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Abstract

Economic data are collected at various frequencies but econometric estimation typically uses

the coarsest frequency. This paper develops a Gibbs sampler for estimating VAR models with

mixed and irregularly sampled data. The approach allows effi cient likelihood inference even with

irregular and mixed frequency data. The Gibbs sampler uses simple conjugate posteriors even

in high dimensional parameter spaces, avoiding a non-Gaussian likelihood surface even when the

Kalman filter applies. Two applications illustrate the methodology and demonstrate effi ciency

gains from the mixed frequency estimator: one constructs quarterly GDP estimates from monthly

data, the second uses weekly financial data to inform monthly output.
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1 Introduction

Economic data are rarely collected at the same instances in time. Data from liquid markets are

available almost continuously, while aggregate macro data in many cases are available only at monthly,

quarterly, or annual frequencies. Mixed and irregular sampling frequencies represent a significant

challenge to time-series econometricians.

This paper develops Bayesian estimation of mixed frequency Vector Autoregressions (VAR’s). The

method is a simple, yet very powerful algorithm for Markov-Chain-Monte-Carlo sampling from the

posterior distributions of the VAR parameters. The algorithm works in the presence of mixed frequency

or irregularly spaced observations. The posterior is conditioned on data observed at mixed frequencies

rather than simply data observed at the coarsest frequency. The method follows from the assumption

that the econometrician simply does not observe the high frequency realizations of the low frequency

data, and can accordingly treat these data as missing values. Consequently, and consistent with

the standard utilization of missing values in Bayesian econometrics, the Bayesian Mixed Frequency

(BMF) algorithm developed is a Gibbs sampler that produces alternate draws from the missing data

and the unknown parameters in the model. Under typical assumptions about normally distributed

exogenous shocks, the VAR’s linear structure allows for draws from Gaussian conditional distributions

for estimating the missing data, along with draws from Gaussian and inverse Wishart conditional

posterior distributions for the parameters in the model. Since this Gibbs sampler requires only

simulation from known densities, it is extremely simple to implement.

There has been much work addressing the issue of mixed frequency data from a variety of different

approaches. An early contribution is the Kalman filtering approach introduced by Harvey & Pierse

(1984), which notes that for linear VAR models, missing observations can be incorporated by simply

skipping a term from the updating equation whenever an observation is missing. The VAR’s linear and

Gaussian form makes it straightforward to formulate a state-space form. However, the Kalman filter

approach is potentially cumbersome when the missing data occur at irregular frequencies, especially

if there are multiple series with missing data at differing frequencies. In addition, the Kalman filter
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yields a likelihood function that is non-linear and non-Gaussian over a potentially very large parameter

space; analyzing such likelihood functions often proves diffi cult both from frequentist and Bayesian

viewpoints. The BMF approach, by contrast, handles irregular and multiple missing series with ease,

and the Gibbs sampling from standard densities makes the analysis of the resulting posterior densities

very tractable.

Another approach, suggested by Miller & Chin (1996), uses monthly data to improve quarterly

variable forecasts. The method is an iterative procedure that first uses quarterly observed variables to

construct quarterly forecasts, then uses monthly observed variables to construct quarterly forecasts,

and finally combines the two forecasts using estimated weights. Corrado & Greene (1988) show that

adding monthly information via a monthly pooling procedure can improve quarterly forecasts. The

BMF method, in comparison, uses all the relevant information to make multi-frequency forecasting

for each variable in the VAR, so in the context of monthly and quarterly data, considers forecasts of

monthly variables as well. This difference implies that BMF exploits all the available information to

forecast any variable in the model, which offers the advantage of producing additional forecasts but

also allows for inference based upon the effects of quarterly variables on monthly ones. Other papers

that use bridging type models include Baffi gi et al. (2004), and those that use bridging with factors,

such as Giannone et al. (2008) and Angelini et al. (2008).

A growing body of work considering the estimation of mixed frequency models is the work on

MIDAS (MIxed DAta Sampling) described in Ghysels et al. (2004), Andreou et al. (2010), Ghysels

et al. (2007), among others. The MIDAS method allows regressions of a low frequency variable onto

high frequency variables. For example, Ghysels et al. (2004) study the predictability of stock returns

over relative low frequencies (monthly or quarterly) from high frequency volatility estimates, Andreou

et al. (2009) consider the importance of daily data for forecasting monthly or quarterly real data,

and Bai et al. (2010) expand MIDAS to deal with state-space models. While the MIDAS approach

differs substantially from the Kalman filter approach of Harvey & Pierse (1984), it potentially suffers

from the same pitfalls: handling observations that are irregularly spaced requires altering the estimated
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equations as in Francis et al. (2011), and larger systems may lead to significant numerical burdens.

In contrast to these methods, the approach taken in this paper is from a Bayesian perspective, and

will consequently treat lower frequency data as missing. The missing data approach to higher frequency

data has a history from both a Bayesian and frequentist perspective. Chow & Lin (1971) discuss how to

interpolate time series using related series. Sims & Zha (2006b) and Leeper & Zha (2003), for example,

use quarterly GDP interpolated to monthly intervals in monthly VARs. Other mixed-frequency VAR

approaches use stock-flow relationships for interpolation, such as Zadrozny (1988), Mittnik & Zadrozny

(2005), or Mariano & Murasawa (2010). The BMF approach, on the other hand, follows the Bayesian

approach to missing data, similar to, for example, Kim et al. (1998).

The traditional approach for dealing with mixed frequency data is to discard high frequency data

and simply perform estimation on the coarsest frequency data. This estimation strategy potentially

discards information contained in the higher frequency data, yet is used often in macro time series

econometrics, especially within the context of VAR estimation, making it a useful benchmark. Indeed,

a number of Bayesian and frequentist applications, including studying the effects of monetary policy,

oil, or uncertainty shocks, include VAR’s estimated at a monthly frequency despite the availability of

higher-frequency data. The coarse estimation can be used to identify parameters in the VAR even if

the econometrician assumes that the true VAR evolves at some higher frequency than that used for

estimation because Gaussian VAR’s are closed under temporal aggregation.

In addition to developing the methodology, this paper demonstrates the advantages of the BMF

estimation method using numerical simulations and actual data. For numerical simulations over a

range of parameter constellations, BMF uniformly dominates estimation using coarse sampling from

the frequentist perspective of mean square deviations from the true values. After considering simulated

data, two applications highlight the advantages of BMF using actual data. The first involves a monthly

and quarterly set of data on the real economy, and the second involves combining monthly real economic

variables with high-frequency financial variables. In both contexts, BMF outperforms the coarsely

sampled estimator in that the posterior standard deviations are smaller when using BMF. Which
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posterior standard deviations decrease the most depend on the application, it can either help accuracy

for the low or the high frequency variables. The BMF approach also improves the estimation of

impulse response functions, as the decrease in parameter uncertainty associated with BMF is typically

reflected in tighter confidence bands for the impulse response functions. Among other things, this

result implies that BMF can allow for sharper conclusions about the impact of economic policies or

the effects of shocks.

The remainder of the paper is organized as follows: Section 2 discusses the construction of a Gibbs

sampler for the model. Section 3 presents simulation based evidence for the advantages of using the

BMF approach. Sections 4 and 5 present two examples of applications of mixed frequency estimation;

the first example uses a monthly and quarterly model of the macroeconomy, and the second example

uses weekly financial data along with monthly data on output. Finally, Section 6 concludes.

2 Econometric Methodology

This section discusses the main algorithm of data augmentation and estimation in the presence of

missing data. While the general method applies easily to VAR’s with multiple lags, this paper focuses

on a first order VAR for simplicity. Consequently, the model is

yt = A+Byt−1 + εt, εt ∼ N (0,Σ) (1)

where dim (yt) = N . Denote yt = (xt, zt) where dim (xt) = Nx and dim (zt) = Nz such that Nz+Nx =

N and suppose xt is a fully observed variable and zt is a variable with missing data. Again, for

simplicity, assume in the following that z and x are recorded at two frequencies, but note that the

method applies to a multi-frequency dataset. In the example application in Section 4, xt is observed

monthly and zt is observed quarterly; Section 5’s example has xt observed weekly and zt observed

monthly. In the case of monthly and quarterly observations, the missing data are {ẑ1, ẑ2, ẑ4, ẑ5, ẑ7, ...},

where ẑt denotes a sampled observation at time t. Let ẑ denote the vector of observed and sampled
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data, ẑ\t denote all elements of ẑ except the t-th ones, and let Ŷ (i) denote the full collection of observed

and sampled data at iteration i.

The BMF estimator is an application of Bayesian Gibbs sampling, which requires iterating over

objects of interest, sampling those objects from known distributions conditional upon the remaining

objects. In the current setup, the objects of interest are the missing observations, the matrices A and

B, and the covariance matrix Σ. Given prior distributions and initial values of the parameters, the

i-th iteration of the MCMC algorithm reads

• Step 1 : for t = 1, .., T , draw missing data ẑ(i)
t | x, ẑ(i−1)

\t , A(i−1), B(i−1),Σ(i−1), where ẑ(i−1)
\t

is the vector of most recently updated missing values and A(i−1), B(i−1),Σ(i−1) are the lat-

est draws of A,B,Σ, respectively. For example, in the case of consecutive updating, ẑ(i−1)
\t =

(ẑ
(i)
1 , ẑ

(i)
2 , .., ẑ

(i)
t−1, ẑ

(i−1)
t+1 , .., ẑ

(i−1)
T ).1

• Step 2 : draw A(i), B(i) | Ŷ (i),Σ(i−1)

• Step 3 : draw Σ(i) | Ŷ (i), A(i), B(i)

The new step in the procedure is Step 1, which is drawing missing data given the parameters in

the model and the fully observed data. Except for this first step, the procedure is a standard Normal

linear model which yields Normal and Wishart posterior distributions. The next two subsections

discuss the algorithm in detail. Since Steps 2 and 3 are familiar in that they are straightforward

draws from known distributions, they are addressed first, and then the Step 1 in detail shows how to

sample missing data given a set of parameters.

1For notational simplicity, this notation assumes that all zt are missing; implicitly the updating equation for non-
missing data is just ẑ(i)t = ẑ

(i−1)
t .

In addition, the exact timing of updating is flexible; a possible alternative is to use the entire vector of missing values
from the previous iteration, so ẑ(i−1)\t = (ẑ

(i−1)
1 , ẑ

(i−1)
2 , .., ẑ

(i−1)
t−1 , ẑ

(i−1)
t+1 , .., ẑ

(i−1)
T ). However, this timing tends to be less

effi cient.
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2.1 Drawing Parameters

As noted above, conditional on a set of observed and augmented data, Steps 2 and 3 in the Gibbs

sampling algorithm are simply draws from Normal and Wishart distributions.

2.1.1 Step 2: Updating the Parameter Matrices A and B

For each iteration, drawing parameters comes from a posterior density composed of the likelihood

function and the prior. For notational simplicity, the entire set of data can be treated as fully

observed. Consider the following variables:

Y
N×(T−1)

≡

 x2 x3 · · · xT

z2 z3 · · · zT



β
N×(N+1)

≡
[
A B

]
≡

 Ax Bxx Bxz

Az Bzx Bzz



X
(N+1)×(T−1)

≡


1 1 · · · 1

x1 x2 · · · xT−1

z1 z2 · · · zT−1


The likelihood is then

L (β|yT , ..., y1,Σ) ∝
T∏
t=2

exp

{
−1

2
(yt −A−Byt−1)

′
Σ−1 (yt −A−Byt−1)

}
(2)

= exp

[
−1

2
tr
(
(Y − βX)

′
Σ−1 (Y − βX)

)]
∝ exp

[
−1

2
tr

(
(XX ′)

(
β − Y X ′ (XX ′)−1

)′
Σ−1

(
β − Y X ′ (XX ′)−1

))]

Proportionality in the last step is obtained by removing all the constant terms and using the trace
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properties.2

The conditional posterior for β is therefore

p (β|yT , ..., y1,Σ) ∼MN
(
Y X ′ (XX ′)

−1
, (XX ′)

−1
,Σ
)
, (3)

a matrix normal density. The vectorized form of β thus has a multivariate Normal density given by

p (vec (β) |yT , ..., y1,Σ) ∼ N (µλ,Σλ) (4)

where the mean is

µλ = vec
(
Y X ′ (XX ′)

−1
)

(5)

and the variance is given by

Σλ = (XX ′)
−1 ⊗ Σ. (6)

Assuming a conjugate prior3

π (vec (β)) ∼ N (µΩ,ΣΩ) , (7)

the posterior density for vec (β) is therefore

p (vec (β) |yT , ..., y1,Σ) ∼ N
((

Σ−1
λ + Σ−1

Ω

)−1 (
Σ−1

Ω µΩ + Σ−1
λ µλ

)
,
(
Σ−1
λ + Σ−1

Ω

)−1
)
. (8)

Consequently, conditional on the set of data and a covariance matrix Σ, sampling the parameters β

simply requires sampling from a normal distribution.

2 tr

(
ABC
n×n

−DEF
n×n

)
= tr( A

n×m
B

m×k
C
k×n

)− tr( D
n×m

E
m×k

F
k×n

) = tr(CAB
k×k

)− tr(FDE)
k×k

= tr

(
CAB
k×k

− FDE
k×k

)
3The examples later use a zero vector for the prior mean and ten times the identity matrix for the prior variance,

which constitutes an uninformative prior.
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2.1.2 Step 3: Updating the Covariance Matrix Σ

Given values of the VAR matrices A(i) and B(i) and the data Ŷ (i), the conditional posterior for Σ is

of the conjugate inverse Wishart form and follows straightforwardly. Let

ε
(i)
t = Y

(i)
t −A(i) −B(i)Y

(i)
t−1 (9)

denote the estimated error term at iteration i of the Gibbs sampler. The conditional posterior distri-

bution of Σ is

p(Σ | Y (i), A(i), B(i)) ∝ Σ−T/2 exp(−
∑
t

ε
(i)
t Σ−1ε

(i)
t

′
)p(Σ) (10)

where p(Σ) denotes the prior. Using an inverse Wishart prior with mean Ψ and degrees of freedom m

the conditional posterior is

Σ | Y (i), A(i), B(i) ∼ IW (
∑
t

ε
(i)
t ε

(i)
t

′
+ Ψ, T +m), (11)

another inverse Wishart. Algorithms for sampling from IW distributions are readily available.

2.2 Step 1: Sampling the Latent Data

Step 1 of the Gibbs sampler requires drawing the latent data from its conditional posterior distri-

bution. It is convenient to draw a single t-th element in one operation, so the goal is to draw

ẑ
(i)
t | x, ẑ

(i−1)
\t , A(i−1), B(i−1),Σ(i−1). Separating the VAR into its components:

 xt

zt

 =

 Ax

Az

+

 Bxx Bxz

Bzx Bzz


 xt−1

zt−1

+

 ut

vt

 (12)

where  ut

vt

 ∼ N
0,

 Σxx Σxz

Σzx Σzz


 . (13)
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The Appendix shows that the conditional density for zt is the multivariate normal

ẑt | ẑ\t, x,Θ ∼ N(M,W1) (14)

where the mean is given by

M ≡W−1
1 W2 (15)

where the covariance matrix is

W1 = Σzz +B′zzΣ
zzBzz +B′xzΣ

xxBxz +B′zzΣ
zxBxz +B

′

xzΣ
xzBzz (16)

and

W2 = −Σzx (xt −Ax −Bxxxt−1 −Bxzzt−1) (17)

+Σzz (Az +Bzxxt−1 +Bzzzt−1)

+B′xzΣ
xx (xt+1 −Ax −Bxxxt)

+B′zzΣ
zx (xt+1 −Ax −Bxxxt)

+B′xzΣ
xz (zt+1 −Az −Bzxxt)

+B′zzΣ
zz (zt+1 −Az −Bzxxt) .

and the inverse of Σ is defined as

Σ−1 =

 Σxx Σxz

Σzx Σzz

 . (18)

It is now straightforward to construct Gibbs sampling to draw ẑt, since it is also conditionally

normal. One possibility is to draw the elements in a consecutive order. Another approach is to draw

odd and even elements of z alternately, which can easily be implemented in a vectorized programming

environment.
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2.3 Coarse Sampling Estimation

The standard approach to mixed frequency estimation is to delete the high frequency data such that

the VAR is estimated at whichever frequency is jointly available. Thus, in estimating a model with, in

the case of the example in Section 4, monthly and quarterly data, one would sample both variables at

the quarterly frequency. In choosing a quarterly sampling frequency for the monthly data, one throws

away information contained in the higher frequency data.

It should be noted that, in the context of many macroeconomic applications that use mixed fre-

quency data, many simply perform estimation at the lowest frequency. Within the literature on

monetary policy shocks, papers such as Christiano et al. (1996), Christiano et al. (1999), Sims &

Zha (2006a), Sims & Zha (2006b), and Banbura et al. (2010), ignore the high frequency movements

in interest rates and financial variables and estimate monthly or quarterly VARs. In studying the

effects of oil price shocks, Kilian & Park (2009), Kilian et al. (2009), and Kilian & Vigfusson (2011)

discard information in high-frequency price movements, again estimating using a monthly frequency.

Monthly estimation of VARs is also used by Bloom (2009) to study the effects of uncertainty shocks,

even though some of the relevant asset pricing data are available at much higher frequencies. In each

of these applications, discarding data at high frequencies and estimating using the lowest sampling

interval is standard procedure.

The estimator based solely on coarse data is not an unreasonable estimator. In particular, it is

true that the estimator can be used to estimate the true values of the parameters in a VAR even if

the true VAR evolves at a higher frequency than that used for estimation. This fact follows because

the model Yt = A+BYt−1 + εt is closed under temporal aggregation, so that Yt+n = An +BnYt + εtn

where the new coeffi cients An and Bn are given by

An =

n∑
s=1

Bs−1A (19)

Bn = Bn (20)
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and the covariance matrix of the error εtn is

Σn =

n∑
s=1

Bs−1ΣBs−1′. (21)

Estimation of the lower frequency VAR produces an estimate of Bn, which can then produce an

estimate B̂ based on some nth root of the estimate B̂n. Then, using (19) and (21) produces estimates of

A and Σ. If, for example, Bq is an estimate of B obtained using quarterly sampled data, inverting (20)

gives the implied monthly estimate B
1
3
q . Equations (19)-(21) thus allow the comparison of estimates

obtained through BMF with those produced by coarse estimation. Such comparisons are best done by

transforming the posterior simulations and then computing the quantity of interest. For example, to

compare posterior standard deviations from coarse estimation at a quarterly frequency to BMF at a

monthly one, the sample standard deviation should be computed based upon the converted draws of

the Gibbs sampler, so computing 1
G

∑G
i=1

(
B(i)

) 1
3 for G iterations. This conversion gives an estimate

of the monthly implied standard deviation from quarterly coarse estimates for easy comparisons across

the two methodologies.

3 Simulation Results

Having presented the methodology, this section examines BMF using simulated data. The purpose is

to analyze how BMF fares relative to estimation at the coarsest frequency when the objective is to

recover parameter estimates, say the posterior mean, that are as close as possible in some sense to

the truth. This is very much a frequentist way of thinking, and so the exercise should accordingly be

interpreted as a small sample study of the posterior mean as a frequentist parameter estimate.

Table 1 reports the root mean square error of the parameters estimated using BMF versus esti-

mation after discarding the high frequency data for four different parameter constellations, each with

two sample sizes. The parameterizations use two different coeffi cient matrices and two different co-

variances among the errors. The data are generated by a monthly bivariate VAR, where the variable
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x is observed every period, and the variable z is observed every third period t = 1, 4, 7, ..., 3T , so T is

the number of quarters in the sample, meaning there are 3T months. In the shorter sample, there are

T = 20 quarters, and in the longer sample there are T = 80.

As can be seen, BMF attains smaller root mean square error for all the parameter estimates

regardless of sample size, correlation and diagonal elements of matrix B. Several additional features

should be mentioned. First, ceteris paribus, BMF improvements are higher for small sample than for

larger sample estimation. In this case the quarterly data provide limited information about the VAR

coeffi cients, and adding monthly data to the estimation produces sizable gains.

Second, for small sample estimation, the smaller the correlation of x and z and the smaller the

diagonal elements of B, the better performance of BMF is achieved. As can be seen in the first block of

Table 1, for a sample size of T = 20 and correlation of zero, the improvement of BMF goes from 17.5%

to 72.8%. However, for the same sample size and B, but with a correlation of 95%, the improvement

of BMF goes from 9.43% to 26.4%. We can see similar results when the diagonal elements of B are

increased from 0.90 to 0.99. BMF is still an improvement but the relative gains in root mean square

error are smaller, running 4.18% to 33% for the case of no correlation and from 2.16% to 10.1% for

a correlation of 95%. Finally, with high diagonal elements of B and bigger sample size, BMF has a

better performance but relatively smaller than in the previous cases. However, it is still important in

many cases. Summarizing, Table 1 shows that BMF is always an improvement. The improvement is

higher for the smaller sample size and the smaller correlation between the variables of the system.

Hence, this section shows that BMF has significant gains compared to the usual estimation strat-

egy of using the coarsest frequency data in terms of root mean squared errors. Having provided a

comparison on simulated data, the following two sections illustrate two experiments widely studied in

the economic literature: first, estimating GDP at monthly frequency from monthly data, and second,

exploring the information contained in financial variables for real variables.
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4 Application I: Monthly and Quarterly Data

4.1 Data Description

This section provides an example implementation of the algorithm to data collected at monthly and

quarterly frequencies. The primary objective is to formulate a model that allows analysis of GDP at

a frequency higher than the quarterly data readily available. Since GDP is a widely cited indicator

of economic performance, using higher frequency data may help to provide more timely snapshots of

the economy than quarterly data allows.

This application is of considerable interest in the mixed frequency estimation literature. Kuzin

et al. (2010) use quarterly GDP and a set of monthly indicators to compute monthly estimates of

quarterly GDP in the Euro area following the MIDAS estimation strategy, Mittnik & Zadrozny (2005)

pursue a similar objective using the Kalman Filter. Aruoba et al. (2009) use a dynamic factor model

to estimate economic activity. Barhoumi et al. (2008) compare several estimation strategies that

generate monthly GDP estimates using quarterly GDP and monthly indicators, Diron (2008) assesses

the ability of real-time monthly data to help forecast quarterly GDP, and Marcellino & Musso (2010)

study the estimation of real-time output gaps.

To keep the exercise simple and transparent, this application combines monthly data on industrial

production, inflation, and the unemployment rate with quarterly real GDP data for the US. The data

are the twelve-month change in industrial production and inflation, the four-quarter change in real

GDP, and the unemployment rate, all expressed as percentage points. For the mixed frequency data,

the timing assumption is that every month, the monthly data are observed, but the quarterly data are

observed only during the last month of each quarter. Since the timing assumes that a period equals

a month, the analysis below converts the quarterly results to a monthly frequency using the method

described in Section 2.3. The data run from Jan-1948 to Jun-2011, for a total of 762 months or 254

quarters. Summary statistics for the variables are presented in Table 2.
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4.2 Estimation Results

Tables 3, 4, and 5 display the estimates of the constant A, the coeffi cient matrix B, and the variance-

covariance matrix Σ, respectively, for the BMF estimator using monthly observations versus the coarse

estimation strategy of discarding the first two months of each quarter and therefore using only quarterly

observations. In all cases, the ordering of the variables follows that in Table 2: industrial production

growth, inflation, unemployment rate, and real GDP growth.

Table 3 shows the estimates of the constant terms in the VAR, converted to a monthly frequency.

The two estimates produce somewhat different posterior means for the constant terms, but they are

all within one standard deviation across the methods. Noticeably, however, the posterior standard

deviations are uniformly smaller for the monthly BMF than for the quarterly estimates, so BMF

produces more precise estimates.

Table 4 shows the estimates of the coeffi cient matrices B, again with the quarterly estimates

converted to their monthly counterpart. Similar to the estimates for the constant in Table 3, the

posterior means across methods are close with the two methods. Again, the standard deviations

generated by BMF are uniformly smaller than those produced by quarterly estimation, which reflects

the fact that including monthly data provides more information about the persistence of the process.

Figure 1 displays the kernel density estimates of the marginal posterior densities for the implied

monthly VAR coeffi cients using the monthly BMF and versus quarterly estimation. As noted in Table

4, the point estimates do not vary greatly across methods, the bigger difference is in the posterior

standard deviations. The posteriors using the monthly BMF have sharper peaks, reflecting the lower

standard deviations. The most notable differences come in the fourth row and fourth column of

plots, which are the estimates associated with the infrequently observed quarterly real GDP. So BMF

improves the precision of the estimates for all variables, but has the biggest difference for the coarsely

observed quarterly GDP.

Table 5 reports estimates of the residual covariance matrix Σ from monthly BMF and from quarterly

estimation. In this case, there is a very substantial reduction in the posterior standard deviations for
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each of the coeffi cients. In general, the decrease in posterior standard deviations is the most noticeable

for the monthly variables, showing that including the higher frequency data tends to produce more

precise estimates of the covariances to the shocks.

4.3 Impulse Responses

The previous subsection discussed the improvement in estimates from incorporating the higher fre-

quency data, but the question remains whether the lower standard deviation translates to changes in

dynamics implied by the VAR. Figure 2 displays a comparison of impulse response functions between

the monthly BMF estimate and the quarterly estimate converted to its monthly counterpart. The

plots are very similar for the most part, suggesting that both estimates yield similar responses of

the economy to the exogenous shocks. In most cases, the responses are almost identical, with both

methodologies yielding humped-shaped responses for certain variables and monotonic responses from

others. The cases that differ the most, which are the effects of GDP shocks, have generally the same

shape, and the responses are within each others’confidence bands.

Despite the similarities in the shapes of the impulse responses between the two estimates, the ac-

companied confidence bands suggest that the responses produced using BMF are often more precise

than those produced with just quarterly data. The most marked increase in precision occurs in iden-

tifying the effects of the various shocks on the monthly variables. Since these are the most frequently

observed data, the ability to include these more frequent data in the estimation using BMF produces

uniformly tighter confidence bands. For the shocks to the monthly variables, the decrease in the size

of the confidence bands is relatively small, which reflects the fact that since those data are observed at

the same frequency, adding more frequent observations doesn’t have as much of an impact. The more

significant reduction in the width of the confidence bands occurs for the effects of GDP on the monthly

variables. With the coarsely sampled estimation method, since the data are observed quarterly, co-

movements of the variables, and hence the effects of shocks, are relatively diffi cult to distinguish. On

the other hand, with BMF the shocks are more easily traced out since the comovements of variables are
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observed at a monthly frequency. Hence it is not surprising that the improvement of BMF is strongest

among the variables for which BMF allows more observations.

The use of the BMF estimates, therefore, serves as a significant improvement when analyzing

impulse response functions. The actual response functions differ only marginally, but the confidence

bands for the BMF estimates suggest stronger estimates of the effects of exogenous shocks. The

inclusion of the additional, more frequent observations that the BMF estimate makes it much easier

to identify the responses of those more frequent observations.

5 Application II: Weekly and Monthly Data

5.1 Data Description

The application in the previous section showed how to use BMF to combine monthly and quarterly

data, this application turns to using higher frequency financial data to inform inference about aspects

of the real economy. Financial data are often available on an almost continual basis: asset prices and

interest rates change even by the minute. This example examines how high-frequency data may help

investigate the impact of financial variables or asset prices on output. As noted above, industrial

production is available at a monthly frequency, and measures output in a set of subsectors in the

economy. Since these production sectors may be especially influenced by changes in interest rates or

oil prices, the high frequency data are measures of the level and slope of the yield curve, as well as

spot oil prices.

Interest rate conditions may affect production decisions, and oil is often an essential input to

production, so it is natural to consider these variables along with IP. A number of papers such as

Kilian & Park (2009), Kilian et al. (2009) or Kilian & Vigfusson (2011), to name a few, estimate

monthly VARs in order to study the affects of oil shocks, even though the spot oil price changes much

more frequently. So the analysis uses the spot real price of West Texas Intermediate crude oil, and a

measure of the intercept and slope of the yield curve of interest rates. The slope of the yield curve
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is defined as the difference in yields between the seven- and one-year zero coupons. The slope gives

expectations about future interest rates and because it has been frequently noted that an inverted yield

curve (negative slope) tend to precede recessions. All constant maturity zero-coupon yield data are

from the dataset by Gurkaynak et al. (2006). While these variables are available at extremely high

frequencies, the analysis below focuses on weekly data. The data run from the first week of Jan-1986

to the last week of Jul-2011, for a total of 1336 weekly observations and 307 monthly observations.

Summary statistics for the variables are presented in Table 6.

In addition to being able to address the impact of interest rates and oil on industrial production, the

choice of weekly intervals presents an interesting challenge for mixed-frequency data. The assumption

of timing is the following: the last business day of each week (usually Friday but occasionally Thursday),

the yield curve and oil spot prices are observed, and the last Friday (or Thursday) of each month, the

twelve-month growth rate of industrial production is observed. The challenge is that most months will

have four weekly observations per month, but there will be some months that have five weeks associated

with them. While BMF can handle this irregularly observed data with ease, using a method such as

the Kalman filter or MIDAS would require either ignoring the fifth week in these months or changing

the structure of the estimated equations in these months. Since the base period considered is a week,

the analysis below converts the monthly estimates to their weekly counterparts following the method

described in Section 2.3.4

5.2 Estimation

Tables 7 and 8 display the estimates of the constant A and the coeffi cient matrix B, respectively,

for the BMF estimator using weekly observations and versus the discarding all but the last week of

the month and therefore using only monthly observations. In all cases, the ordering of the variables

4 In practice, the conversion of irregularly spaced data can be cumbersome, since, in this case, there are not a fixed
number of weeks per month, and therefore equations (19), (20), and (21) cannot be directly applied. So to convert the
monthly estimates to weekly estimates, the first step is to convert the monthly to their "whole-sample" counterparts
(307 months per sample) and then to their weekly counterparts (1 sample per 1336 weeks). Because of the diffi culty of
inverting (21) in this case, the reported results here focus on the estimates of A and B.
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follows that in Table 6: yield curve intercept, yield curve slope, oil price, and industrial production.

Table 7 contains the estimates of the constant terms in the VAR, converted to a weekly frequency.

Three of the posterior means are similar across methods, the third variable, oil, shows a marked

change in posterior estimate and reduction in posterior standard deviation, but even this change is

small relative to the standard deviations.

Table 8 shows the estimates of the B coeffi cients, again with the monthly estimates converted to

their weekly counterpart. As with the previous application, most of the posterior means are similar

across methodologies, and BMF tends to have smaller posterior standard deviations. The notable

exception to the similar posterior means are the estimates associated with oil, the third variable in

the VAR. In the previous example, BMF provided the biggest reduction in standard errors for the

coarsely observed GDP, but here the biggest reduction is associated with the finely observed oil price.

The reason for this result is apparent from comparing the descriptive statistics in Table 6, which show

that the oil variable has by far the biggest standard deviation and the lowest autocorrelation by a

significant margin. Consequently, when oil is included at a high frequency, the inclusion adds a lot

more information about the dynamics of the VAR at a weekly interval.

Figure 3 displays the kernel density estimates of the marginal posterior densities for the implied

weekly VAR coeffi cients using the weekly BMF versus when only monthly data are used. The results

seen in Table 8 are striking in these plots: the posterior estimates tend to be fairly similar, but there is

significant gain in the precision of estimates associated with the third variable, which is the spot price

of oil. Moving from monthly data to weekly has a large gain in precision of the posterior estimates

associated with oil, as reflected by the high peaks of the marginal posterior in the third column and

third row of subplots.

5.3 Impulse Responses

After noting the gains in accuracy from the parameter estimates, especially for the oil variable, Figure 4

shows the effects of incorporating weekly data on the impulse response functions. As with the previous
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application, the confidence bands are smaller for the BMF estimator. And reflecting the smaller

standard errors associated with the parameters corresponding to the effects of oil, the narrowing of

confidence bands is most pronounced for the oil variables. The shapes of the impulse responses are

nearly identical across the two methodologies, but slights shifts in impulse responses from the weekly

data may lead to different conclusions. For example, the "Oil on Oil" response is not very persistent for

either case, but the relative persistence is greater for BMF. In addition, the BMF confidence intervals

for oil cover zero in the case of "Oil on Level" and "Oil on Slope" meaning that the significance of the

shocks may be reversed with the inclusion of higher frequency data.

6 Concluding Remarks

This paper considers estimation of first order VAR’s using data sampled at mixed frequencies. The

methodology uses Gibbs sampling the unobserved data at the high frequency to generate estimates

with generally smaller standard errors. The simulation experiments demonstrate that BMF produces

more accurate estimates of model parameters than the basic approach of sub-sampling at the coarse

data frequency, and the two example applications show that using higher frequency data may produce

sizable gains.

Improved accuracy is not the only advantage of the BMF estimator. Another benefit is the ability

to update forecasts of a coarsely observed variable in response to new arrival of data measured at

high frequencies. Along the lines of the applications presented above, examples include updating

forecasts of next quarter GDP in response to monthly measurements of data or using weekly or even

daily financial data to forecast aspects of the real economy. The BMF framework allows for a natural

approach to incorporate high frequency observations to the low frequency forecasts, which would avoid

the use of ad-hoc forecast revisions.

The approach is implemented here using a first order vector auto-regression for simplicity, but

there are many possible extensions that generalize the this approach. First, higher order VAR’s

can be implemented straightforwardly as the conditional distribution for the unobserved data is still
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conditionally normal, although the moments of these distributions involve some tedious algebra.

One potential advantage of of the Bayesian simulation approach is that it easily generalizes to more

complicated models. For example, both financial market and macro variables are known to exhibit

time-varying volatility. Following Jacquier et al. (1994), incorporating stochastic volatility into a VAR

setting simply requires adding an additional Gibbs sampling draw for the unobserved volatility path.

In a similar vein, the Bayesian approach can easily incorporate heavy tailed error distributions in the

form of mixture of normals or t distributions, Markov mixtures as in Albert & Chib (1993) or jumps

as in Eraker et al. (2003).

It is useful to consider how BMF compares to a Kalman filtering approach. The linearity of the VAR

coupled with Gaussian errors implies that it is possible to write the unobserved high frequency data in

a state space form, enabling the use of a Kalman filter approach to a basic model. One advantage of the

Kalman filtering approach is that it does not require posterior simulation of unobserved data. On the

other hand, the resulting likelihood function needs to be analyzed numerically. Frequentist analysis

through maximum likelihood is possible, although this requires a numerical search in a typically high

dimensional parameter space. For Bayesian inference, BMF avoids using Metropolis Hastings or other

methods that would be required in to deal with the non-Gaussian nature of the posterior computed

through Kalman filtering.

The application to weekly and monthly data in Section 5 highlights a second advantage of BMF

over the Kalman filter and MIDAS. In the case of irregularly spaced data, where there are an unequal

number of observations per unit of coarsely observed data, the specification of the Kalman filter and

MIDAS equations can be awkward and tedious, whereas BMF requires no such changes. For the

Kalman filter approach, the state equation is the VAR equation

 xt

zt

 =

 Ax

Az

+

 Bxx Bxz

Bzx Bzz


 xt−1

zt−1

+

 ut

vt

 (22)
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and the observation equation changes from

Y obst =

 I 0

0 I


 xt

zt

 (23)

if zt is observed, to

Y obst =

 I 0

0 0


 xt

zt

 (24)

if zt is not observed. In the case of mixed frequency data where the missing data occur at regular

frequencies, such as the monthly and quarterly application, the observation equation switches between

(24) and (23) systematically. With irregularly spaced data, such as the weekly and monthly applica-

tion, the switching observation equation changes at different intervals, making implementation more

diffi cult. With even more irregular observations, such as if zt has variables that are observed not at

the same frequency, the complexity in changing the observation equation can grow substantially. The

BMF approach does not require this constant changing of observation equations, since it simply draws

all the missing data conditional on the parameters regardless of the observation interval.

A potential disadvantage of the VAR approach is that, especially as the number of lags grows,

the number of parameters to estimate grows considerably. The MIDAS approach, by comparison,

typically focuses on one equation to forecast one coarsely observed variable with more frequently

observed variables. Considering this setup for the application of weekly and monthly data from

Section 5, the MIDAS approach forecasts monthly industrial production using the weekly interest

rate and oil data without putting restrictions on how industrial production affects the weekly data.

However, BMF can incorporate this flexibility by including certain variables as exogenous rather than

in the endogenous vector in the VAR. Then, for example, interest rates and IP could be affected by

the exogenous evolution of oil, thereby ignoring other feedback effects on oil. Of course, whether to

incorporate variables as endogenous or exogenous depends upon the application and research question,

but the important point is that BMF handles these restrictions with minimal modification to the VAR
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model considered here.

Another useful generalization of the VAR approach is to consider the use of BMF in connection

with linear state-space models. Consider the case with an observation equation Yt+1 = C + DXt+1,

and state-equation Xt+1 = A + BXt + εt+1, where there is a mixed sampling frequency for Yt. The

VAR(1) framework discussed in this paper nests the state-space model by writing Y ∗ = (Y,X), and

that Y ∗t+1 = A∗ +B∗Y ∗t + ε∗t+1 and A
∗ = (C,A),

B∗ =

 0 D

0 B

 . (25)

BMF then proceeds to estimate this model by simulating, as before, the sparsely observed elements

of Y, but in addition treats X as an unobserved variable —a variable observed with zero frequency.

Importantly, the algorithm for drawing the missing data applies directly in this setting. To proceed

to the second step of the Gibbs sampler which involves drawing the parameters, the algorithm needs

only slight modifications to impose the zero-constraints on B∗. Note that the estimation of VARMA

models can be implemented using this approach.

This paper has also not considered the out-of-sample forecasting ability of BMF estimators. Of

course, given the applications, forecasting is a natural extension given mixed frequency data. As with

any VAR-based method, forecasting given BMF estimates involves iterated forecasting rather than

direct forecasting. Marcellino et al. (2006) and Chevillon & Hendry (2005) discuss the advantages of

both types of forecasting, and De Mol et al. (2008) show Bayesian VARs can have good forecasting

performance.

Finally, while the BMF algorithm applies in general, identification considerations must, as usual,

be investigated on a case by case basis depending upon the application. Consequently, the BMF

framework developed in this paper represents an interesting starting point for a number of different

extensions.
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7 Appendix

This appendix shows the derivations for the analytical conditional distribution of the latent data

p
(
zt|xt, xt−1, xt+1, zt+1, zt−1,Θ

(i−1)
)

(26)

as shown in (14). First, the conditional distribution is proportional to the product of the densities of

the data at t+ 1 given data at time t, p (xt+1, zt+1|xt, zt,Θ) and the data at t given the data at t− 1,
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p (xt, zt|xt−1, zt−1,Θ):

p (zt|xt, xt−1, xt+1, zt+1, zt−1,Θ) ∝ p (xt+1, zt+1|xt, zt,Θ) p (xt, zt|xt−1, zt−1,Θ) . (27)

Recall from the VAR structure that the second of these distributions in (27) is conditionally normal:

p (zt, xt|xt−1, zt−1,Θ) ∝ l (yt|yt−1,Θ)

= exp

−
1

2

 v1

v2


′  Σxx Σxz

Σzx Σzz


−1  v1

v2


 (28)

where the inverse covariance matrix is

Σ−1 ≡

 Σxx Σxz

Σzx Σzz

 (29)

and

v1 ≡ xt −Ax −Bxxxt−1 −Bxzzt−1 (30)

v2 ≡ zt −Az −Bzxxt−1 −Bzzzt−1 (31)

Similarly, the first of the distributions in (27) is also conditionally normal:

p (xt+1, zt+1|xt, zt,Θ) ∝ exp

−
1

2

 w1

w2


′  Σxx Σxz

Σzx Σzz


−1  w1

w2


 (32)

where

w1 = xt+1 −Ax −Bxxxt −Bxzzt (33)

w2 = zt+1 −Az −Bzxxt −Bzzzt (34)
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Combining these implies

p (zt|xt, xt−1, xt+1, zt+1, zt−1,Θ) ∝ exp

{
−1

2
(zt −M)

′
W1 (zt −M)

}
(35)

where M , W1, and W2 are defined as in (15), (16), and (17). Thus, as asserted in (14), the latent

data is conditionally normal:

ẑt | ẑ\t, x,Θ ∼ N(M,W1). (36)
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Table 1: Accuracy of BMF Using Simulated Data

Root mean squared errors of parameters estimated using BMF and coarse data relative to true values over
different sample length and pseudo true parameter values. The simulated model is yt = A + Byt−1 + εt,
where yt = [xt zt]

′ , A = [Ax Az]
′ , B = [Bxx Bxz; Bzx Bzz] , εt = [εxt εzt ]

′ , εt ∼ (0, [1 ρ; ρ 1]). T is
sample size in quarters. The row labeled ’%diff’gives the percentage difference in BMF relative to using
the coarsest data.

Simulation 1.1 A = [0; 0] ;B = [0.9 − 0.04; 0.04 0.9]; ρ = 0, T = 20

Âx Âz B̂xx B̂xz B̂zx B̂zz
Quarterly 0.000478 0.000766 0.0231 0.0322 0.0701 0.133

BMF:Monthly 0.000395 0.000414 0.0188 0.0184 0.0332 0.0362
% diff -17.5 -45.9 -18.9 -43 -52.7 -72.8

Simulation 1.2 T = 80
Quarterly 0.00066 0.000748 0.0295 0.0435 0.0935 0.155

BMF:Monthly 0.000502 0.000418 0.0247 0.021 0.0426 0.0387
% diff -23.9 -44.1 -16.2 -51.7 -54.4 -75.1

Simulation 2.1 A = [0; 0] ;B = [0.9 − 0.04; 0.04 0.9]; ρ = 0.95, T = 20

Âx Âz B̂xx B̂xz B̂zx B̂zz
Quarterly 0.00117 0.00103 0.0645 0.0661 0.0481 0.0499

BMF:Monthly 0.000862 0.000859 0.0552 0.0549 0.044 0.0452
% diff -26.4 -16.4 -14.4 -16.9 -8.5 -9.43

Simulation 2.2 T = 80
Quarterly 0.000946 0.00084 0.052 0.0517 0.0392 0.0384

BMF:Monthly 0.000717 0.000724 0.0467 0.0466 0.0374 0.0369
% diff -24.2 -13.9 -10.1 -9.84 -4.51 -3.98

Simulation 3.1 A = [0; 0] ;B = [0.99 − 0.04; 0.04 0.99], ρ = 0, T = 20

Âx Âz B̂xx B̂xz B̂zx B̂zz
Quarterly 0.0029 0.00238 0.0354 0.035 0.0249 0.0258

BMF:Monthly 0.00194 0.00198 0.0324 0.0316 0.0239 0.0245
% diff -33.2 -16.6 -8.3 -9.83 -4.18 -4.85

Simulation 3.2 T = 80
Quarterly 0.00223 0.00176 0.0259 0.0258 0.0188 0.019

BMF:Monthly 0.00151 0.00152 0.0255 0.0248 0.0189 0.0189
% diff -32 -13.4 -1.65 -3.89 0.611 -0.349

Simulation 4.1 A = [0; 0] ;B = [0.99 0.004; 0.004 0.99]; ρ = 0.95, T = 20

Âx Âz B̂xx B̂xz B̂zx B̂zz
Quarterly 0.0029 0.00299 0.0589 0.0554 0.057 0.0576

BMF:Monthly 0.00263 0.00269 0.0576 0.0542 0.0554 0.0561
% diff -9.23 -10.1 -2.16 -2.15 -2.82 -2.69

Simulation 4.2 T = 80
Quarterly 0.00204 0.00194 0.0418 0.0402 0.0406 0.0416

BMF:Monthly 0.00189 0.0018 0.0406 0.0388 0.0396 0.0405
% diff -7.47 -7.43 -2.96 -3.43 -2.39 -2.48
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Table 2: Descriptive Statistics, Monthly and Quarterly Application

Basic statistics for the change in industrial production, the inflation rate, the unemploy-
ment rate, and the change in real GDP.

Mean Std.Dev. Autocorrelation
∆ln(IP) 3.207 5.961 0.965
Inflation 3.719 3.005 0.988
Unempl 5.744 1.641 0.991
∆ln(GDP) 3.249 2.755 0.845

Table 3: Parameter Estimates A, Monthly and Quarterly Application

Posterior means and standard deviations of the VAR constant terms, A. The variables
are, in order of appearance, the change in industrial production, the inflation rate, the
unemployment rate, and the change in GDP. All parameters are at the monthly frequency.

BMF:Monthly Quarterly
A1 (ln(∆IP)) -0.2348 -0.3961

(0.2697) (0.3585)

A2 (Inflation) -0.05023 0.02557
(0.0804) (0.107)

A3 (Unempl) 0.1849 0.1868
(0.03613) (0.04355)

A4 (ln(∆GDP)) 0.1393 0.01557
(0.1406) (0.1657)
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Table 4: Parameter Estimates B, Monthly and Quarterly Application

Posterior means and standard deviations of the VAR coeffi cients, B. The variables are,
in order of appearance, the change in industrial production, the inflation rate, the unem-
ployment rate, and the change in GDP. All parameters are at the monthly frequency.

BMF:Monthly Quarterly
B11 (IP on IP) 1.041 0.9757

(0.02255) (0.03406)

B12 (Inflation on IP) -0.09668 -0.1123
(0.01854) (0.02605)

B13 (Unempl on IP) 0.1662 0.1793
(0.03687) (0.04953)

B14 (GDP on IP) -0.1514 -0.04255
(0.05043) (0.07216)

B21 (IP on Inflation) 0.02818 0.04136
(0.006634) (0.009629)

B22 (Inflation on Inflation) 0.989 0.9878
(0.005464) (0.00752)

B23 (Unempl on Inflation) 0.009744 0.005253
(0.01101) (0.01449)

B24 (GDP on Inflation) -0.01966 -0.04549
(0.01459) (0.02092)

B31 (IP on Unempl) -0.01269 -0.00731
(0.003044) (0.003926)

B32 (Inflation on Unempl) 0.008113 0.008263
(0.002467) (0.003029)

B33 (Unempl on Unempl) 0.972 0.974
(0.004923) (0.005923)

B34 (GDP on Unempl) -0.001899 -0.01156
(0.006804) (0.008528)

B41 (IP on GDP) 0.1042 0.07226
(0.0125) (0.01543)

B42 (Inflation on GDP) -0.02476 -0.0313
(0.009531) (0.0118)

B43 (Unempl on GDP) 0.0644 0.07402
(0.01903) (0.02276)

B44 (GDP on GDP) 0.7696 0.8286
(0.02761) (0.03299)
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Figure 1: Posterior Densities for Monthly and Quarterly Application
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Table 5: Parameter Estimates, Σ, Monthly and Quarterly Application

Posterior means and standard deviations of the covariance matrix Σ. The variables are,
in order of appearance, the change in industrial production, the inflation rate, the un-
employment rate, and the change in GDP. All parameters are at the monthly frequency.

BMF: Monthly
2.268 0.054 -0.1251 0.6295
(0.1188) (0.02499) (0.01215) (0.0619)

0.054 0.2033 -0.006702 -0.008757
(0.02499) (0.01048) (0.003321) (0.01574)

-0.1251 -0.006702 0.04074 -0.05687
(0.01215) (0.003321) (0.002091) (0.009803)

0.6295 -0.008757 -0.05687 0.5795
(0.0619) (0.01574) (0.009803) (0.04879)

Quarterly
3.6802 0.0435 -0.2581 1.0575
(0.3647) (0.0727) (0.0326) (0.1306)

0.0435 0.3071 -0.0083 0.0042
(0.0727) (0.0291) (0.0078) (0.0312)

-0.2581 -0.0083 0.0425 -0.0941
(0.0326) (0.0078) (0.0041) (0.0133)

1.0575 0.0042 -0.0941 0.6850
(0.1306) (0.0312) (0.0133) (0.0669)

Table 6: Descriptive Statistics, Weekly and Monthly Application

Basic statistics for the one-year interest rate, slope of the yield curve, monthly growth rate
in the real price of oil, and industrial production.

Mean Std.Dev. Autocorrelation
Level 4.467 2.365 0.999
Slope 5.699 1.862 0.997
ln(∆Oil) 0.232 10.039 0.706
ln(∆IP) 2.165 4.145 0.997
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Figure 2: Impulse Responses for Monthly and Quarterly Application
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Table 7: Parameter Estimates A, Weekly and Monthly Application

Posterior means and standard deviations of the VAR constant terms, A. The variables
are, in order of appearance, the yield curve level, yield curve slope, change in real price of
oil, and industrial production growth. All parameters are at the weekly frequency.

BMF:Weekly Monthly
A1 Level -0.01043 -0.009877

(0.01292) (0.01478)

A2 Slope 0.01737 0.01502
(0.01549) (0.01633)

A3 ln(∆Oil) 0.7281 0.184
(0.7478) (1.216)

A4 ln(∆IP) -0.1376 -0.1097
(0.05292) (0.04865)
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Table 8: Parameter Estimates B, Weekly and Monthly Application

Posterior means and standard deviations of the VAR coeffi cients, B. The variables are, in
order of appearance, the yield curve level, slope of the yield curve, change in real price of
oil, and industrial production growth. All parameters are at the weekly frequency.

BMF:Weekly Monthly
B11 (Level on Level) 0.9948 0.9949

(0.003563) (0.004036)

B12 (Slope on Level) 0.003914 0.003801
(0.004396) (0.005023)

B13 (Oil on Level) 0.0004109 0.001773
(0.0003272) (0.0009227)

B14 (IP on Level) 0.002741 0.002648
(0.0008671) (0.0009658)

B21 (Level on Slope) 0.004161 0.004179
(0.004294) (0.004494)

B22 (Slope on Slope) 0.993 0.9935
(0.005288) (0.005588)

B23 (Oil on Slope) 0.0005827 0.002013
(0.0003895) (0.001035)

B24 (IP on Slope) -0.000564 -0.0006573
(0.001044) (0.001086)

B31 (Level on Oil) 0.1082 -0.03949
(0.2101) (0.4097)

B32 (Slope on Oil) -0.2079 -0.01346
(0.2555) (0.4528)

B33 (Oil on Oil) 0.7065 0.4741
(0.01933) (0.1265)

B34 (IP on Oil) 0.01108 0.04647
(0.05147) (0.1123)

B41 (Level on IP) -0.04702 -0.04703
(0.01466) (0.01352)

B42 (Slope on IP) 0.06293 0.05783
(0.01804) (0.01664)

B43 (Oil on IP) 0.003177 0.007024
(0.001624) (0.003202)

B44 (IP on IP) 0.9945 0.9965
(0.003479) (0.003295)
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Figure 3: Posterior Densities for Weekly and Monthly Application
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Figure 4: Impulse Responses for Weekly and Monthly Application
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