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Abstract

This paper discusses a practical estimation issue for time-varying transition probability

(TVTP) Markov switching models.  Time-varying transition probabilities allow researchers to

capture important economic behavior that may be missed using constant (or fixed) transition

probabilities.  Despite its use, Hamilton’s (1989) filtering method for estimating fixed transition

probability Markov switching models may not apply to TVTP models.  This paper provides a set

of sufficient conditions to justify the use of Hamilton’s method for TVTP models.  In general, the

information variables that govern time-variation in the transition probabilities must be

conditionally uncorrelated with the state of the Markov process.
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1. Introduction

Regime switching is an important economic and econometric issue.  Economists often

ask “what if” questions which involve economic implications of regime change.  Good examples

of this in the macroeconomics literature are changes in fiscal/monetary policies and in exchange

rate regimes.  Econometrically, analyzing regime switches is particularly difficult because

econometricians rarely (directly) observe regime switches, but must infer them from the data.

Inference about unobserved regime switching suffers from the curse of dimensionality.  The

dimensionality, for example, of the state space in a two regime model is 2 T, where T is the length

of the data series.  To overcome this curse, Goldfeld and Quandt (1973) and Cosslett and Lee

(1985) pioneered methods to estimate regime switching models and to draw inferences about

unobserved switching.  Hamilton (1989) opened up these models to dynamic macroeconomic

analysis by developing computational methods to deal with lagged dependent variables.

Hamilton’s fixed transition probability (FTP) Markov switching model has yielded important

macroeconomic evidence of regime switching.

An extension of fixed transition probability Markov switching model to incorporate time-

varying transition probabilities has offered another set of useful regime-switching models and

has led to many interesting studies because of their intuitive appeal.  In a time-varying transition

probability (TVTP) Markov switching model, transition probabilities are allowed to vary with

such information variables as the strength of the economy, deviations of fundamentals from

actual values, and other leading indicators of change.  Examples of these extensions show up in

many fields.  Researchers have used TVTP models to study business cycle fluctuations (Filardo,

1994), interest rate dynamics (Gray, 1996), bubbles and asset pricing (van Norden and Schaller

1997), and exchange rates (Diebold, et.al. 1994, Engel and Hakkio 1994).



A standard empirical approach to estimate the TVTP model is t o use both conditional

MLE and filtering methods such as Hamilton’s filter for FTP models (also see Kim, 1994 and

Gray, 1996).  Despite the apparent reasonableness of this approach, the conditions that justify

this approach for TVTP models are generally not known.  The complication in the TVTP model

arises from the presence of additional data, z, in the unconditional likelihood function.  In

general, the presence of the z data implies the need to jointly estimate the parameters of the y and

z processes.  Thus, knowing sufficient conditions to justify conditional MLE for the TVTP

models is valuable because researchers can then ignore estimation of the parameters of the z

process which are typically considered nuisance parameters.

This paper outlines sufficient conditions to justify conditional MLE and standard filtering

for TVTP models.  The choice of information variables, z, in the transition probabilities is

nontrivial.  It requires judicious choices and keen understanding of the economic model, the

econometric model, and the statistical properties of the variables in the transition probabilities.

This paper shows that conditional exogeneity between the information variables, zt, and the

unobserved state variable, St, validates Hamilton’s estimation approach for the TVTP model.

This restriction provides some guidance on how to choose information variables for time-varying

transition probabilities.

2. Proto-typical TVTP model

A proto-typical TVTP model with state-dependent means, predetermined right-side

variables, and normally distributed errors is
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r LLL φφφ K  is the lag polynomial, t
S St

10 µµµ +=  is the state-dependent

mean, ),0(~ 2σNet , and }1,0{∈tS .  (This model can easily be extended to include state-

dependent AR coefficients, 
tSΦ , state-dependent error processes, 

tse , and other dependent

variables, xt.)  The two-point stochastic process on St can be summarized by the transition matrix
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where the history of the economic indicator variables is },,,{ 1 K−= ttt zzz .

With AR dynamics of order r, the conditional density  f * is
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and the conditional log-density function is ∑ = −−= T

t trtt yyyf
1 1 )].;,.|(*ln[),(ln θθπ z z|y K

As is evident in equation (3), the expected conditional density function is formed by

conditioning on z and integrating the state of the economy, St, out of the joint density

function, )|,,( θTTTf Szy .  The standard estimation approach in the literature is to recast the

expected conditional density function in terms of θ and maximize the conditional likelihood



function π(θ | y, z ) , given the observables y and z.  A key question arises about whether standard

estimators from this conditional likelihood have the same statistical properties as those from the

unconditional joint likelihood.  The answer depends on the distributional relationships between

the information variables, zt, the unobserved states, St, and the observed dependent variable, yt.

The next two sections investigate a set of distributional conditions to justify MLE estimation of

the TVTP model based on the conditional likelihood function.  The distributional conditions are

derived from the ability to factor the unconditional likelihood into a concentrated likelihood

function.

3. Markov switching and MLE estimation issues

Kiefer verified the desirable properties of MLE estimators for FTP Markov switching

models with i.i.d. data.  This section reviews his results and discusses how they relate to the

estimators of the TVTP model.

Fixed transition probability model .  Kiefer (1978) showed that MLE estimators of a i.i.d.

FTP Markov switching model (without z variables) are consistent and asymptotically normally

distributed.  Kiefer’s key lemma states:  Let )|( θπ y  be the probability density function,

),,( 1 kθθθ K=  be the vector of unknown parameters, Tyy ,,1 K  be independent observations on

y, and the likelihood equations are given by 0)(ln =
∂

∂
θ

θπ , where ∑ == T

i iyf
1

)|(lnln θπ .  Under

quite general conditions on the derivatives of the likelihood (differentiability, boundedness, and

positive definiteness), there exists a unique and consistent estimator θ̂  corresponding to a

solution of the likelihood equations.  Further, )ˆ( θθ −T  is asymptotically normally distributed

with mean zero and covariance 1)( −θI , where )(θI  is the Fisher information matrix.



Hamilton (1993) assumes that Kiefer’s asymptotic distribution theory for an i.i.d. Markov

switching model applies to the model with lagged dependent variables.  The presence of the

lagged dependent variables complicates the state space.  Hamilton proposes a Kalman filter-like

procedure to integrate the effect of the lagged states out of the marginal likelihood function.  The

integration simplifies the likelihood into one similar to the likelihood treated by Kiefer, thereby

motivating the use of MLE estimators for Hamilton’s FTP model.

TVTP model and factoring the likelihood function.   With the introduction of z variables in

the joint likelihood, it is not obvious that Hamilton’s approach for the FTP model yields valid

MLE estimators for the TVTP model.  Generally, the likelihood equations from a conditional

likelihood are not equivalent to the likelihood equations from an unconditional likelihood.  If,

however, the likelihood function can be concentrated, then they are equivalent.

A concentrated likelihood function simplifies joint estimation because it obviates the

need to jointly estimate all the parameters in the likelihood function.  Following Amemiya

(1985), a concentrated (log) likelihood function is one that can be written as
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The benefit of this type of likelihood function is clear.  Given the factorization of the likelihood

in equation (4), consistent estimates of 1θ  can be calculated by solving for the roots of the

concentrated likelihood equations, 0)(ln

1

1 =
∂

′∂
θ

θπ , where )( 1θπ  is the concentrated likelihood

function of 1θ .  In other words, regardless of the value of 2θ , 1θ  is consistently estimated by



maximizing the concentrated likelihood function.  The next section investigates sufficient

conditions to factor the TVTP joint likelihood function into one piece that is the function of the

parameters that determine the y process and another piece that is a function of the parameters that

determine the z process.  The key to understanding the conditions under which Hamilton’s FTP

approach can be extended to TVTP models comes from the conditions necessary to factor the

joint likelihood into a concentrated likelihood.

4.  Application to the proto-typical TVTP model

To simplify the notation, the T-period problem can be written as a two-period problem

without loss of generality.  For an economy that lasts two periods, the vector ),,,,( 11122 zSySy

completely describes the economy.  The random variables ),( 22 Sy  and ),,( 111 zSy  are assumed

to have a joint distribution which is summarized by the probability density function

)|,,,,( 21112 Θ∈θπ SSzyy .  It is assumed that the ),,( 121 zyy  vector is observed by the

econometrician, and importantly, S1 and S2 are not observed.

Given the marginal distributions of S1 and S2, the influence of S1 and S2 could be

integrated out of the density function to yield an expected density function,

∑∑=
12

)|,,,,()|,,( 21112112
SS

SSzyyzyy θπθπ .  In general, the distribution is intractable

because of the curse of dimensionality in unobserved discrete state models.  Another way to

resolve this problem is to use the conditional marginal distributions of S1 and S2 that are of much

lower dimensionality.  The filters advocated by various researchers have offered different

procedures to accomplish this.  The issue of this article is to show auxiliary conditions for these

filters to generally deliver estimators with desirable MLE properties.  To this end, the joint



likelihood is rewritten in a form to show the conditions sufficient to guarantee the favorable

properties.  To do this, various distributional assumptions and identities need to be first outlined.

Assumptions implied by the proto-typical TVTP model.  The proto-typical TVTP model

implies the following four restrictions:

(A1)  ),|( 111 zSyπ  is independent of 1z , or )|(),|( 11111 SyzSy ππ =

(A2)  ),,|( 1112 yzSSπ  is independent of 1y , ),|( 111 zSyπ

(A3)  ),,,|( 11122 yzSSyπ  is independent of or  ),,,( 111 Szy

         )|(),,,|( 2211122 SyyzSSy ππ =

 (A1) says that y1 is independent of z1 conditional on the state being known.  This is

directly verified by looking at equation (1).  (A2) is implied by the Markovian evolution of the

states.  (A3) tells us that the past states S1 and the information in z and y do not help to determine

the value of y at time 2.  This essentially reduces equation (1) to an i.i.d. model.  This assumption

simplifies the notation but does not materially affect the results of this section.

Some useful distributional identities.  Bayes’ rule and integrating the probability density

function with the condition distribution on the states yields some useful substitutions:
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Deriving the concentrated likelihood function.   Under these conditions, the likelihood

function can be rewritten to isolate the influence of the z process.  The joint likelihood function

can be written as
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Specifying the dependence on the parameter vector θ will help to show how to

concentrate the likelihood function.  In particular, partition θ into two subvectors ),( 21 θθ , where

1θ  includes the parameters that characterizes the y and S process, and 2θ  includes the parameters

that characterizes the z  process.  For example, in the univariate case, )( 11 θgyt = and

)( 22 θgzt = .  Equation (5) can be rewritten to show the dependence on ),( 21 θθ as
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This equation shows that estimation of the 1θ  parameters generally requires simultaneous

estimation with the parameters of the z process, 2θ .  To see this, notice that the last term in

equation (6) is the only term that involves the parameters of the z process.  Unless this term can

be moved outside the double summation, then the likelihood cannot be concentrated and joint

estimation is necessary.

More important, this equation reveals sufficient conditions to concentrate the likelihood

function.  If the last term in equation (6) is does not vary with S 1 and S2, then it can be factored

out of the summation.  Different assumptions about the relationship between 1z  and 1S  will

determine whether 
)(
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z
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θ

θ

π
π

 is equal to 1, a constant k, or will vary with the state.

In general, the last term can be factored out of the integration if the following relationship

between 1z  and 1S  holds:

(A4)  Given 1y , 1z  is conditionally uncorrelated with 1S ; )|(),|( 11111 22
yzSyz θθ ππ = .

Under this assumption, the joint likelihood can be rewritten as
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  being factored out of the summation because it does not depend on either S1 or

S2.



Assumption (A4) clarifies a class of econometric models of 1z  that generate valid

maximum likelihood estimators.  In models where 1z  is conditionally uncorrelated with (or

independent) of 1S , the parameters of the z process of the concentrated out of the joint likelihood

and therefore yield MLE estimators with their desirable statistical properties.

5.  Extensions and practical applications

Assumption (A4) guarantees the factorization of the likelihood function into the

concentrated likelihood function of the parameter 1θ  and the concentrated likelihood function of

the parameter 2θ , so that the local maximum likelihood estimator 1θ  is consistent and

asymptotically normal.  Assuming that 1θ  is in the interior of 1Θ , 
1θπ  will be uniquely

maximized regardless of the value of 2θ , given that the roots of its concentrated likelihood

equations are zero.

Relaxing (A3) to allow lagged dependent variables would not materially change the

results about the conditions to concentrate the likelihood function.  Assumption ( A4) is still

sufficient condition to concentrate the likelihood function and establish the desirable MLE

properties of the estimators.  Despite the presence of lagged dependent variables, it is usually

assumed that Kiefer’s asymptotic distributional results apply to this case (even though as

Hamilton (1994) points out there has not been a formal demonstration of this in the literature).

One practical issue in choosing valid information variables for a TVTP model is whether

the transition probability information variables are uncorrelated with contemporaneous state.

Many studies have used lagged information and assume that condition ( A4) holds.  This is fairly

reasonable for many problems as long as zt-1 is considered to be predetermined with respect to St.



Using lagged information such as zt-1, will not always be valid.  This practice will be

invalid in cases when the yt responds to the underlying state of the economy with a lag.  In such

cases, the use of lagged z will violate condition (A4).  In general, practitioners must be cognizant

of the possibility that the state of the economy may be determined prior to realizations of y and z.

It is of special note that assumption (A1) in the proto-typical TVTP model was not used

to derive (A4).  Therefore, Hamilton’s MLE approach is valid in the cases where 1z  is not

independent of 1y .  In other words, z is not restricted to the transition probability function but

can be used as right-hand-side regressors in equation (1).  In this case, the nonlinear relationship

between the z in the output equation and z in the transition probability equation is sufficient to

identify the parameters.  Hamilton’s methods are valid as long as z satisfies condition (A4).

Finally, in some applications contemporaneous zt can be used in the time-varying

transition probabilities and use the extended Hamilton filter to estimate the parameters.  The

main difficulty is verifying that condition (A4) holds.  In most cases, direct verification is not

possible because S is unobserved.

6. Conclusions

The Hamilton’s Markov switching model has been a valuable tool in time-series

econometrics to examine changes in regimes.  This paper investigates the conditions under which

Hamilton’s filtering methods can be extended to time-varying transition probability Markov

switching models.  In general, the zt variables that enter the transition probability functions must

be contemporaneously conditionally uncorrelated with the unobserved state, S t.  If this condition

is not met in a particular empirical application, other methods need to be employed to deliver



MLE estimators with the typical desirable properties.  And, of course, joint estimation of the y

and z is always an option.
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