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A Data Appendix

This appendix details how we use interest rate futures contracts to derive market-based

measures of expected future interest rates. In our baseline specification in the main text,

we use a Gurkaynak, Sack and Swanson (2005)-style path factor as our measure of forward

guidance shocks, which is extracted from a combination of federal funds and eurodollar

futures contracts. Below, we provide additional information on these futures contracts and

detail how we construct our measure of forward guidance shocks.

A.1 Federal Funds Futures Contracts

To capture unexpected changes in expectations about interest rates in the near term (one

day to three months ahead), we use federal funds futures contracts. Federal funds futures

contracts settle based on the average of the daily effective federal funds rate during the

contract expiration month. We obtain daily data on the closing price of federal funds futures

contracts from the Chicago Mercantile Exchange. Let pjt denote the price at time t of the

federal funds futures contract expiring j-months ahead, where j = 0 corresponds to the spot-

month contract expiring in the current month. Then f jt = 100− pjt is the time t expectation

of the average effective federal funds rate rate j-months ahead.

Surprise Component of the Current Target Federal Funds Rate

The day before the current FOMC meeting, the spot-month federal funds future contract

satisfies:

f 0
t−1 =

d0
m0

r−1 +
m0 − d0
m0

Et−1(r0) + µ0
t−1, (1)

where r−1 is the annualized target federal funds rate prevailing before the meeting (which is

assumed to equal the effective federal funds rate each day of the month before the meeting)

and r0 is the annualized target federal funds rate after the meeting the next day. The term

µ0
t−1 is the term-premium for the spot-month federal funds futures contract which we assume

is constant between the day before and the day of the FOMC meeting.

The next day, after the FOMC’s rate decision, the spot-month federal funds future contract

satisfies:

f 0
t =

d0
m0

r−1 +
m0 − d0
m0

r0 + µ0
t . (2)

Combining Equations 1 and 2, the unexpected policy surprise in the target federal funds
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rate is, denoted by e0t , is defined by:

e0t ≡ r0 − Et−1(r0) =
[(
f 0
t − f 0

t−1
)
−
(
µ0
t − µ0

t−1
)] m0

m0 − d0
=
(
f 0
t − f 0

t−1
) m0

m0 − d0
(3)

where the last equality follows from the assumption that the term-premium for the spot-

month federal funds futures contract is constant between the day before and the day of the

FOMC meeting. In practice, this assumption is reasonable except for meetings late in the

month for which any small change in term-premia between the day-before and the day-of

the FOMC meeting would be magnified by m0/(m0 − d0). To avoid this large scaling factor

for events in the last week of the month, we use the following month’s contract instead of

the current month’s contract. In this case, e0t = f 1
t − f 1

t−1 since for meetings late in a month

there is no meeting the subsequent month.

Surprise Component of the Funds Rate Expected After 1st-Upcoming Meeting

While e0t captures the monetary policy surprise generated by changes in the current target

federal funds rate, forward guidance influences expectations about the future path of the

federal funds rate. Therefore, to extract policy surprises in the future path of interest rates,

we assume investors know the dates of future FOMC meetings and we also extract how their

expectations change for rates at the upcoming FOMC meeting. The day before the current

FOMC meeting, the federal funds future contract expiring i(1) months ahead, which is the

month of the 1st-upcoming FOMC meeting, satisfies:

f
i(1)
t−1 =

d1
m1

Et−1(r0) +
m1 − d1
m1

Et−1(r1) + µ1
t−1, (4)

where r0 is the annualized target federal funds rate rate set after the current meeting (which

takes place the next day) and r1 is the annualized target federal funds rate rate set after

the first next meeting (which takes place i(1) months in the future). The term µ1
t−1 is the

term-premium for the federal funds futures contract expiring i(1) months ahead, which is

assumed to be constant between the day before and the day of the FOMC meeting.

The next day after the FOMC issues its statement at time t, the federal funds future contract

expiring i(1) months ahead, which is the month in which the 1st-upcoming FOMC meeting

takes place, satisfies:

f
i(1)
t =

d1
m1

Et(r0) +
m1 − d1
m1

Et(r1) + µ1
t . (5)

Combining Equations 4 and 5, the unexpected policy surprise in the federal funds rate
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expected to prevail after the 1st-upcoming FOMC meeting, denoted by e1t , is defined by:

e1t ≡ Et(r1)− Et−1(r1) =

[(
f
i(1)
t − f i(1)t−1

)
− d1
m1

e0t

]
m1

m1 − d1
. (6)

For events in the last week of the month we use the next month’s contract, which implies

e1t = f
i(1)+1
t − f i(1)+1

t−1 .

A.2 Eurodollar Futures Contracts

In order to capture investors’ expectations about interest rates over horizons longer than

a few months, we compute the changes in eurodollar futures contracts around FOMC an-

nouncements. We obtain daily data on the closing price of USD Eurodollar futures contracts

from the CME Group with contracts maturing i = 2, 3, 4, 5, 6, 7, 8 quarters into the future.1

Let ri denote the annualized 3-month USD LIBOR interest rate at settlement i quarters in

the future. Also, let px,it denote the time t closing price of the Eurodollar contract expiring

i quarters in the future and fx,it = 100− px,it denote the implied rate. Then, the unexpected

policy surprise, as implied by the Eurodollar contract maturing i quarters in the future,

emanating from the FOMC meeting occurring on day t, is:

xit ≡ Et(ri)− Et−1(ri) = fx,it − f
x,i
t−1. (7)

Unlike federal funds futures contracts, eurodollar futures don’t settle based on the average

of their underlying instrument during the settlement month. Therefore, there is no scaling

necessary when using these interest rate futures contracts to extract expectations about the

future path of monetary policy. For some robustness checks, we use the change in 4-, 8-,

and 12-quarter ahead eurodollar futures contracts denoted by x4t , x
8
t , or x12t as our measure

of forward guidance shocks during the zero lower bound period.

A.3 Computing Our Path Factor

We closely follow the appendix of Gurkaynak, Sack and Swanson (2005) to construct our path

factor measure of forward guidance shocks. Their methodology uses principal component

analysis to synthesize the information from numerous interest rate futures contracts into a

single indicator of forward guidance surprises. We first standardize e0, e1, x2t , x
3
t , x

4
t , x

5
t , x

6
t ,

1Eurodollar futures settle in March, June, September, and December. Therefore, as an example, we
define a 2-quarter ahead eurodollar future in January and February as the contract expiring in June and,
beginning in March, we define the 2-quarter ahead eurodollar as the contract expiring in September.
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x7t , and x8t such that each series has a mean of zero and a standard deviation of one. Then, we

extract the first two principle components of these 9 time-series, denoted by f 1 and f 2, over

the sample of regularly scheduled FOMC meetings from January 1994 to December 2015.

Next, we standardize f 1 and f 2 and then run the ordinary least squares (OLS) regressions

e0t = γ1f
1
t +εt and e0t = γ2f

2
t +εt. With γ1 and γ2 in hand, we transform f 1 and f 2 into z1 (the

unscaled target factor) and z2 (the unscaled path factor) using the linear transformation:

[
z1 z2

]
=
[
f 1 f 2

] [ α1 β1

α2 β2

]
. (8)

The matrix elements α1, α2, β1, β2 are identified from the four restrictions:

Restrictions 1 and 2: The columns of the transforming matrix have unit length (so that

the target and path factors have a standard deviation of 1).

α2
1 + α2

2 = 1

β2
1 + β2

2 = 1

Restriction 3: The target and path factors remain orthogonal after the transformation.

E(z1z2) = α1β1 + α2β2 = 0

Restriction 4: The path factor has no influence on the current policy surprise e0. Since,

f 1 =
1

α1β2 + α2β1
[β2z

1 − α2z
2]

f 2 =
1

α1β2 + α2β1
[α1z

2 − β2z1],

then the effect of a change in z2 on e0 is defined by:

de0

dz2
=
de0

df 1

df 1

dz2
+
de0

df 2

df 2

dz2
= −γ1

α2

α1β2 + α2β1
+ γ2

α1

α1β2 + α2β1

Hence, the restriction that de0

dz2
= 0 implies the parameter restriction that: γ2α1 = γ1α2.

Finally, we scale the resulting z1 and z2 vectors. We scale the target factor so that e0t has a

one-for-one effect on it by regressing e0t = β1z
1
t + εt and then set ztarget = βz1. We scale the

path factor so that x8 has a one-for-one effect on it by regressing x8t = β2z
2
t + εt and then

set zpath = β2z
2.
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A.4 Comparison with Shocks From Previous Literature

In this section, we provide a detailed comparison of our path factor with some of the other

forward guidance shock series from the previous literature. Table A.1 provides additional

details on our methodology for constructing our path factor and provides a detailed com-

parison with methods of Gurkaynak, Sack and Swanson (2005), Nakamura and Steinsson

(2018), Campbell et al. (2012), and Campbell et al. (2017).

Prior to the onset of the zero lower bound, we find that our path factor series behaves similar

to the original Gurkaynak, Sack and Swanson (2005) path factor. Table A.2 describes the

10 largest movements in our path factor over the January 1994–November 2008 sample pe-

riod and compares them with the shocks of Gurkaynak, Sack and Swanson (2005) when our

sample periods overlap. Three of the four largest movements we document are included in

Table 4 of Gurkaynak, Sack and Swanson (2005) despite: (i) our analysis of only scheduled

FOMC meetings (they include unscheduled meetings), (ii) our use of a daily window (they

use a 30-minute window), (iii) our use of longer-horizon of futures contracts (we go out to

8-quarters versus 4-quarters), (iv) and the later start and end dates of our sample (their

sample is 1990–2004 whereas ours is 1994–2015). Even with these differences, for dates in

Table A.2 on which we and Gurkaynak, Sack and Swanson record a shock, the signs match

and, in most cases, the magnitude of the movements is similar. Moreover, we find a high

correlation (0.73) between the two series during the overlapping period, which illustrates

that our shock series is consistent with the seminal work in this field.

With respect to Nakamura and Steinsson (2018), we find meaningful differences between

our path factor and their policy news shock series both on average and around key policy

announcements. Figure A.1 below plots the two series both prior to and during the zero

lower bound period.2 While the two series move similarly on a small set of policy announce-

ments, Figure A.1 shows that the quantitative fluctuations and even the sign of the shock

can differ significantly both before and after the onset of the zero lower bound. As a result,

the on average correlation between our path factor and the Nakamura and Steinsson (2018)

policy news shock series is 0.52. Differences between the two shock series are especially

visible during the zero lower bound period. While both series fall by a similar magnitude

in response to the December 2008 forward guidance announcement, subsequent revisions to

this guidance lead to noticeably different movements in the two series. Our path factor series

2We downloaded the Nakamura and Steinsson (2018) series from Emi Nakamura’s website and scaled
their series to make it comparable to our path factor. Specifically, we multiplied the NS 2018 series by β
and added α to this product where: patht = α+ β ×NS2018t + ut and where ut is an OLS residual.
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declines sharply in response to the replacement of “some time” with “an extended period”

in early 2009, while the Nakamura and Steinsson (2018) series only declines a bit. We also

observe attenuated responses of the Nakamura and Steinsson (2018) series in response to

the “mid-2013” and “late-2014” guidance. In response to the October 2010 guidance, which

hinted at more future accommodation and the “mid-2015” date-based guidance, their series

actually rises a small amount whereas our path factor series falls in both instances. These

differential responses — both on average and following key changes in the FOMC’s forward

guidance — likely stem from their use of a single indicator of the stance of monetary policy,

which can be interpreted as an unspecified combination of changes in the federal funds rate

target shocks and path factor shocks.3 Given the absence of target shocks at the zero lower

bound, it is also possible that their series fails to fully capture changes in the stance of policy

when current policy rates are near zero.

Finally, we also document differences in our path factor shock relative to Campbell et al.

(2012) and Campbell et al. (2017). Conceptually, Table A.1 shows that the approach in

Campbell et al. (2012) is most similar to ours as they too extend the methodology in Gurkay-

nak, Sack and Swanson to a more recent period using daily frequency data and longer-horizon

futures contracts. However, on some dates, notably on March 18, 2009, their shock series

appears to differ (even in sign) from our path factor. In our experimentation, this difference

is not reconciled by making a LIBOR adjustment to our series. Instead, it appears to be a

known issue with their series, which we learned from Woodford (2012) in his Jackson Hole

address (see endnote 50).4 Despite these differences in our path factor series relative to some

parts of the previous literature, we prefer our measure for two important reasons. First,

as we discussed above, our measure produces a shock series prior to the zero lower bound

which is highly correlated with the Gurkaynak, Sack and Swanson (2005) series, the seminal

measure in this field. Second, during the zero lower bound, we find that changes in our shock

series line up well with changes in the narrative of FOMC communication.

3In his discussion at the 2015 American Economic Association Annual Meetings, Eric Swanson also
highlighted these differences relative to Gurkaynak, Sack and Swanson (2005).

4Campbell et al. (2012) argue that, “Markets interpreted the FOMC’s announcement as indicating that
the recovery would come sooner than previously thought and that, consequently, liftoff in the federal funds
rate from the ZLB would come earlier than previously anticipated; the 2-quarter-ahead futures contract rose
60 bp from the day before.” However, this assessment is at odds with our measure of Eurodollar rates on
the day of this event. It is also at odds with the Federal Reserve Board staff assessment according to the
April 23, 2009 Bluebook (Pg. 9): “In addition, market participants reportedly interpreted the statement
that the federal funds rates was likely to remain exceptionally low for “an extended period” as stronger
than the phrase “for some time” in the previous statement. Following the release of the FOMC statement,
rates on Eurodollar futures contracts and yields on Treasury, agency, and mortgage-backed securities all fell
considerably.”
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A.5 Reconciling Our Results With Nakamura and Steinsson (2018)

Differences between our path factor and the Nakamura and Steinsson (2018) policy news

shock series can help to reconcile our differential conclusions about the effects of forward

guidance on economic activity. To illustrate this finding, we estimate two bivariate VARs.

Each VAR consists of the forecasted output growth measure used in Nakamura and Steinsson

(2018) and either our path factor or their policy news shocks measure.5 Figure A.2 below

illustrates the impulse responses following a shock to the Nakamura and Steinsson (2018)

policy indicator (top row) or our path factor series (bottom row). In response to what should

be an expansionary forward guidance shock, we initially observe a decline in forecasted out-

put growth using their policy indicator. This initial output puzzle is consistent with the

univariate regressions in Nakamura and Steinsson (2018) which suggests some robustness

of their findings using a VAR framework. However, in subsequent periods, forecasted out-

put growth increases persistently, peaking about one year after the shock. Using our path

factor, we find no initial output puzzle, and instead find that expected output growth in-

creases persistently for about two years following an expansionary forward guidance shock.

These results suggest that the alternative conclusions between our work and Nakamura and

Steinsson (2018) are primarily driven by differences in the shock series and the differential

conclusions are not particularly influenced by the econometric methodology or measures of

economic activity.6

B Additional VAR Results

In this section, we provide additional details on our baseline empirical specification and

report estimates of our empirical impulse responses with probability intervals from the ro-

bustness exercises in Figures 3, 4, & 5 in the main text.7 In addition, we also present the

5The measure of expected future output growth used in Nakamura and Steinsson (2018) is the average
annualized growth rate forecasted for the current quarter, 1-quarter ahead, and 2-quarters ahead. We
cumulatively sum both policy shock measures. We estimate the both empirical models over the 1995 - 2014
sample period used by Nakamura and Steinsson (2018).

6To ensure that these findings are not driven by an outsized influence of differences in the two series
on a few select policy dates (such as during the zero lower bound period), we also estimate versions of
these bivariate VARs controlling for dates when the two series meaningully diverge. Specifically, we include
dummy variables in the VAR for observations in which the differences between our path factor and the policy
news shock series of Nakamura and Steinsson (2018) are statistically significant at the 10% level. Including
these dummy variables produces similar responses to the results reported in Figure A.2, suggesting that on
average differences in the two series, not simply a few outliers, help reconcile our differential conclusions with
Nakamura and Steinsson (2018).

7For all probability intervals, we employ a rejection sampling approach and discard draws of the VAR
parameters that imply explosive behavior. While our results regarding statistical significance of the impulse
responses are generally unchanged if we rely on intervals that include these explosive draws, we find them
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empirical results for some additional specifications which do not appear in the main text.

Our Bayesian implementation follows Koop and Korobilis (2010).

In our baseline VAR, we include the log levels of Macroeconomic Advisers’ monthly real GDP

series, its associated GDP deflator, and deflated core capital goods shipments (non-defense

capital goods excluding aircraft). The capacity utilization rate and the cumulatively-summed

series of monetary policy surprises are included in the VAR in levels. To proxy for real

investment at a monthly frequency, we deflate core capital goods shipments by the producer

price index for capital equipment. Following the conventional policy shock literature, we

order our path factor series after the macroeconomic variables in our baseline specification.

In addition, we also include monthly average of the 2-year constant maturity Treasury yield

after our path factor as an additional control for the level of interest rates. The choice to

include the 2-year Treasury yield follows from Gertler and Karadi (2015) and others who

argue that the FOMC’s forward guidance operates with roughly a two-year horizon.

B.1 Alternative Orderings, Indicators, & Lag Length

Figure B.1 shows the impulse responses when we order our policy surprise series first in our

recursive VAR. This ordering interprets the policy surprises as predetermined with respect to

macroeconomic aggregates. Despite the fact that real economic indicators and prices are left

unconstrained at impact in this specification, the probability interval of the initial response

of all these variables contains zero. Moreover, when when the path factor is ordered first, the

point estimates of the responses of all the variables are almost identical to our baseline VAR

model. Figure B.2 shows our findings are robust if we replace the Macroeconomic Advisers

monthly GDP and GDP deflater series with industrial production and the consumer price

index (CPI). Gertler and Karadi (2015) measure output and prices at a monthly frequency

using these variables. These findings suggest our qualitative understanding of the effects

of forward guidance shocks is not sensitive to using these alternative measures of economic

activity and prices. Finally, in our baseline empirical model, the AIC for lag selection

recommends the use of three lags in our VAR. However, our results are not sensitive to the

inclusion of additional lags. Figure B.3 shows impulse responses to a forward guidance shock

are qualitatively similar if we instead use twelve lags in our empirical specification.

economically uninteresting given the long-standing notion of long-run monetary neutrality. Moreover, we
note that the VAR point estimates for all the models in the Appendix and the main text feature stable
dynamics. If we reduce the level of significance from 90% to 68%, we find much less evidence of explosive
dynamics, which suggests this issue stems from the difficulty of accurately measuring probability intervals
at the 95th and 5th percentile, which is one reason why Sims and Zha (1999) recommend 68% posterior
intervals.
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B.2 Minnesota Prior

Figure B.4 illustrates that we find similar macroeconomic effects if we use a Minnesota prior

with 13 lags rather than the empirical Bayes prior we employ in our baseline specification.

This prior is standard in the VAR literature and balances the need to capture the rich dy-

namics in the data with the concern of over-fitting the VAR by adding too many lags. The

responses of real variables and prices are remarkably similar with this alternative prior. The

only notable difference is the response of the 2-year Treasury yield which exhibits a more

shallow decline and over-shoots by more relative to our baseline in later months. However,

this quantitative difference with our baseline specification is within the range of 90% error

bands for the two models.

We implement the Minnesota prior using an independent Normal-Inverse Wishart prior.

Since our VAR is estimated with all variables in levels, we set the prior mean of the first

own lag to one and center all of the other VAR parameters, including the intercept terms,

to zero. The prior precision over the VAR intercepts is set to zero and the precision over

parameters for lag l of variable j in equation i is given by:

pi,j,l =

{
(l/λ)2, if i = j

(σ2
j/σ

2
i )(l/λθ)

2, if i 6= j.

All off diagonal terms of the prior precision matrix are set to zero. We set λ = 0.1 and θ = 0.5.

In Figure B.5, we further restrict the VAR coefficients in our VAR model such that we

treat the high-frequency policy surprises as exogenous shocks. In particular, we adjust the

Minnesota prior so that only own lags have non-zero coefficients in the path factor equation.

The dynamics of the path factor following a forward guidance shock in this alternative

specification are similar to those in Figure 2 of the main text. However, the path factor and

2-year Treasury yield no longer overshoots. The responses of the macro aggregates are little

changed by this restriction.

B.3 Uninformative Priors & Alternative Forward Guidance Shocks

The estimated effects of forward guidance on real activity and prices don’t meaningfully

change when use uninformative priors and alternative measures of forward guidance shocks.

Figure B.6 shows the impulse responses if we center the VAR parameters at the OLS es-
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timates over the zero lower bound period rather than using an informative prior.8 Using

only data beyond December 2008, we observe slightly larger responses of investment, capac-

ity utilization, and prices as well as a more persistent response of overall output. Figures

B.7, B.8, and B.9 also illustrate resulting impulse responses if we measure forward guidance

shocks using the changes in 4-, 8-, and 12- quarter ahead eurodollar futures rates during the

zero lower bound period. Using these alternative measures of forward guidance shocks, we

find largely similar responses as we found using the path factor over the post-2008 sample

period.

B.4 Controlling for the Possible Effects of Quantitative Easing

Our primary empirical interest is examining the effects of a forward guidance shock at the

zero lower bound. However, during the zero lower bound period, the FOMC also undertook

several rounds of large-scale asset purchases. As we discuss in Section 2.6 of the main text,

the announcement of many these asset purchase programs coincided with forward guidance

announcements which could potentially lead to biased estimates of the effects of forward

guidance. Therefore, we conduct three additional robustness checks. First, we estimate the

effects of forward guidance announcements prior to the onset of the zero lower bound. Second,

we drop meetings during the zero lower bound that correspond to the announcement of the

asset purchase programs. Finally, we examine the effects of our forward guidance shocks on

survey forecasts of future short-term interest rates. Figures B.10, B.11, and B.12 illustrate

the impulse responses under these three alternative empirical specifications. As we discuss

in detail in Section 2.6 of the main text, all three of these empirical specifications suggest

that the presence of quantitative easing is not a key drive of our main results.

B.5 Calendar-Based Versus State-Based Guidance

During the zero lower bound period, the FOMC relied on calendar-based guidance (“ex-

tended period”), date-based guidance (“mid-2013”), and state-dependent guidance (inflation

and unemployment rate thresholds). Separately decomposing the effects between calendar,

date-based, and state-dependent guidance likely requires more observations of each type than

we have available at this time. However, we note that most of the guidance from the FOMC

at the zero lower bound was calendar/date-based, except for a brief turn towards threshold-

based or state-dependent guidance from December 2012 to January 2014. Therefore, we can

attempt to estimate the effects of calendar/date-based guidance by estimating our VAR from

8Given the limited sample, we focus on VARs with one lag when we only use data from the zero lower
bound with an uninformative prior. This decision is supported by lag-selection criteria.
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December 2008 through November 2012 – just prior to the temporary switch to state-based

guidance. Figure B.13 below shows that the estimated responses using this earlier sample

period are qualitatively similar to the full sample estimates. The most noticeable differences

are the shape of the output response, which rises sharply and more quickly following the

forward guidance shock, and the response of investment, which exhibits an initial decline

before rising in later periods. However, this investment response doesn’t appear to be sta-

tistically different from our baseline estimates after accounting for the uncertainty around

both investment responses.

B.6 Risk-Premia in Interest Rate Futures

We make no explicit risk-premium adjustment to the federal funds futures nor eurodol-

lar futures when constructing our forward guidance surprises. This approach is supported

by the analysis in Piazzesi and Swanson (2008). They show that there is a low-frequency

risk-premium in federal funds and eurodollar futures that varies across the business cycle

(month-to-month). However, they find that the one-day change in futures around FOMC

meetings – as we use – is more robust to the presence of time-varying risk premium in these

contracts. They hypothesize that, “The difference-based measure may largely ‘difference out’

risk premia that are moving primarily at lower, business-cycle frequencies ...” For example,

they can’t reject the null of no contamination by time-varying risk premia for the Kuttner

(2001)-type daily-frequency shocks.

However, we use eurodollar futures extending 2 years ahead (and even 3 years ahead in

some robustness checks). This horizon is well beyond what Piazzesi and Swanson (2008)

consider.9 Therefore, we use survey forecasts of short-term interest rates to quantify the role

that time-varying risk or liquidity premia might play in shaping our results. In particular,

we add the Blue Chip consensus forecast of the short-term interest rate 4-quarters ahead to

our VAR and order it last in place of the 2-year Treasury yield. In this specification, we

use the 4-quarter ahead eurodollar future to measure the high-frequency forward guidance

surprise and estimate the VAR during the zero lower bound period with an uninformative

prior. If our financial market-based forward guidance shocks embody time-varying risk (or

liquidity) premia in the futures rates, then we would expect significant differences between

9In results available upon request, we repeat the exercise in Piazzesi and Swanson (2008) for our forward
guidance shock measures and test whether Treasury yields the day before the FOMC announcement have
any predictive content for high-frequency policy surprises. The results of these predictive regressions reveal
that we cannot reject the null of no contamination by time-varying risk premia for our path factor. For the
individual eurodollar surprises, we also find no evidence that they are contaminated by risk premiums.
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the response of survey forecasts of rates 4-quarters ahead and 4-quarter ahead eurodollar

rates reflecting these premia. However, after accounting for uncertainty surrounding the

estimated responses, Figure B.14 suggests that it would be difficult to reject the hypothesis

that the response of the 4-quarter eurodollar rate coincides with the response of the 4-quarter

ahead forecasts of short-term rates from Blue Chip. This could result from the fact that (1)

the lagged macroeconomic variables included in our VAR effectively cleanse any risk premia

that vary at the business-cycle frequency from our forward guidance shock measures or (2)

our high-frequency daily change in federal funds and eurodollar rates may, in the words of

Piazzesi and Swanson, “difference-out” any low-frequency risk premia.

B.7 Comparison to Gertler and Karadi’s Proxy-VAR Approach

Our empirical strategy essentially treats high-frequency surprises as an “internal instru-

ment” by including the cumulative sum of these surprises as an endogenous variable inside

the VAR. However, in an important paper, Gertler and Karadi (2015) use high-frequency

monetary policy surprises as an external instrument to identify monetary policy shocks.

Given the potential for these two approaches to lead to different conclusions regarding the

effects of forward guidance, we compare the impulse responses under these two econometric

strategies. Therefore, we originally attempted to use our path factor series as an external

instrument using the 2-year Treasury yield as the monetary policy indicator in our baseline

VAR model. However, just as Gertler and Karadi (2015, pg. 69) report, we too found

that “this decomposition between target and path factors leads to instruments that are too

weak in the context of our external instruments setup to credibly identify pure surprises

to forward guidance.”10 We found similar first-stage results using our path factor as an ex-

ternal instrument in Gertler and Karadi’s smaller VAR, which consists of the natural log

of industrial production, the natural log of the consumer prices index, the 2-year constant

maturity Treasury yield, and the excess bond premium from Gilchrist and Zakraǰsek (2012) .

In light of the fact that we too found that the path factor is a very weak first-stage instru-

ment, we took the following approach to compare our empirical strategy to the Gertler and

Karadi (2015) proxy VAR approach. First, we estimated Gertler and Karadi’s VAR model

using their “conceptually preferred policy indicator/ instrument variables combination” of

forward guidance shocks. In particular, in Figure 8 of their paper, they report results using

the 2-year constant maturity Treasury yield as the policy indicator and the full set of GSS

instruments (not the path factor principle component, but rather all the underlying futures

10In particular, the first-stage F-statistic is nearly zero.

13



rates). We downloaded their data from the AEA’s website and estimated their proxy VAR

model using data only over the January 1994 to June 2012 sample, the period for which

the their data overlaps with ours. We included three lags of the endogenous variables as

suggested by lag selection criteria.11 The impulse responses from this model are shown by

the solid blue lines in Figure B.15.12 Next, we estimated a five variable VAR which includes

the four variables in the Gertler and Karadi model and adds the cumulative sum of our path

factor series, ordered first. We estimated this model over the same January 1994 to June

2012 sample using the same number of lags (three). The impulse responses from the two

approaches are scaled to generate the same (cumulative) movement in the 2-year Treasury

yield over the 48 periods of the impulse response. The impulse responses from this model

are shown by the dashed red lines in Figure B.15.

Figure B.15 shows that the two estimation strategies produce similar impulse responses.

In particular, both sets of impulse responses show that 2-year Treasury rates decline on

impact and remain low for the first year, reflecting the expansionary forward guidance. This

forward guidance shock results in easier financial conditions as the excess bond premium

persistently declines for one to two years. Output rises in a hump-shaped pattern and the

rise in output persists well beyond the time that Treasury rates return to their pre-shock

levels. This expansion results in inflationary pressures, as prices rise for the next several

years. Quantitatively, the two approaches yield similar conclusions regarding the effects of

forward guidance. For all variables, the point estimate from our estimation strategy reside

in the confidence bands from the Gertler and Karadi (2015) proxy VAR approach for much

of the impulse response horizon. Focusing especially on the response of output, which is the

central to the forward guidance puzzle, the output response from our estimation strategy (the

dashed red line) resides in Gertler and Karadi’s confidence intervals for the entire impulse

response horizon. The comparison affirms that, at least for the overlapping January 1994 to

June 2012 sample, the proxy VAR model of Gertler and Karadi and our approach produce

similar output effects following a forward guidance shock.

11We used the code of Ambrogio Cesa Bianchi to calculate the Gertler and Karadi impulse responses and
confidence bands, downloaded from https://sites.google.com/site/ambropo/MatlabCodes since Gertler
and Karadi’s MATLAB code on the AEA website requires the econometrics toolbox.

12Over this sample, our estimates are similar, albeit a bit stronger compared to those reported in Gertler
and Karadi (2015) who estimate the VAR lag coefficients and obtain the reduced form residuals over the
1979-2012 sample and then estimate the first-stage IV regressions from 1991-2012. We might speculate the
stronger responses are emanating from the fact that policy statements weren’t issued until 1994 which likely
led to greater variation in forward guidance over this post-1994 sample.
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C Model

In the symmetric equilibrium, the baseline model in Dynare notation is as follows:

model;

// Private Sector

y = pd^(-1)*n^(1 - alpha)*(u*k(-1))^(alpha);

y = c + inv;

w = chi*(a/lambda)*n^(eta);

lambda = a * (c - b*c(-1))^(-1);

1 = beta * (lambda(+1)/lambda) * ( r/pie(+1) );

1 = beta * (lambda(+1)/lambda) * ( rr );

w = (1 - alpha)*(y*pd/n)/mu;

rrk*u = alpha*(y*pd/k(-1))/mu;

q*deltauprime*k(-1) = alpha*(y*pd/u)/mu;

k = (1 - deltau)*k(-1) + inv*( 1 - (phii/2)*(inv/inv(-1)-1)^(2) );

deltau = delta0 + delta1*(u-1) + (delta2/2)*(u-1)^(2);

deltauprime = delta1 + delta2*(u-1);

g1 = lambda*y/mu +

omega*beta*(pie(+1)/(piess^(1-gamma)*pie^gamma))^(theta)*g1(+1);

g2 = piestar*(lambda*y + omega*beta*((pie(+1)/(piess^(1-gamma)*pie^gamma))^(theta-1)

/piestar(+1))*g2(+1));

1 = omega*(pie/(piess^(1-gamma)*pie(-1)^gamma))^(theta-1)

+ (1-omega)*(piestar^(1-theta));

pd = omega*(pie/(piess^(1-gamma)*pie(-1)^gamma))^(theta)*pd(-1)

+ (1-omega)*piestar^(-theta);

theta*g1 = (theta-1)*psi*g2;

1 - q*(1 - (phii/2)*(inv/inv(-1)-1)^(2) - phii*(inv/inv(-1)-1)*(inv/inv(-1)) )

= beta * q(+1) * (lambda(+1)/lambda) * phii * (inv(+1)/inv - 1)*(inv(+1)/inv)^(2);
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q = beta * (lambda(+1)/lambda) * ( rrk(+1)*u(+1) + q(+1) * (1 - deltau(+1)) );

a = (1-rhoa)*ass + rhoa * a(-1) + vola*ea;

nu = rhonu * nu(-1) + volnu*enu;

// Lagged Expectations

expy1 = y(+1);

lagey = expy1(-1);

expinv1 = inv(+1);

lageinv = expinv1(-1);

expu1 = u(+1);

lageu = expu1(-1);

exppie1 = pie(+1);

lagepie = exppie1(-1);

// Monetary Policy Rule

log(rd) = phir*log(rd(-1)) +

(1-phir) * (log(rss) + phipie*log(pie/piess) + phix*log(y/yss)) + nu;

r = rd;

// Eurodollar Futures Rates

expr1auxiliary = r(+1);

expr2auxiliary = expr1auxiliary(+1);

1 = ( 1 - 12*(1/3)*(log(r(+1)) +

log(expr1auxiliary(+1)) + log(expr2auxiliary(+1)) ) ) / edf1;

1 = edf1(+1) / edf2;

1 = edf2(+1) / edf3;

1 = edf3(+1) / edf4;

1 = edf4(+1) / edf5;

1 = edf5(+1) / edf6;

1 = edf6(+1) / edf7;
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1 = edf7(+1) / edf8;

1 = edf8(+1) / edf9;

1 = edf9(+1) / edf10;

1 = edf10(+1) / edf11;

1 = edf11(+1) / edf12;

1 = edf12(+1) / edf13;

1 = edf13(+1) / edf14;

1 = edf14(+1) / edf15;

1 = edf15(+1) / edf16;

1 = edf16(+1) / edf17;

1 = edf17(+1) / edf18;

1 = edf18(+1) / edf19;

1 = edf19(+1) / edf20;

1 = edf20(+1) / edf21;

1 = edf21(+1) / edf22;

1 = edf22(+1) / edf23;

1 = edf23(+1) / edf24;

expr1edf = 1 - edf1;

expr2edf = 1 - edf2;

expr3edf = 1 - edf3;

expr4edf = 1 - edf4;

expr5edf = 1 - edf5;

expr6edf = 1 - edf6;

expr7edf = 1 - edf7;

expr8edf = 1 - edf8;

expr9edf = 1 - edf9;

expr10edf = 1 - edf10;

expr11edf = 1 - edf11;

expr12edf = 1 - edf12;

expr13edf = 1 - edf13;

expr14edf = 1 - edf14;

expr15edf = 1 - edf15;

expr16edf = 1 - edf16;

expr17edf = 1 - edf17;

expr18edf = 1 - edf18;
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expr19edf = 1 - edf19;

expr20edf = 1 - edf20;

expr21edf = 1 - edf21;

expr22edf = 1 - edf22;

expr23edf = 1 - edf23;

expr24edf = 1 - edf24;

// Bond Prices & Yields

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * (1) / bp1;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp1(+1) / bp2;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp2(+1) / bp3;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp3(+1) / bp4;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp4(+1) / bp5;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp5(+1) / bp6;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp6(+1) / bp7;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp7(+1) / bp8;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp8(+1) / bp9;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp9(+1) / bp10;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp10(+1) / bp11;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp11(+1) / bp12;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp12(+1) / bp13;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp13(+1) / bp14;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp14(+1) / bp15;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp15(+1) / bp16;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp16(+1) / bp17;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp17(+1) / bp18;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp18(+1) / bp19;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp19(+1) / bp20;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp20(+1) / bp21;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp21(+1) / bp22;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp22(+1) / bp23;

1 = beta * (lambda(+1)/lambda) * (1 / pie(+1)) * bp23(+1) / bp24;

ytm1 = -(1/1)*log(bp1);

ytm2 = -(1/2)*log(bp2);
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ytm3 = -(1/3)*log(bp3);

ytm4 = -(1/4)*log(bp4);

ytm5 = -(1/5)*log(bp5);

ytm6 = -(1/6)*log(bp6);

ytm7 = -(1/7)*log(bp7);

ytm8 = -(1/8)*log(bp8);

ytm9 = -(1/9)*log(bp9);

ytm10 = -(1/10)*log(bp10);

ytm11 = -(1/11)*log(bp11);

ytm12 = -(1/12)*log(bp12);

ytm13 = -(1/13)*log(bp13);

ytm14 = -(1/14)*log(bp14);

ytm15 = -(1/15)*log(bp15);

ytm16 = -(1/16)*log(bp16);

ytm17 = -(1/17)*log(bp17);

ytm18 = -(1/18)*log(bp18);

ytm19 = -(1/19)*log(bp19);

ytm20 = -(1/20)*log(bp20);

ytm21 = -(1/21)*log(bp21);

ytm22 = -(1/22)*log(bp22);

ytm23 = -(1/23)*log(bp23);

ytm24 = -(1/24)*log(bp24);

end;

Since the capital stock is predetermined, we lag the capital stock K variables by one period

relative to the timing in the model derivation.
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C.1 Estimation Strategy

Using a Bayesian impulse response matching estimator, we estimate several model param-

eters by finding the values which maximize the posterior distribution. Let ψ̂ denote the

impulse response functions for the 6 variables in our empirical VAR stacked into a single

vector with (6 × 48 = 288) rows and let the diagonal matrix V −1 denote a measure of the

precision of the empirical impulse responses.13 Then, let ψ(γ) denote the theoretical model’s

corresponding counterpart to ψ̂. Following Christiano, Trabandt and Walentin (2010), we

can write the approximate likelihood function as follows:

L(ψ̂ | γ, V ) = (2π)−
N
2 | V |−

1
2 exp

[
−0.5(ψ̂ − ψ(γ))′V −1(ψ̂ − ψ(γ))

]
.

Let p(γ) denote the joint prior density over γ. According to Bayes rule,

f(γ | ψ̂, V ) ∝ L(ψ̂ | γ, V )p(γ), (9)

where f(γ | ψ̂, V ) is the posterior density over γ. Our estimator solves the following problem:

max
γ

f(γ | ψ̂, V ). (10)

Christiano, Eichenbaum and Trabandt (2016) provide three reasons why this is only an

approximate likelihood: (i) Standard asymptotic theory implies that under the assumption

that the DSGE model is the correct data generating process with the true parameters γ0, ψ̂

converges only asymptotically to N(ψ(γ0), V ) as the sample size grows arbitrarily large, (ii)

our proxy for V is guaranteed to be correct only as the sample size grows arbitrarily large,

and (iii) ψ(γ) is approximated with a piece-wise linear DSGE model. A referee brought to

our attention a fourth reason in our application: (iv) in a non-linear model, the IRFs are

not a full summary of the model like they are in a linear model.

D Additional Model Results

D.1 Comparing Our Specification with News-Shocks Approach

The forward guidance shock specification we use in our model differs from the work of Del

Negro, Giannoni and Patterson (2015) and Keen, Richter and Throckmorton (2015), which

13The diagonal of V −1 contains one over the squared difference between the 95th and 5th percentile
of the empirical probability interval. Omitting off-diagonal terms from V helps make our estimator more
transparent as it attempts to place the model’s impulse responses inside the empirical probability intervals.
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use anticipated “news” shocks about future monetary policy to model forward guidance

shocks. In this section, we show that we can achieve nearly identical macroeconomic effects

from either our specification or a news-shock approach. For this exercise only, we replace our

monetary policy rule in Equations (2) - (4) of the main text with the following specification:

rdt = φrrt−1 +
(

1− φr
)(
r + φπ

(
πt − π

)
+ φyyt

)
+

N∑
s=0

σνεst−s (11)

rt = max
(

0, rdt

)
(12)

where rdt is the desired policy rate of the monetary authority, rt is the actual policy rate

subject to the zero lower bound, and the final summation term captures the effects of N

different horizon “news” shocks about monetary policy. εst−s is a “news” shock about fu-

ture monetary policy that agents learn about in period t − s but then becomes realized in

period t. For example, ε2t−2 is an exogenous shock to the level of policy rates today that

agents learned about in period t− 2. We assume all of the news shocks are independent and

identically-distributed normal random variables. Relative to our baseline specification, this

news-shock approach replaces the smoothing in the desired policy rate with the actual policy

rate and incorporates a variety of news shocks rather than our previous autocorrelated shock

νt.

Conditional on generating the same path of nominal interest rates, our baseline specification

and this alternative news shock approach generate nearly identical macroeconomic effects.

To illustrate this idea, we first use an estimated quarterly-frequency version of our baseline

model to generate two paths for interest rates. In the first time path, we simulate a large

negative demand shock which causes the zero lower bound to bind for seven quarters. In

the second time path, we simulate the same large negative first moment demand shock but

also simulate a negative shock to the desired policy rate in Equation (4). Using these two

paths of interest rates from our baseline model, we then solve for two sequences of news

shocks εst−s for s = 0, 1, . . . , N such that the news shock economy generates the same two

paths of interest rates as the desired rate economy. We then compute the impulse response

in the news shock economy by taking the difference between the key variables of interest

under these two different paths of interest rates. Figure D.1 illustrates that our baseline

specification and the news-shock approach generate similar macroeconomic outcomes, which

shows that our desired rate approach to modeling forward guidance shocks is not strictly

necessary to generate our main results.
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Intuitively, we think of our specification of monetary policy, which uses shocks to the desired

policy rate, as quite similar to the “news” shock approach from other papers in the literature.

However, implementing the news-shock approach suffers from three significant drawbacks,

which we outline below:

1. Simulating an n-period ahead news shocks adds n additional state variables to model

(the news shock itself plus n − 1 auxiliary variables to properly model the agent’s

information set).

2. The news-shock approach typically needs many news shocks in order to produce a

data-consistent path of interest rates in response to a forward guidance shock. In the

data, a forward guidance shock almost always moves futures rates across all horizons

in the same direction. For example, 1, 2, & 3-year ahead futures rates all fell following

the August 2011 FOMC announcement. However, matching this feature of the data

using a news-shock approach can be quite challenging.

As an example, consider a 24-month ahead news shock that lowers two-year ahead

expected policy rates. Agents learn about that shock today, which causes an output

and prices to increase through the forward-looking decision of households and firms.

Since the central bank sets its policy rate as a function of output and inflation, policy

rates both today and over the next several periods increase even though the forward

guidance shock will lower policy rates in the two years. Thus, futures rates with less

than two years to maturity would also rise while futures rates with two-year or greater

horizon would fall, which is inconsistent with the data and the typical type of policy

experiments that we think are of interest to policymakers.

To correct this issue, we need to simulate additional news shocks to prevent short-term

rates from rising in response to an expansionary forward guidance shock. This issue

explains why we need to include many different horizon news shocks in our news shock

specification. Returning to the example from the previous paragraph, we can use a

sequence of expansionary news shocks in periods 1-23 to generate a path of interest

rates that doesn’t rise following the announcement of an expansionary news shock in

period 24. Depending on the exact numerical exercise, however, one news shock for

each horizon of the impulse response may be required to generate the needed path

for interest and futures rates. Given that each n-horizon news shock adds n state

variables, the number of state variables can easily become quite large. For example,
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in our baseline monthly-frequency model, adding 48 news shocks (the length of our

impulse responses) would add 1176 state variables to model, which makes it quite time

consuming to solve and simulate the model for a fixed set of parameters and would

make estimation of the model infeasible.

3. Beyond the size of the state space necessary to implement the news-shock approach,

solving for the sequence of news shocks to match a path of interest rates remains a

difficult computational problem. Since two different sequences of news shocks may

produce similar paths of interest rates, numerical optimizers tend to have difficultly

jointly identifying the correct sequence of shocks. We find that an iterative approach,

solving for each news shock individually and looping over different horizons, tends to

be a more robust solution method but it still takes quite a bit of time to solve for

the entire sequence of shocks. In addition, we find that choosing the correct starting

horizon for the algorithm is crucially important, which tends to differ across parame-

terizations or numerical exercises. This need for human input from the modeler and

the required computational time crucially rules out our ability to estimate the model

under the news-shock approach.

Given these three key drawbacks, we prefer our desired rate specification for simulating a

forward guidance shock. However, we note that the “economics” of this state variable issues

we discuss in (1) and (2) above slightly improve under a quarterly-frequency model. Thus,

we estimate a quarterly-frequency version of our model (which limits the maximum number

of news shocks N = 16) in this section to show the equivalence between our specification

and the news-shock approach. However, changing the frequency of the model does not fully

solve the computational issues involved with solving for the necessary sequence of forward

guidance shocks. Overall, we think our desired rate specification is a very tractable way to

simulate forward guidance shocks at the zero lower bound.

D.2 Model-Based Support for Empirical Identification

In our empirical analysis, we use a standard linear VAR to trace out the dynamic effects of

a forward guidance shock. However, this approach is subject to two critiques. First, can

our empirical model actually recover the true structural forward guidance shocks of interest?

Second, since the zero lower bound introduces a significant non-linearity in the economy,

can a standard linear VAR adequately capture the responses to a forward guidance shock at
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the zero lower bound? In this section, we estimate our empirical specification on simulated

data from our theoretical model to examine these two issues. Overall, we find that our our

empirical specification performs well at recovering the true structural shocks and impulse

responses when our theoretical model is the true data generating process.

We follow the procedure in De Michelis and Iacoviello (2016) to estimate our empirical spec-

ification on artificial data at the zero lower bound. First, we simulate our theoretical model

for 15 years using a sequence of preference and forward guidance shocks. For the forward

guidance shocks, we draw a sequence of random shocks for ενt in Equation (3) of the main

text. For the sequence of preference (aggregate demand) shocks, we simulate a constant,

negative sequence of shocks that will take the economy goes to the zero lower bound for a

very long period of time. Solving the model using this sequence of shocks produces a simu-

lated series for output, investment, capacity utilization, prices, and 24-month futures rates.14

We then run our empirical specification on this artificial data. We repeat this exercise 1000

times and examine the estimated shocks and impulse responses and compare them with their

true model counterparts.

We find that our empirical specification performs well at recovering the true structural shocks

and impulse responses. Even in a small sample, we find that the correlation between the true

and our estimated shocks is quite high (above 0.85). Moreover, Figure D.2 shows that our

empirical framework generally performs adequately in recovering the true impulse responses.

The true response of output from our structural model falls within the 90% probability band

of our simulation exercise, suggesting that an econometrician would likely uncover the true

model-implied response of output. While the estimated responses for investment, capacity

utilization, and the price level are a bit smaller than the true responses, the estimated

effects are qualitatively consistent with the structural responses. For the path of the 24-

month futures rate, we find that our empirical method implies a slightly smaller but more

persistent response of futures rates relative to the true response. Taken together, however,

these results suggest that our empirical method would be generally successful at uncovering

the correct forward guidance shocks and their macroeconomic effects in the data.

14Since our model is recursive, we use the lagged expectations of the macro variables in the VAR when
conducting this exercise to be consistent with the timing assumptions in the model. To be consistent with
our high-frequency identification strategy in the data, which only examines the effects of forward guidance
shocks around policy announcements, we take the difference between the futures rates that occurred after
the forward guidance shock and the futures rates that would have prevailed without the forward guidance
shock. As in our empirical specification, we then take the cumulative sum of those changes each period and
input that resulting series into the VAR.
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E Additional Impulse Response Matching Results

This section presents additional results from our impulse response function (IRF) matching

procedure we use to estimate the model parameters.

E.1 Output Growth in Policy Rule

In our estimation, the feedback coefficients on the monetary policy rule to inflation and the

output gap are calibrated to the values suggested by Taylor (1993). But, other variants of

Taylor rules have been shown to fit the data better, particularly by including a response to

output growth. Therefore, we carried out a robustness check in which we replaced the output

gap reaction with an output growth reaction in the central bank’s policy rule. Figure E.1

below shows the resulting estimated model impulse responses under an output growth rule

and the original output gap rule.15 We find that the model fits the empirical VAR estimates

similarly well using either and output gap or output growth rule.

E.2 Small-Scale Model without Capital

Our baseline model mirrors many of the features of the model in Christiano, Eichenbaum and

Evans (2005) by including investment, investment adjustment costs, and variable capital uti-

lization. However, simpler models that more closely match the prototypical “three-equation

New-Keyensian model” have often been used in the literature to argue that the effects of

forward guidance are implausible. Therefore, to understand the role played by the frictions

related to capital investment and utilization in matching the VAR impulse responses, we

also estimate a small-scale version of our model without these frictions. First, we estimate

a four-variable empirical VAR model with output, prices, the path factor, and the 2-year

Treasury yield. We then ask a version of our theoretical model, which mimics a model with-

out investment and capacity utilization adjustment, to match the forward guidance shock

responses from this four-variable VAR. To mimic the three-variable New-Keynesian model,

we calibrate the cost of adjusting investment and capacity utilization to arbitrarily high

levels (κ = 1 × 106 and σδ = 1 × 106) which, as we verified using simulations, implies that

all of the variation in output comes from changes in consumption.

We find that the small-scale model is able to match the observed response of output, prices,

interest rate futures, and Treasury yields to a forward guidance shock from the VAR. How-

15We set the reaction coefficient on output growth equal to 0.1.
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ever, without real rigidities, this model requires a higher degree of nominal rigidities relative

to our baseline model. In the estimation, we use the same priors for the remaining parame-

ters as our baseline DSGE model with capital. In particular, we set the prior mode over the

Calvo parameter ω in our monthly model to 0.93 with a prior standard deviation of 0.008.

At this prior mode, the average duration of prices is about 14 months, which is consistent

with the evidence in Nakamura and Steinsson (2008) that the mean duration of prices from

1998-2005 was a little more than 1 year. Figure E.2 shows the resulting fit of the impulse

responses for this alternative estimation. For much of the impulse response horizon, the

responses of all of the variables are in the 90% probability intervals from the data. However,

the model tends to underestimate the peak response of output and the trough in two-year

Treasury rates. Also, the price response is higher in the model than is implied from the

data, suggesting that the model fit is compromised by the tight prior we set over the Calvo

parameter. Even with this tight prior, the posterior mode of the Calvo parameter, ω = 0.97,

implies an average duration of prices of 33 months.

For comparison, we also show responses when we set a looser prior and increase the prior

standard deviation of the Calvo parameter ω to 0.02 in Figure E.2. In this case, the posterior

mode of the Calvo parameter increases to ω = 0.98, implying an average duration of prices

of 52 months. However, the fit improves considerably. Now, the model is able to come

much closer to matching the peak response of output and the trough in the 2-year Treasury

yield following a forward guidance shock. The model fit under this alternative prior is

quite similar to our baseline model with capital, which implies an average duration of prices

of 22 months in our baseline estimation. Thus, we conclude that a small-scale version of

the New-Keynesian model can match the observed dynamics following a forward guidance

shock. However, as Christiano, Eichenbaum and Evans (2005) found, without other rigidities

(sticky wages, working capital, variable capacity utilization) the model may need a much

larger degree of price rigidity.

F Role of Investment Adjustment Costs

In our baseline model, firms face Christiano, Eichenbaum and Evans (2005)-type adjustment

costs to changing investment in productive capital. We now provide some further details on

how our estimated investment adjustment costs facilitate the model’s fit in other dimensions.

In particular, we find that the degree of investment adjustment costs have important impli-

cations for the path of short-term policy rates and futures rates in the model. To illustrate

this, we re-estimate our baseline model using a much tighter prior for the investment adjust-
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ment cost parameter κ (see Table (see Table F.1 for details). Figure F.1 below illustrates

the resulting impulse responses using this tighter prior and compares them with our baseline

results. As expected, the posterior mode for the investment adjustment cost parameter falls

significantly using this alternative prior (κ = 8.6) compared with our baseline estimate (κ

= 36.8). Relative to our baseline results, the peak response of investment is a bit larger and

occurs sooner under the tight prior, which brings the response of investment closer to the

VAR evidence. However, under the tight prior on κ, the response of futures rates (the path

factor) in the model overshoots the empirical response and the response falls well outside of

the VAR probability interval.

Intuitively, the Christiano, Eichenbaum and Evans (2005) investment adjustment cost spec-

ification, which we use in our model, creates delayed, hump-shaped responses in investment,

and hence output. For lower values of the adjustment costs, Figure F.1 shows that invest-

ment and output rise more sharply following an expansionary forward guidance shock. As

a result, in the re-estimated model with a tight prior on κ, futures rates (and hence future

policy rates) rise more sharply and even overshoot their pre-shock baseline about 1 year after

the initial forward guidance shock as the endogenous component of the central bank’s policy

rule responds to the sharper rise in economic activity. The model’s prediction for futures

rates when the investment adjustment costs parameter is constrained to be low is therefore

at odds with our VAR evidence which does not feature much of a overshoot of futures rates.

Therefore, for the model to match the VAR evidence on the path of futures rates, a high

degree of investment adjustment costs is selected. While this improvement in the fit of fu-

tures rates results in a marginally worse fit for the model’s investment response, the path of

futures rates is estimated more precisely than is the response of investment. Therefore, the

estimation routine chooses (on the margin) to increase the value for the investment adjust-

ment costs to facilitate fitting the path of futures rates.

To further illustrate this slight tension between fitting the path of futures rates and the

response of investment, we re-estimate our structural model, this time asking the model to

reproduce the response of consumption rather than investment. In particular, in our base-

line empirical VAR, we replace our proxy for investment (core capital goods shipments) with

consumption (real personal consumption expenditures). Then, we re-estimate our structural

model. Figure F.2 below plots the resulting impulse responses from the re-estimated struc-

tural model (green dashed lines) and compares them with their empirical counterparts and

Table F.1 shows the resulting parameter estimates. In addition, we also plot the impulse

responses from our baseline estimated structural model (red dashed lines), for which we did
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not include consumption as a variable to match in the estimation routine.

While the re-estimated model without investment generally performs well in reproducing the

empirical evidence, the estimated parameters highlight the trade-off between fitting the rate

dynamics versus the response of investment. Since we are not asking the model to match

the response of investment, the estimation routine chooses a larger value for the investment

adjustment costs (and habits in consumption) in order to try and generate a delayed and

hump-shaped responses for output and consumption. However, both our baseline estimation

and this re-estimation without investment are generally able to reproduce the patterns we

observe in the empirical evidence, suggesting that this tension is not a binding constraint

on the model’s ability to fit the data. Moreover, using a quarterly frequency rather than

our baseline monthly frequency for our structural model, Figure 7 of the main text shows

that the model-implied response of investment is much closer to its empirical counterpart in

the quarterly-frequency model. These additional results suggest that any apparent tension

between fitting investment and the path of futures rates becomes further relaxed when the

model is specified at quarterly, rather than monthly, frequency.

G Discussion of Estimated Policy Rule Parameters

In the baseline model, we estimate both a high degree of policy rate smoothing and a persis-

tent forward guidance shock process. In this section, we illustrate that both of these features

may not be strictly necessary to match our baseline empirical estimates. In particular, Figure

G.1 shows that our model can generate an essentially identical fit if we restrict the forward

guidance shock process to be IID (i.e. if we set ρν = 0). Figure G.1 also illustrates that

we find a very similar fit if we set a much lower prior over the degree of smoothing in the

desired interest rate.

Our estimation procedure estimates the forward guidance shock in the model such that the

change in the model-implied futures curve matches the movements in futures rates in our

empirical VAR. To generate the forward guidance shock needed to achieve a given movement

in future rates, the estimation routine can either simulate a small but persistent decline in

the desired interest rate or a larger IID decline in the desired interest rate. The green-dashed

line in Figure G.1 shows the estimated model-implied response to a forward guidance shock

with ρν = 0. The fit under the version without any persistence in the shock process is nearly

identical to the baseline model. The model achieves this fit by increasing σν = 0.71, in an

annualized percentage rate, from σν = 0.08 in the baseline model. This larger IID shock
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fades more quickly but inherits some persistence through the smoothing parameter, φr, in

the policy rule. For the results shown in Figure G.1 we restrict all other parameters to be

identical to the baseline model and simply re-estimate σν . However, we find similar results

and model fit if we instead re-estimate all of the model’s parameters while setting ρν = 0.

These results illustrate that the model estimation doesn’t rely on any particular value of ρν

to match the dynamics of futures rates in the VAR impulse responses.

We can also find a similar model fit if we reduce the degree of smoothing in the desired

policy rate. In particular, Figure G.1 shows the estimated model impulse response to a

forward guidance shock when we re-estimate the model parameters and set a prior mode

of φr = 0.25. Interestingly, the estimation routine selects a posterior mode for φr = 0.29,

very near the prior mode. This finding suggests that the degree of interest rate smoothing

is not well identified, as we discuss in Section 4.3 of the main text. However, as Figure G.1

shows, the overall fit of our model to an exogenous forward guidance shock does not rely on

a particular assumption regarding the amount of history dependence in the policy rule.
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Table A.1: Comparison of Forward Guidance Shocks Series

Measure FOMC Meetings Event Window Max horizon of futures LIBOR Adjustment # of factors Sample
Bundick and Smith (2018) Path Factor Scheduled 1 day 8-quarter No 2 1994-2015

Nakamura and Steinsson (2018) All 30 minute 4-quarter No 1 1995-2014
Scheduled 30 minute 4-quarter No 1 2000-2014

Gurkaynak, Sack and Swanson (2005) All 30 minute 4-quarter No 2 1990-2004

Campbell et al. (2012) All 1 day 4-quarter Yes 2 1994-2007
All 1 day 6-quarter Yes 2 2007-2011

Campbell et al. (2017) 1 day 4-quarter (only) 0
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Table A.2: Ten Largest Observations of the Path Factor from January 1994 – November 2008

Date Path Factor GSS (2005) Path Factorb Financial Market Commentary
May 17, 1994 -0.24 -0.12 Statement signals a pause in the tightening cycle by announcing that “These

[rate increases] substantially remove the degree of monetary accommodation ...”

July 6, 1995a -0.22 -0.21 First easing after long (seventeen-month) series of tightenings raises expectations
of further easings; statement notes that inflationary pressures have receded

Jan 28, 2004a 0.21 0.23 Statement drops commitment to keep policy unchanged for a “considerable
period,” bringing forward expectations of future tightenings

May 6, 2003a -0.20 -0.15 Statement announces balance of risks now dominated by risk of
“an unwelcome substantial fall in inflation”

June 25, 2003 0.17 0.05 FOMC cuts funds rate to 1% but some expected a cut to 0.75% leading
to some speculationthat there would be no further easing.

March 18, 2008 0.17 — Statement adds more emphasis to concerns around elevated inflation, announces
that “uncertainty about the inflation outlook has increased”

December 11, 2007 -0.17 — Statement replaces risk assessment that, “the upside risks to inflation
roughly balance the downside risks to growth” with an announcement of increased
“uncertainty surrounding the outlook for economic growth and inflation.”

August 13, 2002a -0.17 -0.20 Statement announces balance of risks has shifted from neutral to economic weakness

October 31 , 2007 0.16 — Statement announces “the upside risks to inflation roughly balance
the downside risks to growth,” reducing prospect of near-term easing

August 16, 1994 -0.16 -0.05 Statement announces 0.5% increase in the funds rate but signals no further imminent
increases by announcing that, “these actions are expected to be sufficient, at least
for a time, to meet the objective of sustained, noninflationary growth.”

[a] This event and the financial market commentary is included in Table 4 of Gurkaynak, Sack and Swanson (2005).
[b] These values of the Path Factor from Gurkaynak, Sack and Swanson (2005) are scaled versions of the values taken from their online appendix. We scale their measure
using the estimates obtained from regressing our path factor on their measure and a constant.

33



Table F.1: Additional Discussion of the Role of Investment Adjustment Costs

Baseline Estimates
Prior Posterior

Parameter Description Distribution Mode Std. Dev. Mode Std. Dev.

b Habit Persistence Beta 0.50 0.25 0.8898 0.0146
ω Calvo Probability Beta 0.93 0.01 0.9558 0.0015
χ Degree of Lagged Indexation Beta 0.50 0.25 0.0358 0.0299
φr Policy Rate Smoothing Beta 0.95 0.25 0.9442 0.0021
κ Investment Adjustment Gamma 2.48 60.0 36.7530 2.3256
σδ Capacity Utilization Curvature Gamma 0.01 60.0 0.0003 0.0002
ρν Policy Shock Persistence Beta 0.50 0.25 0.8358 0.0055
σν Std. Dev. of Policy Shock (APR) Gamma 0.25 12 0.0850 0.0035

Estimates with a Tighter Prior on Investment Adjustment Cost: κ
Prior Posterior

Parameter Description Distribution Mode Std. Dev. Mode Std. Dev.

b Habit Persistence Beta 0.50 0.25 0.8644 0.0061
ω Calvo Probability Beta 0.93 0.01 0.9439 0.0006
χ Degree of Lagged Indexation Beta 0.50 0.25 0.0327 0.0052
φr Policy Rate Smoothing Beta 0.95 0.25 0.8941 0.0021
κ Investment Adjustment Gamma 2.48 0.43 8.5891 0.3625
σδ Capacity Utilization Curvature Gamma 0.01 60.0 0.0003 0.0000
ρν Policy Shock Persistence Beta 0.50 0.25 0.7758 0.0061
σν Std. Dev. of Policy Shock (APR) Gamma 0.25 12 0.3860 0.0195

Estimates Matching the Response of Consumption Instead of Investment
Prior Posterior

Parameter Description Distribution Mode Std. Dev. Mode Std. Dev.

b Habit Persistence Beta 0.50 0.25 0.9463 0.0053
ω Calvo Probability Beta 0.93 0.01 0.9586 0.0013
χ Degree of Lagged Indexation Beta 0.50 0.25 0.0277 0.0282
φr Policy Rate Smoothing Beta 0.95 0.25 0.8731 0.0038
κ Investment Adjustment Gamma 2.48 60.0 44.0459 2.1820
σδ Capacity Utilization Curvature Gamma 0.01 60.0 0.0000 0.0002
ρν Policy Shock Persistence Beta 0.50 0.25 0.9380 0.0023
σν Std. Dev. of Policy Shock (APR) Gamma 0.25 12 0.0933 0.0036
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Figure A.1: Comparison of Nakamura and Steinsson (2018) & Our Path Factor

Prior to the Zero Lower Bound Period
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Note: The blue line denotes our forward guidance shock series (the path factor) and the red line denotes the
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Figure A.2: Forward Guidance Shock Impulse Responses for Macroeconomic Survey Data
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row shows the specification using our forward guidance shock series (the path factor). Expected output
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Figure B.1: Empirical Impulse Responses with Policy Ordered First
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Figure B.2: Empirical Impulse Responses using Industrial Production & CPI
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shaded areas denote the 90% probability interval of the posterior distribution.
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Figure B.3: Empirical Impulse Responses with 12 Lags in the VAR
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Figure B.4: Empirical Impulse Responses using Minnesota Prior with 13 Lags
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shaded areas denote the 90% probability interval of the posterior distribution.
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Figure B.5: Empirical Impulse Responses with Policy Surprises Treated as Exogenous
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the
shaded areas denote the 90% probability interval of the posterior distribution.
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Figure B.6: Empirical Impulse Responses using Uninformative Prior
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the
shaded areas denote the 90% probability interval of the posterior distribution.
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Figure B.7: Empirical Impulse Responses using 4-Quarter Ahead Eurodollar Rates
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the
shaded areas denote the 90% probability interval of the posterior distribution.
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Figure B.8: Empirical Impulse Responses using 8-Quarter Ahead Eurodollar Rates
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the
shaded areas denote the 90% probability interval of the posterior distribution.
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Figure B.9: Empirical Impulse Responses using 12-Quarter Ahead Eurodollar Rates
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the
shaded areas denote the 90% probability interval of the posterior distribution.
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Figure B.10: Empirical Impulse Responses Before Onset of Zero Lower Bound
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the
shaded areas denote the 90% probability interval of the posterior distribution.
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Figure B.11: Empirical Impulse Responses Dropping Key LSAP Announcements
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the
shaded areas denote the 90% probability interval of the posterior distribution.
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Figure B.12: Empirical Impulse Responses Including Survey Forecasts of Interest Rates
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the
shaded areas denote the 90% probability interval of the posterior distribution.
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Figure B.13: Empirical Impulse Responses Prior to Adoption of State-Dependent Guidance
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the
shaded areas denote the 90% probability interval of the posterior distribution.
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Figure B.14: Empirical Impulse Response: Comparing 4-Qtr Ahead Survey & Eurodollars
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the
shaded areas denote the 90% probability interval of the posterior distribution.
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Figure B.15: Impulse Responses for Forward Guidance Shocks: Gertler and Karadi (2015)
Proxy VAR Approach vs. Including the Cumulative Sum of the Path Factor in the VAR
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Note: The solid blue lines denote the impulse responses using the Gertler and Karadi (2015) proxy VAR
approach from Figure 8 of their paper. The associated confidence intervals are shown by the gray shaded
regions using their wild bootstrap procedure. The dashed red lines show the impulse responses from a five
variable VAR which adds to these four variables the cumulative sum of our path factor series which is then
ordered first. The impulse responses from the two approaches are scaled to generate the same (cumulative)
movement in the 2-year Treasury yield over the 48 periods of the impulse response.
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Figure D.1: Impulse Responses Under Desired Rate & News Shock Specifications
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Figure D.2: Estimating Structural Vector Autoregressions on Simulated Data from the Model
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Note: The dashed red line denotes the impulse response to a one standard deviation forward guidance shock
in the model. The solid blue line denotes the median impulse response across 1000 estimates when we use
data simulated from the model to estimate a VAR. The shaded areas denote the 90% interval across these
1000 estimates.
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Figure E.1: Empirical & Model Impulse Responses Using an Output Growth Rule
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the
shaded areas denote the 90% probability interval of the posterior distribution. The dashed lines denote
model-implied impulse responses.
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Figure E.2: Empirical & Model Impulse Responses in Small Scale New-Keynesian Model
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the
shaded areas denote the 90% probability interval of the posterior distribution. The dashed lines denote
model-implied impulse responses.
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Figure F.1: Model-Implied Impulse Responses under Tighter Prior for κ
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Note: The solid blue line denotes the estimated VAR impulse responses and the shaded region denotes
the probability interval of the posterior distribution to a forward guidance shock. The dashed lines denote
model-implied impulse responses from either our baseline specification or a specification which uses a tighter
prior on the investment adjustment cost parameter κ.
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Figure F.2: Empirical & Model-Implied Impulse Responses Using Consumption
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Note: The solid blue line denotes the estimated VAR impulse responses and the shaded region denotes the
probability interval of the posterior distribution to a forward guidance shock when we replace investment
with consumption. The dashed lines denote model-implied impulse responses from either our baseline
specification or a re-estimated model which uses consumptions in place of investment.
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Figure G.1: Empirical & Model Impulse Responses For Varying Degrees of Rate Persistence
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the
shaded areas denote the 90% probability interval of the posterior distribution. The dashed lines denote
model-implied impulse responses.
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