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Widespread concern has surfaced in recent years over the inability of
large scale macroeconomic models to produce accurate forecasts. The poor
predictive performance of the large macroeconomic models first appeared in the
1970s as most models predicted inflation and unemployment rates well below
actual rates. More recently, most large models did not predict the stfength
with which the U.S. economy would rebound in 1983 from the recession that
ended in 1982. For example, in February 1983 the Council of Econmomic Advisers
predicted that réal gross national product would grow 3.1 percent from the
fourth quarter of 1982 to the fourth quarter of 1983 and that the unemployment
rate including armed forces stationed in the United States would be 10.4
percent in the fourth quarter of 1983.1/ Actual fourth quarter over fourth
quarter real GNP growth was 6.2 percent, while the unemployment rate fell to
8.4 percent by the fourth quarter of 1983.

Because of the large models' poor forecasting performance, the use of
vector time series models for forecasting purposes has been proposed by some
economists as an alternative to structural econometric models. Vector time

series, or vector autoregressive, models are atheoretical models that use only

the observed time series properties of the data to forecast economic
variables. Because they are atheoretical, vector time series models can be
estimated without imposing the prior restrictions that are necessary to
identify and estimate structural econometric models. Thus, both Keynesians
and Monetarists could use the same vector autoregression (VAR) to forecast
various economic variables even though the two groups have a different view of
the true structure of the economy. Furthermore, although a VAR cannot be used
to make inferences about the structure of an economy, they can be used to
estimate parameters of interest to policymakers, such as the interest

elasticity of real income.
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This article provides a theoretical and empirical introduction to vector
autoregressive modeling. The first section provides a technical discussion of
time series models in genmeral, with special attention devoted to VARs. 1In
section two, the uses of a VAR are discussed. A simple two variable VAR is
presented in section three. In section four a VAR is estimated using U.S.
data on money, income, and prices. Section five shows how the VAR is related
to a standard structural econometric model. A set of Monte Carlo experiments
is used in section six to evaluate the forecasting performance of the VAR

relative to a simple structural model.

1. VARS: A TECHNICAL DISCUSSION

A vector autoregressive model is a fairly general multivariate time
series model. Thus, it may be easiest to understand what a VAR is by first
discussing a specific univariate time series model. The multivariate model
will then be discussed as a generalization of the univa;iate model.

a. Univariate time series models

In a univariate time series model the past history of a single variable
is used to model the behavior of that same series. In general, a variable at
time t, y¢, is modeled as a function of past values of that variable plus
current and past random error terms. The difference between univariate and
multivariate times series models, therefore, is that in a multivariate model
y¢ is modeled as a function of current and past values of other variables and
their random error terms as well.

The simplest univariate time series model is the first-order

autoregressive, AR(1l), model,

(1.1) Yt = ayt-l+ut la] <1



[
(=]

(1.2) E(ut) =
g2

E(uf)

0, t#s

E(utug)

E(ytug) = 0, t<s.
The AR(1) model expresses the current value of y as the sum of a fraction of
the previous value of y and a random white noise disturbance term. The
conditions for u to be a white noise process are given by equations (1.2).
Because (1.1) does not include a constant term, y can be viewed as a variable
with a zero mean or as the deviation of a variable from its non-zero mean.
The‘primary use of a univariate time series model such as equation (1.1)
is to forecast future values of the variable y. In order to forecast future
values of y, it is necessary to first specify the information set that is

known at the time the forecast is made. If the information set at time t-1

contains yt-], then the conditional expectation of yt at t-1 givem yt-1 is

(1.3) E(yelye-1)

E(ay¢-1lye-1) + E(uglye-1)

ayt-l.

Given the information set at time t-1, the conditional expectation of yt at
time t-1, is an optimal, in a mean square error semse, linear forecast of ye¢.
If the information set at time t-1 does not contain any past values of y, then

the unconditional expectation of y¢ is

(1.4) E(yt)

E(ayt-1)+E(ug)

0.
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This result is most easily seen after writing y+ in terms of past error terms
alone. Defining the lag operator L as Lixt = Xt-i, and letting I run from i=0

to ©, (1.1) may be rewritten as

yt = aLyt+ut

(1-8L)Yt = ut

yt = (1_ut

(z aiLi)ut

Zaiut-i .
Thus,

E(yt) = I aiE(ut-i) = 0,

Because past values of the variable are usually known to the forecaster, the
conditional expectation is gemerally used to forecast future values of y.

The above éransformation of (1.1) to

-}

(1.5) vyt = I alug-i
i=0

is the equivalent moving average (MA) representation of the first-order
autoregressive representation (1.1). The MA representation of (1.1) is
defined if and only if y is a statiomary process. Statiomarity is imposed by
including the comdition that lal <1 im (1.1).2/ That is, the term (1-a1)-1

equals I aiLi if and only if lal <l. More generally, y is stationmary if
i=0

and only if the root of the characteristic equation from (1.1),



(1.6) l_aL = o,

is greater than one,é/

Economic time series data are usually not stationmary. Statiomarity
usually can be achieved by taking first or second differences of the raw data
or of the natural logarithm of the raw data. Stationarity implies that the
effect of a non-zero current error term on future values of y declines over
time in the sense that y will converge toward its unconditiomal expected
value.4/

Univariate time series models usually take a more general form than the
AR(1) model. The Wold decomposition theorem states that any statiomary
stochastic process may be writte; as the sum of a deterministic compoment and
a stochastic moving average, possibly of infinite order, component. Assuming

that there is no deterministic component, the stationary stochastic process,

y, may be written as

(1.6) yt = b*(L)ug
b*(L) = 1-bjL-bgL2-...
E(ug) = 0
E(ui) = g2

E(utug) = 0, t#s.

If the roots of the characteristic equation b*(L) = l-bjL-boL2-... = 0 lie
outside the unit circle, the process (1.6) is said to be invertible and may be '

written as a pure AR model, possibly of infimite order,

(1.7) a*(L)yt = ug, a*(L) = b*(L)"1

a*(L) = l-ajl-aL2-...,



or vyt = a(L)ye-1tug
a(L) = (1-a*(L))L-1 = aj+asL+a3L2+....3/
Thus, if y follows an AR(1l) process, a*(L) = l-allL and in (1.6) bi = ali.
It is often the case that b*(L) may be written as the ratio of two

relatively low order polynomials in the lag operator,

(1.8) ¥ = d*(L)ut
c*(L)

d*(L)

1-djL~daL2-,..~dqLd.

If y¢ can be written as (1.8), them b*(L) is said to be a ratiomal polynomial
and y is said to follow an ARMA(p,q) process.ﬁ/ Equation (1.8) can be

rewritten as

(1.9) vt = c(L)yg-1 + d(L)ug-1 + ug

e(L) = (1=e*(L))L-Ll = ¢} + coL + c3L2 +...+ chP'1

d(L) = (d*(L)-1L-L = =dj - doL - d312 -...- dgLa-]

The optimal linear forecast of yt given all past information about y is the

conditional expectation of y given all past values of y,

(1.10) Et-17t = E(ytlye-1,¥t-25+.+) = c(L)yt-1+d(L)ue-1.

The methods used to identify the numerical values of p and q and to estimate

c(L) and d(L) may be found in Charles Nelson (1973).
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Although (1.9) is a general univariate model, it is still quite limited.
As shown in equation (1.10), only past information about y is used to forecast
future values of y. For example, if y represents real GNP, forecasts of
future real GNP are formed using past values of real GNP alone. The problem
with this procedure is that other variables, say, interest rates and money,
may be useful in predicting future values of real GNP. This problem is solved
by using multivariate time series models.

b. Multivariate time series models

In a multivariate time series model the interaction between several
variables is used to forecast each individual variable. Thus, in a multi-
variate time series model the forecast at time t of a variable y is a function
of past values of itself and current and past values of all other variables in
the system.

As with univariate time series models, the simplest multivariate time

series model is a first—order autoregressive, VAR(1l), model,

(1.11) Yt = Ayg-1tug
(1.12) E(ug) = 0
E(ugue') = 2
E(ugug') = 0 t#s
E(yeug') = 0 t<s,

where y is an nxl vector of variables, A is an nxn matrix of coefficients, and
u is an nxl vector of white noise disturbance terms. As with the univariate
model, if the information available at time t-1 is y¢-}, the conditional

expectation of yt given yt-1 is



(1.13) E(ytlye-1) = Aye-1.

Given the information set at time t-1, the conditional expectatiom of yt at
time t-1 is an optimal linear forecast of yt-

If y is a»stationary series, an equivalent vector moving average (VMA)
representation of equation system (1.11) may be derived. The vector
stochastic process y is stationary if and only if the roots of the

characteristic equation
det(I-AL) = 0
lie outside the unit circle.l/ The equivalent VMA representation of (1,11) is

(1.14) ye = I Aiut—imgj
i=0
' The Wold decomposition theorem applies to any stationary vector
stochastic process, say, y. Assuming there is no deterministic component, y

may be written as a stochastic VMA process, possibly of infinite order,

(1.15)  yg = B*(L)ug
' * *
B*(L) = I-BjL~BgL2-...

E(ug) = 0
E(ugug') = 2

E(ugug') = 0  t#s.

If the roots of the characteristic equation



det(B*(L)) =0

lie outside the unit circle, yt is said to be an invertible process and may be

written as a pure VAR model, possibly of infinite order,

(1.16) A*(L)yt = ut, A*(L) = B*(L)-l

A*(L) = I-A1L-A2L2-...,

or

(1.17) ¥t = A(L)yg-1+ut
Thus, if y follows a VAR(1) process, A*(L) = I-AjL and in (1.15) Bj = A1i.

Finally, if B*(L) = D*(L)/C*(L),

(1.18) y¢ = D*¥(L)ut
C*(L)
c*(L) = I-C1L-C2L2-...-CpLP

D*(L)

I-DjL-D2L2-...-Dgld,

then B*(L) is said to be a rational matrix polynomial and y is said to follow
a vector ARMA(p,q), or VARMA(p,q), process. The optimal linear forecast of yt
given all past information about y is the conditional expectation of y given

all past values of y,

(1.19) E¢-1yt = E(yelye-1,¥t-2,+..) = C(L)ye-1+D(L)ue-1

c(L)

(I-G*(L))L-1 = C+C2L+C3L2+. .. +CpLP~

D(L) = (p*(L)-1))L-1 = -D}-DyL-D3L2~...-DqLq"]
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Although the theoretical development of multivariate time series models
is quite similar to the theoretical development of univariate time series
models, identifying the numerical values of p and q in multivariate models is
much more difficult. Well documented procedures exist for identifying p and q
in univariate models. However, not only is it difficult to identify p and q
in VARMA models, but the robustness of the identification and estimation
procedures known to date is unclear.l10/

To get around this froblem, multivariate time series models are usually
estimated as pure VAR(p) models. Recall that the VAR representation of a
stochastic vector of variables exists only if the process is invertible.
Invertibility implies that the elements of the coefficient matrices Aj in
equation system (1.16) approach zero as i increases. Although A*(L) may be an
infinite order polynomial in the lag operator L, a VAR(p) model will be a
fairly accurate representation of the true model if p is chosen such that the
elements of Aj, i>p, are close to zero.

ane p is chosen, the p-th order VAR may be estimated by ordinary least
squares. Because the right-hand side variables in (1.17).are all past values
of y, they are all predetermined. Thus, the system (1.17) can Be consistently
estimated using ordinary least squares without being concerned about the
existence of simultaneous equations bias. Furthermore, estimating each
equation separately using ordinary least squares produces asymptotically
efficient estimates because the right—hand side variables are the same in
every equation. Thus, VARs are easy to estimate because efficient and
consistent estimates can be produced without using system estimation
procedures. Although the relationship between VARs and standard econometric
models will be discussed in section three, it is useful to note that in terms
of the standard econometric literature, the system of equations (1.17) is the

reduced form of some underlying structural system of equatioms.
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Another useful transformation of (1.17) is to write the system of
equations as a classical recursive system. From (1.15), the contemporaneous
covariance matrix of u is
E(utut') = Z.

Using the Cholesky decomposition of I, the covariance matrix may be written as
r= g-lg-1'

or

H:H' = I,

where H-1l is lower triangular. Because H is also lower triangular,

premultiplying (1.17) by H results in the recursive system

HA(L)y¢-1+Hut

Hy,

or

(1.20) Hy, = A**(L)yg-1+et

A¥*(L) = HA(L) = HAj+HAoL+HA3LZ+...

et = Hut

E(et) = E(Hut) = 0

HIR'

]
(]

E(etet') = E(Hutug'H')

E(Hupug'H') = HOH' = 0 t#s.lL/

E(Etes')
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Thus, the equation for yjt contains contemporaneous values of yj, j<i, and the
vector error term is a vector white noise process, with the variance of each
component normalized to equal one and the contemporaneous covariance between

all individual error terms in e equal to zero. That is,

® % k% k&
hjyie = zl(a11,sy1t-s+a12,sy2t—s+-..+a1n,synt-s) +elt
s=
e *dk *k
hpoyat = -h21ylt+ Zl(a21,sylc-s+azz,sy2t_s+--.+azn.synt_s>+ezt
s=
i-1 @ * *k *ek
hjiyit = -.Zlhinjt+ zl(ail,sYIt—s+aiZ,sY2E-s+---+ain,sYnt—s)+eit
J= s=
n-1 ® * *% ek
bpnynt = ‘.Zlhanjt+ zl(anlsSYlt—s+an2,SY2t-s+---+ann,sYnt-s)+ent,
where
ej¢ = hjjule

e2t = h2lult+h22u2t

ejt = hjjult+hjouoe+...+hijujt

ent = bnlult+bp2u2t+...+bhppunt-

Although both uj; and ejt are referred to as the error or imnovatiom in yj,
clearly they are not equal to each other unless H=I--which is true only ifZ =I
to start with. The difference between e and u is that the information set
used to calculate u in (1.17) is different from that used to calculate e in

(1.20). From (1.17)
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ult = y1e-E(y1elye-1, ye-2s «oo)
uze = y2t-B(y2elye-1, ye-2, «..)
unt = ynt-E(yntlyt-1, yt=2s¢++)s

whereas from (1.20)

elt = ylt-E(yltlyt-1, yt-2, ...)
ezt = y2t-E(y2t|y1ts yt-1, yt=2s o)
ent = ynt~E(yntlyle,¥2ts+ s yn-1tsTt=1,Tt-250+¢)-

That is, ujt is the error in predicting yit when the information set used to
predict yit includes a11-past values of the vector y, whereas ejt is the error
in predicting yit when the information set used to predict yjt includes all
past values of the vector y and current values of yj for all j<i.

Although u is invariant to the ordering of the variables in y in (1.17)
for a given sample of data, e is not invariant to the ordering of the vari-
ables in y in (1.20) because different orderings le;d to different information
sets being used to predict yjt in the triangularized system. Techmically,
different orderings lead to different H matrices and to different linear
combinations of Uit j=1,2,...,i~1, in ejt.

The corresponding VMA representation of the recursive VAR in (1.20) is

Hy; = HA(L)yt-1+Hut
H(I-A(L)L)yt = Hug

y¢ = (I-A(L)L)~1H-1Hu;
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or

(1.21) Yt = B(L)et
B(L) = (I-A(L)L)-1H-1 = B*(L)H-1 = H-1-Bj1-B2L2-....

et = Hut

The VMA representation (1.21) is recursive with respect to the current error
term, where the error term is a white noise process in which all
contemporaneous covariance terms are zero and the variance of each element of

the noise vector is normalized.to equal one. That is,
*
(1.22) Yit = hijelr - I(b11,selt-s+b12,s€2t-5+...+bln,sent-s)

* *
y2t = h2le1t + hgzezy -I(b21,selt-s+b22,se2t-s%---

+b2p, sent-s)

* * *
yit = hilelt+hizes¢+...+hjjejt -I(bil,selt-s
+bj2,se2t-g+...+bin, sent-s)
* * *
Yot = hnlelt+hn2e2t...+hnnent ~ZI(bnl,selt-s

+bn2,332t-s+---+bnn,sent-s):

where I runs from s=1 to © and hij* is the (i,j) element of H-l., Note that
the equation for yjt contains its own contemporaneous error term as well as

the error term from the yjt equatiom, j<i.
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2., USES OF VARS

Four uses of VARs are discussed in this section. First, forecasting
with a VAR is discussed. Second, the moving average representation of a VAR
is discussed. Third, conditions for the exogeneity of a subset of variables

are derived. Fourth, the variance decomposition of a VAR is discussed.

a. Forecasting with a VAR: unconditional and conditional

VARs are often used as an alternative to sfructural econometric models
for forecasting purposes. Once the lag length of the vector autoregressive
representation of a vector of variables, y, is chosen, the VAR(p) model may be

written as

(2.1) A*(L)ye = ug
A*(L) = I-AjL-AgL2-.,.-ApLP
E(ug) = 0
E(utug') = I
E(utug') =0 t¥s
E(ytug') = 0  t<s.

Assume the relevant information set available at time t, Iy, comsists of all

current and past values of the vector y,

I = Ve Yt=lsees o

The optimal linear forecast of y¢4+1, given the information available at time
t, It, is the conditional expectation of yt+l given It. This is just the

linear least squares projection of yt+1 om Ig,
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A(L)y¢

(2.2) E(yt+11It) = Etye+l

A(L) = (I-A*(L))L-1 = Aj+ApL+A3L2+...+ApLP-1,

where Et is the conditional expectation operator, conditional om all
information available at time t. Equation system (2.1) can be updated and

rewritten as

(2.3) Ye+l = A(L)yt+ug+l.

Substituting (2.2) into (2.3), results in

(2.4) Yt+1 = Etyr+ltug+l.

Thus, using (2;2), the system of equations (2.3) can be orthogonally‘
decomposed into anticipated and unanticipated components, where Etye+1 is the
anticipated or forecasted component of yi4+] and up+] is the unanticipated
component.

The chain rule of forecasting can be used to forecast any future value

of y. Updating equation (2.3) results in

Ye+k = AD)yr+k-1 + ut+ke

Taking the expectation of yt+k conditiomal on information available at time t,

and noting that Etup+k = 0, yields the recursive expectation formula,

(2.5) E¢ye+k = A(L)Egyt+k-1.
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The k~step ahead forecast of y can be equivalently written as

(2.6) Erye+x = A(L)kye.

This is derived from writing yt+k a8

Ye+k = A(L)yt+k-1+ut+k

A(L) (A(L)yt+k-2+ut+k=-1)+ut+k

A(L)kyt+A(L)k'lut+1+A(L)k'2ut+2

+eeo+A(L)ups+g-1+ut+k

and taking the conditional expectation of y. Similarly,

(2.7) E¢yt+k=-1 = A(L)k-1y,.

Equation (2.6) can be rewritten as

(2.8) Eeyesk = AL)A(L)k-1ly,.

Substituting (2.7) into (2.8) results in the recursive expectation formula,

Thus, for a given information set, (2.5) is a simple recursive rule for

determining the optimal linear forecast of the vector yt+k. k>0. That is,

once a VAR is estimated it can be used to provide optimal linear forecasts of

the variables of interest.
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Although it is an unfortunate terminology, the conditional expectation

of yesk at time t conditional om all information available at time t is

referred to as the unconditional forecast of yt+k. That is, the term

conditional takes on a different meaning when it modifies "forecast" than when
it modifies "expectation."

Strictly speaking, VARs can only be used to make unconditional
forecasts. The problem with this is that if a subset of the vector y, say yv,
are policy variables, policymakers are interested in the forecast of ye+k
given all past information about y at time t and given alternative future
paths of the variables y¥ = yi41¥,ye42¥,,°**sYt+k¥ . According to the Lucas
critique, if any path other than the unconditional forecast is assigned to
future values of y¥, the coefficients in A(L) will generally change.. Because

the coefficients in A(L) change, conditional forecasts--forecasts in which

specific future paths are chosen for yW--cannot be made with a VAR.12/ Thus,
strictly speaking, VARs cannot be used for policy amalysis because policy
analysis utilizes conditional forecasts to choose among a set of policy
alternatives.

There are conditions, however, in which the Lucas critique is not very
damaging in the sense that conditional forecasts are reasonably accurate. If
proposed future values of y¥ are similar to realized past values of y¥, the
coefficients in A(L) will not change much so that the comditional forecast
will be fairly accurate. Furthermore, if economic agents perceive policy
changes with a lag, then in the short rum A(L) will not change. In that case,
conditional forecasts will be quite accurate in the short run. Because
changes in policy rarely deviate by large amounts from previous policies, VARs

should be a relatively accurate forecasting tool.13/
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b. The moving average representation of a VAR

The equivalent moving average representation of a VAR can be used to
forecast the response of the system of variables y to an unanticipated change
in any of the component variables of y. Equation system (1.21), which is a

compact notation for (1.22), is rewritten below as (2.9) for convenience,

(2.9) yt = B(L)et

B(L) = B—1+BIL+32L2+. [

E(et) =0
E(etet') = 1
E(etES') =0 t#s,

where H-1 is a lower triangular matrix. The ith element of ey, ejt,
represents the unanticipated component of the ith element of y, yit, at time
t--that is, ejt is the part of yijt that can not be predicted when the
information set contains current values of yj, j<i, and all past values of the
entire vector y. The coefficient matrix B(L) represents the response of the
system to a one standard error shock, or innovation, in et. The typical
element of B(L), bjj(L), is the respomse of all future values of yj to a one
standard error ome-time curremt inmovation in yj. Simce bjij(L) is the impulse
response function of yj with respect to a shock in yj, the j-th column of
B(L), b.j(L), is the impulse response function of the entire vector y with
respect to a shock in yj. In other words, b-j(L) describes the typical
response (and the optimal linear forecast) of the vector y to a normalized
(one standard error) one-time innovation in the j-th componment of y, ej,
Because the errors, say, ejt and eit, j#i, are not correlated with each other
by comstruction, the j-th column of B(L) is the response of the vector y to
the shock in Y3 alone. Thus, there is no need to be concerned about feedback

between errors across equations.
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c. Exogeneity

The exogeneity of a set of variables with respect to another set can be
defined in terms of zero-restrictions on the coefficient matrices C*(L) and
D*(L) in the VARMA (p,q) model (1.18). The VARMA (p,q) model (1.18) can be

partitioned as

: % % % *
(2.10) Cli1(r) c12(L)| |y1e D11(L) D12(L)| |ult
%* * - = % *
c21(L) cC22(L)| |y2t D21(L) D22(L)| |u2t |>

where E(ug) = 0

E(ugue') = &

E(ugug') = 0 t¥s,

* * : * *
and y1 is nixl, y2 is ngxl, Cii is nixn], C22 is n2xm2, C21 is n2xn], C12 is
n]jxn2, and Dzj is the same dimension as Czj, i,j =1,2. The set of variables
y1 is said to be exogenous.with respect to the set of variables y2 if and omly
if Crz(L) =0, DTz(L) = 0, and D;1(L) = 0. Intuitively, y} is exogenous with
respect to yi because ;1: is not affected directly or indirectly by lagged
values of y2. The condition sz(L) = 0 implies that lagged values of y2 do
not directly enter the ylt equation. The conditions Diz(L) = 0 and D;l(L) =0
imply that lagged values of y2 do not indirectly enter the ylt equation
through the error term.
The exogeneity conditions in terms of the restrictions on C*(L) and

D*(L) in (2.10) have implications for the coefficient matrices in both the VAR

and VMA representations of (2.10). If the exogeneity conditions are imposed

on (2.10), the VAR representation of (2.10) is,
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* 1 * r
(2.11) Dy1(L)~icy(L) o0 [-Ylt ult

*x 1* * 1*
Dg9(L)~1C21(L)  D22(L)™C22(L)| | y2t uze | .

Partitioning the VAR representation (1.16) conformably and imposing the

restrictions implied by (2.11) on A*(L) results in

*
A11(L) O ylt ult

E3 *
A21(L)  A22(L) || y2t u2t | -

Thus, in terms of the VAR representationm, y] is exogenous with respect to y2
*
if and only if Aj2(L) = 0. The VMA representation of (2.10), after imposing

the exogeneity conditions, is

*
(2.12) yIt cll*(1)pyi(L) O u1t

% *®
Y2t c21*(L)D11(L)  ©22*(L)D22(L)| |u2e |,

where Cij*(L) is the (i,j) block in C*(L)-l. Partitioning the VMA
representation (1.15) conformably'and imposing the restrictions implied by

(2.12) on B*(L) results in

%
(2.13) Yit B1i(L) 0 ult

* *
Y2t B21(L) Boo(L)| fu2e | .

Thus, in terms of the VMA representation, yl is exogenous with respect to y2
*
if and only if Bja2(L) = 0.
Although y] is often defined to be exogenous with respect to y2 if and

' * % * - ‘o
only if C12(L) = D12(L) = D21(L) = 0 and E(ujtuz¢) =212 = 0, the comdition
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£12 = 0 is not necessary. The reason the condition I} = 0 is not necessary
is that the time series representation for yt can always be normalized such
that there is no contemporaneous correlation between any of the error terms.
This is most easily shown using the VMA representation (2.13). For a given
covariance matrix I in (2.13), there exists a lower triangular matrix P such

that PtP' = I, Equation (2.13) may be rewritten as

(2.14) yt [B*(L)P-1][Put]

n v
B*(L)ut

’\[ rd
E(irue') = E(PugugP') = PIP' = I,

Because P-1 is lower triangular, B*(L) is lower triangular if and only if
B*(L) is lower triangular, That is, if E(ult“2;) # 0, there exists a
normalization such that giz(L) = 0 and E(tlgzét) = 0 if and only if

Biz(L) = 0, The condition E(ultu;t) = 0 need not be imposed because it can
always be met through an appropriate normalization that will result in a lower
triangular matrix B*(L) if and only if B*(L) is lower triangular. Therefore,
a necessary and sufficient condition for y] to be exogenous with respect to y2
is that the matrix of coefficients om u2t in the ylt equation of (2.13),
Biz(L), is zero or that the matrix of coefficients onI;Zt in the y]t equation
of (2.14), B12(L), is zero.

Although ;iz(L) = 0 is necessary and sufficient for y] to be exogenous
with respect to yz,'%;l(L) = 0 is sufficient but not necessary for y2 to be
exogenous with respect to yl. In terms of (2.10), y2 is exogenous with
respect to y1 if and only if C;l(L) = sz(L) = D;l(L) = 0, which implies
B;I(L) =0 in (2.13). That is, y2 is exogenous with respect to yl if and omly

if B*(L) is upper triangular. Now assume that y2 is exogenous with respect to
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Y
y1 so that B*(L) is upper triangular. Since P~l is lower triangular, B*(L)

will not be upper triangular unless P-1 is also a diagonal matrix. Thus,
%*(L) is upper triangular if and only if B*(L) is upper triangle and P is
diagonal. Therefore, if ;*(L) is upper triangular, then B*(L) is upper
triangular and y2 is exogemous with respect to yl. But if ;*(L) is not upper
triangular, y2 may be exogenous with respect to yl because B*(L) may be upper

. nk
triangular. That is, B21(L)= 0 is sufficient but not necessary for y2 to be

exogenous with respect to yi,
Finally, the VMA representation (2.9) can be used to determine the
exogeneity of a set of variables with respect to another set. The VMA

representation (2.9) is
yt = B(L)et

where B(L) = B¥*(L)E-1, et_E Hug, and H is lower triangular. This is simply

N ")
(2.14) with P=H, B*(L) = B(L), and ug = et. Partitioning (2.9) as

(2.15) r}lt B13(L) Blz(LfW elt
L}'Zt B21(L) Bzz(L)_j e2t |,

yl is exogenous with respect to y2 if and omly if By2(L) = 0. That is, y1 is
exogenous with respect to y2 if and omly if the typical element of B(L),
bij(L), equals zero for i=1,2, ..., m] and j = mn]+l, ni+2, «.., n; in other
words, if and only if the impulse response functions that relate y] to ey are
identically zero. It also follows that the condition B21(L) = 0, that is,
bjj(L) = 0 for i = n1+l, n1+2, ..., n and j=1,2, ..., n1, is sufficient but

not necessary for y2 to be exogemous with respect to yl.
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d. Variance decomposition and exXogeneity

The degree to which a set of variables is considered exogenous with
respect to another set of variables can be determined using the VMA
representation of a VAR model by computing the percentage of the expected k-
period-ahead squared prediction error of a variable produced by an innovation
in another variable. Using representation (2.9), the ith element of y at time

t+k is

«©

I bijssejst+k-se
s=0

N
e

J

The conditional expectation of yj,ts+k, conditional on all information

available at time t is

n =]

(2.17)  Egyi,esk = ° T bij,sej,tek-s-
j=1 s=k

Subtracting (2.17) from (2.16) results in the k-period-ahead conditional
prediction error of yi,t+ks conditional on all information available at time
t,

n k-1

Vi, t+k—Etyist+k = 2 z bij’sej,t+k-s~
j=1 8=0

Because ejt is uncorrelated with ejt, i = j, the expected k-period ahead
squared prediction error of yj,t+k conditional on informatiom available at
time t is,
n k-1 2 2
E(Yi, t+k-Etyi, e+k)? = _zl zobij,sEej,t+k-s
J= s=

or
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=]

k-1 5
Z bij,s
1 s=0

(2.18) E(Y3, t+k~EtYis t+k)Z =

nm

]

because E%j,t+k—s=1 by construction. Note that (2.18) is also the k-period-
ahead forecast error variance of yj t. From (2.18), the part of the expected
k-period-ahead squared prediction error of yi produced by the innovation in
Yi,t, ej,t, is

k-1

(2.19) Z bij,s*
s=0

Therefore, the percentage of the expected k-period-ahead squared prediction

error of Yits E(Yi,t+k-EtYi,t+k)2, produced by an innovation in yj,t» written

as PCNT(k,y;; vj), is

k-1
T 2
100g=0 bijs5
(2.20) PCNT(k,yi; ¥j) = .
n k-1 2
z z bijss
j=1 s=0

The value of PCNT(k,yj; yj) can be used to determine whether yj is
exogenous with respect to yj. To match the definition of exogeneity given by
the condition Bjo(L) = O in the VMA representation (2.15), let yj be the first
variable of the vector y--that is, let yj = yl. The necessary and sufficient
condition for y] to be exogenous with respect to the remaining variables in
the vector y, y2, is Bi2(L) = 0 in (2.15), which is equivalent to the
condition that PCNT(k,y1; yj) = O for all k greater tham zero and all j
greater than ome. Therefore, yi is exogenous with respect to y2 if and only
if PCNT(k,y1; yj) = 0 for all k > 0 and all j > 1.14/ 1t also follows that

yi» 3 > 1, is exogenous with respect to y1 if PCNT(k,yj; y1) =0 for all k
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greater than zero, while yj might be exogenous with respect to y1 if
PCNT(k,y3; y1) # O for all k greater thamn zero. That is, PCNT(k,yj; y1) =0

is sufficient but not necessary for yj to be exogenous with respect to yl-

Up to this point, the discussion of VARs has been quite general. To
help understand this section and to see how VARs are used, a simple two
variable VAR is used to discuss the concepts in sections one and two.

3, A SIMPLE TWO-VARIABLE VAR EXAMPLE

This section. discusses the results of sections one and two in the

context of a simple two-variable VAR, with p=1. The VAR can be written as
(3.1) xt = axt_1+byt_1+ut
(3.2) yt = cxg-]1+dyt-1+vt

(3.3) E |ug|[ug vel = 2 = | o011 012
vt 021 oc22 .

The moving average representatiom can be obtained by recursive substitution,

to obtain

(3.4) Xy = uptaug-1+(aZ+bclup-g+...
+th-1 +(ab+bd)Vt_2+ cee

(3.5) ¥yt = cup-1+(actcd)up-2+...

+vt+dvt_1+(bc+d2)vt_2+... .
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Consider the effect of an x imnovation, an increase in ugt. According to
(3.4), if up increases by 1 unit then xt increases by 1l unit. In additionm,
since ut and vt are correlated, a change in ut will be associated with a
change in v¢ on average, which causes yt to change (according to equation

(3.5)). For simplicity, assume the variance of ut and vt equal 1 and the

covariance (correlation) equals r. Then, if u; inecreases by 1, vt will, on
average, increase by r and yt will increase by r. Therefore, because u and v
are contemporaneously correlated, changes in u and v occur simultaneously so
that a change in v cannot be attributed to a pure y innovation.

How does one decompose this contemporaneous correlation? Write (3.1)

and (3.2) as a vector equation,

(3.6) ¢l = |a b|re-1]| +]|ue
ye| = |e¢ d]|yt-1 vt
Elug{lug v¢l = |1 | = I.
vt r 1
Consider the Cholesky decomposition of I : B-l-1' = 3, where H-l is lower
triangular. Then
Bl = |1 0
L; V1-r2
H = 1 0
-r 1 .
i /-2 /-2
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Next, multiply both sides of (3.6) by H to obtain

(3.8) Xy = axge-] + bYt"l + elt
(3.9) yt = rxt + (c-ra)xt-1 + (d-rblyt-1 + 1-r2 e2¢
(3.10) elt = ug

(3.11) e2¢ = (-rug + v¢)/71-r2 .

Notice that cov(el,e2) = 0. Equations (3.10)-(3.11) correspond to the matrix

equation (1.20), where

eleg( = H |ug

Equations (3.8)-(3.11) constitute a recursive system of equations: x and y are
jointly endogenous; there are no RHS endogenous variables in (3.8); x{ appears
in the. y; equation; the correlation between the errors, el and e2, equals 0.

Consider the errors el and e2. Suppose ut increases by 1 unit, so that
el increases by 1. An increase in u of 1 unit will, on average, increase v by
r units (since the correlation=r). According to (3.11), since u increases by
1, -ru decreases by r and v increases by r. Thus, there is no change in e2.
That is, e2 has been constructed so that el and e2 are uncorrelated, which was
the purpose of multiplying the error vector in (3.6) by H. In addition,
according to (3.10)-(3.11), the variance of el and e2 equals 1, regardless of
the variance of u and v.

Consider next the MAR of equations (3.8)-(3.9). Recursive substitution

yields:
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(3.12) xt = ely + (a+brlelg-1 + (a2+be+br(a+d))elp-2 + ...
+ b/(1-r2) e2p-1 + b(a+d)V(1-r2) e2¢-2 + ...

(3.13) yt = relg + (c+drlele-1 + [c(a+d)+r(bc+d2)]ele-2 + oo
+/(1-r2) 2y + dV(1-r2) e2¢-1 + (be+d2)V(1-r2) e2t-2 + ...

As above, el and e2 have zero correlation. However, an increase in el
increases x by 1 unit and increases y by r units, since el directly enters the
y equation.

The errors el and e2 can be considered the innovations in the new (x,y)

system given by (3.8)-(3.9). By inspection, el and e2 are defined as

xp - E(xglxe-1, ye-1)
(y¢ - E(yelxe, xe-1, ye-1))//(1-r2).

(3.15) et

Notice that the information sets in the two equations are different. These

should be compared to the imnovations in the (x,y) system given by (3.1)-

(3.2),
(3.16) ug = Xg - E(x¢lxg-1, yt-1)
(3.17) vt = ¥yt — E(ytlxe-1, ye-1).

The triangularized systems——(3.8)-(3.11) and (3.12)-(3.13)--are,
unfortunately, only one possible transformation. These systems arose by
ordering the variables such that x was first. Consider, instead, an ordering

where y is first,
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(3.18) yel= |d c|{ye-1| + |Vt
Xt b alj=xt-l ut
(3.19) E{vt [}t we] = (1 £} = Q.
ug r 1

In general, Q will be different from I since the variances of u and v are
generally different. However, in this case the Cholesky decomposition is the

same as before. Therefore, multiplying both sides of (3.18) by H yields:

(3.20) yt = dyg-] + cxg-]1 + e3¢

(3.21) X = ryp + (b-rd)yg-1 + (a-rc)xe-] + M(1-22) eby
(3.22) e3¢ = ve

(~rverue)/V(1-r2).

(3.23) eb¢

The recursive system given by (3.8)-(3.11) is different from the one
given by (3.20)-(3.23). Although the H matrix in (3.20)-(3.23) happens to be
the same in this example as that in (3.8)-(3.11), ej#es; and eg#e3 because
different linear combinations of u and v enter the two sets of equations. The

x innovation in the system given by (3.8)-(3.11) was defined in equatiom
(3.14); for the system (3.20)-(3,23) it is defined as,

(3.24) ehy = (x¢ - Elxelye, xe-1, ye-1))/7(1-12).

In particular, the information sets are different in (3.14) and (3.24). Also,

in (3.8)-(3.11) an x innovation influences x and y, whereas in (3.20)-(3.23),
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an x innovation influences only x. As stated earlier, the reason is that the
variables are ordered differently in (3.8)-(3.11) than in (3.20)-(3.23). of
course, if the correlation between u and v is zero (r=0), then the ordering
does not matter,

The issue of exogeneity can be investigated using the system given by
(3.8)-(3.11), and its MAR given by (3.12)-(3.13). According to the exogeneity
conditions discussed in sectiom 2, % is exogenous with reséect to y if and

only if

(3.25) b¥(1-r2) =10
b(a+d) V(1-xr2) =0

That is, e2 does not enter the x equation. This set of equations implies that
b=0. (The alternative, r=l, is not allowed since it would imply that Iis
singular.) But according to equation (3.1) or (3.8), this implies that x can

be written as
Xt = aXxg-] + ug,

so that y¢-] does not enter the x equation; that is, x is exogenous.ls/

Equations (3.12)-(3.,13) can also be used to forecast x and y. Due to

the complexity of the MAR, consider the 2-step-ahead forecast of x¢,

Xt+2 = elps2+(a+br)el t+1+(aZ+be+br(a+d)deletes.

+bV(1-r2) e2¢4]1+b(a+d)’(1-r2) e2¢+... -

Erxt+2 = (aZ+be+br(a+d))eltte..

+b(a+d)V(1-r2) €24+
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Therefore, the 2-step-ahead forecast error is given by

Xt+2-Etxt+2 = elt+2+(a+br)elt+l
+b7(1-r2) e2t+l -

Recalling that the variance of el and e2 equals ! and the covariance equals 0,

the variance of the 2-step-ahead forecast error is given by
(3.26) E(Xt4+2-Erxt+2)2=1+(a+br)2+b2(1-r2) .

This corresponds to the formula given by (2.18).
Equation (3.26) can be used to examine the variance of the 2-step-ahead
prediction error. The percentage of the variance explained by the x

innovation, el, is given by

100*(1+(a+br)2) .
1+(a+br)2+b2(1-1r2)

The percentage of the variance explained by the y innovation, e2, is given by

100*b2(1-r2) .
1+(a+br)Z+b2(1-r2)

Suppose that x is exogenous with fespect to y. According to (3.25) this
implies that b=0. Substituting this into the above implies that 100 percent
of the variance of the 2-step—ahead forecast error in x is explained by x

innovations and 0 percent is explained by y innovatioms.
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4, ESTIMATION OF A SIMPLE VAR

In this section a simple three variable VAR is estimated. The three
variables are the growth in real income, GY, the growth in the money supply,
GM, and the growth in prices (inflation), GP. The VAR is estimated using
quarterly data, from 1953:3 to 1983:4. Subsection (a) discusses the choice of
lag length. Subsection (b) discusses the actual estimation of the VAR.
Included in this section are the VAR results and the associated moving average
represéntation. Subsection (c) discusses the variance decomposition of the
system. Finally, subsection (d) reports the results of an unconditional and
conditional forecast.

To fix notation, using equation (1.17), the model estimated can be

written as:

(4.1) GMy=aj0,0 + all,sGM¢—g + £a12,86¥t-s + Zal3,sGPt-s + ult
GYt=a20,0 + Za2l,sGMt-s + Za22,s6¥t-g + La23,s6Pt-s + u2t )
GPt=a30,0 + Za3l,sCMt-g + La32,s6¥t-s + 1a33,sCPr-s *+ u3t,

where I runs from s=1,N and As=(aij,s) in equation (1.17).

a.‘,Choice_of.lagilengEE

The choice of lag length, N, is accomplished via an asymptotic x2 test.
First, a maximum possible lag length is chosen, call it NMAX. Second,
equation (4.1) is estimated with N=1,...,NMAX. Third, for each value of N,
the covariance matrix of the residuals is calculated, call it Zy. Fourth, ome
tests if lag length Nl is a restriction on a lag length of N2, where Nl and N2

are less than NMAX. Two Xx2-tests are available-—CHI1 and CHI2,
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(4.2) CHI1=T*(1n(detIN])-1ln(detzy2))
(4.3) CHI2=(T-c)*(1n(detzy])-1n(detiNg)),
where T = the number of observations and ¢ = a correctién factor. The
correction factor, suggested by Sims (1980), is an attempt to include a
degrees of freedom correction to a x2-statistic, analogous to an F-statistic.
The value of ¢ equals the number of variables in each unrestricted equation of
the VAR, For this example, c¢=1+3*N2, CHIl and CHI2 are each asymptotically
distributed y2 with 3*3*(N2-N1) degrees of freedom since there are N2-Nl zero
restrictions for each of the three variables in each of the three equationms.
Table 1 reports the results of choosing a lag length for a (cY, GM, GP)
VAR, with NMAX=10, using both CHI1 and CHI2. The entries in Table 1 report
the marginal significance level (msl) for the test statistic. (The marginal
significance level equals the probability of obtaining a value of a x2 random
variable greater than or equal to the value of the calculated statistic. That
is, it is the area under a x2 distribution to the right of the calculated’
statistic. A value less than 0.05 implies a rejection at the 95% level.) The
lower half of Table 1 reports the results for CHII. Looking at row 9, lags 1
to 7 are restrictions on a lag of 9, while a lag of 8 is not a restriction
(ms1=0.15). In row 10, lags 1 to 7 are restrictions while lags 8 and 9 are
not restrictions (ms1=0.23 and 0.48). Thus, CHI1 indicates a lag of 8 should
be chosen. The top half of the Table reports the results for CHI2. Looking
at column 9, lags 1-4 and 6 are restrictions om a lag of 9, while lags of 5,
7, and 8 are not restrictions. Since 6 is a restriction on 9, a lag length of
5 is inappropriate. Also, looking at column 8, a lag of 7 is a restriction on
a lag of 8 (msl=0.04). Therefore, CHI2 also indicates a lag of 8 should be

chosen.
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b. Estimation of the VAR

The results of estimating a VAR for (GM,GY,GP) are givenm in Table 2. To
conserve space, only the sums of the lag coefficients are reported. The
individual coefficients (aij,s) do not mean much due to the multicollinearity
in the variables.

As discussed in section two, a convenient way to summarize and interpret
the results in Table 2 is to calculate the moving average representationm
(MAR). To calculate the MAR, the variables ﬁust be ordered. The ordering
chosen is (GM,GY,GP). The interpretation is as follows. Current money
innovations enter the GM, GY and GP equations, current income innovations
enter only the GY and GP equations, and current inflation innovatioms are
allowed to enter only the GP equatiom.

One can interpret the MAR as tracing the response of GM, GY and GP to a
one standard deviation shock to each of the three variables. Using equation

(1.21) and defining Bs=(bijas)s the MAR of (4.1) can be written as

GM¢ = b10,0+ ¥ bll,selt-s*+ ¥ b12,se2t-s+ T b13,se3t-s
=0 s=1 s=1

(4.4) GYt = b20,0+ ¥ b2l,selt-s*+ 3 b22,se2t-s+ T D23 ,se3t-s
s=0 s=0 s=1

GP¢ = b30,0+ ¥ b31l,selt-s* » b32,se2t-s+ ¢ b33,se3t-s-

s=0 s=0 s=0

Consider the meaning of the sequence bl1,0, bll,1,bl1,25¢¢¢ o Write the

first equation in (4.4) for successive t, as

GMt = b10,0 + bll,0elt + bll,lelt-1 + bll,2e1t-2 *...
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GMt+1 = b10,0 + b11,0elt*l + bll,lele + b1l ,2el¢-1 *...

GMt+2 = b10,0 + bll,0elt+2 + bll,lelt+l + bll,2elt +... .

Written in this way, it is easy to see that bll,k equals the effect of an

increase in elt on GMt+k. That is,

b11,0 = dGMt/delt
by1,1 = dGMg+1/delt
b11,k = dGMg+k/delt,

where dejt=1, which equals a one standard deviation change in ult by
construction.

Figure 1 plots the response of GM, GY, and GP to a one standard
deviation shock in GM. That is, Figure 1 plots bll,s, b2l,s, b3l,s against s.
As can be seen, the change in GMg+k is generally positive, but converges to
zero., That is, an unexpected innovation in GM at time t means that GM will be
higher in the future but will eventually go back to zero. For example,
b11,0=dGMt /delt=.00569 but bll,40=dGMt+40 /delt=.000569. The change in GYt+k
is initially positive, for periods l-4, but is generally negative from periods
5-40, That is, a temporary, unexpected increase in money growth leads to an
increase in real income growth for four quarters but then leads to a decrease
in real income growth. An unexpected money innovation leads to a gradual
increase in GP that peaks 10 periods after the shock, then slowly falls back

towards zero.
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Figure 2 plots the response of GM, GY and GP to a one standard deviation
shock in GY; that is, it plots bj2,g, b22,5, b32,5. (Notice that bj2,0=0
reflecting the restriction that a current innovation in GY has no effect on
GM¢, due to the assumed ordering.) After an innovation in GY, GM is negative
in periods 2-7, positive in periods 8-10, and then fluctuates between positive
and negativé values but converges to zero. Anm innovation in income growth
leads to positive income growth in the short run (periods 1 and 2), negative
income growth in the medium run (periods 3-7), and then fluctuates but
converges to zero. Finally, a current innovation in GY leads to a slight fall
in GP today, a rise in GP in period 2 and then GP fluctuates near zero.

Figure 3 plots the response of GM, GY and GP to a ome standard deviation
shock in GP; that is, it plots by3,g, b23,ss b33,s against s. An innovation
in GP leads to negative money growth for periods 2-8. From period 9 om, money
growth is generally positive. An inndvation in GP leads to negative income
growth in periods 2-9, positive income growth in periods 10-18, and generally
negative income growth in periods 19;40. Finally, an innovation in GP leads
to positive inflation today and in periods 2-10, a negative inflatiom in
periods 11-17, positive inflation in periods 18-40, and then converges to
zero. '

A one standard deviation shock in GM, GY, or GP leads to a permanent
increase in M, Y, or P. Consider, for example, a one-standard deviation
innovation in GM, and assume money growth is expected to be O. Then, a
temporary, one period, incréase in GM (with GM exfected to return to zero),
leads to M being permanently higher. Therefore, the effects on M, Y, and P
following one standard deviation innovations in GM, GY, and GP, is found by
cumulating fhe responses plotted in Figures 1-3. As was shown earlier,
b11,k=dCMt+k/delt. Therefore the increase in Mg+k following a monmey growth

innovation is given by
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k
dMgiy/delr = I b1l,ge
s=0
Figures 4-6 plot the response of M, Y, and P (in logarithms) to ome
standard deviation shocks in GM, GY, and GP--equivalently, permanent shocks in
M, Y, and P. Since the figures are simply alternative representations of
Figures 1-3, only Figure 4 will be discussed. Figure 4 indicates that a
permanent shock to M (at time t+l) leads to ever higher values of M and P.

However, the higher value of M leads eventually to a lower level of Y.

¢.. Variance decomposition of the VAR

The variance decomposition of (GM, GY, GP) is contained in Table 3. As
indicated in section two, the forecast variance of each series can be
decomposed into components caused by each of the three series., Table 3
reports tﬁe percentage of the k-step—ahead squared prediction error in (M,
GY, GP) due to innovations in (GM, GY, GP), for selected values of k. For
example, 77.01 percent of the variance in the 16 quarter (4 year) ahead
forecast error of GM is due to innovations in GM; 45.57 percent of the
variance in the 10 year ahead (k=40) forecast error of GP is due to
innovations in GP.

Table 3 can be used to determine the exogeneity of GM, GY, and GP. A
series is exogenous if 100 percent of the k-step-ahead forecast error variance
is due to innovations in the series itself. It appears that GM is exogenous,
while GY and GP are not exogenous. GM is exogenous since most of the forecast
error variance is attributable to GM: 92,51 percent at 1 year, 77.0l1 percent
at 4 years and 78.15 percent at 10 years. Notice, however, that 33 percent of
the 4 to 10 year-ahead forecast error variance in GY is due to innovations in
GM, and 57 percent of the 4 to 10 year-ahead forecast error variance is due to

jnnovations in GY. (If GY were exogenous, then larger numbers in the GY
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column and smaller numbers in the GM column in the middle section of the Table
are expected.)léf Finally, innovatioms in GM explain 50 percent.of the 8 to 10
year ahead forecast error variance in GP, while GP explains only 46 percent.

d. Forecasts using the VAR

Unconditional forecasts of GM, GY, and GP are readily calculated from
the estimated model, according to equation (4.1)., Forecasts are generated
through the end of the century, 1999:4, Figure 7 plots the historical values
and the predicted values of GM, GY, and GP. The figures refer to annual
growth rates, quarter 1 over quarter 1. As can be seen, all variables
converge: GM converges to 6.21 percent, GY converges to 2.69 percent and GP
converges to 5.57 percent., Using the identity that MV=PY, where V equals
velocity, these numbers imply velocity rising at a rate of 2.05 percent.

In addition to unconditional forecasts, one can also generate a set of
conditional forecasts. Of interest to the Federal Reserve is a policy of
reducing money growth to reduce inflation. Therefore, consider a forecast of
GY and GP, conditional on a reduction in GM, In particular, suppose GM is
gradually reduced to 1 percent by the year 1988 and then kept at 1 percent
until 1999:4, The forecast of GY and GP is obtained from equatioms (4.1b) and
(4.1c), after imposing the new money supply policy. As noted earlier, this
procedure is subject to the Lucas critique. Since during the estimation
period there was not a sustained period of low momey growth, it is likely that
switching to such a policy would lead to changes in the parameters of equation
(4.1), especially since the unconditional forecast of GM tends to 6 percent.
As can be seen in Figure 8, GY coverges to 3.6 percent and GP converges to 1.3
percent, when money growth is reduced to 1 percent. These results indicate
that reducing GM from 6.2 percent (the unconditional-forecast) to 1 percent

(the conditional forecast) leads to an increase in GY from 2.7 percent to 3.6
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percent, a fall in GP from 5.6 percent to 1.3 percent, and a rise in velocity

growth from 2.1 percent to 3.9 percent.

5. THE RELATIONSHIP BETWEEN STANDARD STRUCTURAL ECONOMETRIC
MODELS AND VAR MODELS

It has been shown by Arnold Zellmer and Franz Palm (1974) and Arnold
Zellner (1979) that any structural econometric model may be viewed as a
restricted vector time series model. This section will focus on a more narrow
aspect and show that a VAR is an unrestricted reduced form of an unknown
structural model.l7/

A typical structural econometric model may be written as (5.1),

(5.1) J(L)ye + M(L)xt = N(L)ut

J(L)

Jo + JIL + JoL2 + ... + JjL]

M(L) = Mg + ML + MoL2Z + ... + Mpl®
N(L) = Ng + NjL + NoL2 + ... + NyIV¥
E(ug) = 0

E(ugue') = I

ECupug') = 0 t#s

E(xtug') =0 for all t,s,

where y¢ is an nxl vector of endogenous variables, x¢ is a kxl vector of
exogenous variables, ut is an nxl white noise vector, Jivis an nxn matrix of
coefficients, Mj is an nxk matrix of coefficients, and Nj is an nxn matrix of
coefficients, The vector of exogemous variables is assumed to be generated by
the vector autoregressive-moving average process,

(5.2) Q(L)xt = R(L)vt

Q(L) = Q9 + Q1L + QL2 + ... + QuLh
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R(L) = Rg + RjL + RoL2 + ... + R/LT

E(vg) = 0

E(veve') =1

E(vgvs') = 0 t#s
E(vtug') = 0 for all t,s,

where Qi is a kxk matrix of coefficients and vt is a kxl white noise vector.

In general, j, m, h, and T are small and w is usually zero. Equations (5.1)

and (5.2) can be combined as

(5.3) J(L) M(L) Ve N(L) 0 ue

0 Q(L) Xt 0 R(L) vt

If u and v are invertible, (5.3) may be written as a pure VAR model,

(5.4) J*(L) M*(L) Yt ug

0 Q*(L) Xt vi

where J*(L)=N(L)-1J(L), M*(L)=N(L)~I1M(L), and Q*(L)=R(L)-1lQ(L).

The reduced form of (5.1) is

(5.5) ye = Jo~1(JgL~1 - J(WIL-Dyeop - Jo~IM(L)xe + Jo~IN(LIug,

The disturbance term in (5.5) is a vector moving average process, not white
noise. A reduced form equation with a white noise disturbance term can be

derived from the first equatiom of (5.4) as
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(5.6) ve = Jo*-1(3o*L-1-3*(L)L-D)ye-1 - Jo*—1M*(L)xy + ue*

where ue* = Jor-lug.

Note that although E(uput')=I, E(ut*ut*')=Jo* lutut'Jo*~1'#1 unless Jo*=I.
The exogeneity conditions imposed on x imply that (5.1), (5.5), and (5.6) are
statistically independent of (5.2) so that (5.1), (5.5) and (5.6) can be
estimated without taking account of the process gemerating x.

A more general reduced form can be derived from the system (5.3),

(5.7) vt Jo M|~ [JoL-1-3(1)1-1 MpL-1-M(L)L-T) [y¢-1
Xt 0 Qo 0 QoL-1-Q(L)L-1 | | x¢-1
+#Jo Mo |-l [m(@) o ug
0 Qo 0 R(L) | | ve| »

Note that the disturbance term in the reduced form (5.7) is a vector moving
average process. A general reduced form with a white noise disturbance term

can be derived from (5.4) as

(5.8) Yt - —Jo* MO* -1 JO*L-l_J*(L)L-]_ MO*L'I—M*(L)L‘I Ve-l
Xt 0 Q" 0 Qo*L-1-q*(L)L-1 ||x¢g
e
+ —ut* 0
LS
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where
ut* 0 Jo* Mo* |-l |ue
0 vt¥ 0 Qo* vt
and
ug
E [ut' ve']l] =2,
vt

Note that in general I#I.
A VAR model is an unrestricted reduced form of some unknown structural

system of equations. A VAR(p) model can be written as

(5.9) Vie| = | A11(1) A12@L) || y1e-1| + |elt

yar | | A21(L) Ag2(L) || yo2e-1 ezt

A35(L) = Ajj1+A;12Lehij3L+. . A jpLP]
E(elt) = E(eg¢) = 0
E(etet') = I, er = [e1t' e2t'l"

E(eltels') = E(e2te2s') = E(elte2s') = 0 t#s.

Comparing (5.8) and (5.9), it is clear that the reduced form model is just a
restricted VAR model, where the restriction on the VAR model is that Ag1(L)=
0. Thus, if exogeneity restrictions are not imposed on a set of variables, a
system of equations such as (5.9) can be estimated. If exogeneity
restrictions are imposed on a set of variables in y, say, y2, then the VAR may

be run as
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(5.10)  yit = A11¥(L)y1e-1 + A12¥(L)yze + ert”

Aj1*(L)

A11,1* + A11,2*°L + A11,3%L2 + ... + A11,p*LP-]

A12*(L) = A12,0% + A12,1%L + A12,2%L2 +,,, + AlZ,p*LP s
which is equivalent to the reduced form (5.6). Note that when a set of
variables are exogénous, contemporaneous values of the exogenous variables are

included as right-hand side variables in the VAR.

6. AN EXAMPLE OF VARS VERSUS STRUCTURAL MODELS

In this section the robustness of VAR estimates are compared with two
stage least squares (2SLS) estimates of a structural model. To do this, a |
data genmerating model (DGM), a VAR, and a structural model (SM) are needed.
The DGM is a set of equations that is used to generate the observatioms. This
is discussed in subsection (a). Subsection (b) presents the structﬁral model
that is estimated and the VAR, Finally, subsection (c) presents several

experiments using the VAR and the structural model.

a._. The_data_generating model

This subsection describes the method by which the observations on an
economy are generated. By necessity, the economy is simple. The endogenous
variables are income (y), interest rates (r), and money (m). The DGM contains

three equations describing the behavior of (y, r, m),

(6.1) A*ENDOG(t) = B*ENDOG(t-1)+C*EXOG(t)+ERROR(t)

where ENDOG(t) = (yt,rt,mt)

EX0G(t) = (1,z1¢,22¢,23¢,24¢)
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ERROR(t) = (ug,et,ve)
A = (A35), a 3x3 matrix

B

(Bij), a 3x3 matrix

c (Cij), a 3x5 matrix.
'The DGM allows each endogenous variable to depend on the other two endogenous
variables, lagged endogenous variables, a set of exogenous variables and a
serially uncorrelated random variable. In the experiments, many zero
restrictions will be imposed.

Before equation (6.1) can be used to generate the observations, one must
specify the stochastic process gemerating ERROR(t) and EX0G(t). ERROR(t) is
assumed to be normally distributed with covariance matrix and correlatiom

matrix given by

~
(6.2a) cov = | 25.000
.074 .002
3.690 .033 5.000
-
-
(6.2b) corr = 1.00
33 1,00 1 .
33 .33 1.00

The variables zl,...,z4 are assumed to be univariate AR processes, but with

their errors correlated contemporaneously. In particular, it is assumed that

(6.3a) zly = ,75%z1i-1+4wle

(6.3b) z2¢ «80%z2¢-1+w2¢
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(6'3C) th

+85%23¢-1+w3¢

(6o3d) Z4t 090*z4t_1+w4t0

The covariance matrix and correlation matrix of wl,...,w4 is given by

(6.42)  cov = [25.00 A
1.25  25.00

1.25 2.50 25.00

1.25 1.25 1.25 25.00;

-

-

(6.4b) corr = |1.00 W
.05 1.00
.05 .10 1.00 .
e .05 .05 1.00

Given equations (6.1) to (6.4), it is possible to generate a set of
observations on (y¢, ry, m¢) and (zly, z2¢, 23¢, 2z4¢).

b. The structural model and a VAR

This subsection first describes the structural model of the economy that
the economist believes is accurate. Then, a VAR is specified.

The structural model contains an IS curve, a money supply equation, and
a money demand equation. It is assumed that several zero restrictioms have

been imposed on the model. The structural model is given by,

(6.5 (IS) yt = c]1 + alart + blare-1 + cl2zlt
(6.6) (MS) Mt = c31 + az2rt + c23z2t
(6.7) (MD) Mt = c31 + a3lyt + a32r¢ + b33Me-1 + c3423¢ -
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The system of equations given by (6.5) - (6.7) is fairly conventional.

Given a set of observations on (y, r, m) and (zl, 22, z3, z4) it is
possible to estimate the structural model. The appropriate estimation
procedure is 2SLS or 3SLS; in the experiments, 2SLS is used. The set of
instruments is (1, rt-1, me-1, zlt, z2t, z3t)-

The specification of a VAR imposes several assumptions. First; it is
assumed that zl-z3 are known to be exogenous. VARs are often estimated with
all variables assumed to be endogenous so that no contemporaneous variables
are on the right-hand side of the VAR. However, as was shown in section five,
if a set of variables are assumed to be exogenous, contemporaneous values of
these variables may enter the right hand side of the VAR. Second, it is
assumed that no lags of zl-z3 appear in the VAR. Third, it is assumed that
only one lag of the endogenous variables appear in the VAR. With these

assumptions, the VAR is given by

(6.8) Yt = aQ+alyt-l+a2rp-1+asMe-1+aszle+asz2e+agzie
(6.9) Tt = bo+b]yr-1+b2rp-1+b3Mp-1+b4zl+b5z2¢+bgz3¢
(6.10) My = co+clyr-1+core-1te3Mp_1+c4zletesz2e+egadt.

Note that equations (6.8) — (6.10) is not the true reduced form of equationms
(6.5) - (6.7) because (6.8) - (6.10) includes yt-] while the true reduced form
of (6.5) - (6.7) does not. Thus, (6.8) - (6.10) can be thought of as an
unconstrained reduced form of a number of underlying, but unknown, structural

systems of equations. Equations (6.8) - (6.10) would be the reduced form of
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equations (6.5) - (6.7) only if the coefficients a], by, and c] in (6.8) -
(6.10) were found to equal zero. Equations (6.8) - (6.10) can each be
estimated by OLS.

¢. Estimation

In this subsection, observations are generated according to the DGM, and
the structural model (SM) and the VAR are estimated. The structural model and
the VAR are then compared on two criteria. fo examine the robustness of the
SM versus the VAR, observations are generated according to several different
DGMs. Each set of observations generated by a DGM is referred to as an
experiment.

The basic DGM model (with parameters) is given by

(6.11) (1IS) y¢=1300-.2r¢-.5rp-1+zlg+ut
(6.12) (MS) -Mt=147+rt+22t+et
(6.13) (MD) Mt=-850+.7yt—.lrt+z3t+.3Mt_1+vt .

The method used to choose these parameters is given in Appendix A. Notice,
comparing the basic DGM, equatioms (6.11) - (6.13), to the SM, equatioms
(6.5) - (6.7), reveals that the same functional form is used in both. The
stochastic structure of the structural errors, equation (6.2), and the
exogenous variables, equations (6.3) and (6.4), remain the same in all
experiments. ~

The set of experiments considered amounts to slight variations in the
basic DGM. In all experiments, the same SM and VAR are estimated. 1In
experiment 1, observations are generated according to the basic DGM. Since

the form of the basic DGM and the SM are the same, estimating the SM

corresponds to estimating a "true" model. By altering the basic DGM, the
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robustness of the SM and the VAR to various model missﬁecifications can be
determined. In experiment 2, .lyt-] is added to the IS curve in the DGM. In
experiment 3, a larger value of lagged income, .5yt-1, is added to the IS
curve in the DGM. In experiment 4, .5y¢-] is added to the MD equation in the
DGM, In experiment 5, .5z4t is added to the IS curve in the DGM, while in
experiment 6 it is added to the MD equation in the DGM. Experiments 2 - 4 are
intended to reflect a misspecification of the SM., Notice, the VAR is not
"misspecified" in these experiments. However, experiments 5 and 6 reflect a
misspecification (a left-out variable) of both the SM and the VAR.

The robustness of the SM and the VAR to misspecification are compared on
two grounds. First, the value of dyt/dry is calculated. According to the SM,
' dy/dr represents the slope of the IS curve., According to the VAR, dy/dr
represents the response of y, relative to the response of r, to a change in an
exogenous variable. The values of dy¢/dry for the DGM, the SM, and the VAR

are given by

dy¢/dry = -0.2  (DGM)
dyt/dry = aj2 (sM)
dyt/dre = as/bs (VAR).

While the value for the DGM and the SM are clear, the value for the VAR needs
explanation. In the VAR, it is assumed that there is some variable
controlable by policymakers that influences the money market, but not the
goods market. In terms of a structural model, there is an exogenmous variable
entering the LM schedule but not the IS schedule. That is, to obtain dy/dr =
a5/b5, it is assumed that z2 is exogemous and that it is conmtrolled by the

Federal Reserve, but z2 has no direct effect on the goods market. A change in



-50-

z2 changes r by dr/dz2 = b5 and changes y by dy/dz2 = a5. Therefore, a change

in z2 causes a change in y relative to the change in r,

%Lt / drt = a5 _
Tt dz2t dz2t b5 .

In addition to calculating dy/dr, the standard error of the income
equation is éalculated. Call this value STD. For the DGM and the SM, this is
the standard error of the reduced form income equation. For the VAR, it is
the standard error of equation (6.8). According to equation (6.1), the
covariance matrix of the reduced form is A-1Z A-l , where I is the covariance
matrix of ERROR.

For each DGM experiment, 100 sets of 260 observations are generated. To
eliminate the effect of initial conditions, the first ten observations are
dropped. For each set of observatiomns, dy/dr and STD is calculated. Then, on
the basis of the 100 sets, the average value and the root mean square error
(RMSE) for dy/dr and STD are calculated. The RMSE is calculated about the DGM
value and about the estimated value.

The results of the six experiments are given in Tables 4 and 5. Table 4
presents the estimates of dy/dr and its RMSE, Table 5 presents the estimates
of STD and its RMSE,

In all experiments, the VAR estimate of dyy/dry is closer to the DCM
value than is the SM estimate. However, in experiments 1, 2, 4, 5, and 6 the
RMSE of the SM estimate is less than the RMSE of the VAR estimate. This means
that although the "average" value of dy/dr from the VAR is closer to the
"true" value, in general the SM gives more efficient estimates of dy/dr (since
the RMSE is less). However, the VAR does "better" than the SM in a RMSE sense

in experiment 3, a case where the IS curve is badly misspecified (a "large"
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value of y¢-] in the DGM). At least on the basis of these experiments, it may
be concluded that point estimates from a VAR are more robust to
misspecification than point estimates from a structural model. This is
important since in general ome does not know the "true" model.

Table 5 reports the estimates of the standard error (STD) of the reduced
form income equation. The estimate of STD from the SM is closer to the true
DGM value of STD in experiments 1, 2, and 4, while the estimate of STD from
the VAR is closer to the true DGM value in experiments 3, 5, and 6. The point
estimates of STD from the VAR are closer to the true DGM values of STD in
those experiments where the IS curve is baaly misspecified. Also, the RMSE is
smaller fbr the SM estimate than for the VAR estimate in experiments 2, 4, and
6. Although not as clear as before, the VAR appears more robust to

misspecification than the SM,

d. Conclusions

In this section the robustness of a SM with respect to model
misspecification was compared with the robustness of a VAR, The data were
generated by several different models, but the same SM and VAR were estimated
in each experiment. In some experiments only the SM was misspecified, while
in other experiments both the SM and VAR were misspecified.

The results indicate that point estimates from a VAR are more robust to
model misspecification than point estimates from a structural model. On the
other hand, point estimates from a structural model are more efficient, except
when the structural model is badly misspecified.

Although the experiments performed in this sectiom cannot be used to
explain why point estimates from the VAR are more robust, it is likely that

the VAR was more robust because it is a less restrictive system of equations.
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The SM was formulated by imposing several restrictions on the coefficient
matrices A, B, and C in equation (6.1). Given this structural model, as
represented in equations (6.5) - (6.7), there is a unique reduced form model.
The VAR, however, can be interpreted as an unconstrained reduced form that is
consistent with many unknown structural models. This is the sense in which
the VAR is atheoretical--the underlying structural model is admitted to be
unknown. If a variable in the DGM is omitted from the estimated SM, say, a
lagged endogenous variable as in experiments 2-4, then the estimated
structural coefficients will be biased. In a VAR, however, lagged variables
enter each equation so that the estimated VAR does not suffer from the error
made in estimating the SM. Furthermore, in experiments 5 and 6, where a
variable in the DGM was omitted from both the VAR and the SM, the VAR was more
robusf. Thus, it appears that the severity of the bias increases with the
number of restrictions imposed on the estimated model.

The results reported in this section are very preliminary and they
should be viewed with caution. Indeed, there are several directions in which
the experiments performed could be improved upon. First, a more extensive DGM
should be used to generate the data. In experiments 2-6, the SM was
misspecified to a greater extent than was the VAR. But, in general, VARs are
usually misspecified in the sense that potentially relevant variables that are
included in a SM are excluded from a VAR, Whereas a SM has many variables and
equations with little dynamic interactiom, a VAR has fewer variables with
richer dynamic interaction, To reflect these differences, a more extensive
DGM should be used to generate the data. Then the SM could be estimated with
most of the variables in the DGM included in the SM but with some incorrect
restrictions, while the VAR would be estimated with more variables excluded

from the VAR than are excluded from the SM. Second, the assumptions made
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about the estimated form of the VAR are usually not known a priori and,
therefore, should be relaxed before the VAR is estimated. Before the VAR was
estimated, it was assumed that it was known that z1-2z3 were exogenous, that no
iags of z1-2z3 were to appear in the VAR, and that only one lag of the
endogenous variables was to appear in the VAR. Instead, the VAR could be
estimated with all variables assumed to be endogenous and with several lags of
all Qariables. Various statistical tests would then be used to determine the
appropriate lag length and whether any of the variables are exogenous.
Experiments designed along these lines would produce much stronger and more

conclusive results.

7. SUMMARY AND CONCLUSIONS

This paper has provided a theoretical and empirical introduction to
vector autoregression models and some preliminar§ results on the robustness of
VAR models to model misspecification relative to standard structural
econometric models. In section one a theoretical discussion of time series
models in general, and of VAR models in particular, was presented. Section
two presented the ways in which VARs are used. This was followed by a simple
two~variable VAR example in section three. A VAR model using U.S. data on .
money, income, and prices was estimated in section four. Examples of the way
VAR models are used were also provided. Im section five the relationship
bétween standard structural models and VAR models was discussed. There it was
shown that a VAR can be viewed as an unconstrained reduced form of some
unknown underlying.étructural model. Finally, the robustness of VAR models to
model misspecification errors, relative to standard structural models, was

tested in section six.



54~

The results in section six, although preliminary, indicated that point
estimates from VAR models are more robust to model misspecification than point
estimates from structural models. It was suggested that stronger and more
conclusive results were likely to be reached through further research that
uses a more extensive data generating model and that imposes fewer a priori

assumptions on the form of the estimated VAR.
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TABLE 1
VAR(GM,GY,GP): 1955:3 - 1983:4
CHIl = T*(ln(det N2) - ln(det N1))

CHI2 = (T-c)*(1n(det N1) - 1n(det N2))

N2

_m 1 2 3 4 5 6 7 8 9 10
1 * .03 .01 .03 .00 .01 .00 .00 .00 .02
2 .02 * .07 A2 .00 .02 .01 .00 .01 .03
3 00 .04 * .37 01 .03 .01 .01 .01 .04
4 .01 .05 .27 * .00 .02 .01 .00 .01 .03
5 .00 .00 .00 .00 * .56 .16 .05 .07 .18
6 .00 .00 .00 .00 42 * .06 .02 .03 .11
7 .00 .00 .01 .00 04 .02 * 04 .08 .23
8 .00 .00 .00 .00 .00 .00 01 * 35 .60
9 .00 .00 .00 .00 .00 .01 .01 15 * .72
10 .00 .00 .00 .00 .00 .00 .02 «23 48 *
Notes: The lower half of the Table reports the marginal significance for

CHIl, for whether N2 is a restriction on Nl.

The upper half of the Table
reports the marginal significance level for CHI2, for whether Nl is a
restriction on N2,
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TABLE 2

1955:3 to 1983:4

Sum of Coefficients on:

Constant GM GY GP
- .003 844 -.122 -.,011
(.002) _(.240) (.225) (.247)
(.003) (.333) (.313) (.343)
-.002 .159 «234 857
(.001) (.134) (.126) (.138)

Note: Standard errors for the sum of the coefficients are reported in

parentheses.
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TABLE 3

Variance Decomposition of (GM, GY, GP)

Percentage of the expected k-step-ahead Squared Prediction
Error in (GM, GY, GP) Produced by Innovatioms in (GM, GY, GP)

Percentage of the expected k-step-

Innovation in:

ahead Squared Prediction Error in: k GM GY GP

GM 1 100.00 0.0 0.0
4 92,51 2.67 4,82
8 81.02 10.57 8.42
16 77.01 13.24 9.75
24 77 .44 12.79 9.77
32 77.90 12.46 9.64
40 78.15 12,22 9.62

GY 1 12.46 87.53 0.0
4 31.48 65.84 2.69
8 31.50 61.28 7.22
16 33.52 57.33 9.14
24 33.43 57 .31 9.25
32 33.61 57 .04 9.36
40 33.71 56 .95 9.34

GP 1 0.50 0.00 99.49
4 7.66 0.94 91.40
8 26.26 2.47 71.27
16 45.95 3.40 50.65
24 47.83 3.31 48,87
32 50.09 3.17 46.74
40 51.34 3.09 45,57
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TABLE 4

Estimates of dyt/dr¢*

Precision of dyt/dr¢t

RMSE about RMSE about
dyt/drt, DGM Estimate
Experiment VAR SM VAR SM VAR SM
1 -.199 -.189 .189 .090 .190 .090
2 ~-.199 -,288 - .190 .136 .191 .104
3 -.199 -.752 +190 597 191 «226
4 -.,200 -.185 .190 119 .191 119
5 -,238 -.276 «243 .170 o242 .152
6 -.205 -.192 .208 .100 »209 .100
Notes: Experiment 1: DGM = Structural Model (SM)
' Experiment 2: DGM = SM plus .ly¢_] in IS curve
Experiment 3: DGM = SM plus .5yt-] in IS curve
Experiment 4: DGM = SM plus .5yt-] in MD equatiom
Experiment 5: DGM = SM plus .5z4¢ in IS curve
Experiment 6: DGM = SM plus .5z4¢ in MD equation

*In the DGM, dy¢/dry = -0.2.
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TABLE 5

Standard Error

Experiment VAR SM
1 9,816 9.821
2 9.816 9.846
3 9.815 10.428
4 9.815 9.853
5 10.816 10.825
6 9,840 9.848

Notes: See Table 4,

* The standard error in the DGM is 9.839374.

Precision of Standard Error

RMSE about
DGM

VAR SM
423 446
453 o445
«452 .755
454 453
1.095 1.101
448 446

RMSE about

Estimate
VAR SM
455 448
455 447
454 476
455 455
497 494
450 448
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FIGURE 1

Response of GM(+), GY(D) and GP(#)to a
One Standard Deviation Innovation in GM

0.00

1
(o]
»
[}
Ut

-0.10

[T PTOTTTY  PPTTTUTITY FYTUTITUVN IUTTTTOIY [TTVPTTITI FETTTTITN

-0.13

-9.20

ol

fo
3



- Z MmO > mMmTo

-61-

FIGURE 2

Response of GM(+), GY@) and GP(#) to a
One Standard Deviation Innovation in GY
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FIGURE 3

Response of GM(+), GY(@J) and GP(#) to a
One Standard Deviation Innovation in GP
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FIGURE 4

Cumulative Response of GM(+), GY() and GP(#)to a
One Standard Deviation Innovation in GM
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FIGURE 5

Cumulative Response of GM(+), GY(O) and GP(#) to a
One Standard Deviation Inmovation in GY
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FIGURE 6

Cumulative Response of GM(+), GY(D) and GP(#) to a
One Standard Deviation Innovation in GP
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FIGURE 7

Unconditional Forecast of GM(+), GY(Q) and GP(#)
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FIGURE 8

Conditional Forecast of GM(+), GY@) and GP(#), Given GM
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Footnotes

We would like to thank William Keeton énd other members of the staff of

the Economic Research Division at the Federal Reserve Bank of Kamnsas City for
their comments and suggestions on an earlier draft. Lyle Matsunaga provided

able research assistance. Any remaining errors are our own. The views
expressed herein are solely those of the authors and do not necessarily
represent the views of the Federal Reserve Bank of Kansas City or of the
Federal Reserve System. |

1. Council of Economic Advisers, Economic Report of the President, U.S.

Govermment Printing Office, Washington, D.C., 1983, pp. 143.

2. Actually, y only has to be a wide—sense stationary process. The time

geries process y is wide—sense stationary if E(yt) is constant and E(ytyt-s)

depends only on the difference t-s. Wide-sense stationarity is also referred

to as covariance or second-order stationmarity.

3. In more general models the characteristic equation will have several
roots, some of which may be complex roots. Thus, the more gemeral condition
for statiomarity is that the roots of the characteristic equation lie outside
the unit circle.

4, If (1.1) included a constant term, the constant term would be the
unconditional expected value.

‘5. In (1.7) y is known to be stationary because (1.7) was derived from (1.6).
If it was not known that (1.7) came from (1.6), it would be necessary to show
that the roots of the characteristic equation (1-a(L)L) = a*(L) = 0 lie
outside the unit circle,

6. Equation (1.8) is often called an ARIMA (p,0,q) process. If y itself was
not stationmary, but could be transformed into a stationary series by téking d

differences of y, the model is called an ARIMA (p,d,q) time series model.
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7. For a first—order vector autoregressive process, an equivalent
stationarity condition is that the eigenvalues of the coefficient matrix A in
(1.11) lie inside the unit circle. Multiplying the equation det(I-AL) = 0 by
1/L results in det(IX-A) = 0 where * = 1/L. The roots of this equation are
the eigenvalues of the matrix A, Thus, if the roots of det(I-AL) = 0 lie
outside the unit circle, the inverses of the roots--which are the
eigenvalues--must lie inside the unit circle.

8. Station#ry implies that Al approaches zero as i goes to infinity. The
matrix A can be written as FAF' where F is an orthogonal matrix composed of
the eigenvectors of A and A is a diagonal matrix with the eigenvalues of A
along the diagonal. Using A=FAF', A2 = FAF'FAF' = FA2F' because the
orthogonality property of F implies that F'F = I, Thus, Al = FAIF', If y is
stationary then the elements of A all lie inside the unit circle which implies
that Al approaches the zero matrix as i goes to infinity. Therefore,

FALF' = Aj goes to zero as i goes to infimity.

9, In (1.17) y is known to be stationary because (1.17) was derived from
(1.15). 1If it was not known that (1.17) came from (1.15), it would be
necessary to show that the roots of the characteristic equation

det(I~-A(L)L) = det(A*(L)) = 0 lie outside the unit circle.

10. For more details on the identification and estimation of VARMA models,
gsee G. C, Tiao and G.E.P. Box (1981) and George C. Tiao and Ruey S. Tsay
(1983).

11. The triangularity restriction on H and the restriction on the covariance
matrix of the noise vector e are sufficient conditions for the uniqueness of
(1.20) for a given ordering of the variables in y. See C.W.J. Granger and

Paul Newbold (1977), pp. 222-224,
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12. It should be noted that the large scale macroeconomic models suffer from
this problem as well,

13. For a more comprehensive discussion of the types of forecasts that VARs
can be used for see Thomas Sargent (1979, 1984) and Christopher Sims (1982).
14, That is, a necessary and sufficient condition for the exogeneity of the
first variable of y, yls is the condition that (2.20) is zero when j ¥ 1 and
100 when j = 1 for all k greater than zero.

15. According to the exogemeity conditions discussed in sectiom 2, y is
exogenous with respect to x if and only if ¢ = 0. Unless r = 0 in addition to
c = 0, however, lagged values of x will appear in the yt equation (3.9).

Thus, because y is ordered second, y may be exogenous (c=0) even if lagged
values of x appear in (3.9) due to nonzero contemporaneous correlation (r # 0)
between the x and y errors. In terms of the variance decomposition of x, x is
exogenous with respect to y if and only if the percentage of the k-step—ahead
forecast error variance of x due to inmovations in y is zero for all k greater
than zero. But if y is exogenous, the percentage of the k-step-ahead forecast
error variance of y due to innovations in x will be nonzero as long as there
is a nonzero contemporaneous correlation between the x and y errors. For
example, for k = 2 and ¢ = 0 the percentage of the 2-step-ahead forecast error
variance of y due to an innovation in x equals 100r2,

16. As noted in footnote 15, nonzero entries in the GM column in the middle
section of the Table may be due to contemporaneous correlation between the
innovations in GM and GY, Therefore, onme can not say conclusively that GY is
not exogenous.

17. For a more general and complete discussion of the relationship between
time series and structural models see Zellner and Palm (1974) and Zellner

(1979).
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APPENDIX A: METHOD USED TO CHOOSE THE DGM PARAMETERS

In this Appendix the choice of parameter values for the DGM is
discussed. The variance-covariance matrix of the structural errors, equation
(6.2a), is first discussed. Then, the exogenous process for zl, ..., z4,
equations (6.3) and (6.4), is discussed. Finally, the parameter values in the
structural model, equatioms (6.11) - (6.13), are discussed.

The steady-state values-of y, r, and M were first chosen. These values

were
y = 1000
M= 150
r= 3 (A1)

The choice of the steady-state values influence later decisions.,
The variance-covariance matrix of ERROR, equation (6.2), was chosen as
follows. The unconditional standard error (SEY) of each variable was chosen -

to equal 5 percent of the steady-state value. This implies

SEY(y) = 50
SEU(M) = 7
SEu(r) = A5 ' (A2)

The conditional variance of each variable, the diagonal elements in equation
(6.2a), was chosen such that the RZ of the reduced form equation equals .95.
Since RZ =1 = (condiﬁional variance/unconditional variance), the conditional
variance is calculated as

conditional variance = (SEw)2*(1-R2) (A3)
For example, the variance of uy is given by (50)2#%(1-.95) = 125. The
correlation between the structural errors was arbitrarily chosen to equal
0.33. Given the correlation matrix and variances, the covariances are readily

calculated.
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The exogenous variables, zl, ..., z4, were chosen to be AR(1l). The
values of 0 were chosen such that the z's were strongly autocorrelated. The
particular values chosen, .75 to .90, were arbitrary.

The variance-covariance matrix of the errors in the exogenous processes,
wl, «¢e., W4, were chosen as follows. The variances were arbitrarily chosen to
be 25. The correlations were chosen to be positive and small. The
correlation between the MS and MD exogenous process errors (w2 and w3) was
chosen to be larger than the correlation with the exogenous variable in the IS
curve. The absolute magnitudes were arbitrary.

The slope coefficients in the DGM, equatiomns (6.11) - (6.13), were
chosen first., For the IS curve, the coefficients on the current and lagged

interest rate were chosen such that

dyt dy¢

dre dre-1 | (A4)
The absolute magnitudes were arbitrary. For the money supply function, a
value of 1.0 was chosen, arbitrarily, for dMy/dr¢. For the money demand
function, the derivative of money wifh respect to the interest rate was chosen
to be -.1, a small number. The steady-state slope of money demand with
respect to income was chosen to be 1.0, while the short-run slope was chosen
to be 0.7

The constant terms in equations (6.11) - (6.13) were chosen such that

the steady state values of y, r, and M are given by (Al), The steady-state of
(6.11) ~ (6.13) is obtained by setting EX0G(t) = (1 0 0 0 0), ERROR(t) = (0 O
0), A and B to their respective values, and ENDOG(t) = ENDOG(t-1) =

(1000,3,150).
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APPENDIX B: COMPUTER PROGRAMS

CALENDAR 52 1 4

ALLOCATE 31 100,1 3 25

EQV 1 TO 6

YEAR QTR P Y M INT

DATA(UNIT=INPUT,ORG=0BS) 52,1 83,4 YEAR QTR P Y M INT
52 1 57.58 593,783 121.4834 1.5666

83 4 218.53 1570.5 519.08 8.7985
NOTE 1

PRINT(DATES) 55,3 83,4 MY P

NOTE 1

*edkdokkkdkkkikhkkkkkhkdhkkikikkhkik

* GENERATE GROWTH RATES *
khkkkkkkkkkkkikkikkddkkkikiik
NOTE 1

EQV7 89

GP GY GM

SET GP 52,2 83,4

LOG(P(T))-LOG(P(T-1))
SET GY 52,2 83,4 = LOG(Y(T))-LoG(Y(T-1))
SET GM 52,2 83,4 = LOG(M(T))-LOG(M(T~1))
krkhkrkhkhhkdtdkhhhdrrkhkhkdrdrthddbidrdddiddhkkitit

* PROGRAM TO CALCULATE LAG LENGTH. *
%k fodhkkkhkkdkhhkhkkihhkhrdhkrhkhhRAkthhrdidhhhkdddkdid
DECLARE VECTOR DETLOG(10)
IEVAL IRES1=11
IEVAL IRES2=12
IEVAL IRES3=13
IEVAL 0BS1=(55,3)
1IEVAL 0BS2=(83,4)
DO NLAG=1,10
CLEAR IRES1 IRES2 IRES3
OLS GP OBS1 0BS2 IRES]
# CONSTANT -GP 1 NLAG -GM 1 NLAG -GY 1 NLAG
OLS(SAME) GM OBS1 OBS2 IRES2
OLS(SAME) GY OBS1 OBS2 IRES3
VCV OBS1 OBS2
# IRES1 IRES2 IRES3
EVAL DETLOG(NLAG)=DETLN
END DO NLAG
NOTE 1
DO N2=2,10
DO N1=1,(N2-1)
IEVAL C=3*N2+1
IEVAL DF=(N2-N1)*3%3
EVAL CHI1=NOBS*(DETLOG(N1)-DETLOG(N2))
EVAL CHI2=(NOBS-C)*(DETLOG(N1)-DETLOG(N2))
WRITE N2 N1 C DF
CDF CHISQ CHI1 DF
CDF CHISQ CHI2 DF
END DO N1
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END DO N2

NOTE 1

*ededededokkdk Rk kddodkd kR kkkkkkkkdhkdkkkvokkdkdkkdokkhkfdkik
* ESTIMATION OF VAR, AS A SYSTEM OF EQUATIONS,

* LAG LENGTH = 8.

* EQUATION 1=GM, EQUATION 2=GY, EQUATION 3=GP.

* VARIANCE COVARIANCE MATRIX, FOR 1955:3 - 1983:4
* IS STORED IN VARCOV, RESIDUALS ARE STORED

* IN VARIABLES 11-13,
dedededededokededodedodododedeReddeodokdododekdodokkkkkdkhkkkdkdokkkkkkkikkik
EQUATION(NOCONST,MORE) 1 GM '

# CONSTANT -GM 1 8 -GY 1 8 =GP 1 8
EQUATION(NOCONST,MORE) 2 GY

# CONSTANT -GM 1 8 -GY 1 8 =GP 1 8
EQUATION(NOCONST,MORE) 3 GP

# CONSTANT -GM 1 8 -GY 1 8 -GP 1 8

SYSTEM 1 2 3

END( SYSTEM)

ESTIMATE 55,3 83,4 11

DECLARE SYMMETRIC VARCOV(3,3)

VCV(MATRIX=VARCOV) 55,3 83,4

* % * % F *

#1112 13

NOTE 1
dodekekdedodokododekeok gk dodedodedododekedekdokdokekdKkokededekdokkkkk
* UNCONDITIONAL FORECAST OF VAR, *

* FORECAST IS FOR 64 STEPS, TO 1999:4, *

kKX kkhkhkhkkdkhhihkhkdhkhkddhhkithkhhkkhkididhihkithrk
FORECAST(PRINT) 3 64 84,1

# 1 GM 84,1

# 2 GY 84,1

# 3 GP 84,1

NOTE 1

* THESE STATEMENTS CONVERT TO ANNUALIZED GROWTH RATES.

SET GM 55,3 99,4 = 400.0%GM(T)
SET GY 55,3 99,4 = 400.0*GY(T)
SET GP 55,3 99,4 = 400.0*%*GP(T)
NOTE 1

PRINT(DATES) 55,3 99,4 GM GY GP
NOTE 1

PLOT(DATES, CHARS) 3

# GM 55,3 99,4

# GY 55,3 99,4

# GP 55,3 99,4

# Tt lxl l.l

NOTE 1 .

dededododedokdededok vt kdodekdededkokhdokkkRddkdokdkkkkkkkkkdkdekk
* CONDITIONAL FORECAST OF A VAR,

* FORECAST IS OF GY AND GP.

* GM IS ASSUMED TO BE DECREASED TO 1Z/YEAR BY
%* 1988:1.

* FORECAST 64 STEPS AHEAD, TO 1999:4.
FkdhkkkdkdokfkdkkikikikiiRdkkdkdkvkdkdkiokidkddikdkvekkk
* THESE STATEMENTS ARE TO RECONVERT ALL THE DATA
* BACK TO QUARTERLY GROWTH RATES, TO MATCH THE

¥ % % % %
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* FORMAT USED IN ESTIMATION.

SET GM 55,3 99,4 = GM(T)/400.0

SET GY 55,3 99,4 = GY(T)/400.0

SET GP 55,3 99,4 = GP(T)/400.0

* THESE STATEMENTS INPUT THE ASSUMED PATHE OF GM.
DATA(UNIT=INPUT,ORG=VAR) 84,1 88,4 GM
0.0129 0.0129 0.0129 0.0129

0.0103 0.0103 0.0103 0.0103

0.0077 0.0077 0.0077 0.0077

0.0051 0.0051 0.0051 0.0051

0.0025 0.0025 0.0025 0.0025

SET GM 89,1 99,4 = 0.0025
FORECAST(PRINT) 2 64 84,1

# 2 GY 84,1

# 3 GP 84,1

NOTE 1

* CONVERT TO ANNUALIZED GROWTE RATES.

SET GM 55,3 99,4 = 400.0%GM(T)
SET GY 55,3 99,46 = 400.0%GY(T)
SET GP 55,3 99,4 = 400.0%G2(T)
NOTE 1

PRINT(DATES) 55,3 99,4 GM GY GP
NOTE 1

PLOT(DATES, CHARS) 3
# GM 55,3 99,4

# GY 55,3 99,4

# GP 55,3 99,4

# te?! '} l.l

NOTE 1



CALCULATE THE MOVING AVERAGE REPRESENTATION,

ALSO KNOWN AS THE IMPULSE RESPONSE FUNCTION.

CALCULATION IS FOR 40-STEPS AHEAD.

THE ORDERING IS GM(1), GY(2), GP(3)

THE MA COEFFICIENTS ARE STORED IN VARIABLES
14-16, 17-19, 20-22,
THE RESPONSE COEFFICIENTS ARE STORED IN
XXRESZ: "XX RESPONSE TO A Z INNOVATION.

*ﬂﬂ*mm**ﬂ*ﬁ***************m

* RESPONSE OF GM, GY, GP TO A SHOCK IN GM(EQUATION 1)

IMPULSE 3 40 1 VARCOV

#11611

#21512

#£31613

* RESPONSE OF GM, GY, GP TO A SHOCK IN GY(EQUATION 2)

IMPULSE 3 40 2 VARCOV

#11711

#21812

#£31913

* RESPONSE OF GM, GY, GP TO A SHOCK IN GP(EQUATION 3)

IMPULSE 3 40 3 VARCOV

#12011

#§22112

#32213

NOTE 1

EQV 14 TO 22

GMRESM GYRESM GPRESM $

GMRESY GYRESY GPRESY $

GMRESP GYRESP GPRESP

NOTE 1

WWWW

* CALCULATE THE VARIANCE DECOMPOSITION OF *

* OF THE VAR, IN THE ORDER GM(1), GY(2), *

* GP(3). *

******************’k******************** *edelok

ERRORS 3 40 VARCOV

* % & % X X *
* ok k * ¥ A X

4
)
z
=

E§88&

PLOT 3
# GMRESY 1
# GYRESY 1
# GPRESY |
NOTE 1
PLOT 3
# GMRESP 1
# GIRESP |
# GPRESP 1
NOTE 1

EEE

E&E&
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*******************************************mm*

CALCULATE THE CUMULATED RESPONSE IN 4, ¥, P TO
ONE-TIME INNOVATIONS IN GM, GY, GP. THE
CUMULATED RESPONSES ARE STORED IN THE VARIABLE
CXRESZ: "CUMULATED X RESPONSE TO AN INNOVATION
IN Z." THESE RESPONSES ARE STORED IN VARIABLES
23-25, 26-28, 29-31.
mﬂm*ﬂ*ﬁmﬁ*ﬂ*ﬂmm
DO I=l4, 22

IEVAL CUM=I+9

ACCUMULATE I 1 40 CUM 1

END DO I

EQV 23 TO 31

CMRESM CYRESM CPRESM $

CMRESY CYRESY CPRESY $

CMRESP CYRESP CPRESP

NOTE 1
PLOT 3

# CMRESM 1
# CYRESM 1
# CPRESM 1
NOTE 1
PLOT 3

# CMRESY
# CYRESY
# CPRESY
NOTE 1
PLOT 3

# CMRESP
# CYRESP
# CPRESP
END

* ok ® F ® *
* * ¥ ¥ ¥ ¥

&E&8

E&8&

E&88



