Deciphering Federal Reserve Communication via Text Analysis of Alternative FOMC Statements

October 15, 2020
By Taeyoung Doh, Senior Economist , Dongho Song and Shu-Kuei Yang


Research Working PaperA new text-analysis method finds that the wording of FOMC statements can have significant effects on financial markets.

We apply a natural language processing algorithm to FOMC statements to construct a new measure of monetary policy stance, including the tone and novelty of a policy statement. We exploit cross-sectional variations across alternative FOMC statements to identify the tone (for example, dovish or hawkish), and contrast the current and previous FOMC statements released after Committee meetings to identify the novelty of the announcement. We then use high-frequency bond prices to compute the surprise component of the monetary policy stance. Our text-based estimates of monetary policy surprises are not sensitive to the choice of bond maturities used in estimation, are highly correlated with forward guidance shocks in the literature, and are associated with lower stock returns after unexpected policy tightening. The key advantage of our approach is that we are able to conduct a counterfactual policy evaluation by replacing the released statement with an alternative statement, allowing us to perform a more detailed investigation at the sentence and paragraph level.

Download paper

RWP 20-14, October 2020

JEL Classification: E30, E40, E50, G12

Article Citation

  • Doh, Taeyoung, Dongho Song, and Shu-Kuei Yang. 2020. “Deciphering Federal Reserve Communication via Text Analysis of Alternative FOMC Statements.” Federal Reserve Bank of Kansas City, Research Working Paper no. 20-14, October. Available at https://doi.org/10.18651/RWP2020-14

Related Research

  • Ke, Zheng Tracy, Bryan T. Kelly, and Dacheng Xiu. 2019. “Predicting Returns with Text Data.”National Bureau of Economic Research, working paper no. 26186, August. Available at https://doi.org/10.3386/w26186
  • Lunsford, Kurt G. 2020. “Policy Language and Information Effects in the Early Days of Federal Reserve Forward Guidance.” American Economic Review, vol. 110, no. 9, pp. 2899–2934. Available at https://doi.org/10.1257/aer.20181721
  • Nakamura, Emi, and Jón Steinsson. 2018. “High-Frequency Identification of Monetary Non-neutrality: The Information Effect.” Quarterly Journal of Economics, vol. 133, no. 3, pp. 1283–1330. Available at https://doi.org/10.1093/qje/qjy004