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while perfect competition in the final-good market leads to

Pt =
{∫ 1

0
(Pt(j))

1−θ dj

} 1
1−θ

. (9)

Each intermediate-good firm j produces one kind of differentiated good yt(j) according to

the production function that is linear in labor input nt(j),

yt(j) = nt(j). (10)

The first-order condition for firm j’s minimization of production cost shows that real

marginal cost is identical among intermediate-good firms and is given by

mct = mct(j) = wt. (11)

In the face of the final-good firm’s demand curve (8) and the marginal cost (11), intermediate-

good firms set prices of their products on a staggered basis as in Calvo (1983). Each pe-

riod a fraction α ∈ (0, 1) of firms keeps the previous-period prices unchanged, while the re-

maining fraction 1 − α of firms sets the price Pt(j) to maximize the associated profit func-

tion Et
∑∞

τ=0 α
τ qt,t+τ (Pt(j)/Pt+τ − mct+τ )yt+τ |t(i) subect to the demand curve yt+τ |t(i) =

yt+τ (Pt(j)/Pt+τ )−θ, where qt,t+τ is the stochastic discount factor between period t and period

t+ τ . For this profit function to be well-defined, it is assumed throughout this section that the

condition απθ < 1 is satisfied.

Using the equilibrium condition qt,t+τ = βτλt+τ/λt, the first-order condition for intermediate-

good firms that reset prices in period t becomes

Et

∞∑
τ=0

(αβ)τ
λt+τ

λt
yt+τ

(
p∗t

τ∏
k=1

1
πt+k

)−θ(
p∗t

τ∏
k=1

1
πt+k

− θ

θ − 1
mct+τ

)
= 0, (12)

where p∗t = P ∗
t /Pt and P ∗

t is the price reset by the firms.

The final-good market clearing condition is given by

yt = ct. (13)

The labor market clearing condition, along with the final-good firm’s demand curve (8) and

intermediate-good firms’ production function (10), yields

nt =
∫ 1

0
nt(j)dj = ytst, (14)
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where st represents price distortion given by st =
∫ 1
0 (Pt(j)/Pt)−θdj. Under the staggered price

setting, this price distortion equation can be reduced to

st = (1 − α) (p∗t )
−θ + απθ

t st−1. (15)

The final-good price equation (9) can also be reduced to

1 = (1 − α) (p∗t )
1−θ + απθ−1

t . (16)

3.3 Monetary policy

The monetary policymaker follows the Taylor (1993) rule

log it = log i+ φπ(log πt − log π) + φy(log yt − log y), (17)

where i is the steady-state gross rate of monetary policy and φπ, φy ≥ 0 are the degrees

of responses of the policy rate (log it) to deviations of the inflation rate (log πt) and output

(log yt) from their steady-state values (log π, log y).

3.4 Two representations of the log-linearized model

The equilibrium conditions are given by (5)–(7), (11)–(16), and (17). Log-linearizing these

conditions and rearranging the resulting equations leads to the following two representations

of the log-linearized model.

The representation (I) is given by

ŷt = Etŷt+1 −
(
ît − Etπ̂t+1

)
, (18)

ît = φππ̂t + φyŷt, (19)

m̂ct = (1 + σn)ŷt + σnŝt + ũt, (20)

ŝt =
θαπθ−1(π − 1)

1 − απθ−1
π̂t + απθŝt−1, (21)

π̂t = βEtπ̂t+1 +
(1 − απθ−1)(1 − αβπθ)

απθ−1
m̂ct + ψt, (22)

ψt = αβπθEtψt+1 + β(π − 1)(1 − απθ−1)
{
θEtπ̂t+1 + (1 − αβπθ)Etm̂ct+1

}
, (23)

where hatted variables denote log-deviations from steady-state values and ψt is an auxiliary

variable. The representation of this sort—the one with the auxiliary variable—is used in recent

studies, such as Ascari, Castelnuovo, and Rossi (2011), Ascari and Ropele (2009), Ascari,
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Florio, and Gobbi (2014), Kobayashi and Muto (2013), and Kurozumi and Van Zandweghe

(2013).

The representation (II) consists of (18)–(21), and

π̂t − αβπθEtπ̂t+1 = β
(
Etπ̂t+1 − αβπθEtπ̂t+2

)
+ βθ(π − 1)(1 − απθ−1)Etπ̂t+1

+
(1 − απθ−1)(1 − αβπθ)

απθ−1

(
m̂ct − αβπθ−1Etm̂ct+1

)
. (24)

The representation of this sort—the one with no auxiliary variable—is used in Kurozumi (2013,

2014) and Kurozumi and Van Zandweghe (2012b). Compared with representation (I), this rep-

resentation contains two-period-ahead inflation forecast Etπ̂t+2 instead of the auxiliary variable

ψt.

Note that each of (22) and (24) is a generalized New Keynesian Phillips curve. This is

because under the zero trend inflation rate (i.e., π = 1), (23) implies ψt = 0 and hence (22)

becomes

π̂t = βEtπ̂t+1 +
(1 − α)(1 − αβ)

α
m̂ct. (25)

On the other hand, (24) becomes

π̂t − αβEtπ̂t+1 = β (Etπ̂t+1 − αβEtπ̂t+2) +
(1 − α)(1 − αβ)

α
(m̂ct − αβEtm̂ct+1) ,

which can be reduced to (25) because 0 < αβ < 1.

The generalized New Keynesian Phillips curve depends on price distortion ŝt through the

real marginal cost (20) as long as the elasticity of labor supply is finite (i.e., σn > 0). Then,

under a positive trend inflation rate (i.e., π > 1), the persistence of price distortion described

in (21) generates endogenously persistent inflation dynamics. As emphasized by Kurozumi

(2014), this endogenous persistence of inflation dynamics through price distortion helps agents

learn the RE and as a consequence, a fundamental RE equilibrium is likely to be E-stable in

representation (II) under a plausible calibration of the model parameters. Therefore, a positive

trend inflation rate and a finite elasticity of labor supply are both key to E-stability of a

fundamental RE equilibrium in representation (II).

With the two representations of the log-linearized model presented above, the next sections

examine E-stability of a fundamental RE equilibrium.
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3.5 E-stability condition

Following the literature on learning in macroeconomics (e.g., Evans and Honkapohja, 2001),

the present paper adopts the so-called “Euler equation” approach suggested by Honkapohja et

al. (2011): the RE operator Et is replaced with a possibly non-RE operator Êt in each of the

two representations (I) and (II).

By using (20) to eliminate the real marginal cost terms, representation (I) can be rewritten

as

z1,t = A1Êtz1,t+1 + C1ŝt−1 +D1ut, (26)

where z1,t = [π̂t ŷt ŝt ψt]′ and the coefficient matrix A1 and the coefficient vector C1 are given

in Appendix A.6 In this system, a fundamental RE equilibrium is given by

z1,t = c̄1 + Φ̄1ŝt−1 + Γ̄1ut, (27)

where the coefficient vectors c̄1, Φ̄1, Γ̄1 are determined by

c̄1 = 04×1, A1Φ̄1[0 0 1 0]Φ̄1 = Φ̄1 − C1, Γ̄1 = {I −A1(ρI + Φ̄1[0 0 1 0])}−1D1.

Note that Γ̄1 is uniquely determined given a Φ̄1, whereas Φ̄1 is not generally uniquely deter-

mined, which causes multiplicity of the fundamental RE equilibrium (27).

Following Section 10.5 of Evans and Honkapohja (2001), E-stability of the fundamental RE

equilibrium (27) is investigated.7 Corresponding to this equilibrium, all agents are assumed to

be endowed with the PLM of z1,t

z1,t = c1 + Φ1ŝt−1 + Γ1ut. (28)

6The form of the coefficient vector D1 is omitted, since it is not needed in what follows.

7The system (26) contains the predetermined endogenous variable ŝt−1 and thus it is possible to consider

two learning environments, which are studied respectively in Sections 10.3 and 10.5 of Evans and Honkapohja

(2001). One environment allows agents to use current endogenous variables in expectation formation, whereas

the other does not. The present paper considers only the latter environment as in Bullard and Mitra (2002),

Kurozumi (2006, 2014), and Kurozumi and Van Zandweghe (2008, 2012a). This is because the former induces

a problem with simultaneous determination of expectations and current endogenous variables, which is critical

to equilibrium under non-RE as indicated by Evans and Honkapohja (2001) and Bullard and Mitra (2002).
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Using a forecast from this PLM and the relation ŝt = [0 0 1 0]z1,t to substitute Êtz1,t+1 out of

(26) leads to the ALM of z1,t

z1,t = A1(I + Φ1[0 0 1 0])c1 + (A1Φ1[0 0 1 0]Φ1 + C1)ŝt−1 + {A1(ρI + Φ1[0 0 1 0])Γ1 +D1}ut.

(29)

The mapping T1 from the PLM (28) to the ALM (29) can thus be defined as

T1

⎛
⎜⎜⎜⎝

c1

Φ1

Γ1

⎞
⎟⎟⎟⎠
′

=

⎛
⎜⎜⎜⎝

A1(I + Φ1[0 0 1 0])c1

A1Φ1[0 0 1 0]Φ1 + C1

A1(ρI + Φ1[0 0 1 0])Γ1 +D1

⎞
⎟⎟⎟⎠
′

.

Therefore, a fundamental RE equilibrium (c̄1, Φ̄1, Γ̄1) is E-stable if and only if all eigenvalues

of the three matrices DT1,c(c̄1, Φ̄1, Γ̄1), DT1,Φ(c̄1, Φ̄1, Γ̄1), DT1,Γ(c̄1, Φ̄1, Γ̄1) have real parts less

than unity. Since

DT1,c(c̄1, Φ̄1, Γ̄1) = A1(I + Φ̄1[0 0 1 0]),

DT1,Φ(c̄1, Φ̄1, Γ̄1) = A1(Φ̄1,3I + Φ̄1[0 0 1 0]),

DT1,Γ(c̄1, Φ̄1, Γ̄1) = A1(ρI + Φ̄1[0 0 1 0]),

where Φ̄1,3 is the third element of the RE equilibrium coefficient vector Φ̄1, the E-stability

condition for a fundamental RE equilibrium (c̄1, Φ̄1, Γ̄1) is that all eigenvalues of the three

matrices A1(ϕI + Φ̄1[0 0 0 1]), ϕ ∈ {1, ρ, Φ̄1,3} have real parts less than unity.

As for representation (II), it can be written as

z2,t = A2Êtz2,t+1 +B2[1 0 0]Êtz2,t+2 + C2ŝt−1 +D2ut, (30)

where z2,t = [π̂t ŷt ŝt]′ and the coefficient matrix A2 and the coefficient vectors B2, C2 are given

in Appendix A.8 In this system, fundamental RE equilibrium is given by

z2,t = c̄2 + Φ̄2ŝt−1 + Γ̄2ut, (31)

where the coefficient vectors c̄2, Φ̄2, Γ̄2 are determined by

c̄2 = 03×1, B2[1 0 0]Φ̄2[0 0 1]Φ̄2[0 0 1]Φ̄2 +A2Φ̄2[0 0 1]Φ̄2 = Φ̄2 − C2,

Γ̄2 = {I −A2(ρI + Φ̄2[0 0 1]) −B2[1 0 0](ρ2I + ρΦ̄2[0 0 1] + Φ̄2[0 0 1]Φ̄2[0 0 1])}−1D2.

8The form of the coefficient vector D2 is omitted, since it is not needed in what follows.
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Corresponding to this equilibrium, all agents are assumed to be endowed with the PLM of z2,t

z2,t = c2 + Φ2ŝt−1 + Γ2ut. (32)

Using a forecast from this PLM and the relation ŝt = [0 0 1]z2,t to substitute Êtz2,t+1 and

Êtz2,t+2 out of the system (30) leads to the ALM of z2,t

z2,t = {A2(I + Φ2[0 0 1]) +B2[1 0 0](I + Φ2[0 0 1] + Φ2[0 0 1]Φ2[0 0 1])}c2
+ {(A2 +B2[1 0 0]Φ2[0 0 1])Φ2[0 0 1]Φ2 + C2}ŝt−1

+ {A2(ρI + Φ2[0 0 1])Γ2 +B2[1 0 0](ρ2I + ρΦ2[0 0 1] + Φ2[0 0 1]Φ2[0 0 1])Γ2 +D2}ut.

(33)

Thus, the mapping T2 from the PLM (32) to the ALM (33) can be defined as

T2

⎛
⎜⎜⎜⎝

c2

Φ2

Γ2

⎞
⎟⎟⎟⎠
′

=

⎛
⎜⎜⎜⎝

{A2(I + Φ2[0 0 1]) +B2[1 0 0](I + Φ2[0 0 1] + Φ2[0 0 1]Φ2[0 0 1])}c2
(A2 +B2[1 0 0]Φ2[0 0 1])Φ2[0 0 1]Φ2 + C2

A2(ρI + Φ2[0 0 1])Γ2 +B2[1 0 0](ρ2I + ρΦ2[0 0 1] + Φ2[0 0 1]Φ2[0 0 1])Γ2 +D2

⎞
⎟⎟⎟⎠
′

.

(34)

Consequently, the E-stability condition for a fundamental RE equilibrium (c̄2, Φ̄2, Γ̄2) is that

all eigenvalues of the following three matrices have real parts less than unity.

DT2,c(c̄2, Φ̄2, Γ̄2) = A2(I + Φ̄2[0 0 1]) +B2[1 0 0](I + Φ̄2[0 0 1] + Φ̄2[0 0 1]Φ̄2[0 0 1]),

DT2,Φ(c̄2, Φ̄2, Γ̄2) = A2(Φ̄2,3I + Φ̄2[0 0 1]) +B2[1 0 0]{(Φ̄2,3)2I + Φ̄2,3Φ̄2[0 0 1] + Φ̄2[0 0 1]Φ̄2[0 0 1]},
DT2,Γ(c̄2, Φ̄2, Γ̄2) = A2(ρI + Φ̄2[0 0 1]) +B2[1 0 0](ρ2I + ρΦ̄2[0 0 1] + Φ̄2[0 0 1]Φ̄2[0 0 1]),

where Φ̄2,3 is the third element of the RE equilibrium coefficient vector Φ̄2.

For each of the two representations (I) and (II), E-stability of the fundamental RE equilib-

rium (27) and (31) is numerically investigated, since it seems impossible to analytically solve

the matrix equations for the RE equilibrium coefficient vectors Φ̄1 and Φ̄2. As McCallum

(1998) indicates, distinct fundamental RE equilibria are obtained for different orderings of sta-

ble generalized eigenvalues of the matrix pencil for each of the systems (26) and (30). Indeed,

the calibrations of the model parameters presented below show that in cases of indeterminacy

there are two or three distinct fundamental RE equilibrium of the form (27) and (31).
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3.6 Calibrations of model parameters

The ensuing analysis uses plausible calibrations of the model parameters to illustrate regions

of the parameter space in which E-stability of a fundamental RE equilibrium is guaranteed

in each of the two representations (I) and (II). The calibrations for the quarterly model are

summarized in Table 1. In line with Ascari and Ropele (2009) and Kurozumi (2014), the

present paper sets the subjective discount factor at β = 0.99, the probability of no price

adjustment at α = 0.75, and the price elasticity of demand for differentiated intermediate

goods at θ = 11. The assumption of απθ < 1 then requires that the annualized trend inflation

rate does not exceed 11%. As noted above, a positive trend inflation rate is key to E-stability

of a fundamental RE equilibrium in representation (II) and thus its annualized rate is set at

two, four, six, and eight percent, i.e., π = 1.005,1.010,1.015, 1.020. The elasticity of labor

supply is also key to the E-stability and thus the inverse of the elasticity of labor supply is set

at σn = 1, 2.9 The shock persistence is chosen at ρ = 0.8 as in Woodford (2003) and Kurozumi

(2014).

3.7 Results of E-stability analysis

This subsection shows that representation (I) induces a smaller region of the model parameters

that guarantee E-stability of a fundamental RE equilibrium than representation (II), using the

calibrations presented in Table 1. Because the trend inflation rate and the elasticity of labor

supply are both key to differences between the two representations as shown below, how the

E-stability region of each representation varies with trend inflation is explained in each case of

the calibrations of the elasticity.

We begin with the case of the elasticity of labor supply of unity (i.e., σn = 1). Fig. 1

illustrates the regions of the Taylor rule’s coefficients (φπ, φy) that ensure E-stability of a

fundamental RE equilibrium as well as determinacy of RE equilibrium in representation (I).

This paper focuses on the range of the Taylor rule’s coefficients given by 0 ≤ φπ ≤ 4.5 and

0 ≤ φy ≤ 1.5/4 = 0.375. Because the estimates of these coefficients by Taylor (1993) are

9Hall (2009) surveys the recent empirical literature on the Frisch elasticity of labor supply and concludes that

an empirically plausible value of the elasticity is 0.7, which lies within the range implied by the two values of the

inverse of the elasticity in our calibrations. The case of an infinite elasticity of labor supply (i.e., σn = 0)—which

is not empirically plausible but is analyzed in some theoretical macroeconomic studies—is also presented in

Appendix B.
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φπ = 1.5 and φy = 0.5/4 = 0.125, it is reasonable to set upper bounds on the coefficients

at the values three times larger than the estimates. Note that in the region of E-stability at

least one E-stable fundamental RE equilibrium is generated, while in the region of E-instability

no fundamental RE equilibrium is E-stable. The figure shows that high trend inflation is a

serious cause of E-instability of all fundamental RE equilibrium as well as indeterminacy of

RE equilibrium. In the case of the annualized trend inflation rate of two percent, the upper-

left panel of the figure shows two regions of the Taylor rule’s coefficients: one region ensures

determinacy and E-stability of RE equilibrium and the other induces indeterminacy of RE

equilibrium and E-instability of all fundamental RE equilibrium. The former region is fairly

wide and contains the estimates of Taylor (1993). The boundary between the two regions is

given by φπ + εyφy = 1, where

εy =
απθ−1[(1 − β)(1 − απθ)(1 − αβπθ) − θ(π − 1){β(1 − απθ−1)(1 − απθ) + σn(1 − αβπθ−1)(1 − αβπθ)}]

(1 + σn)(1 − απθ−1)(1 − απθ)(1 − αβπθ−1)(1 − αβπθ)
.

Then, the condition

φπ + εyφy > 1 (35)

characterizes the region of the Taylor rule’s coefficients that ensure determinacy and E-stability.

The condition (35) can be interpreted as the long-run version of the Taylor principle. From

the law of motion of price distortion (21), the generalized New Keynesian Phillips curve (22),

and the equation for the auxiliary variable (23), each percentage point of permanently higher

inflation implies εy percentage points of permanently higher output. Thus, εy represents the

long-run inflation elasticity of output. Then, φπ + εyφy shows the permanent increase in the

interest rate by the Taylor rule (19) in response to each unit permanent increase in inflation.

Therefore, the condition (35) suggests that in the long run the interest rate should be raised

by more than the increase in inflation. This Taylor principle (35) restricts the size of the

output coefficient more severely under higher trend inflation, since the value of the elasticity εy

decreases to become negative and further declines as trend inflation rises. For the annualized

trend inflation rate less than a threshold (e.g., 2.3% under the calibration of model parameters),

the Taylor principle (35) is the relevant, necessary and sufficient condition for determinacy and

E-stability, as is similar to the result of Bullard and Mitra (2002) who study the case of the

zero trend inflation rate.

As trend inflation increases beyond the threshold, the region of the Taylor rule’s coefficients

in which E-stability of a fundamental RE equilibrium is ensured narrows remarkably and the
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one in which determinacy of RE equilibrium is guaranteed further narrows.10 In the cases of

the annualized trend inflation rate of four, six, and eight percent, the Taylor principle (35) is no

longer a sufficient condition for E-stability or determinacy, but remains a necessary condition.

Moreover, in the cases of the annualized trend inflation rate of six and eight percent, the

Taylor (1993) estimates (i.e., (φπ, φy) = (1.5,0.125)) induce E-instability of all fundamental

RE equilibrium as well as indeterminacy of RE equilibrium.

As for representation (II), Fig. 2 illustrates the regions of the Taylor rule’s coefficients

(φπ, φy) that ensure E-stability of a fundamental RE equilibrium as well as determinacy of RE

equilibrium. The comparison of this figure with Fig. 1 shows that determinacy of RE equilib-

rium is identical between the two representations (I) and (II), but E-stability of a fundamental

RE equilibrium is more likely in representation (II). For annualized trend inflation rates less

than the threshold (e.g., 2.3%), the E-stability region is identical to that in representation (I),

as shown in the upper-left panel where the rate is two percent. However, once the rate increases

beyond the threshold, the E-stability region differs from that in representation (I). In partic-

ular, when the rate rises, the E-stability region narrows much less than that in representation

(I), as shown in the cases of the annualized trend inflation rate of four, six, and eight percent.

We emphasize two policy implications generated under representation (II), as they differ

importantly from the implications under representation (I). First, the Taylor (1993) estimates

(i.e., (φπ, φy) = (1.5,0.125)) lead to E-stability even in the cases of the annualized trend

inflation rate of six and eight percent. Therefore, a fundamental RE equilibrium is likely to

be E-stable even under high trend inflation. Second, in these cases the Taylor principle (35)

is neither a sufficient condition nor a necessary condition for E-stability.11 This contrasts with

representation (I), where the Taylor principle (35) remains a necessary condition for E-stability

even under high trend inflation.

We turn next to the case of the elasticity of labor supply of one half (i.e., σn = 2). Figs. 3

and 4 illustrate the regions of the Taylor rule’s coefficients (φπ, φy) that ensure E-stability of a

fundamental RE equilibrium as well as determinacy of RE equilibrium in the representations

(I) and (II), respectively. The qualitative properties of the results obtained in the case of σn = 1

10The result regarding equilibrium determinacy is in line with that of Ascari and Ropele (2009).

11In the upper-right panel of Fig. 2, where the annualized trend inflation rate is four percent, there is a small

region of the Taylor rule’s coefficients that do not meet the Taylor principle (35), where E-stability is ensured

(1.05 ≤ φπ ≤ 1.40).
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still hold, but the difference in the E-stability region between the two representations (I) and

(II) is much starker. In particular, a lower elasticity of labor supply makes a fundamental RE

equilibrium more likely to be E-stable in representation (II). In terms of policy implications,

E-stability is ensured under the Taylor (1993) estimates in representation (II) even at the high

rates of trend inflation, as the Taylor principle (35) is neither a necessary nor sufficient condition

for E-stability. By contrast, in representation (I), E-instability is induced under the estimates

if trend inflation is sufficiently high, since the Taylor principle (35) becomes more likely to be

violated.

As noted above, in representation (II), a finite elasticity of labor supply causes price dis-

tortion to affect inflation dynamics represented by the generalized New Keynesian Phillips

curve (24), and the persistence of price distortion in (21) then generates endogenously per-

sistent inflation dynamics. For the RE equilibrium in question, E-stability examines whether

an associated equilibrium in which agents form expectations based on a PLM reaches over

time that RE equilibrium. Under such expectation formation (i.e., the presence of lagged price

distortion ŝt−1 in the PLM (32)), the endogenous persistence of inflation dynamics through

price distortion helps agents learn the RE. Consequently, E-stability of a fundamental RE

equilibrium is likely.12 The next subsection explains why this does not hold for representation

(I).

3.8 Why does representation (I) induce a smaller E-stability region than

representation (II)?

This subsection addresses the question of why representation (I) induces a smaller E-stability

region than representation (II) as illustrated above. Specifically, the subsection demonstrates

that in representation (II), if economic agents make inflation forecasts in an inconsistent man-

ner, the resulting E-stability region becomes identical with that in representation (I).

The system of representation (II) given by (30) can be rewritten as

z3,t = A3Êtz3,t+1 + C3ŝt−1 +D3ut, (36)

where z3,t = [z′2,t Êtπ̂t+1]′(= [π̂t ŷt ŝt Êtπ̂t+1]′) and the coefficient matrix A3 and the coefficient

12Consistently, in the case of an infinite elasticity of labor supply (i.e., σn = 0), where price distortion

never affects inflation dynamics, high trend inflation is a serious cause of E-instability of the fundamental RE

equilibrium as well as indeterminacy of RE equilibrium. See Appendix B for the analysis of this case.
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vectors C3,D3 are given by

A3 =

⎡
⎣ A2 B2[

1 0 0
]

0

⎤
⎦ , C3 =

⎡
⎣ C2

0

⎤
⎦ , D3 =

⎡
⎣ D2

0

⎤
⎦ .

In this system, fundamental RE equilibrium is given by

z3,t = c̄3 + Φ̄3ŝt−1 + Γ̄3ut, (37)

where the coefficient vectors c̄3, Φ̄3, Γ̄3 are determined by

c̄3 = 04×1, A3Φ̄3[0 0 1 0]Φ̄3 = Φ̄3 − C3, Γ̄3 = {I −A3(ρI + Φ̄3[0 0 1 0])}−1D3.

Corresponding to this equilibrium, all agents are assumed to be endowed with the PLM of z3,t

z3,t = c3 + Φ3ŝt−1 + Γ3ut. (38)

In this PLM the fourth element is

Êtπ̂t+1 = c3,4 + Φ3,4ŝt−1 + Γ3,4ut, (39)

where c3,4, Φ3,4, and Γ3,4 are the fourth elements of the vectors c3, Φ3, and Γ3. The forecast

Êtz3,t+1 based on the PLM (38) is given by

Êtz3,t+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

Êtπ̂t+1

Êtŷt+1

Êtŝt+1

Êtπ̂t+2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

(c3,1 + Φ3,1c3,3) + Φ3,1Φ3,3ŝt−1 + (ρΓ3,1 + Φ3,1Γ3,3)ut

(c3,2 + Φ3,2c3,3) + Φ3,2Φ3,3ŝt−1 + (ρΓ3,2 + Φ3,2Γ3,3)ut

(c3,3 + Φ3,3c3,3) + Φ3,3Φ3,3ŝt−1 + (ρΓ3,3 + Φ3,3Γ3,3)ut

(c3,4 + Φ3,4c3,3) + Φ3,4Φ3,3ŝt−1 + (ρΓ3,4 + Φ3,4Γ3,3)ut

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The first element of this forecast, Êtπ̂t+1, is not consistent with (39). Thus, because agents

have a PLM for contemporaneous inflation and one for expected inflation next period, they

make multiple inflation forecasts in an inconsistent manner. Using the forecast Êtz3,t+1, the

system (36) yields the ALM of z3,t

z3,t = A3(I + Φ3[0 0 1 0])c3 + (A3Φ3[0 0 1 0]Φ3 + C3)ŝt−1 + {A3(ρI + Φ3[0 0 1 0])Γ3 +D3}ut.

(40)
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Thus, the mapping T3 from the PLM (38) to the ALM (40) can be defined as

T3

⎛
⎜⎜⎜⎝

c3

Φ3

Γ3

⎞
⎟⎟⎟⎠
′

=

⎛
⎜⎜⎜⎝

A3(I + Φ3[0 0 1 0])c3

A3Φ3[0 0 1 0]Φ3 + C3

A3(ρI + Φ3[0 0 1 0])Γ3 +D3

⎞
⎟⎟⎟⎠
′

.

Consequently, the E-stability condition for a fundamental RE equilibrium (c̄3, Φ̄3, Γ̄3) is that

all eigenvalues of the following three matrices have real parts less than unity.

DT3,c(c̄3, Φ̄3, Γ̄3) = A3(I + Φ̄3[0 0 1 0]),

DT3,Φ(c̄3, Φ̄3, Γ̄3) = A3(Φ̄3,3I + Φ̄3[0 0 1 0]),

DT3,Γ(c̄3, Φ̄3, Γ̄3) = A3(ρI + Φ̄3[0 0 1 0]),

where Φ̄3,3 is the third element of the RE equilibrium coefficient vector Φ̄3.

Under the calibrations of the model parameters presented in Table 1, this E-stability con-

dition generates the same figures as those for representation (I), i.e., Figs. 1 and 3 in the cases

of σn = 1, 2. Therefore, in representation (II), if economic agents make inflation forecasts in

the aforementioned inconsistent manner, the resulting E-stability region becomes identical with

that in representation (I).13 Because the absence of the consistency in the inflation forecasts is

problematic, representation (I) is arguably not appropriate for E-stability analysis.

4 Concluding Remarks

This paper has shown that a pitfall of E-stability analysis can arise in models with multi-

period expectations: if an auxiliary variable is introduced as substitute for an expectational

endogenous variable in such a model, this shrinks the region of the model parameters that

ensure E-stability of a fundamental RE equilibrium. This pitfall has been demonstrated in a

simple univariate model with two-period expectations and a DSGE model with trend inflation.14

Moreover, in the model representation with no auxiliary variable, the same E-stability region as

in that with the auxiliary variable has been obtained if economic agents are assumed to make

13The equivalence between the E-stability regions is shown formally for the case of an infinite elasticity of

labor supply in Appendix B.

14The pitfall may be demonstrated in a DSGE model with internal habit formation in consumption preferences,

where a two-period-ahead consumption forecast as well as a one-period-ahead one appears in a consumption Euler

equation.
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multiple forecasts in an inconsistent manner. Therefore, we have argued that the introduction

of an auxiliary variable as substitute for an expectational endogenous variable in models with

multi-period expectations can induce misleading implications of E-stability that are biased

toward E-instability.
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Appendix

A Coefficient matrix and vectors of systems (26) and (30)

Let a1 = 1/[(1 + σn)(1−απθ−1)(1−αβπθ)φπ +απθ−1{1− θσn(π− 1)(1−αβπθ)}(1 + φy)]. In

the system (26), the coefficient matrix A1 and the coefficient vector C1 are given by

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1,11 A1,12 A1,13 A1,14

1−A1,11φπ

1+φy

1−A1,12φπ

1+φy
−A1,13φπ

1+φy
−A1,14φπ

1+φy

θαπθ−1(π−1)A1,11

1−απθ−1

θαπθ−1(π−1)A1,12

1−απθ−1

θαπθ−1(π−1)A1,13

1−απθ−1

θαπθ−1(π−1)A1,14

1−απθ−1

A1,41 A1,42 A1,43 A1,44

⎤
⎥⎥⎥⎥⎥⎥⎦
,

C1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

C1,1

−C1,1φπ

1+φy

απθ−1
{
π + θ(π−1)C1,1

1−απθ−1

}
0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where

A1,11 = a1{απθ−1(β +A1,41)(1 + φy) + (1 + σn)(1 − απθ−1)(1 − αβπθ)},
A1,12 = a1{απθ−1A1,42(1 + φy) + (1 + σn)(1 − απθ−1)(1 − αβπθ)},
A1,13 = a1απ

θ−1A1,43(1 + φy), A1,14 = a1απ
θ−1A1,44(1 + φy),

A1,41 = θβ(π − 1)(1 − απθ−1), A1,42 = β(π − 1)(1 + σn)(1 − απθ−1)(1 − αβπθ),

A1,43 = σnβ(π − 1)(1 − απθ−1)(1 − αβπθ), A1,44 = αβπθ,

C1,1 = a1σnαπ
θ(1 − απθ−1)(1 − αβπθ)(1 + φy).

In the system (30), the coefficient matrix A2 and the coefficient vectors B2, C2 are given by

A2 =

⎡
⎢⎢⎢⎣

A2,11 A2,12 A2,13

1−A2,11φπ

1+φY

1−A2,12φπ

1+φy
−A2,13φπ

1+φy

θαπθ−1(π−1)A2,11

1−απθ−1

θαπθ−1(π−1)A2,12

1−απθ−1

θαπθ−1(π−1)A2,13

1−απθ−1

⎤
⎥⎥⎥⎦,

B2 =

⎡
⎢⎢⎢⎣

B2,1

−B2,1φπ

1+φy

θαπθ−1(π−1)B2,1

1−απθ−1

⎤
⎥⎥⎥⎦, C2 =

⎡
⎢⎢⎢⎣

C2,1

−C2,1φπ

1+φy

απθ−1
{
π + θ(π−1)C2,1

1−απθ−1

}
⎤
⎥⎥⎥⎦,
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where

A2,11 = a1[αβπθ−1{1 + απθ + θ(π − 1)(1 − απθ−1)}(1 + φy) + (1 + σn)(1 − απθ−1)(1 − αβπθ)],

A2,12 = a1(1 + σn)(1 − απθ−1)(1 − αβπθ){1 − αβπθ−1(1 + φy)},
A2,13 = −a1σnαβπ

θ−1(1 − απθ−1)(1 − αβπθ)(1 + φy),

B2,1 = −a1αβπ
θ−1αβπθ(1 + φy), C2,1 = a1σnαπ

θ(1 − απθ−1)(1 − αβπθ)(1 + φy).

B The case of an infinite elasticity of labor supply

In the case of an infinite elasticity of labor supply (i.e., σn = 0), the E-stability conditions

for the representations (I) and (II) presented in Section 3.5 generate Figs. 5 and 6 under

the calibrations of the other model parameters presented in Table 1. In line with the cases

of σn = 1, 2, these figures show that E-stability of a fundamental RE equilibrium is more

likely in representation (II) than in representation (I). Note that in the case of σn = 0, the

Taylor principle (35) is a necessary condition for E-stability as well as determinacy even in

representation (II).

In representation (II), if economic agents make inflation forecasts in the inconsistent man-

ner mentioned in Section 3.8, the resulting E-stability region becomes identical with that in

representation (I). This is shown in the following proposition.

Proposition 1 Suppose that σn = 0. Then the same E-stability region as in representation

(I) is obtained in representation (II) if agents’ inflation forecasting is inconsistent in the afore-

mentioned sense.

Proof The exposition in Section 3.5 implies that for representation (I), the fundamental RE

equilibrium is E-stable if and only if all eigenvalues of the matrices A0
1 and ρA0

1 have real parts

less than unity, where

A0
1 =

⎡
⎢⎢⎢⎣

A1,11 A1,12 A1,14

1−A1,11φπ

1+φy

1−A1,12φπ

1+φy
−A1,14φπ

1+φy

A1,41 A1,42 A1,44

⎤
⎥⎥⎥⎦

is the coefficient matrix A1 in the case of σn = 0. Likewise, for representation (II) in which

agents’ inflation forecasting is inconsistent in the aforementioned sense, the fundamental RE

equilibrium is E-stable if and only if all eigenvalues of the matrices A0
3 and ρA0

3 have real parts
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less than unity, where

A0
3 =

⎡
⎢⎢⎢⎣

A2,11 A2,12 B2,1

1−A2,11φπ

1+φy

1−A2,12φπ

1+φy
−B2,1φπ

1+φy

1 0 0

⎤
⎥⎥⎥⎦

is the coefficient matrix A3 in the case of σn = 0. It is straightforward to verify that the

characteristic equations of A0
1 and A0

3 are identical and given by

r3 −
(
A2,11 +

1 −A2,12φπ

1 + φy

)
r2 +

(
A2,11 −A2,12

1 + φy
−B1,2

)
r +

B1,2

1 + φy
= 0.

Therefore, the eigenvalues of A0
1 and A0

3 must be identical and the eigenvalues of ρA0
1 and ρA0

3

must be identical.
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Table 1: Calibrations of parameters for the quarterly model

β subjective discount factor 0.99
α probability of no price adjustment 0.75
θ price elasticity of demand for differentiated goods 11
π gross trend inflation rate 1.005, 1.010, 1.015, 1.020
σn inverse of elasticity of labor supply 1, 2
ρ shock persistence 0.8
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Figure 1: Regions of the Taylor rule’s coefficients (φπ, φy) that ensure E-stability of a funda-
mental RE equilibrium as well as determinacy of RE equilibrium: Representation (I) with the
elasticity of labor supply of unity (i.e., σn = 1).
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Note: In each panel the mark “×” shows the Taylor (1993) estimates (φπ, φy) = (1.5,0.125)
and the dashed line represents the boundary given by the long-run version of the Taylor prin-
ciple (35).
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Figure 2: Regions of the Taylor rule’s coefficients (φπ, φy) that ensure E-stability of a funda-
mental RE equilibrium as well as determinacy of RE equilibrium: Representation (II) with the
elasticity of labor supply of unity (i.e., σn = 1).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.125

0.25

0.375
Trend inflation = 2 percent

φ
π

φ
y

×

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.125

0.25

0.375
Trend inflation = 4 percent

φ
π

φ
y

×

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.125

0.25

0.375
Trend inflation = 6 percent

φ
π

φ
y

×

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.125

0.25

0.375
Trend inflation = 8 percent

φ
π

φ
y

 

 

×

Determinacy & E−stability
Indeterminacy & E−stability
Indeterminacy & E−instability
Nonexistence

Note: In each panel the mark “×” shows the Taylor (1993) estimates (φπ, φy) = (1.5,0.125)
and the dashed line represents the boundary given by the long-run version of the Taylor prin-
ciple (35).
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Figure 3: Regions of the Taylor rule’s coefficients (φπ, φy) that ensure E-stability of a funda-
mental RE equilibrium as well as determinacy of RE equilibrium: Representation (I) with the
elasticity of labor supply of one half (i.e., σn = 2).
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Note: In each panel the mark “×” shows the Taylor (1993) estimates (φπ, φy) = (1.5,0.125)
and the dashed line represents the boundary given by the long-run version of the Taylor prin-
ciple (35).
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Figure 4: Regions of the Taylor rule’s coefficients (φπ, φy) that ensure E-stability of a funda-
mental RE equilibrium as well as determinacy of RE equilibrium: Representation (II) with the
elasticity of labor supply of one half (i.e., σn = 2).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.125

0.25

0.375
Trend inflation = 2 percent

φ
π

φ
y

×

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.125

0.25

0.375
Trend inflation = 4 percent

φ
π

φ
y

×

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.125

0.25

0.375
Trend inflation = 6 percent

φ
π

φ
y

×

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.125

0.25

0.375
Trend inflation = 8 percent

φ
π

φ
y

 

 

×

Determinacy & E−stability
Indeterminacy & E−stability
Indeterminacy & E−instability
Nonexistence

Note: In each panel the mark “×” shows the Taylor (1993) estimates (φπ, φy) = (1.5,0.125)
and the dashed line represents the boundary given by the long-run version of the Taylor prin-
ciple (35).
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Figure 5: Regions of the Taylor rule’s coefficients (φπ, φy) that ensure E-stability of a funda-
mental RE equilibrium as well as determinacy of RE equilibrium: Representation (I) with an
infinite elasticity of labor supply (i.e., σn = 0).
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Note: In each panel the mark “×” shows the Taylor (1993) estimates (φπ, φy) = (1.5,0.125)
and the dashed line represents the boundary given by the long-run version of the Taylor prin-
ciple (35).
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Figure 6: Regions of the Taylor rule’s coefficients (φπ, φy) that ensure E-stability of a funda-
mental RE equilibrium as well as determinacy of RE equilibrium: Representation (II) with an
infinite elasticity of labor supply (i.e., σn = 0).
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Note: In each panel the mark “×” shows the Taylor (1993) estimates (φπ, φy) = (1.5,0.125)
and the dashed line represents the boundary given by the long-run version of the Taylor prin-
ciple (35).
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