Identifying the Macroeconomic Effects of Bank Lending Supply Shocks

William F. Bassett Mary Beth Chosak John C. Driscoll
 Egon Zakrajšek

Federal Reserve Board

January 2011
Disclaimer

The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of anyone else associated with the Federal Reserve System.
Bank Lending and Economic Activity

- Little consensus about the role of the supply of bank loans in economic fluctuations.
- Banking sector can serve as a propagation mechanism for, or a source of, macroeconomic shocks:
 - “Bank lending channel”
 - “Financial accelerator.”
 - Kiyotaki & Moore (1997); Bernanke, Gertler & Gilchrist (1999); Hall (2010)
- Lack of consensus reflects difficult identification problems:
 - Shocks that affect the supply of bank loans likely have independent effects on the real economy, and
 - Even shocks that originate in the banking sector may reflect disturbances that have a separate effect on economic activity.
Our Paper

- Uses **bank-level** data from the Senior Loan Officer Opinion Survey on Bank Lending Practices (SLOOS) to construct a measure of “loan supply shocks.”
- Loan supply shocks represent changes in credit standards that are orthogonal to:
 - Bank-specific changes in loan demand
 - Economic outlook and uncertainty regarding the outlook
 - Other bank-specific factors (e.g. profitability and asset quality).
- Examines the impact of loan supply shocks on the macroeconomy within the context of a standard VAR-X model.
Main Findings

- Pattern of loan supply shocks accords well with the narrative account of the credit conditions over the 1992–2010 period.

- Adverse shocks to bank loan supply have large real effects:
 - One standard deviation shock leads to a 4 percent decline in banks’ core lending capacity after five years
 - And reduces level of real GDP by 1/2 percent over same period.

- Effects of lending shocks are asymmetric:
 - Tightenings in standards have larger effects than easings.

- Using loan supply shocks as instruments, estimate semi-elasticity of loan demand to be -1.4.
Outline

- Data
- Identifying Loan Supply Shocks
- Macroeconomic Effects
- Extensions
- Conclusion
Senior Loan Officer Opinion Survey (SLOOS)

- SLOOS queries banks about:
 - **Supply**: Changes in credit standards and loan terms
 - **Demand**: Changes in loan demand
 - Reasons for changes in loan demand and standards and terms
- Conducted quarterly with up to 60 banks participating:
 - **Qualitative** answers
 - Loan categories: C&I, CRE, RRE, HELOCs, CC, other consumer loans
 - In 2010:Q3 SLOOS respondents accounted for 70% of assets of the U.S. commercial banking sector
Senior Loan Officer Opinion Survey (cont.)

- Prototypical question on changes in **credit standards**:

 Over the past three months, how have your bank’s credit standards for approving loans of type j changed?

 ➤ **Answers**: 1=eased considerably; 2=eased somewhat; 3=unchanged; 4=tightened somewhat; 5=tightened considerably

- Prototypical question on changes in **loan demand**:

 Over the past three months, how has demand for loans of type j at your bank changed?

 ➤ **Answers**: 1=increased considerably; 2=increased somewhat; 3=unchanged; 4=decreased somewhat; 5=decreased considerably
Bank-Specific Diffusion Indexes

- Credit standards diffusion index:
 \[
 \Delta S_{it}[j] = \begin{cases}
 -1 & \text{if bank } i \text{ eased standards on loan type } j \\
 0 & \text{if bank } i \text{ did not change standards on loan type } j \\
 1 & \text{if bank } i \text{ tightened standards on loan type } j
 \end{cases}
 \]

 ▶ **Diffusion index:** \(\Delta S_{it} = \sum_j w_{it}[j] \Delta S_{it}[j] \)

- Loan demand diffusion index:
 \[
 \Delta D_{it}[j] = \begin{cases}
 -1 & \text{if bank } i \text{ had decreased demand for loan type } j \\
 0 & \text{if bank } i \text{ had no change in demand for loan type } j \\
 1 & \text{if bank } i \text{ had increased demand for loan type } j
 \end{cases}
 \]

 ▶ **Diffusion index:** \(\Delta D_{it} = \sum_j w_{it}[j] \Delta D_{it}[j] \)
Aggregate Diffusion Indexes

Quarterly

Index of change in lending standards (>0 = tighter standards)
Index of change in demand (>0 = stronger demand)

Correlation = -0.66

Net percent of loans
Why Do Banks Change Their Credit Standards?

- **Economic outlook**
 - Number of respondents: 60, 45, 30, 15, 0, 15, 30, 45, 60
 - Trends: Easing (More favorable), Tightening (Less favorable)

- **Risk tolerance**
 - Number of respondents: 60, 45, 30, 15, 0, 15, 30, 45, 60
 - Trends: Easing (Increased), Tightening (Reduced)

- **Defaults in public debt markets**
 - Number of respondents: 60, 45, 30, 15, 0, 15, 30, 45, 60
 - Trends: Easing (Improvement), Tightening (Deterioration)

- **Capital position**
 - Number of respondents: 60, 45, 30, 15, 0, 15, 30, 45, 60
 - Trends: Easing (Improvement), Tightening (Deterioration)

Legend:
- Not Important
- Somewhat Important
- Very Important
Empirical Framework

- Dynamic specification:

\[\Delta S_{it} = \alpha \Delta S_{it-1} + \beta \Delta D_{it} + \lambda' f_t + \theta' z_{it-1} + \eta_i + \epsilon_{it} \]

- \(f_t \) = vector of (observable) macroeconomic factors:
 - SPF expectations of year-ahead changes in short- and long-term interest rates and of real GDP growth
 - SPF and market-based measure of economic uncertainty

- \(z_{it} \) = vector of bank/BHC-specific factors:
 - bank-level indicators of profitability, asset quality, balance sheet composition
 - BHC-level indicators of trailing equity returns, volatility, \(q \).
Empirical Framework (cont.)

- Aggregate “loan supply shock” series:

\[\epsilon_t = \frac{1}{N_t} \sum_i \psi_{it} \hat{\epsilon}_{it} \]

- \(\psi_{it} \) is ratio of bank \(i \)’s core loans to sample’s at time \(t \).
Explaining Changes in Banks’ Credit Standards

(1992:Q1–2010:Q2)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Est.</th>
<th>S.E.</th>
<th>Est.</th>
<th>S.E.</th>
<th>Est.</th>
<th>S.E.</th>
<th>Est.</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔS_{it-1}</td>
<td>0.358</td>
<td>0.003</td>
<td>0.540</td>
<td>0.019</td>
<td>0.405</td>
<td>0.022</td>
<td>0.387</td>
<td>0.022</td>
</tr>
<tr>
<td>ΔD_{it}</td>
<td>-0.054</td>
<td>0.001</td>
<td>-0.096</td>
<td>0.015</td>
<td>-0.075</td>
<td>0.013</td>
<td>-0.069</td>
<td>0.013</td>
</tr>
<tr>
<td>$E_t[r^3_{t+4} - r^3_{3m}]$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-5.662</td>
<td>1.397</td>
<td>-4.237</td>
<td>1.594</td>
</tr>
<tr>
<td>$E_t[r^{10y}_{t+4} - r^{10y}_t]$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-6.597</td>
<td>3.192</td>
<td>-10.338</td>
<td>3.231</td>
</tr>
<tr>
<td>$E_t[y_{t+4} - y_t]$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-5.452</td>
<td>1.300</td>
<td>-4.369</td>
<td>1.319</td>
</tr>
<tr>
<td>CredSprd t</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.116</td>
<td>0.010</td>
<td>0.120</td>
<td>0.010</td>
</tr>
<tr>
<td>FrcstDisp t</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.064</td>
<td>0.008</td>
<td>-0.047</td>
<td>0.009</td>
</tr>
<tr>
<td>NIM i,t-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-8.638</td>
<td>3.406</td>
</tr>
<tr>
<td>DEL i,t-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-1.064</td>
<td>0.524</td>
</tr>
<tr>
<td>$R_{E_{i,t-1}}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.143</td>
<td>0.038</td>
</tr>
<tr>
<td>$\sigma_{E_{i,t-1}}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.066</td>
<td>0.037</td>
</tr>
<tr>
<td>Tobin’s $q_{i,t-1}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.070</td>
<td>0.094</td>
</tr>
<tr>
<td>CoreLoans i,t-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.291</td>
<td>0.099</td>
</tr>
<tr>
<td>CoreDep i,t-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.138</td>
<td>0.072</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.140</td>
<td>0.389</td>
<td>0.439</td>
<td>0.449</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank Fixed Effects</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimated Bank Loan Supply Shocks
(1992:Q1–2010:Q2)
Macroeconomic Implications

• 5-variable VAR-X(2) specification:

\[y_t = c + A(L) y_{t-1} + \beta \epsilon_t + u_t \]

• Endogenous variables \(y_t \):
 ▶ log-difference of real GDP
 ▶ log-difference of the GDP deflator
 ▶ log-difference of banks’ core lending capacity
 (loans outstanding + unused commitments)
 ▶ credit spread index
 (principal component of spreads on 11 corp. and hhd. loans)
 ▶ target federal funds rate

• Estimation period: 19920:Q1–2010:Q3

• We cumulate responses of real GDP, core lending capacity
Growth in Banks’ Core Lending Capacity
(1990:Q2–2010:Q3)
Adverse Bank Loan Supply Shock

(1 standard deviation shock)
Comparison with SVAR

- 6-variable VAR(2) specification:
 \[y_t = c + A(L)y_{t-1} + u_t \]

- Order of endogenous variables \((y_t)\):
 - log-difference of real GDP
 - log-difference of the GDP deflator
 - log-difference of banks’ core lending capacity
 - credit spread index
 - target federal funds rate
 - change in aggregate credit standards diffusion index.

- Shocks to credit standards identified using the Choleski decomposition.
Comparison of Bank Loan Supply Shocks

(1992:Q1–2010:Q2)
IRFs: Recursive Ordering Identification

1 standard deviation shock
Asymmetric Shocks

- Asymmetric VAR-X(2) specification:
 \[y_t = c + A(L)y_{t-1} + \beta^{(+)} \epsilon^{(+)}_t + \beta^{(-)} \epsilon^{(-)}_t + u_t \]

- \(\epsilon^{(+)}_t \) = positive loan supply shocks (i.e., “easing” shocks)
- \(\epsilon^{(-)}_t \) = negative loan supply shocks (i.e., “tightening” shocks).
Credit Tightening Shock

(1 standard deviation shock)
Credit Easing Shock

(1 standard deviation shock)
Estimating Slope of Loan Demand Curve

- If a good measure of loan supply shocks, series should also be a good instrument for estimating loan demand.
- We use the Federal Reserve’s Survey of Terms of Business Lending to obtain business loan quantities and prices.
- Over 260,000 observations from 1997:Q2 to 2010:Q2.
- We restrict sample to unsecured loans to avoid dealing with collateral.
- We allow loans under commitment (credit lines) to have a different elasticity.
- We do both OLS, IV regressions of loan quantity on loan spread.
Estimating Slope of Loan Demand Curve (cont.)

<table>
<thead>
<tr>
<th>Explanatory Variable</th>
<th>(OLS)</th>
<th>(IV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Spread_{ijt}$</td>
<td>-0.61</td>
<td>-1.44</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.45)</td>
</tr>
<tr>
<td>$Commit_{ij}$</td>
<td>-0.24</td>
<td>-0.75</td>
</tr>
<tr>
<td></td>
<td>(0.56)</td>
<td>(1.25)</td>
</tr>
<tr>
<td>$CommitSpread_{ijt}$</td>
<td>-0.07</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.40)</td>
</tr>
</tbody>
</table>

Dependent variable: $Loansize_{ijt}$ (Log of loan size in thousands of dollars)
Concluding Remarks

• Recent financial crisis has highlighted the critical role that the financial system plays in economic fluctuations:
 ▶ It may be a source of macroeconomic shocks,
 ▶ Or a transmission mechanism for such shocks.

• Nevertheless, empirically quantifying the effects of financial shocks on the real economy remains difficult.

• Bank lending surveys offer a potentially a useful avenue through which to identify exogenous movements in bank loan supply.
• We use one such survey—the SLOOS—to construct a measure of loan supply shocks.
• The shocks correspond well with narrative accounts.
• We estimate that adverse shocks to bank loan supply lead real GDP to decline by 1/2 percent, core lending capacity by 4 percent after five years.
• Adverse shocks have larger effects than beneficial ones.
• Using the shocks as instruments, we estimate the semi-elasticity of loan demand to be -1.4.