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            Abstract

This paper presents analytical, Monte Carlo, and empirical evidence on the effects of structural
breaks on tests for equal forecast accuracy and forecast encompassing.  The forecasts are generated from
two parametric, linear models that are nested under the null.  The alternative hypotheses allow a causal
relationship that is subject to breaks during the sample.  With this framework, we show that in-sample
explanatory power is readily found because the usual F-test will indicate causality if it existed for any
portion of the sample.  Out-of-sample predictive power can be harder to find because the results of
out-of-sample tests are highly dependent on the timing of the predictive ability.  Moreover, out-of-sample
predictive power is harder to find with some tests than with others:  the power of F-type tests of equal
forecast accuracy and encompassing often dominates that of the more commonly-used t-type alternatives.
Overall, out-of-sample tests are effective at revealing whether one variable has predictive power for
another at the end of the sample.  Based on these results and additional evidence from two empirical
applications, we conclude that structural breaks can explain why researchers often find evidence of
in-sample, but not out-of-sample, predictive content.

JEL classification:  C53, C12, C52

Keywords:  power, structural breaks, forecast evaluation, model selection  
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1.  Introduction

It is now common knowledge that in-sample predictive ability need not imply out-of-sample

predictive ability.  For example, in the exchange rate literature spanning Meese and Rogoff

(1983, 1988) through Kilian and Taylor (2001), study after study has concluded that models that

fit well in-sample fail to improve over a simple random walk in out-of-sample forecast

comparisons.  Some of the differences between in-sample and out-of-sample results on

predictive ability may be due to model instability.1  Stock and Watson (1996, 1999) show that

instability pervades a wide range of time series.  Moreover, detailed studies of particular

relationships find some instabilities.  Examples include the Estrella, Rodrigues, and Schich

(2000) and Stock and Watson (2001) analyses of the link from financial variables to real activity

and the Paye and Timmermann (2002) and Rapach and Wohar (2002) studies of the relationship

of stock returns to financial variables.2  Clements and Hendry (1999) and Hendry (2000) argue

that, because of structural shifts, simple autoregressions in differences or second differences

forecast better than more structural models.

In light of these findings, this paper examines the behavior of out-of-sample forecast tests in

the presence of structural breaks.  In particular, using parametric linear regression models we

present analytical, Monte Carlo, and empirical evidence on the effects of structural breaks on

out-of-sample forecast tests.  The out-of-sample tests include two forecast accuracy tests

considered in McCracken (2000), two forecast encompassing tests considered in Clark and

McCracken (2001a), and an out-of-sample causality test proposed by Chao, Corradi and

                                                          
1 Of course, structural breaks need not be the only explanation for the gulf between in-sample and out-of-sample
evidence.  Inoue and Kilian (2002a) argue that power differences can explain the gap.
2 While Estrella, Rodrigues, and Schich (2000) find a probit model relating the probability of recession to the spread
to be stable, they find a linear model relating growth to the spread is not.
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Swanson (2001).  For comparison, our analysis includes the standard in-sample F-test for

exclusion restrictions, a metric frequently used in gauging predictive ability.

Our results appear to account for the �typical� finding that in-sample predictive ability fails

to translate into out-of-sample predictive ability.  The paper�s theoretical analysis shows in-

sample explanatory power is readily found because the usual F-test indicates Granger causality

or predictive ability if it existed for any portion of the sample.  Out-of-sample predictive power

can be harder to find because the results of out-of-sample tests are highly dependent on the

timing of the predictive ability � whether the predictive ability existed at the beginning or end of

the sample, and where a break occurred relative to the start of the forecast sample.  Moreover,

out-of-sample predictive power is harder to find with some tests than with others:  the power of

F-type tests of equal forecast accuracy and encompassing often dominates that of the more

commonly-used t-type alternatives.  Overall, out-of-sample tests are effective at revealing

whether one variable has predictive power for another at the end of the sample.  All of these

analytical findings are confirmed by our Monte Carlo results.

The two empirical applications we consider provide further, concrete evidence that structural

shifts can account for the out-of-sample breakdown in predictive power encountered in so much

empirical work.  Using U.S. data, we examine how identified structural breaks affect the

predictive power of (1) an interest rate spread for real GDP growth and (2) growth in nominal

stock prices for growth in industrial production.  Simulations of models estimated with historical

data show the breaks identified in the mid-1980s would produce the basic pattern documented in

the sample results:  in-sample causality and even out-of-sample causality in 1971-85 forecasts,

but not in 1986-2000 forecasts.
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The analysis in this paper builds on two extant lines of work.  The first is the literature on

forecasts from nested models � McCracken (2000), Chao, Corradi, and Swanson (2001), Clark

and McCracken (2001a,b), Gilbert (2001), and Inoue and Kilian (2002a) � which to this point

has assumed stable models.  For example, McCracken (2000) and Clark and McCracken

(2001a,b) derive the limiting distributions of tests of forecast accuracy and encompassing under

the narrowly defined null hypothesis that one of the two models being compared is nested within

the other for all t.  Here we consider a much broader set of alternatives that allow for either no

nesting or nesting for only a portion of the sample.  Doing so allows us to provide details on the

ability of these tests to detect a range of empirically relevant alternatives.3

We also build on Rossi�s (2001) development of optimal tests of the joint null hypothesis of

no (Granger) causality and model stability.  Rossi uses local asymptotic methods to derive a

point optimal test of the joint hypothesis, noting that out-of-sample tests also serve, in effect, as

tests of the joint null of no causality and model stability.4  Simulations are then used to analyze

the finite-sample efficacy of several tests under a range of alternatives that allow for deviations

from the null of model stability and nesting.  The tests include the newly derived test, a t-test for

equal forecast MSE (labeled MSE-t below), and other �optimal� tests for more narrowly defined

alternative hypotheses (such as the Andrews and Ploberger (1994) and Nyblom (1989) tests for

structural breaks).5  Rossi finds that the newly derived optimal test and the t-test for equal MSE

are the only ones to maintain power against all alternatives, although in any particular situation,

                                                          
3 Inoue and Kilian (2002b) compare the effectiveness of forecast MSE criteria and information criteria in selecting
forecasting models, in environments with and without structural breaks.
4 Rossi (2001) does not derive any results for out-of-sample tests.
5 Rossi (2001) compares the MSE-t test against standard normal critical values.  However, McCracken (2000) has
shown that, with nested models, the test is not asymptotically standard normal but instead has an asymptotic
representation that is a complex function of stochastic integrals of quadratics of Brownian Motion.  The
asymptotically valid critical values provided by McCracken differ substantially from standard normal critical values.
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the out-of-sample test is dominated by the relevant optimal test.  The results of our paper

substantiate and extend some of Rossi�s conjectures regarding the power of out-of-sample tests.

The remainder of the paper proceeds as follows.  Section 2 provides the notation and

assumptions used to derive the asymptotics.  Section 3 presents six Lemmas, one associated with

each of the test statistics considered.  Each Lemma provides an asymptotic expansion that can be

used to derive the limiting behavior of the respective test statistic.  This section also examines a

simple example designed to illuminate the complicated asymptotics.  Section 4 reports Monte

Carlo evidence on the ability of out-of-sample tests, relative to the standard in-sample test, to

detect alternatives that allow for a break in the causal relation of interest.  Section 5 presents our

analysis of the effect of structural breaks on the predictive power of an interest rate spread and

stock prices for output growth.  Section 6 concludes.  All proofs are presented in a technical

appendix, Clark and McCracken (2002).

2.  Environment

The sample of observations ' T 1
t 2,t t 1{y , x } +

=  includes a scalar random variable yt to be predicted

and a (k1 + k2 = k×1) vector of predictors x2,t = ' ' '
1,t 22,t(x , x ) .  The sample is divided into in-sample

and out-of-sample portions.  The in-sample observations span 1 to R.  Letting P denote the

number of 1-step ahead predictions, the out-of-sample observations span R + 1 through R + P.

The total number of observations in the sample is R + P = T + 1.

Forecasts of yt+1, t = R,�,T, are generated using two linear models of the form ' *
i,t ix β , i = 1,2,

each of which is estimated using OLS.  Under the null, model 2 nests the restricted model 1 for

all t = 1,..., T+1, and hence model 2 includes k2 excess parameters.  Without loss of generality,

under the null hypothesis we define *
2β  = 

21

*' '
1 1 k1 k( ,  0 )××β .  Under the alternative hypothesis, these
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restrictions are not necessarily true for all t and thus the data-generating process is allowed to

take the very general form yt+1 = ' *
2,t 2,tx β  + ut+1 with Ex2,tut+1 ≡ Eh2,t+1 = 0 for all t.

The forecasts are allowed to be either recursive, rolling or fixed 1-step ahead predictions.6

Under the recursive scheme, each model�s parameters are estimated with added data as

forecasting moves forward through time: for t = R,�,T, model i�s prediction of yt+1, '
i,t i,t

�x β , is

created using the parameter estimate i,t
�β  based on data from 1 to t.  The largest number of

observations used to estimate the model parameters is then T = R + P − 1.  Under the rolling

scheme, forecasts are constructed similarly but each model�s parameters are estimated using only

a rolling window of the past R observations.  We continue to denote these parameter estimates as

i,t
�β  even though it might be more appropriate to add an additional subscript R to denote the

window width.  Under the fixed scheme the parameters are not revised as new data becomes

available.  The parameter vector is estimated once using the first R observations and then

remains fixed as forecasting proceeds.  We continue to denote these parameter estimates as i,t
�β

even though it is trivially true that i,t
�β  = i,R

�β  for all t ≥ R.

We denote the 1-step ahead forecast errors as 1,t+1�u  = '
t+1 1,t 1,t

�y -x β  and 2,t+1�u  = '
t+1 2,t 2,t

�y -x β  for

models 1 and 2, respectively.  We denote the in-sample regression residuals as 1,s+1�v  =

'
s+1 1,s 1,T

�y -x β  and 2,s+1�v  = '
s+1 2,s 2,T

�y -x β  s = 1,..., T for models 1 and 2, respectively.  Using these

forecast errors and residuals we consider the following six test statistics, described in more detail

in Section 3:

                                                          
6 The analytical results are easily generalized to multi-step forecasts from long-horizon regressions.  Null
asymptotics for these types of predictions are given in Clark and McCracken (2001b).  We do not consider them
here since asymptotically valid critical values are unavailable due to the non-pivotal nature of the null asymptotic
distributions.
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GC = 
-1 2 2T

s=1 1,s+1 2,s+1
-1 2T

s=1 2,s+1

� �T (v -v )
T×

�T v
�

�
, MSE-t =

1 2 2T
t R 1,t 1 2,t 11/ 2

1 2 2 2T
t R 1,t 1 2,t 1

� �P (u u )
P

� �P (u u )

−
= + +

−
= + +

−�
×

−�

,

MSE-F = 
-1 2 2T

t R 1,t+1 2,t+1
-1 2T

t R 2,t+1

� �P (u -u )
P×

�P u
=

=

�

�
, ENC-t = 

1 2T
t R 1,t 1 1,t 1 2,t 11/ 2

1 2 2T
t R 1,t 1 1,t 1 2,t 1

� � �P (u u u )
P

� � �P (u u u )

−
= + + +

−
= + + +

−�
×

−�

,

ENC-F = 
-1 2T

t R 1,t+1 1,t+1 2,t+1
-1 2T

t R 2,t+1

� � �P (u -u u )
P×

�P u
=

=

�

�
, CCS = ' 1�P m m−× Ω ,

where, for �π  = P/R and π = P,Rlim P/R→∞ ,

m  = 1 T
t R 1,t 1 22,t�P u x−
= +� , �Ω  = ' '

ff hh fh 1 hh 1
� � � �� � � �S ( 2 )FB S B F+ λ − λ , �F  = 1 'T

t R 22,t 1,tP x x−
=− � ,

hh
�S  = 1 2 1 'T T

t R t R1,t 1 1,t 1,t�(P u )(P x x )− −
= =+� � , ff

�S  = 1 2 1 'T T
t R t R1,t 1 22,t 22,t�(P u )(P x x )− −
= =+� � ,

1
�B  = 1 ' 1T

t R 1,t 1,t(P x x )− −
=� ,

and

Scheme fh
�λ hh

�λ

Recursive 1� �1 ln(1 )−− π + π 1� �2[1 ln(1 )]−− π + π

Rolling, π ≤ 1 � / 2π 2� � / 3π − π

Rolling, 1 < π < ∞ 1�1 (2 )−− π 1�1 (3 )−− π

Fixed 0 �π .

We use the moniker GC (Granger causality) to denote the textbook in-sample test that is

asymptotically χ2(k2).7  The null limiting distributions of the tests for equal MSE (MSE-F and

                                                          
7 To simplify presentation of the analytical results, we drop from the GC test formula the degrees of freedom
adjustment commonly incorporated in tests of causality.  In our Monte Carlo and empirical work, however, the
computed GC statistics incorporate the usual degrees of freedom adjustment.
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MSE-t) and forecast encompassing (ENC-F and ENC-t) are derived in McCracken (2000) and

Clark and McCracken (2001a), respectively.8  The null limiting distribution of the CCS test is

derived by Chao, Corradi and Swanson (2001).  To facilitate presentation we have modified the

original CCS statistic by assuming homoskedastic forecast errors, which simplifies the weighting

matrix Ω as discussed in West and McCracken (1998).9

Following Harvey, Leybourne, and Newbold (1998) and Clark and McCracken (2001a),

among others, we treat the tests for equal MSE (MSE-F and MSE-t) and forecast encompassing

(ENC-F and ENC-t) as one-sided tests.  Clark and McCracken note that because the models are

nested, the null hypothesis is that model 1�s MSE is less than or equal to model 2�s MSE, while

the alternative is that model 1�s MSE is greater than model 2�s.  The alternative is one-sided

because, if the restrictions imposed on model 1 are not true, there is no reason to expect forecasts

from model 1 to be superior to those from model 2.  Harvey, Leybourne, and Newbold point out

that, under the null that model 1 forecast encompasses 2, the covariance in the numerator of the

encompassing tests will be less than or equal to 0.  Under the alternative that model 2 contains

added information, the covariance should be positive.

For the GC test as well as the fixed and recursive schemes let Bi(t), iB (t) , Di(t), iD (t)  and

Hi(t), i = 1,2 and t = R,�,T, denote -1 ' -1t-1
s=1 i,s i,s(t x x )� , -1 ' -1t-1

s=1 i,s i,s(t Ex x )� , -1 ' *t-1
s=1 i,s i,s i,s(t x x )β� ,

-1 ' *t-1
s=1 i,s i,s i,s(t Ex x )β�  and -1 t-1

s=1 i,s s 1(t x u )+�  ≡ -1 t-1
s=1 i,s 1(t h )+� , respectively.  For the rolling scheme let

Bi(t), iB (t) , Di(t), iD (t)  and Hi(t), i = 1,2 and t = R,�,T, denote -1 ' -1t-1
s=t-R+1 i,s i,s(R x x )� ,

-1 ' -1t-1
s=t-R+1 i,s i,s(R Ex x )� , -1 ' *t-1

s=t-R+1 i,s i,s i,s(R x x )β� , -1 ' *t-1
s=t-R+1 i,s i,s i,s(R Ex x )β�  and -1 t-1

s=t-R+1 i,s s 1(R x u )+�  ≡

                                                          
8 In the theoretical analysis we use the above versions of the MSE-t and ENC-t that do not center the variances in the
denominators around the mean (which is zero under the null) in order to simplify the analysis.  But in our Monte
Carlo and empirical work, we do in fact center the variances around the means, as is standard.
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-1 t-1
s=t-R+1 i,s 1(R h )+� , respectively.  Finally, let J′ and J� ′ denote the selection matrices 

1 1 1 2

'
k k k k(I ,0 )× ×

and 
2 1 2 2

'
k k k k(0 , I )× ×  and let [z] denote the integer component of the real number z.

Given the definitions and forecasting schemes described above, the following assumptions

are used to derive the necessary asymptotic expansions in Lemmas 1 - 6.

Assumption 1: (a) The DGP satisfies yt+1 = ' *
2,t 2,tx β  + ut+1 with Ex2,tut+1 ≡ Eh2,t+1 = 0 for all t, (b)

The nonstochastic sequence *
2,tβ  is uniformly bounded, (c) The parameters are estimated using

OLS and hence satisfy 1,t
�β  = '

1 2B (t)J D (t)  + '
1 2B (t)J H (t)  and 2,t

�β  = 2 2B (t)D (t)  + 2 2B (t)H (t) , t =

R,..., T.

Our first assumption is largely notational but is stated explicitly in order to clarify the

relevant environment and insure that the parameters are estimated by OLS.  That the parameter

sequence is uniformly bounded insures that weighted averages of the parameters are finite and

converge.  Part (b) does exclude models that allow for random variation in the parameters.  As a

technical matter, our proofs do allow for stochastic parameters if the stochastic nature of the

parameters is strongly exogenous to the process generating both yt and x2,t.  In this case we

would simply interpret our results as conditional on the given sequence of parameters.

Assumption 2: Define Ut = [ut, h2,t′, vech( ' '
2,t 1 2,t 1 2,t 1 2,t 1x x Ex x− − − −− )′]′. (a) For some r > 8, Ut is

uniformly Lr bounded, (b) Both 1 2T
s=1T s+1lim T Eu−

→∞ �  and 1 2T
t=RT t+1lim P Eu−

→∞ �  are finite and

                                                                                                                                                                                          
9 A more general version that allows for heteroskedasticity could be used.  What is important is that �Ω , and its
probability limit Ω, are positive definite.
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positive, (c) For all t = R,...T, 1
2B (t)−  is p.d., (d) For some r > d > 2, Ut is strong mixing with

coefficients of size −rd/(r − d), (e) With tU�  denoting the vector of nonredundant elements of Ut,

-1 'T T
s=1 s=1T s+1 s+1lim T E( U )( U )→∞ � �� �  = V < ∞ is p.d.

Assumption 2 allows the application of an invariance principle and is sufficient for joint

weak convergence of partial sums and averages of these partial sums to Brownian motion and

integrals of Brownian motion.  Assumption 2 is directly comparable to the assumptions in

Hansen (1992) and hence we are able to apply his Theorems.  Note that although we do not

allow for stochastic processes with unit roots, we do not require that the process be covariance

stationary.  This is important since in practice it is common to use lags of the dependent variable

to form predictions.  If this is the case and if the parameter vector is not constant across time, x2,t

is unlikely to be covariance stationary.10

Assumption 3: (a) P,Rlim P/R→∞  = π, 0 < π < ∞, λ = -1(1+π) , (b) 1/ 2T (P / T (1 ))− − λ  = O(1).

Assumption 3 introduces the means by which the asymptotics are achieved.  As in Ghysels

and Hall (1990), West (1996), and White (2000) the limiting distribution results are derived by

imposing a slightly stronger condition than simply that the sample size, T+1, becomes arbitrarily

large.  Here we impose the additional condition that the numbers of in-sample (R) and out-of-

sample (P) observations become arbitrarily large at the same rate (i.e. P/R → π > 0).  Part (b) is a

technical assumption that helps insure that certain remainder terms are bounded in probability.
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3.  Analytical Results

In this section we present six Lemmas, one associated with each of the test statistics.  The

Lemmas provide asymptotically valid expansions that can be used to describe how the GC,

MSE-F, ENC-F, MSE-t, ENC-t, and CCS test statistics will behave in large samples under a

particular alternative.  As will become evident, these expansions can be cumbersome.

Particularly for the out-of-sample tests, the expansions provide only limited detail.

It is for this reason that following each Lemma we provide a simplistic example.  We follow

Rossi (2001) and consider the case in which the null model is that yt+1 forms a zero-mean

martingale difference sequence while the alternative model allows the unconditional mean to be

non-zero.  In particular, our data-generating process allows for one change point in the

unconditional mean:  from zero to α ≠ 0 or vice versa.  Formally, if we let the break occur at

time [λBT] for some λB ∈ (0, 1), then either:  (i) αt = α ≠ 0, 1 ≤ t ≤ [λBT], and αt = 0, [λBT] < t ≤

T+1; or (ii) αt = 0, 1 ≤ t ≤ [λBT], and αt = α ≠ 0, [λBT] < t ≤ T+1.  For brevity, we only derive

the special case results using the recursive forecasting scheme.  Results for the rolling and fixed

schemes differ in the details but are qualitatively similar.

3.1  The GC Test

As a baseline for the out-of-sample tests we first derive the limiting behavior of the GC test

under the general alternative presented in Assumption 1.

Lemma 1 (GC expansion): (a) 1 2T
s=1 2,s+1�T v−

�  →p 2
vσ  a finite positive constant, (b)

2 2T
s=1 1,s+1 2,s+1� �(v -v )�  = T{ ' '

2 1 2 2[D (T)] [-JB (T)J +B (T)][D (T)] } + Op(T1/2).

                                                                                                                                                                                          
10 If lagged values of the dependent variable are used as predictors, they are included in x2,t.
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Part (a) of Lemma 1 simply states that asymptotically the scaling factor for the standard F-

test is finite and non-zero.  Part (b) provides the central expansion.  As is well known the GC test

diverges under the alternative at rate T and moreover, since ' '
2 1 2 2[D (T)] [-JB (T)J +B (T)][D (T)]  is

a symmetric quadratic form, it diverges to positive infinity.

As an example of what the expansion looks like consider the data-generating process

described at the beginning of Section 3.  Regardless of whether case (i) or case (ii) hold, 1B (T)  =

0 and 2B (T)  = 1.  We therefore find that, in case (i), GC = T[ 2 2
Bα ([λ T]/T) ] + Op(T1/2), while in

case (ii), GC = T[ 2 2
Bα ((T-[λ T])/T) ] + Op(T1/2).  In both situations GC diverges to positive

infinity at rate T.  Moreover it is clear that the scale factor depends upon the magnitude of the

deviation (from the null of no causality) through α2 and the percentage of the sample in which α

≠ 0 (through either λB or 1 − λB).

3.2 The MSE-F Test

Like the GC test, the F-type forecast accuracy test proposed by McCracken (2000) is

comprised of two components.  The numerator tests the null of equal forecast accuracy (when

MSE is the measure of loss) while the denominator serves as a scale factor.  We therefore have

the following two-parted Lemma.

Lemma 2 (MSE-F expansion): (a) -1 2T
t=R 2,t+1�P u�  →p 2

uσ  a finite positive constant, (b)

2 2T
t=R 1,t+1 2,t+1� �(u -u )�  = T(1-λ){ -1 ' ' ' *T

t=R 2 1 2 2,t 2,t 2,t2P [D (t)] [-JB (t)J +B (t)][Ex x β ]�  −

-1 ' ' ' 'T
t=R 2 1 1,t 1,t 1 2 2,t 2,t 2 2P [D (t)] [-JB (t)Ex x B (t)J +B (t)Ex x B (t)][D (t)]� }+ Op(T1/2).

Once again, part (a) of this Lemma is necessary only in that it ensures that asymptotically the
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scale factor is finite and non-zero.  The key is the expansion in part (b).  It is immediately clear

that the leading term is unlike that for the GC test.  Although this term does diverge at rate T

(presuming that the bracketed term {.} is non-zero), it need not be positive.  Hence, for a test of

the null hypothesis using any finite critical value from the upper tail of the null distribution, there

exist alternatives that the MSE-F statistic will fail to detect.11  Note also that the scale factor

depends explicitly on the percentage of the sample used for forecast evaluation, 1 − λ.  Holding

the bracketed term {.} constant and presuming it is positive, power increases in 1 − λ.

Because it is difficult to glean too much information from the expansion in Lemma 2, we

return to the simple example described at the beginning of this section.  There is one difference

here that was not relevant to the GC test: the precise value of the expansion depends upon the

location of the forecast sample split relative to the location of the break.  Therefore we derive

results for both cases (i) and (ii) twice.  We use (a) to denote that the break has occurred after the

sample split and (b) to denote that the break has occurred before the sample split.

In case (ia) we find that MSE-F = T[ 2
Bα (([λ T]-R)/T)  − 

B

2 -1 2 2T
t=[λ T]+1 Bα (T (T/t) ([λ T]/T) )� ] +

Op(T1/2).  Since α2 > 0, to determine the limiting behavior we need the sign of B(([λ T]-R)/T)  −

B

-1 2 2T
t=[λ T]+1 B(T (T/t) ([λ T]/T) )� .  But for large enough T, B(([λ T]-R)/T)  −

B

-1 2 2T
t=[λ T]+1 B(T (T/t) ([λ T]/T) )�  ~ λB − λ − 

B

12 -2
B λλ s ds�  = 2

Bλ -λ .  If 2
Bλ -λ  > 0 the MSE-F test

diverges to infinity, but if it is negative the MSE-F statistic diverges to negative infinity.  In case

(ib) we find that MSE-F = −T[ 2 -1 2 2T
t=R Bα (T (T/t) ([λ T]/T) )� ] + Op(T1/2).  Since this term is

negative it must be the case that the MSE-F test diverges to negative infinity so long as α ≠ 0.

                                                          
11 The same can also be said if the lower tail of the null distribution is used instead.  In this case, however, the
primary class of alternatives being considered is unclear.
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The case in which there is a break away from causality thus provides a situation in which we

expect in-sample methods to indicate predictive ability (a large GC test) while having no out-of-

sample predictive ability according to the MSE-F test.  Note that for a fixed value of λB, this is

more likely to happen when λ is large, or equivalently, when the number of out-of-sample

observations (P) is small.  Since this is often the case in empirical work it may be that structural

breaks away from causality are what drives the common finding of in-sample, but not out-of-

sample, predictive ability.

When the break is away from α = 0 and toward α ≠ 0, the results for the simple example are

much easier to interpret.  Regardless of when the break occurs the test diverges to positive

infinity.  In particular, in case (iia) we find that MSE-F = T[
B

2 -1 T
t=[λ T]+1 B2α (T (T/t)((t-[λ T])/T))�  −

B

2 -1 2 2T
t=[λ T]+1 Bα (T (T/t) ((t-[λ T])/T) )� ].  Since α2 is bounded we need only derive the sign of

B

-1 T
t=[λ T]+1 B2(T (T/t)((t-[λ T])/T))�  − 

B

-1 2 2T
t=[λ T]+1 B(T (T/t) ((t-[λ T])/T) )� .  But for large enough T we

obtain 
B

-1 T
t=[λ T]+1 B2(T (T/t)((t-[λ T])/T))�  − 

B

-1 2 2T
t=[λ T]+1 B(T (T/t) ((t-[λ T])/T) )�  ~ 

B

1 -1
Bλ2 s (s-λ )ds�  −

B

1 -2 2
Bλ s (s-λ ) ds�  = (1 − λB)2.  In case (iib) we find that MSE-F = T[ 2 -1 T

t=R B2α (T (T/t)((t-[λ T])/T))�

− 2 -1 2 2T
t=R Bα (T (T/t) ((t-[λ T])/T) )� ].  Since α2 is bounded we need only derive the sign of

-1 T
t=R B2(T (T/t)((t-[λ T])/T))�  − -1 2 2T

t=R B(T (T/t) ((t-[λ T])/T) )� .  But for large enough T we have

-1 T
t=R B2(T (T/t)((t-[λ T])/T))�  − -1 2 2T

t=R B(T (T/t) ((t-[λ T])/T) )�  ~ 1 -1
Bλ s (s-λ )ds�  − 1 -2 2

Bλ s (s-λ ) ds�  =

2 2 -1
B B1-λ+λ -λ λ .  In both cases (iia) and (iib) the leading term is positive and hence the MSE-F test

diverges to infinity.

3.3  The ENC-F Test

Like the previous two tests, the forecast encompassing test proposed by Clark and
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McCracken (2001a) is comprised of two components.  The numerator tests the null of forecast

encompassing while the denominator serves as a scale factor.  A priori we expect the expansion

of the numerator to be closely related to that for the MSE-F, because the two statistics are related

by the identity 2 2T
t=R 1,t+1 2,t+1� �(u -u )�  = 2T

t=R 1,t+1 1,t+1 2,t+1� � �(u -u u )�  − 2T
t=R 2,t+1 1,t+1 2,t+1� � �(u -u u )� , or equivalently,

MSE-F = ENC-F − 2 -1 2T T
t=R t=R2,t+1 1,t+1 2,t+1 2,t+1� � � �(u -u u )/(P u )� � .  Lemma 3 describes the limiting

behavior of the ENC-F statistic.

Lemma 3 (ENC-F expansion): (a) 1 2T
t=R 2,t+1�P u−

�  →p 2
uσ  a finite positive constant, (b)

2T
t=R 1,t+1 1,t+1 2,t+1� � �(u -u u )�  = T(1-λ){ -1 ' ' ' *T

t=R 2 1 2 2,t 2,t 2,tP [D (t)] [-JB (t)J +B (t)][Ex x ]β�  −

-1 ' ' ' ' 'T
t=R 2 1 1,t 1,t 1 1 2,t 2,t 2 2P [D (t)] [-JB (t)Ex x B (t)J +JB (t)J Ex x B (t)][D (t)]� }+ Op(T1/2).

Part (a) simply repeats the first part of Lemma 2.  Part (b) shows that the expansion for the

ENC-F test is similar to the expansion of the MSE-F statistic.  There are two differences.  The

first is that the lead term in the MSE-F expansion is double that for the ENC-F.  The second is

that the latter term in the MSE-F expansion contains the quadratic '
2 2,t 2,t 2B (t)x x B (t)  whereas that

for the ENC-F contains the quadratic ' '
1 2,t 2,t 2JB (t)J x x B (t) .  We therefore reach many of the same

conclusions here as we did before.  The ENC-F statistic diverges at rate T (presuming that the

bracketed term {.} is non-zero) and need not be positive.  Hence for a test of the null hypothesis

using any finite critical value from the upper tail of the null distribution, there exist alternatives

that the ENC-F test will fail to detect.  Also, as was the case for the MSE-F statistic, the scale

factor depends explicitly on the percentage of the sample used for forecast evaluation.  Hence,

holding the bracketed term {.} constant and presuming it is positive, power increases in 1 − λ.
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More is revealed when we consider the simple illustrative example.  In case (ia) we find that

ENC-F = T[ 2
Bα (([λ T]-R)/T) ] + Op(T1/2).  Since 2

Bα (([λ T]-R)/T)  is positive the ENC-F test

diverges to positive infinity.  This result differs from that for the MSE-F.  Recall there it was the

case that the MSE-F test diverged to positive infinity if 2
Bλ -λ  was positive.  Here, since λB − λ is

positive by assumption the ENC-F test always diverges to positive infinity.  This implies that the

two statistics can lead to different conclusions in the same environment.  In particular, if the

break occurs �soon after� the sample split, this is precisely what we expect.

In case (ib), the expansion simplifies to ENC-F = 0 + Op(T1/2), making the ENC-F test�s rate

of divergence different from the MSE-F�s.  Some additional algebra yields an expansion that can

be used to determine the rate of divergence:  ENC-F = T1/2[ -1/2 T
t=R B t+1α(T ([λ T]/t)y )� ] + Op(1).

Because yt+1 forms a zero-mean martingale difference sequence for all t ≥ R > [λBT], we can

apply a central limit theorem to obtain asymptotic normality of -1/2 T
t=R B t+1α(T ([λ T]/t)y )� .12  We

therefore have a situation in which, for large enough T, the ENC-F statistic will be larger than

any finite positive constant with probability approaching 1/2 and less than any finite negative

constant with probability approaching 1/2.  In contrast, Section 3.2 shows that the MSE-F

statistic diverges to negative infinity with probability one.  Hence for this type of alternative we

expect the ENC-F test to be more powerful than the MSE-F test, even though it is not consistent.

Cases (iia) and (iib) coincide with those for the MSE-F test in the sense that they both imply

the ENC-F statistic diverges to positive infinity.  Specifically, we find that ENC-F equals

T[
B

2 -1 T
t=[λ T]+1 Bα (T (T/t)((t-[λ T])/T))� ] + Op(T1/2) and T[ 2 -1 T

t=R Bα (T (T/t)((t-[λ T])/T))� ] + Op(T1/2)

in cases (iia) and (iib), respectively.  Since both 2 -1 T
t=R Bα (T (T/t)((t-[λ T])/T))�  and

                                                          
12 Wooldridge and White (1998) develop a CLT for dependent heterogeneous processes that can be applied here
under slightly more detailed assumptions.
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B

2 -1 T
t=[λ T]+1 Bα (T (T/t)((t-[λ T])/T))�  are positive, the ENC-F test diverges to infinity.

3.4 The MSE-t Test

The numerator of the MSE-t test, a t-statistic for equal MSE developed by Diebold and

Mariano (1995) and West (1996), is the same as the numerator of the MSE-F statistic.  The

denominator takes the form ( 2 2 2T
t R 1,t 1 2,t 1� �(u u )= + +−� )1/2.  So long as this term is non-zero with

probability one we can take the ratio of the two to determine the limiting behavior of the MSE-t

statistic.  Since the square-root function is continuous we work with 2 2 2T
t R 1,t 1 2,t 1� �(u u )= + +−�  first.

Lemma 4 (MSE-t denominator expansion): 2 2 2T
t=R 1,t+1 2,t+1� �(u -u )�  =

T(1−λ){ -1 ' ' 2 ' 'T
t=R 2 1 2 t+1 2,t 2,t 1 2 24P [D (t)] [-JB (t)J +B (t)](Ey x x )[-JB (t)J +B (t)][D (t)]�

+ -1 ' ' ' ' ' 'T
t=R 2 1 2 t+1 2,t 2,t 2,t 1 2 1 24P [D (t)] [-JB (t)J +B (t)](Ey x vec(x x ) )[JB (t)J D (t)) JB (t)J D (t)]⊗�

− -1 ' ' ' 'T
t=R 2 1 2 t+1 2,t 2,t 2,t4P [D (t)] [-JB (t)J +B (t)](Ey x vec(x x ) )� 2 2 2 2[B (t)D (t) B (t)D (t)]⊗

+ -1 ' ' ' ' ' 'T
t=R 1 2 1 2 2,t 2,t 2,t 2,tP [JB (t)J D (t) JB (t)J D (t)] (Evec(x x )vec(x x ) )⊗� ×

' '
1 2 1 2[JB (t)J D (t) JB (t)J D (t)]⊗

+ -1 ' ' ' 'T
t=R 2 2 2 2 2,t 2,t 2,t 2,tP [B (t)D (t) B (t)D (t)] (Evec(x x )vec(x x ) )⊗� 2 2 2 2[B (t)D (t) B (t)D (t)]⊗

− -1 ' ' ' ' ' 'T
t=R 1 2 1 2 2,t 2,t 2,t 2,t2P [JB (t)J D (t) JB (t)J D (t)] (Evec(x x )vec(x x ) )⊗� ×

2 2 2 2[B (t)D (t) B (t)D (t)]⊗ } + Op(T1/2).

The squared denominator term for the MSE-t statistic is extremely complicated.  The most

important facts of note are that it is positive semi-definite by construction and that when it is

positive, it diverges to positive infinity at rate T.  Because, however, the denominator is actually
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the square root of this term, we can determine only that the actual denominator

( 2 2 2T
t R 1,t 1 2,t 1� �(u u )= + +−� )1/2 is of order T1/2.  This is important for determining how the MSE-t test

will behave under any particular alternative.  For example, if under a particular environment the

numerator diverges at rate T while the denominator diverges at rate T1/2, we expect the MSE-t

statistic to diverge at rate T1/2 as well.  In other words, there exist alternatives under which the

power of the MSE-t test will be strictly dominated by that of the MSE-F for large enough sample

sizes.13  This relationship is supported by the simulation evidence reported in Clark and

McCracken (2001a), for an environment with no structural breaks.

While we can�t be certain that the denominator of the MSE-t statistic always diverges at rate

T1/2, it does in our simple illustrative example.  Substitution and algebra reveals that the T-order

term in the expansion of Lemma 4 takes the value T{ B2 -1 2[λ T]
t=R t+14α T (y -α)�  + 4

Bα (([λ T]-R)/T)  +

B

2 2 -1 2 2T
t=[λ T]+1B t+14α ([λ T]/T) (T (T/t) y )�  + 

B

4 4 -1 4T
t=[λ T]+1Bα ([λ T]/T) (T (T/t) )� },

T{ 2 2 -1 2 2T
t=RB t+14α ([λ T]/T) (T (T/t) y )�  + 4 4 -1 4T

t=RBα ([λ T]/T) (T (T/t) )� },

T{
B

2 -1 2 2 2T
t=[λ T]+1 B t+14α T (T/t) ((t-[λ T])/T) (y -α)�  + 

B

4 -1 2 2T
t=[λ T]+1 B4α T (T/t) ((t-[λ T])/T)�  −

B

4 -1 3 3T
t=[λ T]+1 B4α T (T/t) ((t-[λ T])/T)�  + 

B

4 -1 4 4T
t=[λ T]+1 Bα T (T/t) ((t-[λ T])/T)� } and

T{ 2 -1 2 2 2T
t=R B t+14α T (T/t) ((t-[λ T])/T) (y -α)�  + 4 -1 2 2T

t=R B4α T (T/t) ((t-[λ T])/T)�  −

4 -1 3 3T
t=R B4α T (T/t) ((t-[λ T])/T)�  + 4 -1 4 4T

t=R Bα T (T/t) ((t-[λ T])/T)� } respectively for cases (ia), (ib),

(iia) and (iib).  In all cases, the denominator term diverges at rate T1/2 and hence the MSE-F

statistic will often have power that asymptotically dominates that of the MSE-t statistic.

                                                          
13 As pointed out to us by Peter Hansen, the asymptotic power difference between the F-type and t-type test (of
either equal MSE or forecast encompassing) could be eliminated by simply squaring the t-type test.  Doing so,
however, would create problems of interpretation.  As noted above, the sensible tests are one-sided:  equal MSE, for
example, should only be rejected if the difference in MSE is positive.  Squaring the MSE-t test would produce
inappropriate rejections � ones occurring when the difference in MSE is negative.
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3.5 The ENC-t Test

The numerator of the ENC-t test, a t-statistic for forecast encompassing proposed by Harvey,

Leybourne, and Newbold (1998), is the same as the numerator of the ENC-F statistic.14  The

denominator takes the form ( 2 2T
t R 1,t 1 1,t 1 2,t 1� � �(u u u )= + + +−� )1/2.  So long as this term is non-zero with

probability one we can take the ratio of the two to determine the limiting behavior of the ENC-t

statistic.  Once again first consider the argument 2 2T
t R 1,t 1 1,t 1 2,t 1� � �(u u u )= + + +−�  of the square-root

function.

Lemma 5 (ENC-t denominator expansion): 2 2T
t=R 1,t+1 1,t+1 2,t+1� � �(u -u u )�  =

T{ -1 ' ' 2 ' 'T
t=R 2 1 2 t+1 2,t 2,t 1 2 2T [D (t)] [-JB (t)J +B (t)](Ey x x )[-JB (t)J +B (t)][D (t)]�

+ -1 ' ' ' 'T
t=R 2 1 2 t+1 2,t 1,t 1,t2T [D (t)] [-JB (t)J +B (t)](Ey x vec(x x ) )�

' '
1 2 1 2[B (t)J D (t) B (t)J D (t)]⊗

− -1 ' ' ' 'T
t=R 2 1 2 t+1 2,t 1,t 2,t2T [D (t)] [-JB (t)J +B (t)](Ey x vec(x x ) )�

'
1 2 2 2[B (t)J D (t) B (t)D (t)]⊗

+ -1 ' ' ' ' ' 'T
t=R 1 2 1 2 2,t 2,t 2,t 2,tT [JB (t)J D (t) JB (t)J D (t)] (Evec(x x )vec(x x ) )⊗� ×

' '
1 2 1 2[JB (t)J D (t) JB (t)J D (t)]⊗

+ -1 ' ' ' ' 'T
t=R 1 2 2 2 2,t 2,t 2,t 2,tT [JB (t)J D (t) B (t)D (t)] (Evec(x x )vec(x x ) )⊗� ×

'
1 2 2 2[JB (t)J D (t) B (t)D (t)]⊗

− -1 ' ' ' ' ' 'T
t=R 1 2 1 2 2,t 2,t 2,t 2,t2T [JB (t)J D (t) JB (t)J D (t)] (Evec(x x )vec(x x ) )⊗� ×

'
1 2 2 2[JB (t)J D (t) B (t)D (t)]⊗ } + Op(T1/2).

                                                          
14 West (2001) develops the limiting distribution of the test for forecasts from non-nested models with estimated
parameters.
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This very complicated expansion shows that the term 2 2T
t=R 1,t+1 1,t+1 2,t+1� � �(u -u u )� is positive semi-

definite by construction and that when it is positive, it diverges to positive infinity at rate T.  This

implies that ( 2 2T
t=R 1,t+1 1,t+1 2,t+1� � �(u -u u )� )1/2 is of order T1/2.  Thus, as was the case with the MSE tests,

there exist alternatives under which the power of the ENC-t test will be strictly worse than that of

the ENC-F statistic.  That is, for any finite critical value, so long as the numerator is positive we

can always choose T large enough so that, under the alternative, the probability of the ENC-t

statistic rejecting the null is no greater than that of the ENC-F test.  This relationship is supported

by the simulation evidence reported in Clark and McCracken (2001a), for an environment with

no structural breaks.

While we can�t be certain that the denominator of the ENC-t statistic always diverges at rate

T1/2, it does in our simple illustrative example.  Substitution and algebra reveals that the T-order

term in the expansion of Lemma 5 takes the value T{ B2 -1 2[λ T]
t=R t+1α T (y -α)�  + 4

Bα (([λ T]-R)/T)  +

B

2 2 -1 2 2T
t=[λ T]+1B t+1α ([λ T]/T) (T (T/t) y )� }, T{ 2 2 -1 2 2T

t=RB t+1α ([λ T]/T) (T (T/t) y )� },

T{
B

2 -1 2 2 2T
t=[λ T]+1 B t+1α T (T/t) ((t-[λ T])/T) (y -α)�  + 

B

4 -1 2 2T
t=[λ T]+1 Bα T (T/t) ((t-[λ T])/T)� } and

T{ 2 -1 2 2 2T
t=R B t+1α T (T/t) ((t-[λ T])/T) (y -α)�  + 4 -1 2 2T

t=R Bα T (T/t) ((t-[λ T])/T)� } respectively for cases

(ia), (ib), (iia) and (iib).  In all cases, the denominator term diverges at rate T1/2, implying the

ENC-F test�s power will often dominate that of the ENC-t statistic.

3.6 The CCS Test

The structure of the CCS statistic, proposed by Chao, Corradi and Swanson (2001) as an out-

of-sample causality test, differs from that of the other out-of-sample tests.15  The CCS test, like

the standard in-sample GC statistic, is positive semi-definite by construction.  Hence we know
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that if the statistic diverges, it does so to positive infinity with probability one.  Even so, it is not

immediately clear under what deviations from the null the CCS statistic will do so.  We consider

this question in the following two-parted Lemma.

Lemma 6 (CCS expansion): (a) �Ω  →p Ω  a finite positive definite matrix, (b) ' -1�P×mΩ m  =

T(1-λ){ -1 ' * ' ' -1 ' -1 ' * 'T T
t=R t=R2,t 2,t 2,t 1 2 2,t 2,t 2,t 1 2[P Ex x (β -JB (t)J D (t))] JΩ J [P Ex x (β -JB (t)J D (t))]� �� � }+ Op(T1/2).

Part (a) of Lemma 6 is important only in that it ensures that the weighting matrix in the

quadratic form has a finite positive definite limit.  Since this is the case we immediately know

from part (b) that the statistic diverges to positive infinity at rate T if for all sufficiently large

sample sizes T, ' -1 ' * 'T
t=R 2,t 2,t 2,t 1 2J P Ex x (β -JB (t)J D (t))��  is non-zero.  Note that, as was the case for

all the other out-of-sample tests, power increases in 1 − λ.

The expansion in Lemma 6 (b) is a bit simpler to interpret than many of the other expansions.

The term ' -1 ' * 'T
t=R 2,t 2,t 2,t 1 2J P Ex x (β -JB (t)J D (t))��  is a weighted average (with weights ' '

2,t 2,tJ Ex x� ) of

deviations of the true parameter sequence *
2,tβ  from the population-level parameter estimates

'
1 2JB (t)J D (t) .  If a causal linkage exists, so that *

22,tβ  ≠ 0, the CCS statistic typically diverges to

positive infinity.  Moreover, since structural breaks imply deviations of the true parameter

sequence *
2,tβ  from the population-level parameter estimates '

1 2JB (t)J D (t) , the CCS statistic will

generally diverge to positive infinity in the presence of structural breaks.

For more detail we return to the simple illustrative example.  If we define Ω = limT→∞

                                                                                                                                                                                          
15 The CCS test is similar in spirit to a regression-based encompassing test proposed by Chong and Hendry (1986)
and discussed in detail by West and McCracken (1998).
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1 2T
t R t 1P Ey−
= +� , the example is particularly simple for the CCS statistic.  In cases (ia), (iia) and

(iib) we find that the CCS statistic equals T[α2(T/P) B(([λ T]-R)/T) 2]/Ω + Op(T1/2),

T[α2(T/P) B((T-[λ T])/T) 2]/Ω + Op(T1/2) and T[α2(P/T)]/Ω + Op(T1/2) respectively.  Each of these

is positive definite and diverges at rate T.  In case (ib), however, the statistic does not diverge at

all but is instead bounded in probability.  More precisely, since CCS = -1/2 2T
t=R t+1

�(P y ) /Ω�  and

yt+1 forms a zero-mean martingale difference sequence over the time frame of the summation,

CCS →d χ2(1).  Like the ENC-F statistic, but unlike each of the other statistics considered, in

case (ib) the CCS statistic does not diverge at rate T.

4.  Monte Carlo Results

We use Monte Carlo simulations of two simple data-generating processes to evaluate the

small-sample properties of the above out-of-sample forecast and in-sample causality tests in the

presence of structural breaks.16  In these experiments, the DGP relates the predictand y to a

regressor x, with the coefficient on x subject to a structural break either toward or away from the

null value of zero.  The forecast tests compare predictions from an unrestricted model that

includes x and a restricted model that does not.  This section focuses on gauging the performance

of the tests by the probability of selecting the unrestricted model over the restricted.  For

comparison, we add Rossi�s (2001) optimal test for the joint null of no causality and stability, the

Exp-W statistic, to the battery of tests considered.

                                                          
16 Simulations of a more complicated or realistic DGP based on a VAR(2) fit to quarterly growth rates of nominal
GDP and M2 produced qualitatively similar results.
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4.1  Experiment Design

The first DGP, denoted DGP-1, corresponds to the simple example considered in Section 3

and the basic DGP in Rossi (2001):

t t ty 0.5 d u ,= + (1)

where dt is a dummy variable for the structural break and ut is an i.i.d. standard normal random

variable.  In this case, the unrestricted forecasting model (model 2) takes the form t 0 1,ty u= γ + ,

while the restricted model (model 1) forecast is 0 for all t.

The second design, DGP-2, corresponds to one of the bivariate DGPs used by Clark and

McCracken (2001a):

y,tt t 1t

x,tt t 1

uy y0.3 0.5d
,

ux x0 0.5
−

−

� �� � � �� �
= + � �� � � �� �
� �� � � � � �

(2)

where dt is a break dummy variable and the innovations are i.i.d. standard normal random

variables.  In the DGP-2 experiments, we compare the predictive ability of the models

t 0 1 t 1 1,ty y u−= γ + γ +  (model 1) and t 0 1 t 1 2 t 1 2,ty y x u− −= γ + γ + γ +  (model 2).

As in Section 3, we consider two classes of structural breaks in the coefficient of interest: (i)

from a non-zero value for [ ]Bt T≤ λ  to zero for [ ]Bt T> λ , where [ ]BTλ  is the break point; and

(ii) from a zero value for [ ]Bt T≤ λ  to a non-zero value for [ ]Bt T> λ .  The dummy variable dt in

equations (1) and (2) is defined to impose the structural break under consideration in each

experiment.  In case (i), the restricted (nested) model is well-specified after a break but

misspecified before a break.  In case (ii), the unrestricted (nesting) model is well-specified after a

break but overparameterized before a break.  For comparison, we report size and power results

for the case of no break.  In all cases, for each test we report the percentage of simulations �
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based on 10,000 replications � in which the test rejects the null of no causality, equal MSE, or

forecast encompassing and thereby selects the unrestricted model.

In the simulations, we generate data sets of R + P = 200 sample observations (plus any initial

observations necessitated by the lag structure of the DGP) and then consider a range of break

points and sample splits for forecasting.17  Breaks are specified as occurring at five different

points in the sample (a given experiment has only one break):  observations 25, 50, 100, 150, or

175.18  We report results for two different divisions of the sample into in-sample and out-of-

sample portions: P/R = 33/167 ≈ 0.2 and P/R = 133/67 ≈ 2.0 (results for another split, P/R =

75/125 ≈ 0.6, are qualitatively similar).19  The forecasts are generated recursively, with the model

estimates updated using added data as forecasting moves forward in time.  In results not reported

in the interest of brevity, using forecasts based on the rolling and fixed schemes described by

West and McCracken (1998) yields qualitatively similar results.

We compare the simulated test statistics against critical values that would be valid under the

null hypothesis, using a significance level of 5%.  In the case of the GC test, the critical values

are taken from the 2χ distribution.  Asymptotic critical values for the tests of equal MSE and

forecast encompassing are taken from McCracken (2000) and Clark and McCracken (2001a),

respectively.  We compare the CCS statistic against its (null) asymptotic 2χ  distribution.

Asymptotic critical values for the Exp-W statistic are from Rossi (2001).

                                                          
17 Any initial observations necessitated by the lag structure of the model are generated from draws of the
unconditional normal distribution implied by the model.
18 These break points correspond to λB taking values 0.125, 0.25, 0.50, 0.75, and 0.875.
19 We generate the data such that the same draws from the normal distribution are used regardless of the timing of
the break or forecast sample split.  In particular, we generate a total of four different and independent data sets of
(10,000) innovations, for the following experiments:  (1) DGP-1, case (i); (2) DGP-2, case (i); (3) DGP-1, case (ii);
and (4) DGP-2, case (ii).
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4.2  Simulation Results

Our simulations indicate that, when no structural break occurs, the tests generally have good

size and power properties.  Moreover the results follow some simple patterns that are consistent

with the findings of Clark and McCracken (2001a) and Rossi (2001).  For example, the rows

labeled �none� in Table 1�s results all show that, when no structural break occurs and the DGP

satisfies (for all t) the null imposed by the restricted model, each test rejects the null in about 5

percent of the simulations.  Similarly, the no-break rows labeled �none� in Table 2�s results

indicate that when the DGP corresponds to the unrestricted model (for all t), the GC and ENC-F

tests reject the null in virtually all of the simulations.  The remainder of this section focuses on

results in which a break occurs.

4.2.1  Breaks away from causality (case (i))

Table 1�s results for simulations in which a break away from causality occurs generally

conform with Section 3�s analytical results.  Theory implies that when a break away from the

unrestricted model and toward the restricted model occurs � cases (ia) and (ib) � the out-of-

sample tests are less likely than the GC test to select the unrestricted model.  Our finite-sample

simulations confirm this analytical result.  For example, as shown in the DGP-2 results, if P/R =

0.2 and the break occurs at observation 100, the GC test selects the unrestricted model in 95.7

percent of the simulations while the MSE-F and ENC-F tests select it with frequencies of only

11.6 and 34.1 percent, respectively!

Theory also implies that the behavior of the out-of-sample tests may depend on whether the

break has occurred after (case (ia)) or before (case (ib)) the sample split.  More specifically,

Section 3�s analytical results show that the ENC-F statistic diverges to positive infinity with

probability one in case (ia), but is equally likely to diverge to plus or minus infinity in case (ib).
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Accordingly, the probability of selecting the unrestricted model should rise substantially when

the date of the break moves forward enough to shift the case from (ib) to (ia) � an implication

borne out by the simulation results.  The DGP-1 results with P/R = 2, for example, show that the

percentage of trials in which the ENC-F test selects the unrestricted model soars from 17.3

percent to 88.8 percent with the shift from case (ib) to (ia).

The analytical results also imply that the MSE-F test should register a surge in probability,

but not precisely at the same point as the ENC-F.  In the simple analytical example, the increase

will reach its peak only when the break point moves far enough past the forecast split point to

make 2
Bλ − λ  positive.  In the simulation results for P/R = 2, 2

Bλ − λ  becomes positive between

the break points of 100 and 150.  With the move of the break date from observation 100 to 150,

the percentage of trials in which the MSE-F test selects the unrestricted model soars from 15.3 to

83.8 percent in the case of DGP-1 and from 18.0 to 86.2 percent in the case of DGP-2.

Finally, the simulation results for the MSE-t, ENC-t, and CCS tests also appear consistent

with Section 3�s analytical implications.  Theory indicates the MSE-t and ENC-t tests diverge at

a slower rate than their MSE-F and ENC-F counterparts.  In the simulations, the �t tests are

generally less likely than their �F counterparts to select the unrestricted model.  For instance, as

shown in the DGP-2 results, if P/R = 0.2 and the break occurs at observation 100, the MSE-t and

ENC-t tests select the unrestricted model with a frequency of 2.7 and 9.9 percent, respectively,

compared to 11.6 and 34.1 percent for the MSE-F and ENC-F tests.  The analytical results for the

simple example also imply the CCS statistic has a limiting )1(2χ  distribution in case (ib) and

diverges to positive infinity in case (ia).  Accordingly, in the case (ib) simulations, we find that
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the CCS test selects the unrestricted model in only about 5 percent of the draws.20  But as the

timing of the break moves from case (ib) to (ia), the CCS test�s probability rises from 4.4 percent

with the break at observation 50 to 94.8 percent with the break at observation 150, in the case of

DGP-2 with P/R = 2.

4.2.2  Breaks toward causality (case (ii))

Section 3�s analytical results are further corroborated by Table 2�s results for simulations in

which a break toward causality occurs.  Asymptotic theory implies that when a break away from

the restricted model toward the unrestricted occurs � cases (iia) and (iib) � the GC, MSE-F, and

ENC-F statistics always diverge to positive infinity.  In large samples, then, each test is equally

likely to choose the unrestricted model.  The simulation results bear this out.  For example, as

shown in the DGP-2 results, if P/R = 0.2 and the break occurs at observation 100, the GC, MSE-

F, and ENC-F tests select the unrestricted model in 95.5, 96.0, and 97.1 percent of the

simulations.

The analytical results also imply the MSE-t and ENC-t tests diverge at a slower rate than

their MSE-F and ENC-F counterparts (in cases (iia) and (iib) as well as cases (ia) and (ib)).  The

simulation results indicate that, when P/R = 0.2, the �t tests are generally less likely than their �F

counterparts to select the unrestricted model.  For instance, as shown in the DGP-1 results, if the

break occurs at observation 100, the MSE-t and ENC-t tests select the unrestricted model with a

frequency of 85.8 and 92.7 percent, respectively, compared to 95.0 and 96.5 percent for the

MSE-F and ENC-F tests.

                                                          
20 For DGP-1, the reported CCS results under case (ib) are numerically the same because, for this model, the
restricted model�s forecast error is exactly the same regardless of the breakpoint.  Because the forecast is always
zero, the forecast error is simply equal to y.  For DGP-1, the test is then formed by projecting the forecast error on a
constant.
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Finally, the simulations yield a finite-sample result that seems intuitive: when the break

toward causality occurs late in the sample rather than in the early or middle portions, the

probabilities of selecting the unrestricted model fall substantially.  With DGP-2 and P/R = 0.2,

for example, the frequency with which the ENC-F statistic selects the unrestricted model drops

from 66.4 percent when the break occurs at observation 150 to 28.6 percent when the break

occurs at observation 175.

5.  Applications

As noted in the introduction and in Rossi (2001), a substantial body of empirical research in

macroeconomics and finance seems to indicate: (1) evidence of predictive ability is found much

more readily in-sample than out-of-sample, and (2) most macroeconomic and financial time

series suffer structural breaks.  The analytical and Monte Carlo results presented above suggest

that structural breaks in causal relationships may account for the difficulty in finding evidence of

out-of-sample predictive ability.  In this section we consider two applications to examine

whether, in practice, breaks can account for these typical findings on predictability.  The first

application relates real GDP growth to an interest rate spread, a relationship addressed by a large

number of studies, ranging from Estrella and Hardouvelis (1991) to Hamilton and Kim (2002).

The second relates growth in industrial production (IP) to growth in nominal stock prices, a

model considered by Stock and Watson (2001), among others.

We first show that the �usual� pattern is borne out for both of these applications.  We then

simulate estimated models to assess how the breaks identified in each application may affect in-

sample and out-of-sample tests of predictive content.  In particular, we simulate DGPs that

impose no breaks and DGPs that allow for breaks.  With these experiments, we first evaluate the
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probability each test selects the unrestricted model.  These simulations allow us to assess

whether breaks can generate changes in power that could lead to the pattern evident in the

sample estimates.  We then compare the sample test statistics against the simulated distributions

to further determine whether the sample results could more reasonably result from a model with

or without breaks.

5.1  Data and model selection details

In both applications, the raw data are quarterly, spanning 1953:Q1 to 2000:Q4.21  The interest

rate spread is defined as the yield on 10-year government notes less the yield on 1-year notes, in

annualized percentage points.  Nominal stock prices are measured using the S&P 500 index.  For

all variables except real GDP, the quarterly data are simple time averages of monthly data.

Annualized growth rates of real GDP, industrial production, and stock prices were formed by

multiplying log differences by 400.

The basic model specifications were selected by applying the SIC to full-sample model

estimates, allowing different lag orders in each equation of a bivariate system as well as different

lag lengths for each variable in each equation.  In both applications, the SIC-determined

unrestricted model for the predictand relates it to a constant, one lag of the predictand, and one

lag of the causal variable.  After differencing and allowing a maximum lag length of four, the

estimation sample is 1954:Q2 to 2000:Q4.

5.2  Evidence of predictive content

As shown in the lower panels of Tables 3 and 4, full sample tests indicate the interest rate

spread and growth in stock prices have significant explanatory power for growth in GDP and

                                                          
21 Data on real GDP, interest rates (yields at constant maturities), and the S&P 500 were obtained from the FAME
database.  Data on industrial production were obtained from the website of the Federal Reserve�s Board of
Governors.
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industrial production, respectively.  In both applications, the simple Granger causality test

strongly rejects the null of no predictive power, as does Rossi�s (2001) Exp-W statistic.

To determine whether the in-sample explanatory power of the spread and stock prices

translates into out-of-sample predictive power, we follow Stock and Watson (2001) in

considering recursive out-of-sample forecasts that begin in the early 1970s and by dividing the

out-of-sample period in half.  In particular, we consider forecast performance over 1971-85 and

1986-2000.  With this sample split, P/R = 60/67 = 0.896 for 1971-85 and P/R = 60/127 = 0.472

for 1986-2000.22  For growth in both GDP and IP, 1-step ahead forecasts are generated using two

models.  The unrestricted model, Model 2, relates the predictand to one lag of the predictand and

one lag of the causal variable.  The restricted model, Model 1, is an AR(1).

As reported in Table 3, the out-of-sample tests indicate the spread has significant predictive

power for GDP growth in the first forecasting period, but little or no predictive power in the

second.  For 1971-85, the unrestricted model�s MSE is considerably lower than the restricted

model�s, and all of the forecast tests reject the null of no predictive content.  For 1986-2000,

however, the spread ceases to have any predictive power for GDP growth, with all of the forecast

tests and even a simple GC test applied to just 1986-2000 data failing to reject the null.

Table 4�s IP-stock price results paint a generally, but not completely, similar story.  Once

again, the out-of-sample tests indicate that stock prices have significant predictive power for

output growth in the first forecasting period.  For 1971-85, the unrestricted model�s MSE is

considerably lower than the restricted model�s, and all of the forecast tests reject the null of no

predictive content.  For 1986-2000, however, the tests for equal MSE indicate growth in stock

prices fails to improve the accuracy of forecasts of IP growth (and in fact produces forecasts with

                                                          
22 For these sample splits, we compare the tests for equal MSE and encompassing against asymptotic critical values
associated with π = 0.8 and π = 0.4, respectively.
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much higher MSE).  Yet the forecast encompassing, CCS and simple GC tests applied to 1986-

2000 data suggest stock prices have some predictive content.

5.3  Evidence of structural breaks

The above patterns in predictive ability could be the result of structural breaks in the causal

relationships of interest.  Because applying the multiple break test methodology of Bai and

Perron (1998, 2000) indicates the number of coefficient breaks in each equation is limited to one,

we generally base our inferences on Andrews� (1993) extremum Wald test for a single break

date.  Break tests are computed for individual coefficients, sets of coefficients, and the residual

variance, using White�s (1980) heteroskedasticity-robust variance estimator.  We compare the

test statistics against Andrews� asymptotic critical values and report p-values computed with

Hansen�s (1997) asymptotic approximation.23  For some residual variances, however, Bai and

Perron�s tests indicate multiple breaks, in which case inference is based on their tests.  While our

primary concern is with structural breaks in the causal relationship between output growth and

either the spread or stock prices, the simulation approach used below dictates that we test the

stability of equations for not only output growth but also the spread and stock prices.  We test

each equation separately.

According to our test results, both applications are marked by a break in the causal

relationship of interest and in the residual variance of output growth.  For the GDP growth

equation, the break test results reported in Table 5 indicate one significant shift in the coefficient

on the lagged spread and one shift in the residual variance.  The estimated date of the coefficient

shift is 1984:Q2, consistent with Stock and Watson�s (2001) summary assessment of the

                                                          
23 Generating p-values with Hansen�s (2000) fixed regressor (heteroskedastic) bootstrap yields similar results.
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evidence.24  In results not shown, when the model is reestimated imposing this break, all the

other regression coefficients appear stable.  The estimated date of the break in the residual

variance (allowing the break in the spread coefficient) is 1982:Q4.  While McConnell and Perez-

Quiros (2000) and Stock and Watson (2002) date the break in the residual variance of an AR

model for GDP growth a bit later, the confidence interval around our estimate is large enough to

cover the later estimates.25  The estimated GDP growth equation with break takes the form

(Appendix 1 reports estimates of the residual variance)

t t 1 t 1 t t 1 t y,tln GDP 1.854 0.245 ln GDP 2.038spread d 0.347spread (1 d ) u
                 (.440)  (.075)                   (.395)                     (.235)

− − −∆ = + ∆ + × + × − +

where dt = 1 for all t 1984:Q2≤  and zero otherwise.  Standard errors are in parentheses.

For the IP growth equation, the break tests point to one shift in the coefficient on lagged

stock price growth and two breaks in the residual variance.  As shown in Table 6, of the

individual regression coefficients, only the break in the stock price coefficient is significant, with

an estimated date of 1984:Q1.  Applying Bai and Perron�s (1998, 2000) tests for multiple break

points to the residual variance of the model (allowing a 1984:Q1 shift in the stock price

coefficient) identifies two breaks in the error variance, at 1961:Q2 and 1981:Q4.  The estimated

IP growth equation with break takes the form (see Appendix 1 for estimates of the residual

variance)

                                                          
24 Results based on the real-time GDP data described in Croushore and Stark (2001) display a similar breakdown in
the predictive content of the spread.
25 A number of studies have now documented a clear decline in the volatility of the U.S. economy.  See Stock and
Watson (2002) for a review of the evidence.
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t t 1 t 1 t t 1 t y,tln IP 1.365 0.397 ln IP 0.149 ln SP500 d 0.039 ln SP500 (1 d ) u
            (.622) (.078)              (.027)                           (.018)

− − −∆ = + ∆ + ∆ × + ∆ × − +

where dt = 1 for all t 1984:Q1≤  and zero otherwise.  Standard errors are in parentheses.

Applying break tests to equations for the interest rate spread and growth in stock prices

yields mixed results.  Table 5�s results for the spread equation point to one break in the set of

coefficients on the lagged spread variables.  Although none of the individual coefficients

experience statistically significant breaks, the set of coefficients on the lagged spread terms does,

in 1984:Q4.26  Multiple break tests applied to the residual variance of the model allowing the

1984:Q4 break in the spread coefficients indicate somewhere between one and three breaks,

depending on the particulars of the test settings.  Visually examining a plot of the squared

residuals suggests that while there may be as many as three breaks, simply imposing two breaks

� one in the early 1970s and another in the mid-1980s � serves to capture most of the

heterogeneity.  Bai and Perron (1998, 2000) estimates of two break dates put the shifts at

1973:Q2 and 1982:Q1. To facilitate the simulation analysis below, the second break is bumped

up to the date of the GDP equation�s variance break, 1982:Q4 (which is within the estimated

confidence interval).  In contrast, Table 6�s results for the stock price growth equation indicate

the regression coefficients and residual variance are stable.  Appendix 1 reports estimates of the

spread equation and the error variance matrices with the estimated breaks.

5.4  Ability of breaks to account for sample results

To gauge whether the documented structural breaks can account for the in-sample and out-

of-sample test results, we conduct Monte Carlo simulations of estimated DGPs with and without

breaks.  We first use the resulting simulated test statistics to assess the probability each test
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would reject the null hypothesis of no predictive content, by comparing the simulated statistics

against 5% asymptotic critical values.  In the sample results, full-sample tests and out-of-sample

tests for 1971-85 indicate each causal variable of interest has significant predictive power, but

the out-of-sample tests for 1986-2000 generally do not.  If structural breaks can account for this

pattern, the simulations of DGPs with breaks � but not simulations of stable DGPs � should show

that out-of-sample test rejection rates fall off sharply in 1986-2000 compared to the first

forecasting subsample.

For the designs with and without breaks, we then compare the sample test statistics against

the simulated distributions of test statistics, reporting the percentage of simulated test statistics

exceeded by the sample test statistic.  If structural breaks can account for the sample results, the

sample test statistics should be unusual compared to the �no-break� distributions of tests but not

the distributions based on simulations allowing the estimated breaks.  This basic approach of

examining whether sample results are more consistent with one model or another has been used

by Rudebusch (1993) and Kuo and Mikkola (1999, 2001) in examining the evidence of unit roots

versus trend stationarity.

In these experiments, we use DGPs taken from the model estimates presented above.  With

stability imposed, the DGPs for the GDP-spread and IP-stock market examples correspond to the

model estimates reported in Tables 5 and 6, respectively.  The DGPs that allow breaks are taken

from the model estimates reported in Section 5.3 and Appendix 1.  Although the reported �stable

model� results are based on DGPs that impose stability in not only the regression coefficients but

also the residual variance matrix, simulations of DGPs with breaks in the residual variance but

stable regression coefficients produce results to those reported for the �stable model� case.

                                                                                                                                                                                          
26 When the model is reestimated imposing this break, the other regression coefficients appear stable.
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In each experiment, data for the full estimation period of 1954:Q2 to 2000:Q4 are generated

by drawing i.i.d. normal innovations with covariance equal to the appropriate sample covariance

matrix and then constructing artificial data on the predictand and causal variable using the

autoregressive structure of the simulated model.27  In the models with breaks, the covariance

matrix of the innovations depends on the time period for which data are being sampled.  For each

draw of artificial data, we construct recursive, 1-step ahead forecasts from the unrestricted and

restricted models corresponding to those used in obtaining the sample results described in

Section 5.2.  As in the sample estimates, we use the forecasts to construct summary and test

statistics in 1971-85 and 1986-2000 subsamples.

Simulations of models without breaks indicate that, for the GDP-spread and IP-stock market

applications, stable models are unlikely to generate the sample results presented in Section 5.2.

The upper left panels of Tables 7 and 8 show that, in the absence of a structural break, the

powers of the tests � the simulated probabilities of rejecting the null hypothesis of no causality,

equal MSE, or encompassing � are about the same in 1971-85 and 1986-2000.  For instance, in

Table 7�s GDP-spread results, the MSE-F test rejects the null of equal accuracy with a frequency

of 74.5 percent over 1971-85 and a frequency of 79.7 percent over 1986-2000.  Moreover, the

lower left panels of Tables 7 and 8 show that, in the absence of a break, the 1971-85 sample test

statistics are larger than almost all the simulated test statistics, while the 1986-2000 sample tests

are smaller than almost all the simulated statistics.  For example, in the GDP-spread case, the

probabilities of the sample MSE-F and ENC-F statistics exceeding their simulated counterparts

are more than 93 percent for 1971-85 but essentially 0 percent for 1986-2000.  In the IP-stock

price example, the percentages of the simulated distributions exceeded by the sample tests are

                                                          
27 The initial observations necessitated by the lag structure of the model are drawn from the unconditional normal
distribution implied by the model structure that applies at the start of the sample.
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generally less extreme, but the pattern of a sharp drop from 1971-85 to 1986-2000 remains.  On

balance, the sample statistics from the two applications seem to be unusual compared to the

distribution they would likely have if the underlying DGPs were stable.

Simulations of DGPs allowing structural breaks indicate the breaks can account for the

pattern of sample results.  The upper right panels of Tables 7 and 8 show that, with a structural

break, the powers of the forecast tests are much lower over 1986-2000 than 1971-85, with the

drop-off for the MSE and CCS tests exceeding those for the encompassing tests.  For example, in

Table 7�s GDP-spread results, the MSE-F test�s power drops from 96.4 percent for 1971-85 to

1.1 percent for 1986-2000.  In the same application, the ENC-F test�s power falls from 99.9

percent to 59.3 percent.  While the same basic pattern is evident in Table 8�s results for the IP-

stock market application, the fall in the power of the tests is generally less dramatic because, in

the DGP for this example, the structural break greatly reduces, but does not eliminate, the causal

variable�s explanatory power (see the IP growth equation in Section 5.3).  Moreover, the lower

right panels of the tables show that, once a break is taken into account, the sample test statistics

no longer fall in the tails of their simulated distributions.  For example, in the GDP-spread

application, the sample values of the MSE-F test for 1971-85 and 1986-2000 exceed 32.3 and

47.0, respectively, of the test�s simulated distribution in each period; for the ENC-F test, the

corresponding probabilities are 48.4 percent for 1971-85 and 27.4 percent for 1986-2000.

6.  Conclusions

In this paper we first derive asymptotically valid expansions associated with each of six test

statistics that can be used to select a model for the purposes of forecasting.  The statistics we

consider include the standard in-sample F-test of (Granger) causality as well as five out-of-
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sample tests of equal forecast accuracy and encompassing.  Using these asymptotic expansions

we are able to provide a description of the behavior of these tests under a range of possible

alternatives.  In particular we are able to provide some information on how they will behave

when breaks are involved under the alternative.

We find that the MSE-F, ENC-F, MSE-t and ENC-t tests have the ability to diverge to either

plus or minus infinity depending on the particular alternative.  Since the upper tail of the null

distribution is normally used in drawing inferences, the tests will not be able to detect certain

types of alternatives.  As a result, out-of-sample tests will generally be more likely than the in-

sample F-test to select a restricted model when given the choice between a restricted and

unrestricted one.  We also find that certain out-of-sample tests dominate others in terms of

power.  In particular, for large enough T, the F-type out-of-sample tests, the MSE-F and ENC-F

statistics, will generally have greater power than their more commonly-used t-type counterparts,

the MSE-t and ENC-t tests.

We then proceed to conduct Monte Carlo simulations to examine how the analytical

differences among the tests translate into finite-sample performance, and find that our simulation

results corroborate our analytical findings.  For example, when a break away from causality

(toward the restricted model) occurs, the out-of-sample tests are less likely than an in-sample

causality test to select the unrestricted model.

Finally, we take up two applications, examining how identified structural breaks affect the

predictive power of (1) an interest rate spread for real GDP growth and (2) growth in nominal

stock prices for growth in industrial production.  Simulations of models estimated with historical

data show the breaks identified in the mid-1980s would produce the basic pattern documented in

the sample results:  in-sample causality and even out-of-sample causality in 1971-85 forecasts,
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but generally not in 1986-2000 forecasts.  These empirical applications seem to provide concrete

evidence that structural shifts can account for the out-of-sample breakdown in predictive power

encountered in so much empirical work.

Overall, out-of-sample tests appear to be effective at revealing whether one variable has

predictive power for another at the end of the sample.  In other words, forecast tests seem to have

power for identifying the true model at the end of the sample � an objective of particular

relevance for forecasting.  Clearly, however, if the objective is to identify whether one variable

had predictive power for another at any point in history � as in Inoue and Kilian (2002a) � in-

sample tests will often be more powerful than out-of-sample tests.

Given the apparent prevalence of model instability, an important outstanding question �

beyond the scope of this paper � is, what forecast methods work well in the face of instability?

One approach, considered in such studies as Stock and Watson (1996), Canova (2001), and

Marcellino (2002), is to allow time-varying parameters.  Alternatively, based on a wide battery

of results, Stock and Watson (2001) have suggested that forecast combination � a particular form

of shrinkage � may be a way of overcoming instabilities.  Other shrinkage approaches could also

be useful.  Finally, Pesaran and Timmermann (2002) have proposed a two-step method of

working backward in time to identify the most recent break and then using just the post-break

data to estimate a model and forecast.
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Appendix 1:  Additional Detail on Estimated Models with Breaks

In this appendix we report some additional detail on the models with breaks discussed in

Section 5.3: estimates of the equation for the spread with a break allowed and estimates of the

residual variance-covariance matrix that allow the identified breaks in variances.

The spread equation in the DGP used for simulations of the GDP-spread example allowing

structural shifts takes the form

t t 1

t 1 t 2 t 3 t 4 t

spread 0.167 0.032 ln GDP
              (.053)  (.009)

 [1.006spread 0.443spread 0.545spread 0.231spread ] d
    (.100)               (.191)               (.194)              (.089)

 [1.554sp

−

− − − −

= − ∆

+ − + − ×

+ t 1 t 2 t 3 t 4 t x ,tread 0.704spread 0.112spread 0.032spread ] (1 d ) u
    (.104)               (.172)               (.143)              (.081)

− − − −− + − × − +

where dt = 1 for all t 1984:Q4≤  and zero otherwise.  Standard errors are in parentheses.

The error covariance matrix used in the GDP-spread example with breaks is
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Note that, rather than separately dating breaks in the covariance between the equation residuals,

we simply allow the covariance term to shift at the variance break dates.

Finally, the error covariance matrix used in the IP-stock market example with breaks is
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Notes:
1.  DGP-1 and DGP-2 are defined in equations (1) and (2) in Section 4.1.  In these experiments, the dummy dt in the DGP has value 1 up through
the break point and 0 thereafter (in the �none� row, however, the dummy is 0 throughout the sample).  Accordingly, in these experiments, the
coefficient on the causal variable is non-zero up to the break point and zero thereafter.
2.  The coefficient break occurs at observation 25, 50, 100, 150, or 175.  Case (ia), defined in Section 3, refers to the situation in which the
coefficient of interest shifts from a non-zero value to zero, with the shift occurring after forecasting begins.  In case (ib), the break is also from a
non-zero value to zero, but the shift occurs before forecasting begins.
3.  The total sample of 200 observations is divided into the two in-sample (R) and out-of-sample (P) splits indicated in the table.
4.  All test statistics except Exp-W are defined in Section 2.  The Exp-W statistic is described in the introduction to Section 4.  In each simulation,
the tests are compared against 5% critical values, from the sources detailed in Section  4.1.
5.  The table reports the fraction of 10,000 simulations in which the null of no causality, equal accuracy, or forecast encompassing is rejected.

Table 1:  Monte Carlo Results, Break Away From Causality

DGP-1

Break point Case GC EXP-W MSE-F MSE-T ENC-F ENC-T CCS

Forecast sample split:  P/R = 33/167

none 0.049  0.056  0.060  0.065  0.056  0.066  0.044  
25 (ib) 0.137  0.382  0.082  0.061  0.091  0.071  0.044  
50 (ib) 0.406  0.831  0.116  0.051  0.168  0.081  0.044  
100 (ib) 0.937  0.992  0.115  0.024  0.294  0.089  0.044  
150 (ib) 0.999  1.000  0.071  0.008  0.353  0.092  0.044  
175 (ia) 1.000  1.000  0.185  0.032  0.648  0.254  0.095  

Forecast sample split:  P/R = 133/67

none 0.049  0.056  0.048  0.049  0.044  0.049  0.043  
25 (ib) 0.137  0.382  0.041  0.029  0.092  0.060  0.043  
50 (ib) 0.406  0.831  0.021  0.009  0.173  0.071  0.043  
100 (ia) 0.937  0.992  0.153  0.056  0.888  0.647  0.279  
150 (ia) 0.999  1.000  0.838  0.649  0.999  0.996  0.942  
175 (ia) 1.000  1.000  0.977  0.921  1.000  1.000  0.997  

DGP-2

Break point Case GC EXP-W MSE-F MSE-T ENC-F ENC-T CCS

Forecast sample split:  P/R = 33/167

none 0.051  0.061  0.059  0.072  0.056  0.072  0.046  
25 (ib) 0.173  0.480  0.084  0.068  0.100  0.077  0.043  
50 (ib) 0.480  0.890  0.119  0.055  0.194  0.086  0.042  
100 (ib) 0.957  0.996  0.116  0.027  0.341  0.099  0.039  
150 (ib) 1.000  1.000  0.071  0.010  0.421  0.109  0.037  
175 (ia) 1.000  1.000  0.195  0.037  0.709  0.293  0.096  

Forecast sample split:  P/R = 133/67

none 0.051  0.061  0.049  0.052  0.050  0.054  0.052  
25 (ib) 0.173  0.480  0.044  0.031  0.118  0.069  0.048  
50 (ib) 0.480  0.890  0.024  0.009  0.240  0.099  0.044  
100 (ia) 0.957  0.996  0.180  0.066  0.932  0.727  0.302  
150 (ia) 1.000  1.000  0.862  0.682  1.000  0.997  0.948  
175 (ia) 1.000  1.000  0.983  0.937  1.000  1.000  0.996  
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Notes:
1.  DGP-1 and DGP-2 are defined in equations (1) and (2) in Section 4.1.  In these experiments, the dummy dt in the DGP has
value 0 up through the break point and 1 thereafter (in the �none� row, however, the dummy is 1 throughout the sample).
Accordingly, in these experiments, the coefficient on the causal variable is zero up to the break point and non-zero thereafter.
2.  The coefficient break occurs at observation 25, 50, 100, 150, or 175.  Case (iia), defined in Section 3, refers to the situation in
which the coefficient of interest shifts from zero to a non-zero value, with the shift occurring after forecasting begins.  In case
(iib), the break is also from zero to a non-zero value, but the shift occurs before forecasting begins.
3.  See notes 4-6 for Table 1.

Table 2:  Monte Carlo Results, Break Toward Causality

DGP-1

Break point Case GC EXP-W MSE-F MSE-T ENC-F ENC-T CCS

Forecast sample split:  P/R = 33/167

none 1.000  1.000  0.896  0.629  0.994  0.936  0.797  
25 (iib) 1.000  1.000  0.922  0.699  0.994  0.935  0.797  
50 (iib) 0.999  1.000  0.943  0.762  0.992  0.934  0.797  
100 (iib) 0.936  0.993  0.950  0.858  0.965  0.927  0.797  
150 (iib) 0.405  0.836  0.680  0.752  0.624  0.752  0.797  
175 (iia) 0.138  0.394  0.323  0.444  0.268  0.433  0.543  

Forecast sample split:  P/R = 133/67

none 1.000  1.000  0.999  0.993  1.000  1.000  1.000  
25 (iib) 1.000  1.000  1.000  0.999  1.000  1.000  1.000  
50 (iib) 0.999  1.000  1.000  1.000  0.999  0.999  1.000  
100 (iia) 0.936  0.993  0.929  0.933  0.885  0.928  0.991  
150 (iia) 0.405  0.836  0.464  0.540  0.303  0.483  0.557  
175 (iia) 0.138  0.394  0.157  0.204  0.097  0.167  0.175  

DGP-2

Break point Case GC EXP-W MSE-F MSE-T ENC-F ENC-T CCS

Forecast sample split:  P/R = 33/167

none 1.000  1.000  0.919  0.678  0.996  0.948  0.812  
25 (iib) 1.000  1.000  0.941  0.750  0.995  0.946  0.818  
50 (iib) 1.000  1.000  0.957  0.810  0.993  0.944  0.823  
100 (iib) 0.955  0.996  0.960  0.887  0.971  0.936  0.834  
150 (iib) 0.478  0.893  0.712  0.785  0.664  0.777  0.845  
175 (iia) 0.172  0.478  0.344  0.461  0.286  0.443  0.619  

Forecast sample split:  P/R = 133/67

none 1.000  1.000  0.999  0.997  1.000  1.000  1.000  
25 (iib) 1.000  1.000  1.000  0.999  1.000  1.000  1.000  
50 (iib) 1.000  1.000  0.999  0.999  0.999  0.999  1.000  
100 (iia) 0.955  0.996  0.944  0.945  0.916  0.941  0.994  
150 (iia) 0.478  0.893  0.514  0.574  0.358  0.513  0.634  
175 (iia) 0.172  0.478  0.187  0.228  0.116  0.187  0.228  
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Notes:
1.  In this example, the predictand is annualized growth in GDP (in percentage points).  The causal variable is the spread between
the yields on 10-year and 1-year government securities.
2.  The 1-step ahead forecasts underlying the out-of-sample tests are generated recursively using the models described in Section
5.2.  Model 1 and Model 2 refer to the restricted and unrestricted models, respectively.  The full-sample causality statistics
reported at the bottom of the table are based on the unrestricted model described in Section 5.2, estimated over the period
1954:Q2�2000:Q4.
3.  All test statistics except Exp-W are defined in Section 2.  The Exp-W statistic is described in the introduction to Section 4.
The tests are compared against critical values from the sources detailed in Section 4.1.  The symbols * and ** denote statistical
significance at the 10 and 5 percent levels, respectively.

Table 3:  Sample Statistics for the GDP-Spread Example

Forecast sample statistics
1971-85 1986-2000

Model 1 MSE 19.313  4.011  
Model 2 MSE 16.088  6.439  
MSE-F 12.026  ** -22.629  
MSE-T 1.193  ** -2.813  
ENC-F 18.647  ** -0.448  
ENC-T 3.595  ** -0.131  
CCS 9.075  ** 0.019  
GC 17.520  ** 0.098  

Full sample statistics
GC 16.474  **
EXP-W 14.194  **
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Notes:
1.  In this example, the predictand is annualized growth in industrial production (in percentage points).  The causal variable is
annualized growth in the S&P 500.
2.  See notes 2-3 for Table 3.

Table 4:  Sample Statistics for the IP-Stock Market Example

Forecast sample statistics
1971-85 1986-2000

Model 1 MSE 60.151  7.691  
Model 2 MSE 50.800  11.777  
MSE-F 11.045  ** -20.814  
MSE-T 1.114  ** -1.432  
ENC-F 14.910  ** 10.311  **
ENC-T 2.326  ** 1.940  **
CCS 10.022  ** 3.600    *
GC 12.466  ** 7.303  **

Full sample statistics
GC 30.152  **
EXP-W 18.927  **
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Notes:
1.  GDP growth is measured in annualized percentage points; the factor of 400 by which the log growth rate is scaled is ignored
for simplicity.  The spread is the gap between the yields on 10-year and 1-year government securities.
2.  The SIC was used to determine the lag orders of the GDP and spread equations, allowing different lag lengths for each
variable in each equation.
3.  The sample period of estimation is 1954:Q2-2000:Q4.
4.  The break test is Andrews�s (1993) extremum Wald statistic, computed using a sample trim of π0 = .15.  The test statistics are
compared against the asymptotic critical values provided by Andrews.  The symbols * and ** denote statistical significance at the
10 and 5 percent levels, respectively.   The reported asymptotic p-values are computed using Hansen�s (1997) approximation.
5.  All standard errors and test statistics are based on White�s (1980) heteroskedasticity-robust variance estimator.

Table 5:  Model Estimates and Break Test Results for the GDP-Spread Example

Dependent variable: Dependent variable:

regressand coefficients (s.e.) break tests coefficients (s.e.) break tests
(p-values) (p-values)

constant 1.672     (.441) 7.29  (.09)  * .167     (.058) 7.18  (.10) *
.282     (.075) 5.21  (.23) -.031     (.007) 2.25  (.72)

1.076     (.282) 19.75  (.00) ** 1.106     (.092) 5.05  (.24)
-.482     (.180) 5.79  (.18)
.518     (.183) 5.03  (.24)
-.242     (.077) 2.60  (.64)

SEE 3.456     .408     
.167     .822     

sets of coefficients and residual variance
spread 19.75  (.00) ** 26.25  (.00) **
all coefs. 20.53  (.00) ** 26.77  (.00) **
resid. var. 26.92  (.00) ** 14.98  (.00) **

1ln −∆ tGDP
1−tspread
2−tspread
3−tspread
4−tspread

2R

tGDPln∆ tspread
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Notes:
1.  The growth rates of industrial production (IP) and nominal stock prices (SP500) are measured in annualized percentage points;
the factor of 400 by which the log growth rates are scaled is ignored for simplicity.
2.  The SIC was used to determine the lag orders of the IP and SP500 equations, allowing different lag lengths for each variable
in each equation.
3.  See notes 3-5 of Table 5.

Table 6:  Model Estimates and Break Test Results for the IP-Stock Market Example

Dependent variable: Dependent variable:

regressand coefficients (s.e.) break tests coefficients (s.e.) break tests
(p-values) (p-values)

constant 1.115     (.647) 4.76  (.27) 5.709     (1.824) 3.38  (.48)
.414     (.081) 2.11  (.76)
.112     (.023) 15.71  (.00) ** .315     (.072) 5.47  (.20)

SEE 6.372     21.971     
.303     .093     

sets of coefficients and residual variance
all coefs. 19.62  (.00) ** 9.97  (.10)
resid. var. 24.47  (.00) ** 5.96  (.16)

2R

1ln −∆ tIP
1500ln −∆ tSP

tIPln∆ tSP500ln∆
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Notes:
1.  The stable model results on the left side of the table use the equations given in Table 5 as the DGP.  The model with break
results on the right side of the table use the GDP growth equation in Section 5.3 and the spread equation in the appendix as the
DGP.  In each simulation, artificial data for 1954-2000 are generated using draws of innovations from the normal distribution.
2.  In each simulation, the 1-step ahead forecasts underlying the out-of-sample tests are generated recursively using the models
described in Section 5.2, over the separate (artificial) samples of 1971-85 and 1986-2000.  The full-sample causality statistics
reported at the bottom of each panel are based on the unrestricted model described in Section 5.2, estimated over the (artificial)
period 1954:Q2�2000:Q4.
3.  The upper panel of the table reports the fraction of 10,000 simulations in which the null hypothesis of no causality, equal
accuracy, or forecast encompassing is rejected, using 5% critical values from the sources detailed in Section 4.1.  All test
statistics except Exp-W are defined in Section 2.  The Exp-W statistic is described in the introduction to Section 4.

Table 7:  Simulation Results for the GDP-Spread Example

Stable model Model with break

Probability of tests rejecting null

Forecast sample statistics Forecast sample statistics
1971-85 1986-2000 1971-85 1986-2000

MSE-F .745 .797 .964 .011 
MSE-T .554 .524 .849 .001 
ENC-F .918 .958 .999 .593 
ENC-T .817 .836 .992 .246 
CCS .467 .457 .961 .096 
GC .676 .671 .985 .313 

GC .992  .987  
EXP-W .980  .999  

Percent of Simulated Test Statistics that Sample Statistics Exceed

Forecast sample statistics Forecast sample statistics
1971-85 1986-2000 1971-85 1986-2000

Model 1 MSE .990 .000 .692 .538 
Model 2 MSE .948 .001 .804 .552 
MSE-F .932 .000 .323 .470 
MSE-T .598 .000 .263 .400 
ENC-F .995 .003 .484 .274 
ENC-T .963 .006 .699 .273 
CCS .914 .016 .269 .087 
GC .970 .012 .453 .081 

GC .465 .419 
EXP-W .874 .353 

Full sample statistics Full sample statistics

Full sample statistics Full sample statistics
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Notes:
1.  The stable model results on the left side of the table use the equations given in Table 6 as the DGP.  The model with break
results on the right side of the table use the IP growth equation in Section 5.3 and the stock price equation in Table 6 as the DGP.
In each simulation, artificial data for 1954-2000 are generated using draws of innovations from the normal distribution.
2.  See note 3 of Table 7.

Table 8:  Simulation Results for the IP-Stock Market Example

Stable model Model with break

Probability of tests rejecting null

Forecast sample statistics Forecast sample statistics
1971-85 1986-2000 1971-85 1986-2000

MSE-F .888 .899 .944 .106 
MSE-T .733 .692 .819 .025 
ENC-F .983 .992 .998 .977 
ENC-T .939 .947 .991 .837 
CCS .787 .784 .933 .391 
GC .852 .855 .973 .666 

GC 1.000 1.000 
EXP-W .999 .999 

Percent of Simulated Test Statistics that Sample Statistics Exceed

Forecast sample statistics Forecast sample statistics
1971-85 1986-2000 1971-85 1986-2000

Model 1 MSE .917 .000 .953 .127 
Model 2 MSE .886 .000 .978 .371 
MSE-F .638 .000 .335 .262 
MSE-T .362 .001 .253 .478 
ENC-F .821 .581 .373 .391 
ENC-T .306 .168 .100 .360 
CCS .703 .199 .412 .588 
GC .652 .366 .309 .613 

GC .495 .554 
EXP-W .682 .543 

Full sample statistics Full sample statistics

Full sample statistics Full sample statistics


