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our method works well, and that ignoring threshold endogeneity leads to biased
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1 Introduction

Vector Auto-Regressive (VAR) models have become a standard tool for studying mul-

tivariate relationships in macro and financial economics. Although most commonly

used in a linear setting, there can be instances where a non-linear VAR representation

would be more appropriate. For example, to allow for asymmetry between size, sign,

and state dependence of shocks.

As a consequence, VARs have been extended to the class of threshold mod-

els (henceforth TVAR), allowing for shifts and asymmetric parameter responses to

changes in the state of a threshold variable (e.g., Tsay, 1998). The threshold variable

chosen is often taken to be an observed time series (reflecting some particular hypoth-

esis) or an index summarizing information from many variables. Typical channels to

justify threshold outcomes include the presence of real and nominal rigidities, finan-

cial frictions, tipping points, business-cycle phases, ceilings/floors, adjustment costs,

asymmetric policy preferences, etc.

Given this rich backdrop, TVARs have been applied in many contexts. A particu-

larly common application has been to examine the transmission of stabilization policy.

For example, Balke (2000), Peersman and Smets (2002), and Tenreyro and Thwaites

(2016) examined monetary policy transmission conditional on financial and real con-

ditions.1 Likewise, Auerbach and Gorodnichenk (2012), Ramey and Zubairy (2018),

Ramey, Zeev and Zubairy (2023) and Ghassibe and Zanetti (2022) look at threshold

issues relating to the transmission of fiscal policy (see also Kourtellos et al, 2013).

Notwithstanding, a salient but overlooked issue in the estimation of TVAR models

– and principal contribution of our paper – is the potential endogeneity of the threshold

variable. The literature assumes that the threshold variable is exogenous. In some

1VAR studies of the monetary transmission mechanism are common in the literature, see the compre-

hensive survey of Ramey (2016). For a survey of linear and nonlinear VARs, see Kilian and Lütkepohl

(2017).
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contexts, this might be considered contentious or at the very least worth testing.2

Endogeneity will arise if the threshold variable is contemporaneously correlated with

the error (innovation) terms. For instance, if there are unobserved or omitted vari-

ables which confound both threshold and dependent variables. Specific examples

include where the threshold variable (a) is meant to capture changes in business-cycle

conditions (e.g., Sims and Zha, 2006; Kim et al., 2008); (b) is an index combining in-

formation from different economic sources (i.e., a financial index capturing financial

stress conditions, e.g., Floro and van Roye, 2017); (c) is used as a state variable in

forward-looking models to endogenously capture regime shifts on policy variables

(see, e.g., Davig and Leeper, 2007, 2008) and agents’ reactions to realizations of state

variables (for example, see the equity returns model of Turner et al, 1989).

Although a long-standing issue in quantitative economics, endogeneity bias has

not yet been addressed in the context of threshold VARs. This is problematic since

ignoring true threshold endogeneity will in general lead to biased estimates of not only

the threshold parameter, but also the dynamic and variance-covariance parameters.

This in turn would impair impulse response function (IRF) analysis.

In the single equation framework (see Kourtelos et al., 2016; Kourtelos et al., 2021;

Christopoulos et al., 2021, Chen et al., 2023), threshold endogeneity bias has been

recently addressed using control variables in the rhs (right-hand side) of the thresh-

old regression to adjust the conditional mean for the bias. This approach is in the

spirit of binary-choice selectivity models that allow for endogenous regime switching

(e.g., Maddala, 1983; Lee, 1982, 1983; Vella, 1998). It relies on a limited information

estimation framework to adjust for the endogeneity of the threshold variable.

2To illustrate, when discussing the Reinhart and Rogoff (2010) threshold debt-growth controversy,

Kourtellos et al. (2013) argue that their assumption of the exogeneity of public debt is implausi-

ble, and that once threshold endogeneity is allowed for, there is no threshold effect from debt on

growth. If this is correct, any inference and policy conclusions based on such an assumption could

be highly misleading. The same may be said for other variables on which the threshold literature has

often focused – such as democracy indices, trade intensity, institutional quality (in addition to those

discussed above), etc.
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To deal with the threshold variable endogeneity problem in a multiequation con-

text, we extend the above approach to the TVAR and structural TVAR frameworks.

Specifically, we draw upon copula theory. Copulas are a means of accounting for the

dependence structure between random variables: Sklar’s theorem states that any mul-

tivariate joint distribution can be written in terms of univariate marginal distribution

functions, and a copula. Copulas have been widely applied in economics and finance

(e.g., Patton, 2012), as well as for forecasting, climate research, reliability analysis,

and so on. The method was also suggested by Park and Gupta (2012) to tackle the

endogeneity problem of a single regressor.

In that spirit, we first employ a Gaussian multivariate copula. We demonstrate that

this choice yields a particularly neat, precise and interpretable form,3 and enables us to

include a transformation of the threshold variable based on the Gaussian copula in the

rhs of the TVAR equations across the different regimes. In this way, we orthogonalize

the relationship between the threshold variable and the entire vector of the VAR

reduced form (or structural) error terms. For completeness, our Appendices consider

copulas other than the Gaussian case.

The method has several attractive features: (1) It is a free-of-instruments approach

and can allow for different dependence structures of the threshold and innovation

terms across the model regimes. Such different dependencies may be a feature in

practice. (2) It allows the distribution of the threshold variable to be of unknown

form. Indeed, there is no parametric restriction on the threshold variable other than

it must be continuous. Thus, whilst the copula choice may be Gaussian, the threshold

variable need not be. (3) It can work satisfactorily even in cases where the dependence

structure between the innovations and the threshold variable is nonlinear, for instance,

3See, e.g., Patton (2006, 2012), Growiec (2013), and Tófoli et al. (2017) for discussions and applications of

copula theory to economics and econometrics.

3



as captured by Archimedean (as opposed to elliptical) copulas.4 This tail-dependence

aspect is attractive since in empirical applications the threshold value is often located at

some extreme value, where there is some mass of distribution. (4) It is computationally

very easy to apply since it only requires us to include, in the rhs of the equations,

copula transformations of the marginal distributions of the threshold variable over

its distinct regimes, truncated at the threshold value. These transformations can be

obtained by the quantile function of the normal distribution.

To verify the efficiency of our method to control for threshold endogeneity bias,

we perform a Monte Carlo (MC). There, we also appraise the consequences of (in-

stead) ignoring threshold endogeneity and examine robustness to cases where the

dependence between the TVAR innovations and the threshold variable is nonlinear,

and of varying signs and strengths. Simulation results demonstrate the severity of

ignoring endogeneity both in the estimates of the variance-covariance matrix of inno-

vations and the estimates of the IRFs of the TVAR variables with respect to structural

errors. We find that our method controls for this problem efficiently. Its benefits are

more obvious in cases where the correlation structure and the error variances change

markedly across the regimes, i.e., the piece-wise structural form of the model is more

profound.

Empirical illustration We implement the method to asses the efficiency and state

dependence of monetary policy. In our baseline case, we find that when a measure of

expected inflation exceeds 3.6%, the impact of monetary policy changes. Moreover,

partitioning the historical inflation data into periods of high and low inflation states

on the basis of this threshold value, reveals a good match with established views on

economic developments. Ignoring threshold endogeneity, moreover, tends to bias

4See, e.g., see Park and Gupta (2012). These authors also showed the robustness of the method against

deviations from the normality assumption of the regressor error term.
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upward estimates of the threshold value and generally make the economy appear

more sluggish in response to monetary shocks.

Organization Section 2 presents our method to control for threshold endogeneity

in the TVAR. Section 3 discusses the estimation method. When the threshold value is

unknown, we suggest a concentrated least-squares procedure (e.g., Kourtellos et al.,

2016), based on a grid search to estimate the threshold and other parameters. Section

4 discusses the rationale for threshold and state-dependent effects of monetary policy

shocks on the economy. Section 5 implements the endogenous TVAR framework to

examine the case for monetary inflation state dependence with expected inflation as

the threshold variable, and makes comparison to a linear and an exogenous threshold

VAR . Section 6 concludes. Additional material is in the appendices.

2 An endogenous threshold VAR

Consider the following two (i = 1, 2) state TVAR allowing for p lags:5

yt =


Γ(1)

0 + Γ(1)
1 yt−1 + Γ(1)

2 yt−2 + ., ..+ Γ(1)
p yt−p + u

(1)
t , if zt ≤ δ

Γ(2)
0 + Γ(2)

1 yt−1 + Γ(2)
2 yt−2 + ...+ Γ(2)

p yt−p + u
(2)
t , if zt > δ

(1)

where yt is a K × 1 vector of variables, Γ(i)
0 is a K × 1 vector of intercepts, Γ(i)

l

(l = 1, 2, ..., p) are K × K matrices of transition coefficients, u
(i)
t is a K × 1 vector of

the TVAR innovation terms, i.e., u
(i)
t = (u(i)

1t , u
(i)
2t , ..., u

(i)
Kt)′,, with mean E(u(i)

t ) = 0 and

variance-covariance matrix VAR(u(i)
t ) = Σ(i)

uu which is different across i: Σ(1)
uu ̸= Σ(i)

uu.

Variable zt is a threshold variable with threshold value δ. Given δ, the support

5In the remainder of our treatment, we shall assume two states, and accordingly i = 1, 2.
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of zt can be partitioned, at any point t, into the following intervals (regions): Z(1)
t =

{−∞ < zt ≤ δ} and Z(2)
t = {δ < zt < ∞}, which correspond to the two distinct states

of the TVAR model (1), i.e., Z(1)
t ∩Z(2)

t = ∅, implied that the model is segmented over

the values of zt, i.e. Z(1)
t and Z(2)

t .

For a sample of t = 1, 2, ..., T observations of yt, model (1) can be expressed more

compactly:

yt =


Γ(1)Yt−1 + u

(1)
t , if zt ≤ δ

Γ(2)Yt−1 + u
(2)
t , if zt > δ

(2)

for t = p + 1, ..., T, where Yt−1 = (1, yt−1, ..., yt−p) and Γ(i) = (Γ(i)
0 ,Γ(i)

1 , ...,Γ(i)
p ).

The threshold variable endogeneity problem in the above model arises from the

contemporaneous correlation between the threshold variable zt and the vector of

innovation terms u
(i)
t , implying that E(u(i)

t |Z(i)
t ) ̸= 0. Even if u

(i)
t is uncorrelated

with Yt−1, i.e., E(u(i)
t |Yt−1) = 0, as often assumed in VARs, in practice it is likely that

u
(i)
t is correlated with zt across the two states of the model, i.e., E(u(i)

t |Z(i)
t ) ̸= 0, due

to the influence of common economic factors. Ignoring this correlation will lead to

biased predictions and parameter estimates. These parameters also include those of

the variance-covariance matrix of u
(i)
t , denoted Σ(i)

uu, used to identify structural shocks

from the innovation terms u
(i)
t and perform IRF analysis of yt to structural shocks, one

of the main objectives of VAR analysis.

The use of copulas allows us to capture the relationship between u
(i)
t and the

threshold variable zt, causing the threshold endogeneity problem, by adjusting the

conditional mean of yt with the expectation terms E(u(i)
t |Yt−1,Z(i)

t ). Accordingly, we

rely on the following assumption:
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Assumption 1 Consider the following block of assumptions:

1. u
(i)
t ∼ IID(0,Σ(i)

uu), with E
(
u

(1)
t u

(2)′
s

)
= 0 for t ̸= s

2. zt has a continuous and strictly monotonically increasing probability distribution,

and E(u(i)
t |Z(i)

t ) ̸= 0.

3. E(u(i)
t |Yt−1,Z(i)

t ) = E(u(i)
t |Z(i)

t ).

Assumption 1 is standard for endogenous regime switching models. It is an

extension of that made by Christopoulos et (2021) to the multivariate framework. It

implies that zt is endogenous – i.e., correlated with u
(i)
t – and that u

(i)
t and Yt−1

are uncorrelated, implying E(u(i)
t |Yt−1) = 0 which is a standard assumption of VAR

models. Under this assumption, we can derive an analytic relationship forE(u(i)
t |Z(i)

t ),

which can capture the dependence between u
(i)
t and zt. This will be done under the

additional assumption that u
(i)
t is normally distributed. But, it can also be done under

the assumption that u
(i)
t follows a Student’s t distribution (both of which belong to

the family of elliptical distributions).

To implement the copula theory in this context, we first define the truncated

distributions of zt over each of its interval supports Z(i)
t :

FZ(1)(Z(1)
t ) =

Fz(zt)
pδ

if 0 ≤ Fz(zt) ≤ pδ (zt ≤ δ)

FZ(2)(Z(2)
t ) =

Fz(zt) − pδ

1 − pδ
if pδ < Fz(zt) ≤ 1 (zt > δ)

(3)

where pδ = Pr(zt ≤ δ). These distributions are obtained by scaling Fz(zt), at pδ,

so that they integrate to one and constitute proper distribution functions. Next, we

define copula functions to represent the conditional distribution of vector u
(i)
t on
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Z(i)
t , denoted by F

u(i)|Z(i)
t

(u(i)
1t , .., u

(i)
Kt|Z

(i)
t ), needed to obtain analytic formulas for

E(u(i)
t |Z(i)

t ).

Definition 1 Consider two K + 1 dimension copulas

C(i) : [0, 1]K+1 → [0, 1], F
u(i)|Z(i)

t

(u(i)
1t , .., u

(i)
Kt|Z

(i)
t ) which can be written as

F
u(i)|Z(i)

t

(u(i)
1t , .., u

(i)
Kt|Z

(i)
t ) = ∂

∂FZ(i)
C(i)

(
F

u
(i)
1

(u(i)
1t ), ..., F

u
(i)
K

(u(i)
Kt), FZ(i)(Z(i)

t )
)
(4)

where F
u

(i)
k

(u(i)
kt ), k = 1, 2, ...,K, are the marginal distributions of error terms u

(i)
kt .

a

a
See, e.g., Erderly (2017). The copula functions Ci, defined by (4), can be thought of as scaled

functions of gluing copulas along the support interval of threshold variable zt, for zt ≤ δ and

zt > δ. See also Siburg and Stoimenov (2008).

Based on (4), we can write the conditional density of vector u
(i)
t on Z(i)

t as follows:

f
u(i)|Z(i)

t

(u(i)
1t , .., u

(i)
Kt|Z

(i)
t ) = c(i)

(
F

u
(i)
1

(u(i)
1t ), ..., F

u
(i)
K

(u(i)
Kt), FZ(i) (Z(i)

t )
)
f

u
(i)
1

(u(i)
1t )...f

u
(i)
K

(u(i)
Nt) (5)

where

c(i)
(
F

u
(i)
1

(u(i)
1t ), ..., F

u
(i)
K

(u(i)
Kt), FZ(i)(Z(i)

t )
)

=
∂K+1C(i)

(
F

u
(i)
1

(u(i)
1t ), ..., F

u
(i)
K

(u(i)
Kt), FZ(i)(Z(i)

t )
)

∂F
u

(i)
1
...∂F

u
(i)
K

∂FZ(i)

is the copula density of u
(i)
t and Z(i)

t , and f
u

(i)
k

(u(i)
kt ) in (5) are the marginal densities

of error terms u
(i)
kt , for k = 1, 2, ..,K.

The representation of the conditional density f
u(i)|Z(i)

t

(u(i)
1t , .., u

(i)
Kt|Z

(i)
t ), given by

(5), enables us to derive an analytic expression for it under a known copula distribu-

tionsC(i)
(or densities c(i)

) and the marginal distributions of error terms u
(i)
kt . Then, we

can obtain analytic formulas for E(u(i)
t |Z(i)

t ). To this end, in the below proposition, we
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assume that the innovation terms u
(i)
kt are normally distributed and C(i)

is Gaussian.

Proposition 1 Let u
(i)
t ∼ N IID(0,Σ(i)

uu) and C(i)
is a multivariate Gaussian copula,

then the vector of the TVAR innovations u
(i)
t = (u(i)

1t , u
(i)
2t , ..., u

(i)
Kt)′

has the following

single factor representation:

u
(i)
t = Λ(i)z

(i)∗
t + ε

(i)
t , (6)

where Λ(i) = Σ(i)1/2
u R

u(i)∗z
(i)∗
t

R
z

(i)∗
t u(i)∗ ; Σ(i)

u ≡ diag[σ(i)2
uk ], k = 1, 2, ...,K, and

R
u(i)∗z

(i)∗
t

= R′
z

(i)∗
t u(i)∗ is aK×1 vector of Pearson correlation coefficients between u

(i)
t

and Z(i)
t

z
(i)∗
t = Φ−1(FZ(i)(Z(i)

t )) which constitutes a copula transformation of Z(i)
t , where

Φ−1(·) is the quantile function of the normal distribution, and ε
(i)
t is a K × 1 vector of

error terms, defined as ε
(i)
t = Ω(i)1/2

ε e
(i)
t , where Ω(i)

ε is the variance-covariance matrix

of ε
(i)
t given as

Ω(i)
ε =

(
Σ(i)1/2

u R
u(i)∗u(i)∗Σ(i)1/2

u − Σ(i)1/2
u R

u(i)∗z(i)∗Rz(i)∗u(i)∗Σ(i)1/2
u

)
,

and e
(i)
t = (e(i)

1t , e
(i)
2t , ..., e

(i)
Kt)′

is a K × 1 vector of N IID(0, 1) variables which are

independent of Z(i)
t and its copula transformation z

(i)∗
t .

Proof: Appendix A

The relationship between u
(i)
t and the copula-transformed variable z

(i)∗
t , given by

(6), is due to the central result of copula theory (Sklar’s Theorem) decomposing the

joint distribution of vector u
(i)
t and Z

(i)
t , into a part that captures the dependence

structure between them based on copula C(i)
and the marginal distributions of the

error terms u
(i)
kt .

The linear feature of this relationship is due to the Gaussian assumption made.

9



As noted before, a linear relationship between u
(i)
t and z

(i)∗
t can also be obtained

under the assumption that C(i)
is a multivariate Student’s t-copula and u

(i)
kt follows

the Student’s t-distribution, for all k (see Christopoulos et al. 2021). In Appendix B,

however, we check the robustness of this relationship under non-Gaussian copulas.

We demonstrate that the method works well in a non-Gaussian environment.

It is important to note that, to obtain condition (6), no assumption is made about

the marginal distribution of the truncated variable z
(i)∗
t . This variable constitutes

a copula transformation of threshold variable zt over its interval support Z(i)
t . It

can be obtained from the marginal distribution FZ(i)(Z(i)
t ) based on the quantile

function Φ−1(·), without making any particular assumption about the true formula

of FZ(i)(Z(i)
t ). The distribution FZ(i)(Z(i)

t ) can be efficiently estimated from the data,

in a first step, by a non-parametric method (e.g., Silverman, 1986), or by using the

empirical cumulative distribution function, see Rice (2007). The Glivenko-Cantelli

theorem6 establishes that these estimates of FZ(i)(Z(i)
t ) almost surely converge to the

true cumulative distribution function, implying that the sample estimates of z
(i)∗
t are

consistently estimated.

That there is no need to know the distribution of zt constitutes an interesting fea-

ture of the copula method. Furthermore, in many applications of threshold models

in economics, one might expect zt to follow different distributions across the regions

{−∞ < zt ≤ δ} and Z(2)
t = {δ < zt < ∞}, which may be characterized by different

degree of asymmetry and fat-tails.7 The assumption that u
(i)
kt , for all k, are nor-

mally distributed is often made in economics both in single or multivariate regression

models for convenience (e.g., Spanos, 2018). It assumes the following two attractive

properties of error term distributions: symmetry and a reasonable degree of fat-tails

that one would expect to be satisfied from well-specified econometric models. In Ap-

6See Glivenko (1933), Cantelli (1993).

7To recall the transformed variable z
(i)∗
t is normal, but not necessarily the original vartiable zt.
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pendix B we verify the robustness of this assumption against different distributional

choices for u
(i)
kt .

Condition (6), provided by Proposition 1, implies that the expectation termE(u(i)
t |Z(i)

t )

is given by the following linear relationship: E(u(i)
t |Z(i)

t ) = Λ(i)z
(i)∗
t . Given this, we

can then adjust TVAR model (2) to control for the endogeneity of the threshold variable

zt as follows:

yt =


Γ(1)Yt−1 + Λ(1)z

(1)∗
t + ε

(1)
t , if zt ≤ δ

Γ(2)Yt−1 + Λ(2)z
(2)∗
t + ε

(2)
t , if zt > δ

(7)

where E
(
z

(i)∗
t ε

(i)
t

)
= 0. The conditional mean of yt given Yt−1 and Z(i)

t is then given

by,8

E(yt|Yt−1,Z(i)
t ) = Γ(i)Yt−1 + Λ(i)z

(i)∗
t (8)

where the copula-transformation terms z
(i)∗
t work as a control function to capture

the correlation structure between the threshold variable and the TVAR vector of

innovations u
(i)
t . The new vector of innovation terms ε

(i)
t of model (7) are orthogonal

to the threshold variable zt over the two intervals Z(1)
t and Z(2)

t , by the copula theory

(see Proposition 1).

The estimates of ε
(i)
t can be employed to obtain the structural errors of a structural

TVAR model net of the influence of threshold variable zt. We can then use these struc-

tural errors to perform IRF analysis of yt with respect to them based on a triangular,

or a structural, factorization of the variance-covariance of ε
(i)
t , denoted Ω(i)

ε .

Consequently, it should be clear that ignoring threshold endogeneity will lead

to biased estimates of vector ε
(i)
t and its variance-covariance matrix, thus leading to

biased estimates of the variance-covariance matrix of the structural errors, and the

IRFs implied by a structural representation of the TVAR model. This problem might

8The exogenous TVAR is a special case of (8) with Λi = 0 ∀i.
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be more severe in TVAR models using composite indices (as threshold variables)

consisting of a large number of variables, which are likely to be correlated with the

VAR innovation terms.

The severity of this problem is amply demonstrated in Appendix B, where we

discuss the Monte Carlo properties relating to the endogenous and exogenous thresh-

old VARs, respectively labeled TVAR(N) and TVAR(X). In that analysis, we examine

different dependence structures between the threshold variable and the structural er-

ror terms via linear and nonlinear dependencies, and of different signs and strengths

across the states. Results indicate that our method can efficiently control for the en-

dogeneity effects of the threshold variable on the parameter estimates, including the

threshold parameter. This is true even where the correlation structure between the

threshold variable and the TVAR innovations changes considerably across the states.

Ignoring threshold endogeneity, by contrast, leads to severely biased estimates of the

TVAR parameters, especially the variance-covariance matrix, and, hence, the implied

IRFs.

Figure 1, reproduced from that Appendix, graphically highlights these biases

using a bivariate VAR. The true DGP and that generated by the copula method are

indistinguishable, whereas the TVAR(X) case tends to overshoot markedly and is char-

acterized by an excessively smooth reversion pattern (compared to the true dynamic).

We shall see a largely similar picture in our empirical application: since the misspeci-

ficed TVAR(X) model systematically overestimates the threshold parameter and leads

to more sluggish dynamics responses compared to the TVAR(N) specification.

3 Estimation of the endogenous threshold VAR

If the threshold value δ is known, then estimation of the augmented TVAR model

(7) is straightforward, based on least squares. Otherwise, δ can be estimated by
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the concentrated least squares (e.g., Kourtellos et al., 2016). According to this, δ is

estimated based on a grid search procedure over possible values of the threshold

variable zt, by solving the optimization problem:

δ̂ = arg min
δ∈Qδ

RSS(δ) (9)

where the objective function to be minimized, is the sum of squared residuals function

for a value of δ ∈ Qδ, where Qδ is the sample set of all possible values of zt:9

RSS(δ) =
∑T

t=1

(
ε

(1)′

t ε
(1)
t + ε

(2)′

t ε
(2)
t

)
,

Given δ̂, the LS estimates of the remaining slope coefficients of model (7), denoted

θ(δ̂) =
(
Γ(1)(δ̂), Γ(2)(δ̂), Λ(1)(δ̂), Λ(2)(δ̂)

)
,

and those of the variance-covariance matrix Ω(i)
ε , denoted as Ω̂(i)

ε (δ̂), can be obtained

in a second step. The asymptotic results of Chan (1993), Samia and Chan (2011), and

Tsay (1998) imply that, under stationarity conditions for yt and zt, as well as distinct

(strong) threshold effects (i.e., Γ(1) ̸= Γ(2)
), the estimator δ̂ is strongly consistent,

while θ(δ̂) and Ω̂(i)
ε (δ̂) are

√
T -consistent. In Appendix B, we perform a Monte Carlo

which demonstrates that the estimator performs well even in small samples.10

9We report theRSS(δ) metric in the later estimation tables. Note also thatQδ can be trimmed at a lower

and upper bound to ensure a sufficient number of data points for the estimation of the model across

the two states.

10Note that, since z
(i)∗
t is estimated with an error, inference about the estimates of θ(δ̂) can be improved

by employing a bootstrap method to calculate standard errors of the estimates. Note, however, that in

our MC exercise, we found that this estimation error is negligible. This is true even for small T .
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Figure 1: Impulse Response Functions from Monte Carlo Exercises
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4 Application: The Dynamic Effects of Monetary Policy

A positive monetary shock is typically predicted to lower prices and output. However,

even across that broad picture, empirical evidence is mixed. Often the impacts on

output are mild (and/or insignificant), while prices can take an extended horizon to

fall or decline (almost two years or more after the shock, e.g., Bernanke et al. 2005,

Eichenbaum et al. 2011; Coibion, 2012; Ramey, 2016; Doh and Foerster, 2022). This

diverse behavior may be attributable to the assumption of linearity considered in such

studies.

Indeed, the hypothesis that monetary policy impacts are nonlinear and state de-

pendent, moreover, is a long-standing one (recall the pushing on a string analogy at-

tributed to Keynes11). Broadly speaking, though, we might categorize the arguments

for asymmetry into economic mechanisms and policy preferences.

Economic Mechanisms High inflation can clearly impact policy effectiveness and

transmission. Inflation reduces real interest rates, which most noticeably impacts

demand for investment, durable goods, and housing. Inflation also redistributes

resources across agents (savers, lenders) affecting for instance mortgage refinancing

(e.g., Eichenbaum et al. 2022), as well as deepening uncertainty (Vavra, 2014). The

existence of state-dependent pricing would also change and enhance the role and

transmission of monetary policy. In ‘high’ inflation states, there may be a faster, and

less sluggish, response of inflation and output to monetary shocks. The reason being

that state-dependent price setters can freely reset prices when conditions change, with

less attendant fallout on demand. This is consistent with models of state-dependent

pricing (Álvarez et al., 2019, Ascari and Haber, 2021).

11The case for monetary asymmetry based on business cycle thresholds was analyzed by Tenreyro and

Thwaites, 2016, see also Manea, 2022).
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Policy Preferences There is growing empirical evidence that monetary policy rules

may be nonlinear and, in particular, respond asymmetrically to inflation (e.g., Kim

et al., 2005; Boivin et al. 2011; Barakchian and Crowe, 2012; Kazanas and Tzavalis,

2015). Davig and Leeper (2007, 2008) – see also Aksoy et al. (2006) and Liu et

al. (2009) – attribute this behavior to preemptive movements by the central-bank to

slow down inflation expectations by triggering a more aggressive monetary policy

(when inflation rates persistently stray above particular levels). These movements

can increase the efficiency of monetary policy in states of high and rising current and

expected inflation.

4.1 TVAR Specification

Like many empirical studies (e.g., Sims, 1992; Gerlach and Smets, 1995; Peersman

and Smets, 2002; Mavroeidis, 2021), we rely on the canonical three-equation New

Keynesian (NK) monetary VAR comprising of a measure of real activity, inflation and

a monetary instrument: specifically, the annualized growth rate of the index of real

industrial production (gt), the annualized inflation rate (πt) and, the monetary policy

instrument (rt). For the latter, we alternatively consider the effective Federal Funds

rate and the yield on 2-year constant maturity government bonds.12 This prototyp-

ical model is sometimes augmented with a financial premium to capture financial

interactions, which we shall also examine. The data are discussed in Appendix C.

We are not of course the first to assess monetary shocks using threshold methods

(see, for example, Jääskelä, 2007; Galvao and Marcellino, 2014; Tenreyro and Thwaites,

2016; Zakipour-Saber, 2019; Ascari and Haber, 2021). Compared to such studies we

12We do so given that the FFR could be considered problematic during lower bound episodes (see,

e.g., Swanson and Williams, 2014). The two-year rate is a natural substitute for the FFR, because it is

closely related to the expected path of future short rates (e.g., Bernanke et al. 2004; McGough et al.

2005). Furthermore, to influence market beliefs about the expected path of short rates, the Fed relies

on forward guidance to influence the expected rate path, which often operates with roughly two-years

horizon.
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make four innovations. First, these studies have been performed in the context of

exogenous threshold models. This in itself is our key methodological contribution.

However it also aligns with Ramey (2016) who, while discussing high-frequency

identification, notes that shocks retain some predictability and thus are not necessarily

exogenous and serially uncorrelated. This would suggest that the monetary VAR

advocated in the literature may still be subject to non-trivial endogeneity. Second,

those studies also used samples which did not encompass the Global Financial Crisis

(GFC) and its aftermath of highly accommodative policy. The efficacy and possible

state dependency of policy in these later, very distinct periods is therefore of interest.

In fact, our full sample is 1970-2021. This traverses the Great Inflation of the

late 70s/early 80s, the Great Moderation thereafter, and the period around the GFC

and Covid pandemic, where the FFR approached the lower bound and a package

of ‘unconventional’ monetary policies were adopted to ease financial conditionss.

Third, we use a variety of formulations for robustness. Finally, we make a detailed

comparison of our results to linear and exogenous threshold VARs.

To identify the monetary policy shocks, we assume a standard recursive ordering

of the variables: real economic activity, inflation, then the policy rate. This ordering

implies that the effects of the monetary policy shocks on inflation and output are

reached after one period. To see if results remain robust to alternative identification

strategies, we also draw on the narrative approach of identifying monetary policy

shocks – in particular, using Miranda-Agrippino and Ricco (2021).13 In this approach,

we also include the narrative monetary shock (denoted m) as a first variable in the

VAR system, in addition to the other three variables (see Plagborg-Møller and Wolf,

2021, 2022)

Threshold variables are usually constructed as a moving average. Here we use a

13This identification method combines narrative and high-frequency approaches (respectively, Romer

and Romer, 2004; Gertler and Karadi, 2015), and is robust to information asymmetries of either the

monetary authorities or market participants.
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20-month moving average of inflation rates, akin to a measure of inflation expectations

(see Kim et al., 2005; Davig and Leeper, 2007). Note that this threshold variable also

depends on current inflation, which can cause threshold bias endogeneity problems

(and in turn validate our approach).

5 Empirical analysis

Now we discuss our results. We demonstrate clear evidence of threshold effects,

and that the endogenous case constitutes the best specification of the data. For our

baseline TVAR(N) specification, we find that when our measure of expected inflation

exceeds 3.6% percent, the effect of monetary policy changes considerably: the reaction

of the economy to a monetary shock in that high-inflation state is stronger and more

efficient. It also emerges that interest rates must be held to a higher level and for

longer to return inflation to base, relative to the low-inflation state. Thereafter, we

show the impulse and cumulative response functions associated with our different

cases.

5.1 TVAR estimates

Table 1 provides a snapshot of some system metrics of our alternative VAR specifi-

cations considered for the FFR and the 2 year rate (denoted as 2y ) as the monetary

instrument, as well as including narrative monetary shockm.14 The lower panel of the

table contains results based on the VAR specification using the excess bond premium

(Gilchrist and Zakrajšek, 2012; Gertler and Karadi, 2015).

To test for the presence of significant threshold effects, we report a likelihood

ratio (LR) statistic testing the null of a VAR (i.e., without threshold effects) against

the alternative of the TVAR specification (with and without controlling for threshold

14The full set of individual results can be found in Table 1A-Table 4 in Appendix D.
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endogeneity). Since the two threshold states cannot be identified under the null,

bootstrapped p-values of the LR statistic are reported, calculated based on a non-

overlapping block-bootstrap of fixed-length using 1000 iterations.

In terms of this test statistic, the linear VAR is decisively rejected against both

TVARs. However, the TVAR(N) fits the data better than the TVAR(X) on the objec-

tive function RSS(δ), from equation (9), and the bic. Further supporting evidence

comes from the estimates of the copula transformations of the threshold variable,

i.e., Λ(i)z
(i)∗
t , which are significant across both states (results available). Our results

hold for all TVAR specifications considered, i.e., using FFR or the two year rate, and

including the unexpected monetary shocks m in the model.15

For the TVAR(N)-FFR model, the estimated threshold value of expected inflation

is 3.6% (unless otherwise stated, we can consider this the baseline case). For the

other two TVAR(N) cases (with the 2y and the unexpected monetary shocks m), we

find a comparable range of 3.6% − 4.2%. This value, note, is close to but above the

official 2% target rate.16 To confirm this statistically, we performed a t-ratio test testing

δ = 2 against δ > 2. Based on the bootstrap distribution of this test statistic, we find

that the null is always rejected against its alternative. This suggests that the impact

of monetary policy is ostensibly the same as long as expected inflation is within a

roughly 0 − 4% range.

15For the TVAR specification with the monetary shocks variable m included, note that the endogeneity

of the threshold can arise from the correlation between the threshold variable and the innovations of

the remaining variables: ug, uπ and ur .

16The 2% inflation target was explicitly adopted by the FOMC in January 2012. Moreover, in 2016 the

FOMC (FOMC, 2016) clarified that its inflation target is symmetric: “... The Committee would be

concerned if inflation was persistently running above or below this objective.” Bullard (2018), however,

has argued that the Federal Reserve has used an implicit inflation target of 2 percent since 1995. By

contrast, Blanchard et al. (2010) recommend a higher inflation rate during ’good’ times to leave more

room for nominal rate cutting during ’bad’ times. See also the discussion in Mumtaz and Theodoridis

(2023).
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Table 1: Cross-Model Evaluation Metrics

FFR 2 year FFR + Narrative shock m

TVAR(N) TVAR(X) VAR TVAR(N) TVAR(X) VAR TVAR(N) TVAR(X) VAR

Estimates of Monetary VAR

LR 91.90 86.53 73.88 95.71 167.51 115.89
vs. VAR [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

bic −8465.28 −8412.42 −8403.43 −7718.629 −7698.93 −7694.554 −10110.58 −10100.67 −10083.44

RSS(δ) 0.0567 0.0582 0.0550 0.0563 0.0394 0.0397

δ̂ 0.0359 0.0436 0.0359 0.0402 0.0418 0.0463
{0.0180, 0.0460} {0.0190, 0.0550} {0.0226, 0.0490} {0.0270, 0.0535} {0.0290, 0.0472} {0.0190, 0.0550}

%△ 21.4 12.0 11.0

δ̂ = 0.02 [0.020] [0.025] [0.031]

Estimates of Monetary VAR Augmented with Finance Premium

LR 229.51 157.88 148.02 131.02 217.37 205.58
vs. VAR [0.000] [0.000] [0.000] [0.000] 0[0.000] [0.000]

bic −7844.84 −7830.59 −7881.87 −12772.67 −12778.38 −13030.68 −9181.08

RSS(δ)

δ̂ 0.0371 0.0405 0.0376 0.0390 0.0389 0.0389
{0.0190, 0.0570} {0.002384, 0.0572} {0.0209, 0.0543} {0.0189, 0.05904} {0.0189, 0.0589} {0.0222, 0.0556}

%△ 9.2 3.8 0.0

δ̂ = 0.02 [0.020] [0.018] [0.023]
Notes: Numbers in parentheses, braces and squared brackets respectively indicate standard errors, 68% confidence intervals and p-values. LR stands for the

likelihood ratio, and the p-value below tests the respective model against the linear VAR. bic is the Bayesian Information Criterion. RSS(δ) refers to objective

function (9). The final row tests the null that the threshold value is 2% versus an alternative that it exceeds 2% for the TVAR(N) case. An empty cell means not

applicable. We use a VAR lag length of 2.
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Another interesting conclusion is that ignoring threshold endogeneity tends to

overstate the threshold estimates. For instance, the TVAR(X)-FFR estimates the thresh-

old at 4.5% (almost 80bp, or over 20%, above the baseline). Similar differences are

found for the other two TVAR(N) cases considered.17

Figure 2 plots the two inflation series (i.e., actual and expected) overlaid with

the endogenously determined threshold scalar, and with associated state-dependent

shading (pertaining to the high inflation state). Around 46% of the time, inflation

exceeds its threshold (most of the high inflation state is dated prior to the early 1990s),

compared with 37% in the TVAR(X) case.18 These states match well with established

views on contemporary US monetary and inflation histories (e.g., Rudebusch, 2002;

Bianchi, 2013; Davig and Doh, 2014):

– the Great Inflation of the 1970s (associated with the accommodative Burns

regime) with inherited rates of expected inflation exacerbated by the Nixon

Shock and the two oil shocks bookmarking the decade;

– the subsequent Volcker disinflation of money targeting and high policy rates,

and its two attendant deep recessions;

– the Great Moderation of macroeconomic stability from the mid-1980s;

– the GFC from 2007/9 followed by highly accommodative monetary (and fiscal)

policy;

– the Covid shock and global supply-chain disruption, the subsequent high infla-

tion, and the upward revision of nominal policy rates.

17We also tested for differences in the bootstrapped distributions of the δ estimators across the models

controlling for and ignoring threshold endogeneity based on Kolmogorov-Smirnov test and found that

the null of equality of the two distributions is decisively rejected. This is what one might expect if the

estimator that ignores threshold endogeneity is biased.

18From a statistical viewpoint, the lower δ̂ implies a larger number of observations in the high inflation

state which may sharpen model inference in this state.
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5.2 Impulse and cumulative impulse response analysis

We now study the dynamic effects of monetary policy shocks on activity and inflation.

To this end, we present IRFs and cumulative IRFs (CIRFs) obtained by a Cholesky

decomposition of the TVAR innovations to identify the structural shocks. All such

structural shocks have a unit variance. Their impact on y, π and r, though, differs from

variable to variable, across high and low inflation states and between models reflecting

the different coefficients and variance-covariance estimates (recall Proposition 1).

Figure 3 and 4 respectively compare the TVAR(N) with the VAR and the TVAR(X),

for the FFR 3-equation case (i.e., the baseline case in Table 1).19 Unlike the VAR, the

threshold models have distinct results for the different inflation states. All models

predict similar outcomes regarding the long-run effects of a positive monetary shock:

output and inflation tend to fall after the monetary contraction then revert to base.

However, there are some stark differences among the models with respect to the

dynamic paths, as well as their size and degree of persistence.

In the linear VAR, a one standard deviation positive monetary shock has an outsize

and highly persistent absolute effect on output and inflation. Price behavior in the

linear case for instance appears excessively sticky, with the result that output must be

held markedly below base for a long period. Comparing the TVARs, Figure 4, shows

again at least in the high inflation state, that the exogenous TVAR makes output

look more sluggish and prices stickier relative to the endogenous case. The standard

deviation of the monetary shocks is lower in both regimes for the TVAR(N) case,

suggesting that monetary policy can be more efficient in high-inflation states.

Consider also the CIRFs (in which we multiply the lower triangle matrix by 100),

see Figure 5, inflation and output continue to increase for up to a year after the shock

in the low-inflation state, thus confirming the puzzling price behavior following the

19In the appendix we also plot the 2 year case.
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monetary policy shock noted in the literature. This puzzling behavior does not seem

to appear in the TVARs, especially the TVAR(N), in the high inflation state. The panels

indicate that, although the size and persistence of effects of the monetary shocks on

inflation and output, in general, look similar in the high inflation states across the two

TVAR models, the TVAR(X) model predicts that inflation is stickier than under the

endogenous threshold case and the output costs are much larger and longer lasting.

The estimates of the IRFs and CIRFs of the TVAR(N) model for inflation and output

fall rapidly below zero (within 4, 5 months) after the shock occurs and quickly return

to the base, compared to the TVAR(X). This is in line with Davig and Leeper’s (2008)

thesis that monetary policy works more efficiently in the high inflation state.

In contrast to the high inflation state, the results of the figures indicate that the

pattern of the IRFs and CIRFs is both qualitatively and quantitatively more similar

across the two threshold models in the low inflation state, and is closely related to

the linear VAR. The degree of stickiness of inflation and output to a contractionary

monetary shocks is higher than under the high inflation state for both the TVAR(N)

and TVAR(X) models, and it takes a longer period (almost a year) for a monetary

shock to have negative effects on inflation and output. These results imply that the

price puzzling behavior of the monetary policy is a low-inflation phenomenon. This

is consistent with Karadi and Reiff (2019) theory model where firms are not willing

to change prices as frequently as in the high inflation state to avoid adjustment, while

they change prices more frequently when inflation is higher (e.g., Alvarez et al., 2019).

The above results hold also for the 2y interest rate and the case that the unexpected

monetary policy shock m is used as structural shock (see Table 1). In summary, these

results clearly indicate that monetary tightening is contractionary, and this is more

evident in the high inflation state where monetary policy needs to more strongly

anchor inflation expectations.
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Figure 2: Inflation and Expected Inflation

(overlaid with high-inflation, state-dependent shading)
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Notes: This figure plots the monthly inflation series in blue and a measure of expected inflation (a

20 month moving average) in red dash. The figure also overlays shaded green vertical bars which

indicate the high inflation state, i.e., where expected inflation exceeds the empirically determined

threshold value of 0.036 (indicated by the horizontal black line).

24



Figure 3: Impulse Responses: TVAR(N) (Blue) and Linear VAR (Red)
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determined TVAR model (in blue) and the linear model (in red) across the two inflation states. 68% confidence intervals are

shown in shaded bands. The high inflation state occurs when expected inflation (defined as a 20 month moving average) exceeds

the threshold: zt > 0.0359. In the linear case there is by definition no state dependency for the impulse responses. All values have

been scaled by 100 for visual convenience. The horizontal axis measures months.
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Figure 4: Impulse Responses: TVAR(N) (Blue) and TVAR(X) (Red)
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Figure 5: Cumulative IRFs
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6 Conclusions

The contribution of this paper has been to put forward a new method to control for

threshold endogeneity in threshold VARs. As far as we are aware, our paper is the

first to tackle this. We do so by appealing to copula theory, which is a simple and

instruments-free method of capturing threshold endogeneity.

To study the consequences of ignoring threshold endogeneity on the VAR esti-

mates and impulse response functions (IRFs), and to evaluate the performance of the

suggested method, we perform a Monte Carlo study. That study also examined the

robustness of our method to nonlinear dependence structures between the threshold

variable and the TVAR innovations implied by copulas of the Archimedean family.

Our results demonstrate that our method can be successfully implemented to estimate

the model parameters and uncover the true IRFs.

As an application, we examined state dependency in candidate monetary VARs.

For a baseline case, we find that when expected inflation exceeds 3.6%, the effects of

monetary policy on both inflation and output are faster and stronger than otherwise.

Partitioning the historical data into high and low-inflation states matches economic de-

velopments. Ignoring threshold endogeneity tends to overstate the threshold param-

eter and the effects of monetary shocks on output and inflation in the high-inflation

state and understates them in the low-inflation state. Compared to the endogenous

threshold VAR, both the linear and the exogenous threshold VAR, suggest that prices

are sticky and output sluggish in response to monetary shocks in the high-inflation

state. Our results, by contrast, are more in line with state-dependent pricing models

(in which inflation reactions are faster and output reactions more muted) and consis-

tent with models which suggest that monetary policy is more efficient in high-inflation

states.

Accordingly, we have established that endogenous threshold VARs overcome the
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biases and impaired dynamic analysis of exogenous threshold VARs. Given the huge

popularity of VARs, and the burgeoning interest in nonlinearity and state dependence,

our method should prove useful in the wide variety of applications addressed by the

the threshold literature.
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A Proof of Proposition 1
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Also note that the quantity |R(i)|1/2|Σ(i)
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B Monte Carlo

The true data generating process assumed in our MC study is the following bivariate

TVAR model:2
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
y1t−1

y2t−1

 +


u

(1)
1t

u
(1)
2t

 , if zt ≤ δ


0.1 0.7

0.7 0.1




y1t−1

y2t−1

 +


u

(2)
1t

u
(2)
2t

 , if zt > δ

(B.1)

where the value of the threshold parameter δ is set to the 3
rd

quantile of their assumed

distributions (see below). The initial values of y1t and y2t are set to zero, and the vector

of innovation terms u
(i)
t = (u(i)

1t , u
(i)
2t )′

has the following lower-triangular recursive

structure, across the two states:


u

(i)
1t

u
(i)
2t

 =




1.0 0.0

0.8 1.0




e

(1)
1t

e
(1)
2t

 , if zt ≤ δ


1.0 0.0

0.8 1.0




e

(2)
1t

e
(2)
2t

 , if zt > δ

(B.2)

where e
(i)
jt , j = 1, 2, are two independent zero-mean normally distributed error terms

with unit variance which stand for the structural errors of the model for the two

2Without loss of generality, we abstract from a vector of intercepts.
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equations j = 1, 2. The above structural error causation scheme is often assumed

in economic studies and can be identified by the Cholesky decomposition of the

variance-covariance matrix of the TVAR innovation terms u
(i)
1t and u

(i)
2t , i.e., Σ(i)

uu. For

threshold variable zt, we consider the following two distributions:

zt ∼ U(−4, 3) and zt ∼ N (0, 4.08)

these are chosen to have the same variance for valid comparisons.

We consider different dependence structures between the structural error terms

e
(i)
jt , j = 1, 2, and the threshold variable zt, in the following tabular order:

1. Linear for both equations with the common correlation

Corr(e(1)
jt , zt) = Corr(e(2)

jt , zt) = −0.8

2. Also linear, but with different degrees of correlation across the states:

Corr(e(1)
jt , zt) = 0.8 ̸= Corr(e(2)

jt , zt) = −0.5

for both equations j = 1, 2.

3. Next, we consider the case that the VAR innovations are generated by Student’s t-

distribution, with five degrees of freedom. This distribution can generate severe

excess kurtosis of the innovations. In addition, we considered the skewed t-

distribution of Fernandez and Steel (2012) with five degrees of freedom, which,

in addition to excess kurtosis, can generate skewness. Both of these additional

features are often encountered in financial data (see, e.g., Harvey and Siddique,

2000 or Papantonis et al. 2023, for a survey).

4. Finally, we assume a non-linear dependence structure between e
(i)
jt and zt. This
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is assumed to be the same across the two equations j and the two states i, for

simplicity. In this case, we generate zt based on bivariate copulas between zt

and e
(i)
jt .

For that fourth case, we consider the following three alternative copulas: the

Clayton, Joe, and Frank copulas, which belong to the Archimedean family of copulas.

These assume different dependence structures at the tails of the joint distribution of zt

and e
(i)
jt . The Frank copula is a symmetric copula which assumes stronger dependence

around the center of the distribution and weaker at its lower and upper tails. On the

other hand, the Clayton and Joe copulas are asymmetric and assume stronger lower

and upper tail dependence, respectively.

The dependence parameter values considered in our Monte Carlo exercises are set

to: ψ = 2.50 for Clayton; ψ = 2.50 for Joe, and ψ = 5.2 for Frank. These values imply

a Spearman correlation coefficient between zt and e
(i)
jt which is about 0.70.

We perform 1000 MC iterations using sizes of T ={200, 500} observations. In

each iteration, we estimate the threshold parameter δ and the remaining parameters

of TVAR model (B.1), based on the estimation procedure described before. The

distributions FZ(i)(Z(i)
t ), are estimated non-parametrically using a Gaussian kernel.

For the estimation of δ, we trim out the 10% of the observations of zt from each end

of its sample to increase the degrees of freedom in the estimation of the model for

both states. In Tables B.1–B.5, we present the average values of the bias (denoted

as BIAS) and mean square error (MSE) of the estimates of threshold parameter δ

and the variance-covariance parameters of the TVAR innovation terms u
(i)
1t and u

(i)
2t ,

denoted σ
(i)2
u1 , σ

(i)2
u2 and σ

(i)
u1u2 . The values of these metrics are calculated based on 1000

iterations. For reasons of space, we have omitted the results for remaining parameters

of the TVAR model.

Tables B.1 and B.2 present results for the cases that the dependence structure

– A 7 –



between zt and e
(i)
jt is linear, and T = 200 and T = 500, respectively. Table B.3 presents

results for the case that the VAR innovations follow the Student’s t and skewed-

t distributions. Finally, Tables B.4 and B.5 present results where that dependence

structure is nonlinear (i.e., it is obtained by the three aformenioned Archimedean

copulas) and again for T = 200 and T = 500, respectively. We present results from

our method controlling for the endogeneity of the threshold variable using the copula

transformations z
(i)∗
t , and for the case that we ignore the endogeneity problem of zt.

Inspection of the results leads to several interesting conclusions. First, ignoring the

issue of the threshold variable endogeneity leads to biased estimates and large MSE

values of the threshold parameter δ and the variance-covariance terms of innovation

terms u
(i)
1t and u

(i)
2t (mainly, the variances σ

(i)2
u1 and σ

(i)2
u2 ). This is true for both states of

the model. These problems appear more severe in cases where the correlation struc-

ture between zt and e
(i)
jt changes across the two states, zt is not normally distributed,

i.e., zt ∼ U(−4, 3), or zt is generated by the three alternative Archimedean copulas,

and the size of T is smaller. For these cases, the bias of the above parameters remains

substantial even where T = 500.

Second, our method efficiently controls for the threshold endogeneity bias. The

performance of the method is efficient even for cases where T is small (i.e., T =

200). Our method can substantially reduce both the BIAS and MSE of the threshold

parameter δ and the parameters of the variance-covariance matrix of u
(i)
1t and u

(i)
2t .

Note that this is true even where the correlation between zt and e
(i)
jt changes across

the two states. The performance of the method is also satisfactorily in cases in which

(i) the TVAR innovations follow the Student’s t and skewed-t distributions and (ii)

the dependence between zt and e
(i)
jt is governed by the three Archimedean copulas,

especially for the Clayton and Frank copulas.3

3Note that, for the Joe copula, our method does not substantially reduce the bias of the variance of error

term u
(i)
1t for the second state, i.e., σ

(2)2
u1 . This may be attributed to the high level of dependence of the
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To better judge the consequences of ignoring threshold endogeneity, in Figure B.1,

we graphically present the impulse response functions (IRFs) of two variables in the

bivariate Monte Carlo VAR, Y1t and Y2t, to cross-equation structural errors (shocks)

e
(1)
2t and e

(2)
1t for the two states. The plots of the figure present the true IRFs generated

by the known artificial data (in green solid), the IRFs ignoring threshold endogeneity

(red dash) and the IRFs estimated by our method controlling for the endogeneity in

the threshold (blue dot-dash). Apart from the true ones, the IRFs reported are based

on the average estimates of the model, over all iterations for the simulation scenario

where T = 500, Zt ∼ U(−4, 3) and corr(e(1)
jt , zt) = 0.8 and corr(e(2)

jt , zt) = −0.5 (see

Panel B of Table B.2).

Inspection of the graphs clearly indicates that ignoring the threshold variable

endogeneity leads to biased estimates of the IRFs. The magnitude of bias is substantial

in both states of the model and lasts until the effects of the structural shocks die out

(e.g., for about 15 periods ahead). Note that this happens even if the bias of the

threshold parameter δ is not big enough. Our method of controlling for the threshold

endogeneity bias can accurately estimate the true IRFs, for both states of the model.

The IRFs estimated by our method follows closely the true ones generated by the data

and the model.

In summary, the results of our MC exercise indicate that our method can effi-

ciently control for the effects of threshold variable endogeneity on the estimates of

the variance-covariance parameters of the TVAR innovations and their implied struc-

tural errors. This is true even where the correlation structure between the threshold

variable and the TVAR innovations changes considerably across the states.

Joe copula at the upper tail of zt and the lower number of observations available for the estimation of

the parameters of the model in state. For the Archimedean copulas considered, our results indicate that

the use of a Gaussian copula can substantially reduce the BIAS and MSE of the threshold parameter δ.

Regarding the distribution of the TVAR’s innovations u
(i)
jt , our method works much better in the case

where u
(i)
jt follows the Student’s t distribution, which is symmetric.
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Figure B.1: Impulse Response from Monte Carlo, T = 500
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Notes: The figure graphically presents estimates of IRFs of y1t+h (or y2t+h) to structural shocks e
(i)
2t (or e

(i)
1t ), for h = 1, 2, ..., 20 periods ahead and

across the two states of the model, obtained by our method (copula approach), including the threshold variable as an additional regressor in the

TVAR model and the case ignoring the threshold variable endogeneity. This is done against the true (theoretical) values of the IRFs, generated by the

TVAR model (B.1) under the error-term structure (B.2). Apart from the IRFs based on theoretical values of the model, the reported estimates of the

IRFs in the graphs constitute average values of them based on estimates of (B.1) and (B.2) over 1000 bootstrap iterations. We assumeT = 500 observations.
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Table B.1: Monte Carlo Results, T = 200

zt ∼ N (0, 4.08) zt ∼ U(−4, 3)

δ (σ(1)
u1 )2 (σ(1)

u2 )2 σ
(1)
u1u2 (σ(2)

u1 )2 (σ(2)
u2 )2 σ

(2)
u1u2 δ (σ(1)

u1 )2 (σ(1)
u2 )2 σ

(1)
u1u2 (σ(2)

u1 )2 (σ(2)
u2 )2 σ

(2)
u1u2

Panel A: ρ
e

(i)
j z

= 0.80 for j = 1, 2 equations and i = 1, 2 states

Ignoring threshold endogeneity

BIAS −0.243 0.316 0.188 0.000 0.141 0.061 −0.060 −1.064 1.184 1.159 0.107 0.591 0.575 −0.056
MSE 0.398 0.011 0.065 0.010 0.033 0.063 0.053 1.644 1.619 1.633 0.011 0.465 0.515 0.003

Controlling for threshold endogeneity

BIAS 0.024 0.008 −0.013 0.000 0.060 −0.018 −0.009 −0.015 0.067 −0.054 0.013 0.034 −0.000 0.006
MSE 0.049 0.002 0.021 0.010 0.012 0.058 0.054 0.025 0.019 0.042 0.000 0.050 0.119 0.000

Panel B: ρ
e

(1)
j z

= 0.80 and ρ
e

(2)
j z

= −0.50 for j = 1, 2 equations

Ignoring threshold endogeneity

BIAS −1.524 0.821 0.825 0.097 0.193 0.163 −0.023 2.616 0.394 0.388 0.058 0.523 0.506 −0.144
MSE 8.900 0.838 0.885 0.016 0.107 0.157 0.022 7.105 0.226 0.271 0.015 0.323 0.343 0.031

Controlling for threshold endogeneity

BIAS 0.000 0.028 0.029 0.015 0.008 −0.039 0.005 0.000 0.076 0.064 0.016 −0.021 −0.056 −0.001
MSE 0.024 0.016 0.037 0.006 0.048 0.107 0.022 0.009 0.021 0.043 0.006 0.048 0.121 0.023

Notes: The table presents the average values of the bias (denoted as BIAS) and mean square error (MSE) of the estimates of threshold parameter δ and the

variance-covariance parameters of the TVAR innovations u
(i)
1t and u

(i)
2t , denoted σ

(i)2
u1 , σ

(i)2
u2 and σ

(i)
u1u2 , across the two states i = 1, 2. This is done for the following

cases: (i) ignoring the threshold endogeneity, (ii) controlling for it based on our suggested method (i.e., the copula approach). For all the above cases, the size of

the sample is set to T = 200. We present results for the case that the threshold variables is distributed as zt ∼ N (0, 4.08) and the case that zt ∼ U(−4, 3). Panel

A presents results for the case that the correlation between zt and structural TVAR errors e
(i)
j is linear, given as ρ

e
(i)
j

z
= 0.80, for j = 1, 2 equations and i = 1, 2

states, while Panel B is for the case that the correlation structure changes across the two states, i.e., ρ
e

(1)
j

z
= 0.80and ρ

e
(2)
j

z
= −0.50 for j = 1, 2 equations.
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Table B.2: Monte Carlo Results, T = 500

zt ∼ N (0, 4.08) zt ∼ U(−4, 3)

δ (σ(1)
u1 )2 (σ(1)

u2 )2 σ
(1)
u1u2 (σ(2)

u1 )2 (σ(2)
u2 )2 σ

(2)
u1u2 δ (σ(1)

u1 )2 (σ(1)
u2 )2 σ

(1)
u1u2 (σ(2)

u1 )2 (σ(2)
u2 )2 σ

(2)
u1u2

Panel A: ρ
e

(i)
i z

= 0.80 for j = 1, 2 equations and i = 1, 2 states

Ignoring threshold endogeneity

BIAS −0.050 0.333 0.208 −0.002 0.148 0.083 −0.016 −1.017 1.266 1.263 0.111 0.647 0.629 −0.070

MSE 0.026 0.114 0.055 0.004 0.027 0.033 0.019 1.434 1.763 1.733 0.013 0.501 0.507 0.008

Controlling for threshold endogeneity

BIAS 0.010 0.013 0.001 −0.006 0.037 0.001 −0.006 −0.001 0.080 −0.054 0.015 0.035 0.014 0.012

MSE 0.009 0.001 0.008 0.007 0.004 0.022 0.021 0.010 0.013 0.021 0.000 0.020 0.045 0.000

Panel B: ρ
e

(1)
i z

= 0.80 and ρ
e

(2)
i z

= −0.50 for i = 1, 2

Ignoring threshold endogeneity

BIAS −0.603 0.981 0.977 0.099 0.129 0.127 0.003 −2.616 0.443 0.435 0.060 0.535 0.537 −0.145

MSE 3.462 1.028 1.047 0.011 0.048 0.075 0.127 6.980 0.227 0.244 0.007 0.302 0.321 0.025

Controlling for threshold endogeneity

BIAS −0.003 0.038 0.004 0.007 0.001 −0.001 0.006 −0.004 0.088 0.086 0.010 0.006 0.013 −0.005

MSE 0.005 0.008 0.017 0.003 0.017 0.046 0.008 0.002 0.014 0.023 0.003 0.023 0.048 0.008

Notes: The table presents the average values of the bias (denoted as BIAS) and mean square error (MSE) of the estimates of threshold parameter δ and the

variance-covariance parameters of the TVAR innovations u
(i)
1t and u

(i)
2t , denoted σ

(i)2
u1 , σ

(i)2
u2 and σ

(i)
u1u2 , across the two states i = 1, 2. This is done for the following

cases: (i) ignoring the threshold endogeneity, (ii) controlling for it based on our suggested method (i.e., the copula approach). For all the above cases, the size of

the sample is set to T = 500. We present results for the case that the threshold variables is distributed as zt ∼ N (0, 4.08) and the case that zt ∼ U(−4, 3). Panel

A presents results for the case that the correlation between zt and structural TVAR errors e
(i)
j is linear, given as ρ

e
(i)
j

z
= 0.80, for j = 1, 2 equations and i = 1, 2

states, while Panel B is for the case that the correlation structure changes across the two states, i.e., ρ
e

(1)
j

z
= 0.80 and ρ

e
(2)
j

z
= −0.50 for j = 1, 2 equations.
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Table B.3: Monte Carlo Results – The Case of Non-Normal VAR Innovations

δ σ
(1)2
u1 σ

(1)2
u2 σ

(1)
u1u2 σ

(2)2
u1 σ

(2)2
u2 σ

(2)
u1u2 δ σ

(1)2
u1 σ

(1)2
u2 σ

(1)
u1u2 σ

(2)2
u1 σ

(2)2
u2 σ

(2)
u1u2

Ignoring threshold endogeneity Controlling for threshold endogeneity

Panel A: T = 200

Student’s-t innovations

BIAS−0.190 0.498 0.162 −0.020 0.376 0.079 −0.060 0.016 0.104 −0.094 −0.001 0.262 −0.031 0.000

MSE 0.200 0.242 0.054 0.010 0.138 0.113 0.043 0.022 0.005 0.094 0.019 0.069 0.121 0.045

skewed-t innovations

BIAS−0.146 0.427 0.267 0.120 1.110 0.71 0.010 0.047 0.089 0.036 0.004 0.910 0.529 0.003

MSE 0.145 0.193 0.107 0.014 1.240 0.730 0.025 0.049 0.010 0.034 0.024 0.857 0.535 0.030

Panel B: T = 500

Student’s-t innovations

BIAS−0.066 0.561 0.285 −0.001 0.471 0.216 −0.020 0.002 0.133 0.003 −0.001 0.284 0.077 0.000

MSE 0.028 0.301 0.083 0.004 0.206 0.095 0.016 0.009 0.022 0.038 0.004 0.073 0.000 0.056

skewed-t innovations

BIAS−0.061 0.493 0.333 0.030 1.333 0.878 0.020 0.006 0.105 0.116 0.004 0.962 0.688 0.003

MSE 0.029 0.237 0.114 0.050 1.769 0.861 0.090 0.007 0.010 0.019 0.09 0.927 0.458 0.010

Notes: The table presents the average values of the bias (denoted BIAS) and mean square error (MSE) of the estimates of threshold parameter δ and the variance-

covariance parameters of the TVAR innovations u
(i)
1t and u

(i)
2t , denoted σ

(i)2
u1 , σ

(i)2
u2 and σ

(i)
u1u2 , across the two states i = 1, 2, for cases that the distribution of the

error terms u
(i)
1t and u

(i)
2t is Student’s t with five degrees of freedom and skewed-t, with the same degrees of freedom. The threshold variable is zt ∼ U(−4, 3).

The table presents results for the following two cases: (i) ignoring the threshold endogeneity, (ii) controlling for it based on our suggested method relying on

the Gaussian copula approach. The table consider the cases of T = 200 and T = 500, and assumes correlation coefficients ρ
e

(i)
i

z
= 0.80 for j = 1, 2 equations

and i = 1, 2 states.
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Table B.4: Monte Carlo Results, T = 200

δ (σ(1)
u1 )2 (σ(1)

u2 )2 σ
(1)
u1u2 (σ(2)

u1 )2 (σ(2)
u2 )2 σ

(2)
u1u2 δ (σ(1)

u1 )2 (σ(1)
u2 )2 σ

(1)
u1u2 (σ(2)

u1 )2 (σ(2)
u2 )2 σ

(2)
u1u2

Clayton : ψ = 2.5 Joe : ψ = 2.5

Ignoring threshold endogeneity

BIAS−1.537 0.404 0.113 0.302 0.684 0.309 −0.016 −1.009 0.843 0.732 −0.003 0.815 0.934 0.190

MSE 2.463 0.122 0.121 0.003 0.372 0.212 0.008 1.521 0.825 0.621 0.001 0.601 1.001 0.132

Controlling for threshold endogeneity

BIAS−0.028 −0.159 −0.162 −0.018 0.031 −0.026 −0.008 −0.004 0.183 0.153 −0.019 0.719 0.056 0.011

MSE 0.022 0.013 0.031 0.009 0.096 0.046 0.000 0.003 0.041 0.056 0.000 0.512 0.068 0.001

Frank ψ = 5.2

Ignoring threshold endogeneity

BIAS−0.772 0.623 0.532 −0.009 0.387 −0.185 −0.045

MSE 1.052 0.420 0.415 0.000 0.216 0.098 0.026

Controlling for threshold endogeneity

BIAS 0.005 0.142 0.101 −0.018 0.135 −0.033 0.000

MSE 0.013 0.036 0.046 0.000 0.045 0.044 0.000

Notes: The table presents the average values of the bias (denoted as BIAS) and mean square error (MSE) of the estimates of threshold parameter δ and the

variance-covariance parameters of the TVAR innovations u
(i)
1t and u

(i)
2t , denoted σ

(i)2
u1 , σ

(i)2
u2 and σ

(i)
u1u2 , across the two states i = 1, 2, when the dependence

structure between zt and u
(i)
j is non-linear governed by the Clayton, Joe, and Frank copulas. The values of the copula parameters ψ considered are reported in

parentheses. These imply a Spearman correlation coefficient about 0.70 between zt and e
(i)
jt ∀j, i. This is done for the following cases: (i) ignoring the threshold

endogeneity, (ii) controlling for it based on our suggested method (i.e., the copula approach). For all the above cases, the size of the sample is set to T = 200.

–
A

1
4

–



Table B.5: Monte Carlo Results, T = 500

δ (σ(1)
u1 )2 (σ(1)

u2 )2 σ
(1)
u1u2 (σ(2)

u1 )2 (σ(2)
u2 )2 σ

(2)
u1u2 δ (σ(1)

u1 )2 (σ(1)
u2 )2 σ

(1)
u1u2 (σ(2)

u1 )2 (σ(2)
u2 )2 σ

(2)
u1u2

Clayton ψ = 2.5 Joe ψ = 2.5

Ignoring threshold endogeneity

BIAS−1.250 0.302 0.035 −0.010 0.552 0.437 −0.015 −1.055 0.815 0.732 −0.008 0.815 0.934 0.206

MSE 2.011 0.092 0.079 0.000 0.333 0.171 0.000 1.586 0.848 0.662 0.004 0.673 1.203 0.066

Controlling for threshold endogeneity

BIAS−0.011 0.118 −0.177 −0.010 0.262 −0.365 −0.010 0.000 0.204 0.173 −0.014 0.728 0.057 0.002

MSE 0.003 0.011 0.013 0.000 0.075 0.013 0.000 0.003 0.044 0.041 0.007 0.544 0.029 0.009

Frank ψ = 5.2

Ignoring threshold endogeneity

BIAS−0.611 0.699 0.570 −0.008 0.365 0.596 −0.054

MSE 0.792 0.621 0.506 0.004 0.212 0.076 0.016

Controlling for threshold endogeneity

BIAS−0.000 −0.126 −0.074 −0.010 0.133 −0.011 −0.015

MSE 0.003 0.039 0.037 0.007 0.043 0.002 0.020

Notes: The table presents the average values of the bias (denoted as BIAS) and mean square error (MSE) of the estimates of threshold parameter δ and the

variance-covariance parameters of the TVAR innovations u
(i)
1t and u

(i)
2t , denoted σ

(i)2
u1 , σ

(i)2
u2 and σ

(i)
u1u2 , across the two states i = 1, 2, when the dependence

structure between zt and u
(i)
j is non-linear governed by the Clayton, Joe, and Frank copulas. The values of the copula parameters ψ considered are reported in

parentheses. These imply a Spearman correlation coefficient about 0.70 between zt and e
(i)
jt , for all j and i. This is done for the following cases: (i) ignoring the

threshold endogeneity, (ii) controlling for it based on our suggested method (i.e., the copula approach). For all the above cases, the size of the sample is set to

T = 500.
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C Data

We use monthly data over the period 1970m1 to 2021m12 for (seasonally adjusted)

real output, (seasonally adjusted) inflation rates, a measure of the monetary policy

instrument, and a measure of the bond premium.

– For the real output measure, we used the Total Industrial Production Index

(2017 = 100), FRED
©

mnemonic: INDPRO.

– The inflation rate is the growth rate of the Consumer Price index (1982-1940=100)

for all urban Consumers, CPIAUCSL.

– The nominal monetary policy rate is the Federal Funds Rate, FEDFUNDS.

– To address the concern over the zero lower bound we also use the two-year

rate as the policy variable, DGS2. The sample size of this series is slightly

shorter at 1976m1 to our final date of 2021m12.

– We augment the VAR with a fourth variable, namely, the excess bond premium

taken from Gilchrist and Zakrajšek (2012), see also Gertler and Karadi (2015),

Bauer and Swanson (2022).4 The sample size of this series is slightly shorter at

1973m1 to our final date of 2021m12.

The summary statistics of these variables is given in Tble C.1 and plotted in Figure

C.1.

Finally, the shock variable used in the analysis is based on the narrative analysis

of Romer and Romer (2004) provided by Miranda-Agrippino and Ricco (2021).

Monthly data for the first two variables are annualized using (Yt/Yt−1)12 − 1,

where Yt and Yt−1 are the values of the variables of interest in months t and t − 1,

4For updated data see https://www.federalreserve.gov/econresdata/notes/feds-notes/2016/files/

ebp_csv.csv
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respectively. Both the growth rate of output and the inflation rate follow a stationary

process, while the Federal Funds Rate is a trend stationary variable. We remove the

trend by fitting a deterministic time trend model. The residuals from this model then

follow a stationary stochastic process.

Table C.1: Summary Statistics: VAR Variables

Series Mean Median Std. Dev Max Min

y 0.025 0.028 0.107 −0.827 1.057

π 0.040 0.033 0.041 −0.193 0.240

r 4.967 5.065 3.958 0.050 19.100

2y 5.062 4.903 3.814 0.115 16.458

ebp 0.061 −0.054 0.551 −1.096 3.466
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Figure C.1: Data
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Notes: Monthly series on Industrial Production Index, Inflation, the effective Federal Funds rate, the Market

Yield on Treasury Securities at 2-Year Constant Maturity (shown in red dash), and the Excess Bond Premium.

All series taken from FRED
©

, except for the final series which is taken from Gilchrist and Zakrajšek (2012).
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D Full Set of Results

Tables 1A-1B presents results assuming the FFR is the policy instrument, while Table

2A-2B use the two-year government bond yield. Tables labeled with the letter A

present results for the case controlling for endogeneity of the threshold variable (using

our copula method), while those labeled B ignore threshold endogeneity. In addition,

Tables 3A-3B present results for the case that our TVAR model also includes exogenous

monetary shocks as a separate variable, denoted m. In that case, as the policy rate,

rt we continue to consider the FFR. As noted before, variable m is considered as

exogenous (i.e., it is ordered first) to capture contemporaneous causation effects of

monetary policy on gt, πt and rt. Finally, Table 4 presents the benchmark linear VAR.

We report estimates of threshold parameter δ, the variance-covariance matrix of

the innovations and the cumulative multipliers of the real growth and inflation rates

to a structural monetary policy rate shock of one standard deviation, for horizons

h = {1, 12, 24, 36, 48} and across the states identified by the model estimates: L and

H respectively denote the low- and high inflation state. The cumulative multipli-

ers estimates are based on estimates of the IRFs of the alternative tabulated TVAR

specifications.

All the TVAR specifications considered assume a lag structure of two (chosen

based on the reported Bayesian information criterion, bic). The standard errors of

the cumulative multipliers estimates and the confidence intervals of the IRFs es-

timates, respectively reported in the tables and figures, are constructed based on

a non-overlapping block-bootstrap of fixed length chosen automatically via flat-top

windows (e.g., Politis and White, 2004; Patton et al., 2009), based on 1000 iterations.

Finally, Figure D.1-Figure D.2 show the corresponding results for the 2 year rate

as the monetary instrument.
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Table 1A: Estimates of the TVAR model controlling for threshold endogeneity and Cumulative Responses

δ = 0.0359 [0.018, 0.046], LR = 91.895 [0.0000], bic = −8465.28

ΣL
uu × 100 =


σgg = 0.9099

σπg = 0.0213 σππ = 0.0657

σrg = 0.0015 σrπ = 0.0005 σrr = 0.0003

ΣH
uu × 100 =


σgg = 0.8700

σπg = 0.0092 σππ = 0.0789

σrg = 0.0146 σrπ = −0.0010 σrr = 0.0051


horizon 1 12 24 36 48

gL
0.035 0.002 -0.072 -0.133 -0.182

(0.007) (0.002) (0.003) (0.004) (0.0034)

gH
0.021 -0.184 -0.301 -0.348 -0.366

(0.0006) (0.002) (0.003) (0.004) (0.004)

πL
0.011 0.007 -0.010 -0.025 -0.035

(0.001) (0.002) (0.003) (0.004) (0.004)

πH
0.006 -0.007 -0.020 -0.022 -0.025

(0.004) (0.003) (0.005) (0.006) (0.007)

Notes: The table presents estimates of the cumulative responses of real industrial production growth and inflation rates to a monetary policy shock

of one standard deviation. These are based on estimates of a TVAR model with two lags for the period 1970m1-2021m12, using as threshold variable

a 20-month moving average of inflation and allowing for threshold endogeneity based on our copula approach of Section 2. In estimating threshold

parameter δ, we have trimmed out the 10% of the observations of zt from each end of its sample. Bootstrapped standard errors in parentheses, based

on a wild parametric bootstrap method using one thousand iterations. LR is the likelihood ratio test statistic testing the null hypothesis that the VAR

model is linear against its alternative hypothesis that is subject to threshold effects. The p-value of the LR statistic is calculated by the wild parametric

method used to estimate the standard errors. bic is the Bayesian information criterion and Σ(i)
uu, i = L,H, is the variance-covariance matrix of the vector

of the TVAR innovations u
(i)
t . Accordingly, σxx and σxy indicate respectively the variance of x and the covariance of x and y.
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Table 1B: Estimates of the TVAR model ignoring threshold endogeneity bias effects and Cumulative Responses

δ = 0.0435 [0.019, 0.055], LR = 86.526 [0.0001], bic = −8412.42

ΣL
uu × 100 =


σgg = 0.9279

σπg = 0.0291 σππ = 0.0670

σrg = 0.0025 σrπ = 0.0004 σrr = 0.0005

 ΣH
uu × 100 =


σgg = 1.0277

σπg = 0.0236 σππ = 0.1015

σrg = 0.0189 σrπ = 0.0007 σrr = 0.0065


horizon 1 12 24 36 48

gL
0.030 0.008 -0.004 -0.075 -0.093

(0.0006) (0.001) (0.002) (0.0025) (0.003)

gH
0.026 -0.288 -0.479 -0.541 -0.568

(0.0008) (0.003) (0.005) (0.006) (0.007)

πL
0.012 0.010 -0.007 -0.002 -0.007

(0.001) (0.002) (0.004) (0.004) (0.005)

πH
0.012 -0.027 -0.059 -0.072 -0.075

(0.001) (0.009) (0.017) (0.022) (0.025)

Notes: The table presents estimates of the cumulative responses of real industrial production growth and inflation rates to a monetary policy shock of

one standard deviation. These are based on estimates of a TVAR model with two lags for the period 1970m1-2021m12, using as threshold variable the

average inflation rate over the last J months, zt = 1
20

∑19
j=0 πt−j and ignoring threshold endogeneity bias. In estimating the threshold parameter δ,

we have trimmed out the 10% of the observations of zt from each end of its sample. Bootstrapped standard errors are in parentheses, based on a wild

parametric bootstrap method using one thousand iterations. LR is the likelihood ratio test statistic testing the null hypothesis that the VAR model is

linear against its alternative hypothesis that is subject to threshold effects. The p-value of the LR statistic is calculated by the wild parametric method

used to estimate the standard errors. bic is the Bayesian information criterion and Σ(i)
uu, i = L,H, is the variance-covariance matrix of the vector of the

TVAR innovations u
(i)
t . Accordingly, σxx and σxy indicate respectively the variance of x and the covariance of x and y.
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Table 2A: Estimates controlling for threshold endogeneity

Using the 2-year Government bond yield and Cumulative Responses

δ = 0.035 [0.019, 0.054], LR = 73.88 [0.0001], bic = −7718.629

ΣL
uu × 100=


σgg = 0.890

σπg = 0.020 σππ = 0.060

σrg = 0.001 σrπ = 0.0003 σrr = 0.0005

 ΣH
uu × 100=


σg = 0.760

σπg = 0.020 σπ = 0.060

σrg = 0.0006 σrπ = 0.0068 σrr = 0.003


horizon 1 12 24 36 48

gL
0.051 0.042 -0.002 -0.003 -0.047

(0.009) (0.03) 0.003 (0.006) (0.004)

gH
0.063 -0.155 -0.285 -0.339 -0.361

(0.010) (0.030) (0.005) (0.070) (0.040)

πL
0.015 0.014 0.0021 -0.005 -0.010

(0.001) (0.002) (0.005) (0.004) (0.005)

πH
0.0178 -0.031 -0.063 -0.076 -0.182

(0.002) (0.005) (0.008) (0.010) (0.012)

Notes: The table presents estimates of the cumulative responses of real industrial production growth and inflation rates to a monetary policy

shock of one standard deviation. These are based on estimates of a TVAR model with two lags for the period 1970m1-2021m12, using as

threshold variable the average of inflation rate over the last twenty months, zt =
∑19

j=0 πt−j and allowing for threshold endogeneity based

on the copula approach, presented in Section 2. As the monetary policy instrument, we use the 2-year government bond yield. In estimating

the threshold parameter δ, we have trimmed out the 10% of the observations of zt from each end of its sample. Bootstrapped standard errors

in parentheses, based on a wild parametric bootstrap method using one thousand iterations. LR is the likelihood ratio test statistic testing

the null hypothesis that the VAR model is linear against its alternative hypothesis that is subject to threshold effects. The p-value of the

LR statistic is calculated by the wild parametric method used to estimate the standard errors. bic is the Bayesian information criterion and

Σ(i)
uu, i = L,H, is the variance-covariance matrix of the vector of the TVAR innovations u

(i)
t .
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Table 2B: Estimates ignoring threshold endogeneity

Using the 2-year Government bond yield and Cumulative Responses

δ = 0.0402 [0.019, 0.046], LR = 95.71[0.000], bic = −7698.93

ΣL
uu × 100=


σgg = 0.900

σπg = 0.020 σππ = 0.070

σrg = 0.002 σrπ = 0.0001 σrr = 0.0006

 ΣH
uu × 100=


σgg = 0.800

σπg = 0.040 σππ = 0.070

σrg = 0.008 σrπ = 0.0001 σrr = 0.003


horizon 1 12 24 36 48

gL
0.049 0.036 -0.006 -0.024 -0.030

(0.008) (0.02) (0.002) (0.003) (0.004)

gH
0.073 -0.178 -0.345 -0.429 -0.473

(0.01) (0.03) (0.06) (0.007) (0.09)

πL
0.016 0.015 0.04 -0.0008 -0.003

(0.02) (0.03) (0.05) (0.06) (0.05)

πH
0.041 -0.083 -0.174 -0.221 -0.247

(0.003) (0.09) (0.015) (0.02) (0.023)

Notes: The table presents estimates of the cumulative responses of real industrial production growth and inflation rates to a monetary

policy shock of one standard deviation. These are based on estimates of a TVAR model with two lags for the period 1970m1-2021m12,

using as threshold variable the average of inflation rate over the last twenty months and ignoring threshold endogeneity bias. As the

monetary policy instrument, we use the 2-year government bond yield. In estimating the threshold parameter δ, we have trimmed out

the 10% of the observations of zt from each end of its sample. Bootstrapped standard errors in parentheses, based on a wild parametric

bootstrap method using 1000 iterations. LR is the likelihood ratio test statistic testing the null hypothesis that the VAR model is linear

against its alternative hypothesis that is subject to threshold effects. The p-value of the LR statistic is calculated by the wild parametric

method used to estimate the standard errors. bic is the Bayesian information criterion and Σ(i)
uu, i = L,H is the variance-covariance matrix

of the vector of the TVAR innovations u
(i)
t .
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Table 3A: Estimates controlling for threshold endogeneity bias effects including the unexpected monetary shocks variable

m in the model and Cumulative Responses

δ = 0.0412 [0.029, 0.047], LR = 167.51 [0.000], bic = −10110.58

ΣL
uu×100=



σmm= 0.0003

σgm= −0.0004 σgg= 0.4110

σπm= −0.00005 σπg= 0.0012 σππ= 0.047

σrm= 0.00003 σrg= 0.0009 σrπ= 0.0003 σrr= 0.0004


ΣH

uu×100=



σmm= 0.0021

σgm= −0.0016 σgg= 0.7360

σπm= −0.0010 σπg= 0.0047 σππ= 0.0089

σrm= 0.0001 σrg= 0.00737 σrπ= −0.0012 σrr= 0.0034


horizon 1 12 24 36 48

gL
-0.036 -0.0235 -0.077 -0.113 -0.136

(0.005) (0.049) (0.042) (0.039) (0.038)

gH
0.198 0.032 -0.206 -0.320 -0.376

(0.01) (0.023) (0.037) (0.049) (0.059)

πL
-0.010 -0.004 -0.0021 -0.034 -0.042

(0.007) (0.019) (0.018) (0.019) (0.02)

πH
0.152 0.073 -0.089 -0.167 -0.205

(0.04) (0.010) (0.022) (0.029) (0.035)

Notes: The table presents estimates of the cumulative responses of real industrial production growth and inflation rates to a monetary policy

shock of one standard deviation. These are based on estimates of a TVAR model with two lags for the period 1970m1-2021m12, using as threshold

variable the average of inflation rate over the last twenty months and allowing for threshold endogeneity based on the copula approach, presented

in Section 2. As the monetary policy instrument, we use the 2-year government bond yield. In estimating the threshold parameter δ, we have

trimmed out the 10% of the observations of zt from each end of its sample. Fixed-length Block-bootstrap standard errors are in parentheses,

using 1000 iterations. LR is the likelihood ratio test statistic testing the null hypothesis that the VAR model is linear against its alternative

hypothesis that is subject to threshold effects. The p-value of the LR statistic is calculated by an analogous block-bootstrap method used to

estimate the standard errors. bic is the Bayesian information criterion and Σ(i)
uu, i = L,H is the variance-covariance matrix of the vector of the

TVAR innovations u
(i)
t =(u

(i)
mt, u

(i)
gt , u

(i)
πt , u

(i)
rt )′

.
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Table 3B: Estimates ignoring threshold endogeneity bias effects including the unexpected monetary shocks variable m in

the model and Cumulative Responses

δ = 0.0464 [0.030, 0.048], LR = 115.890 [0.000], bic = −10100.67

ΣL
uu×100=



σmm= 0.0004

σgm= −0.00078 σgg= 0.4866

σπm= −0.00018 σπg= 0.0075 σππ= 0.0534

σrm= −0.000027 σrg= 0.0009 σrπ= 0.00005 σrr= 0.00055


ΣH

uu×100=



σmm= 0.00263

σgm= 0.00241 σgg= 0.7190

σπm= 0.00025 σπg= −0.006 σππ= 0.1967

σrm= −0.000067 σrg= 0.0088 σrπ= −0.0016 σrr= 0.00402


horizon 1 12 24 36 48

gL
-0.047 -0.046 -0.131 -0.177 -0.20

(0.019) (0.081) (0.074) (0.071) (0.074)

gH
0.22 -0.091 -0.43 -0.61 -0.70

(0.012) (0.041) (0.106) (0.212) (0.393)

πL
-0.056 -0.0009 -0.147 -0.212 -0.261

(0.009) (0.031) (0.031) (0.03) (0.04)

πH
-0.165 0.192 0.521 0.695 0.788

(0.014) (0.029) (0.078) (0.138) (0.227)

Notes: The table presents estimates of the cumulative responses of real industrial production growth and inflation rates to a monetary policy

shock of one standard deviation. These are based on estimates of a TVAR model with two lags for the period 1970m1-2021m12, using as threshold

variable the average of inflation rate over the last twenty months and ignoring threshold endogeneity bias. As monetary policy instrument, we

use the 2-year government bond yield. In estimating the threshold parameter δ, we have trimmed out the 10% of the observations of zt from

each end of its sample. Fixed-length Block-bootstrap standard errors are in parentheses, based on 1000 iterations. LR is the likelihood ratio test

statistic testing the null hypothesis that the VAR model is linear against its alternative hypothesis that is subject to threshold effects. The p-value

of the LR statistic is calculated by an analogous block-bootstrap method used to estimate the standard errors. bic is the Bayesian information

criterion and Σ(i)
uu, i = L,H is the variance-covariance matrix of the vector of the TVAR innovations u

(i)
t =(u

(i)
mt, u

(i)
gt , u

(i)
πt , u

(i)
rt )′

.
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Table 4: Estimates of a linear VAR model over the full sample and Cumulative

Responses

bic = −8403.43

Σuu × 100 =


σgg = 0.9650

σπg = 0.0280 σππ = 0.0950

σrg = 0.0073 σrπ = 0.0007 σrr = 0.0023


horizon 1 12 24 36 48

g 0.024 -0.012 -0.241 -0.299 -0.328

(0.003) (0.011) (0.018) (0.023) (0.025)

π 0.012 -0.004 -0.029 -0.043 -0.049

(0.000) (0.002) ( 0.003) (0.004) (0.005)

Notes: The table presents estimates of the cumulative responses of

real industrial production growth and inflation rates to a mone-

tary policy shock of one standard deviation. These are based on

estimates of a linear VAR model for the full sample period. Boot-

strapped standard errors in parentheses, based on a wild paramet-

ric bootstrap method using one thousand iterations. Σuu is the

variance-covariance matrix of the vector of the VAR innovations ut.

Accordingly, σxx and σxy indicate respectively the variance of x and

the covariance of x and y.
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Figure D.1: Impulse Responses: TVAR(N) (Blue) and Linear VAR (Red)
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Notes: See notes to Figure 3.
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Figure D.2: Impulse Responses: TVAR(N) (Blue) and TVAR(X) (Red)
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E Additional Robustness Exercises

This section provides robustness tests of our results, aimed at gauging their sensitivity.

The tests include estimating the TVAR model from the beginning of the sample until

2008m9, thus dropping the periods 2009-2015 after the GFC and the period 2020-2021

of the Covid-19 outbreak where the FFR approached the zero bound. In addition to

this, we estimate a linear version of our VAR specification, without threshold effects,

from 2008m10 onward until the end of the sample, since inflation during this period

was below the threshold level 3.6%. The results of the model for this period should

be consistent with those of the low-inflation states.

Tables E.1 and E.2 present the estimation results of the above robustness tests.

Table E.1 presents estimates of the cumulative multipliers for the model allowing

for endogeneity of the threshold variable over the period 1970m1-2009m9, while

Table E.2 presents results for the linear VAR model over 2008m10-2021m21. The

results of Table E.1 are consistent with those of Table 1A. The estimate of the threshold

parameter δ is 3.7%, which is close to the aforementioned full-sample 3.6% value. A

similar conclusion can be drawn for the estimates of the cumulative multipliers of real

industrial production growth and inflation rates to a monetary shock of one standard

deviation, across the two states. These are qualitatively similar to those obtained with

the whole sample. Turning to the results of Table E.2, these are also consistent with

those of low-inflation state obtained with the whole sample, both quantitatively and

quantitatively.
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Table E.1: Estimates controlling for threshold endogeneity bias effects (1970m1 - 2008m9) and Cumulative Responses

δ = 0.0370 0.0203, 0.0537], LR = 64.200 [0.000], bic = −6310.738

ΣL
uu × 100=


σgg = 0.390

σπg = 0.0015 σππ = 0.041

σrg = 0.0008 σrπ = 0.0002 σrr = 0.0003

ΣH
uu × 100=


σgg = 0.8100

σπg = 0.0058 σππ = 0.094

σrg = 0.013 σrπ = −0.0005 σrr = 0.0053


horizon 1 12 24 36 48

gL
0.020 -0.004 -0.079 -0.148 -0.214

(0.003) (0.002) (0.044) (0.060) (0.080)

gH
0.013 -0.223 -0.328 -0.367 -0.382

(0.002) (0.053) (0.079) (0.090) (0.097)

πL
0.001 0.0002 -0.005 -0.009 -0.014

(0.0002) (0.0005) (0.001) (0.002) (0.003)

πH
0.007 -0.006 -0.015 -0.019 -0.021

(0.001) (0.0009) (0.002) (0.002) (0.002)

Notes: The table presents estimates of the cumulative responses of real industrial production growth and inflation rates to a monetary policy

shock of one standard deviation. These are based on estimates of a TVAR model for the sample period 1970m1-2008m9, using as threshold

variable the average of inflation rate over the last twenty months, zt =
∑19

j=0 πt−j (akin to a measure of trend inflation), and allowing for

threshold endogeneity based on the copula approach, presented in Section 2. In estimating the threshold parameter δ, we have trimmed out the

10% of the observations of zt from each end of its sample. Bootstrapped standard errors in parentheses, based on a wild parametric bootstrap

method using one thousand iterations. LR is the likelihood ratio test statistic testing the null hypothesis that the VAR model is linear against

its alternative hypothesis that is subject to threshold effects. The p-value of the LR statistic is calculated by the wild parametric method used to

estimate the standard errors. bic is the Bayesian information criterion and Σ(i)
uu, i = L,H, is the variance-covariance matrix of the vector of the

TVAR innovations u
(i)
t . Accordingly, σxx and σxy indicate respectively the variance of x and the covariance of x and y.
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Table E.2: Estimates of a linear VAR model for period (2008m10 - 2021m12) and

Cumulative Responses

bic = −2495.837

Σuu × 100 =


σgg = 0.0152

σπg = 0.0730 σππ = 0.060

σrg = 0.0041 σrπ = 0.0005 σrr = 0.0001


horizon 1 12 24 36 48

g 0.023 -0.044 -0.110 -0.157 -0.189

(0.990) (0.0063) (0.016) (0.161) (0.038)

π 0.0025 -0.010 -0.027 -0.039 -0.048

(0.001) (0.0015) (0.004) (0.008) (0.011)

Notes: See notes to Table 4
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