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1. Introduction

Financial markets exhibit patterns that are inconsistent with the rational expectations
theory, which assumes that investors have complete knowledge of the fundamental
structure of the economy and make rational decisions based on all available
information. The implication of these assumptions is that returns should not be
predictable. Yet, a large empirical literature provides evidence that asset returns are
predictable and that trading activity is excessive beyond what is justified by the arrival
of new information (Daniel et al., 1998; Barber and Odean, 2001; Daniel and Hirshleifer,
2015). A related literature considers behavioral theories to explain such deviations
from rational expectations. Common theories center around overconfidence (De Bondt
and Thaler, 1995), learning (DeCanio, 1979), ambiguity (Ju and Miao, 2012), or more
recently, the extrapolation of news (Bordalo et al., 2022). The empirical support for
these theories is largely based on asset prices, such as stock prices, which are indicative
of investor beliefs about the first moment. In this paper, we use option prices, which
allow us to extract the entire belief distribution, and develop two statistics to gain new
insights on possible deviations from rational expectations. Our analysis suggests that
investors in the oil market primarily under-predict left tail events, which is at odds
with the rational expectations–based theories of price formation.

This paper makes two contributions. The first is methodological. We develop two
statistics that allow us to assess 1) the overall accuracy of a distributional forecast,
and 2) the relative accuracy over the entire distribution range (i.e. its percentiles).
Both statistics are simple to use and they can be applied in any context. Using the
overall accuracy measure, we show that two methods that are used to extract beliefs
based on option prices, namely Binomial Trees (Cox et al., 1979) and a non-parametric
approach a la Swanson (2006), yield quite accurate distributional forecasts. On the
other hand, the popular approach by Shimko (1993), applying Black and Scholes (1973)
and Breeden and Litzenberger (1978), leads to distributions that have less support
in (crude oil) options data. The second contribution builds on the relative accuracy
measure. We find that investors consistently under-predict and thus under-insure
against left tail events in the crude oil market, such as the decline in oil prices during
the Global Financial Crisis, during 2014-2015, or during the onset of the COVID-19

pandemic. We argue that these anomalies are behavioral and hence a deviation from
rational expectations. This may have important implications: the investment portfolio
could become excessively volatile, or businesses in the oil industry could expose
themselves to excess risk during downturns.

We estimate daily density forecasts, the so called ’risk-neutral density’ (RND),
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based on 21 years of daily transaction data for WTI crude American-style options.1 We
choose the crude oil option market, as it is one of the most liquid and largest markets
with around 1 million transactions on average per month for options that expire within
30 days alone. Oil is also very different from many assets in the sense that it is an
input to production and consumption goods, whose price is often determined by
physical supply and demand factors. For example, oil options are shown to contain
information about economic conditions and various security returns that is distinct
from the information contained in the stock index (Christoffersen et al., 2022). That
is, the oil market is clearly important for the overall economy and may also contain
information on investor beliefs.

Any attempt to isolate investor beliefs as an explanation for missing tail risk
requires ruling out possible confounders. In our context, factors that can lead to
deviations between the forecasted and the actual probability distributions include
financial market frictions, statistical methods used to estimate density forecasts,
inaccurate beliefs, and preferences (risk attitudes). As such, ex-ante, it is not obvious to
interpret the forecasting errors as reflecting misguided beliefs. Given that the oil option
market is very liquid with almost zero bid-ask spreads, one can eliminate financial
market frictions as a potential explanation. Regarding the statistical procedures,
we resort to three aforementioned methods: Binomial Trees, Swanson (2006)’s
non-parametric approach, and a semi-parametric approach a la Shimko (1993). We
analyze the accuracy of each, which itself is a contribution to the literature. Each
method involves a set of orthogonal assumptions that pose more (or less) structure
on the density forecast. We show, based on our novel statistics, that the Binomial
Tree and the non-parametric Swanson (2006) approach yield distributions that are
almost equivalently accurate, both in terms of the overall distribution and over specific
percentiles.

More specifically, our first statistic measuring ’Total Accuracy’ (TAcc) indicates that
both the Binomial Tree and the non-parametric Swanson (2006) approach are quite
accurate (’correctly calibrated’). Intuitively, this statistic compares the realization of the
underlying at option maturity relative to the forecasted distribution over time. ’Total
Accuracy’ is then determined by the deviation between realized percentiles and an
appropriate benchmark, such that a value of 1 reflects a correctly calibrated forecast.
Our TAcc measure ranges between 0.8 - 0.9 across various forecasting horizons for

1RNDs are used in many different contexts in the literature: for prediction, for examining major
economic events, or explaining risk premium and crash risk. See, for example, Melick and Thomas
(1997), Bliss and Panigirtzoglou (2004), Jiang and Tian (2005), Christoffersen and Mazzotta (2005), Carr
and Wu (2007), Kitsul and Wright (2013), Datta et al. (2016), among others.
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distributions based on the Binomial Tree and the Swanson method. It, however, drops
to 0.6 - 0.7 for distributions based on the popular Shimko procedure. We, therefore,
argue that option implied distributions should not necessarily be interpreted at face
value. The statistical method may confound the distributional forecast and a proper
evaluation on a case-by-case basis appears warranted.

With that, we focus on the Binomial Tree and the Swanson method and further
examine distributional forecasts. Specifically, we assess how accurately different parts
of the distribution are forecasted by introducing our second novel statistic, ’Relative
Accuracy’ (RAcc). This measure calculates the relative sampling frequency for each
percentile in the distribution, with a value above 1 indicating oversampling and vice
versa. Even though investors forecast the overall price distribution quite well, not all
parts of the distribution are as accurately forecasted. Our ’Relative Accuracy’ measure
reveals a striking anomaly concerning left tail events that is robust across forecasting
horizons. In particular, we observe significantly more realizations of oil prices that are
within the first percentile of the forecasted distribution than predicted.

What can account for the anomaly in the left tail? Given that we obtain very similar
and overall accurate densities based on the two orthogonal approaches, we interpret
related densities as reflecting beliefs and preferences. And, to gain further insights, we
need to distinguish beliefs from preferences. This is because the missing left tail could
be a consequence of misspecified beliefs, or driven by a particular set of preferences.
For example, risk loving investors, or investors that do not want to insure against tail
events because it does not affect their businesses, are less likely to purchase insurance,
which would drive down demand for options that insure against extreme events. In
that case, estimated densities would appear as if they under-predict tail events, which
could drive the observed anomaly in the left tail.

We argue that the anomaly in the left tail is driven by beliefs rather than preferences.
There are several arguments that support our behavioral interpretation. First, we only
observe an anomaly in the left, but not in the right tail. Commercial investors such
as oil producers, however, suffer from lower profit margins when oil prices are very
low. These businesses, hence, have an incentive to insure against very low oil prices
and economic downturns, which should drive up demand for options. Everything
else equal, this implies more, rather than less, probability mass in the left tail. In
addition, the oil market also consists of sizeable non-commercial investors, such as
money managers (Rouwenhorst and Tang, 2012; Kang et al., 2020). These institutional
investors are generally perceived to be risk averse (or at least not risk loving), implying
that they would want to insure against downturns and hence very low oil prices
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(Mehra and Prescott, 1985; Basak and Pavlova, 2013; Koijen, 2014). Second, based on
returns of portfolios that insure against risk in oil markets, Dew-Becker et al. (2021)
find that investors are willing to pay a premium (accept a negative return) to insure
themselves against realized volatility. Building on this finding, we show that the
realized left tail events in our sample indeed coincide with high realized volatility,
suggesting that investors would want to specifically insure against these events. Yet,
we observe the opposite.

We are not the first to find mispricing in option markets, but to our knowledge, we
are the first documenting deviations from rational expectations in the oil option market.
Constantinides et al. (2009), based on a set of equilibrium conditions, argue that S&P
500 option prices do not satisfy no-arbitrage opportunities. Furthermore, investors
can increase expected utility by engaging in a zero-net-cost trade, where an investor
uses an options strategy to lock in a gain by buying an out-of-the-money (OTM) put
and selling a equally-priced OTM call, such as a strangle. Baele et al. (2019) show
that an asset pricing model augmented by prospect theory can match observed S&P
500 index put and call returns well. And, they generate a variance premium similar
to what they observe in the data.2 Relative to these papers, we directly analyze the
forecasted distribution with regard to possible deviations from rational expectations.
Our findings indicate that investors consistently underestimate the likelihood of very
low prices and hence economic downturns.

The rest of the paper is organized as follows. Section 2 presents the data we use in
the analysis. In Section 3, we discuss our approach to estimate investor beliefs from
option prices. Section 4 introduces two novel measures to assess the accuracy of the
estimated distributions. In Section 5, we present and discuss our results. Section 6

concludes.

2. Data

Our data is accessed trough the Chicago Mercantile Exchange (CME) and presents
end of day quotes and daily trading volumes for American Oil options (both puts and
calls) on underlying West Texas Intermediate (WTI) futures from January 2001 until
June 2022. The CME facilitates transactions of both American style and European style
options. The difference is that American, unlike European, options can be exercised at
any date prior to maturity. The bulk of option related transactions involve American

2Prospect theory, developed by Daniel Kahneman and Amos Tversky, is a theory of behavioral
economics, centering around the empirical observation that agents asymmetrically feel losses greater
than that of an equivalent gain.
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style options, which we therefore focus on in our analysis.3 Each American option
allows the investor to purchase (call option) or sell (put option) an underlying oil future
contract at a given strike price any date prior to expiration. These oil options expire
between the 15th-20th of each month, usually 6 business days prior to the expiration
of the underlying future contract due around the 25th. The oil future contract is set
for delivery in the following month. Given that we forecast the distribution of the
underlying at expiration of the option, with the underlying future set for delivery
soon after, we essentially forecast the oil spot price.

We forecast the oil price distribution over the next h = {1, 2, .., 12} months. Because
of fixed expiration dates, the contract maturity declines over the course of a month. For
example, a contract due in June 2022 has a maturity of roughly 30 days (or 1 month)
by mid May 2022, which subsequently declines to zero by mid June. To better utilize
the available data and also avoid overlapping windows, we introduce the following
timing convention: For each month to maturity, we focus on transactions around a
plus/minus 10 calendar day window, indicated by the dotted intervals in Figure 1.
For example, an option that expires in one month includes contracts within a 20-40

calendar day expiration window. It is worth mentioning that only about 2/3 of all
calendar days are actual trading days. We thus effectively analyze data from roughly
13-14 dates per month.

Figure 1: Timing: Oil Option Market

months
t t+1 t+2

Expiration Expiration Expiration

+- 10 Days

h=1 h=1

h=2

Delivery Delivery Delivery

The oil option market is very liquid as shown by Figure 2. The chart presents the
average monthly transactions (in log scale) for American options that are set to expire
between months h − 1 and h. For example, on average, we observe exp(13.84) ≈ 1

million transactions per month for options that expire within 30 days. Because each
contract is in units of 1,000 barrels, transactions for options expiring in less than a

3For recent trading volumes of American style oil options, see https://www.cmegroup.com/

markets/energy/crude-oil/light-sweet-crude.volume.options.html#optionProductId=190.
For European style options, see https://www.cmegroup.com/markets/energy/crude-oil/

light-sweet-crude.volume.options.html#optionProductId=1353.
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month are “worth” 4,000 million barrels of oil. The transaction volume decreases with
maturity, and, consequently, we choose to focus on options that expire within the first
h=12 months.4 This allows us to work with very liquid options, which ensures that
observed option prices reflect investor beliefs and preferences about developments in
the oil market rather than financial market frictions, which can manifest in bid-ask
spreads. For this reason, we also discard option prices for strikes with less than 10

trades per day.5

Figure 2: Oil Option Transaction Volume
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Notes: The blue line presents the average number of transactions per month in log scale as a function of the
contract maturity in months (x-axis). Each contract is in units of 1,000 barrels. Monthly transactions are
aggregated over American call and put options as well as all available strikes.

3. From Option Prices to Density Forecasts

This section lays out our approach to estimate density forecasts from option prices.
Options provide investors insurance against certain market outcomes. If a call (put)
option is exercised, investors purchase (sell) the underlying asset at a specific strike
price, which provides a positive payoff when the market value of the underlying asset
is above (below) the strike. Otherwise the option is not exercised. If exercised, the
payoff of a call option is linearly increasing in the market value of the underlying,
which provides insurance against high market prices. Similarly, put options provide
insurance against low market prices.

In Section 3.1, we review a few general principles about American style options.
Section 3.2 lays out how we extract investor beliefs and preferences from observed

4Options that expire in 1 year still record about 17,600 transactions per month.
5Our results are robust to various alternative minimum trade requirements.
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option prices. Section 3.3 provides an initial evaluation of the extracted densities with
visuals.

3.1. Option Pricing

We analyze American options that expire in h ≤ 12 months (including the +- 10 day
window). The market value of the underlying asset, in our case the oil future, at
time τ is denoted by xτ. Future realizations of xτ are uncertain and investors form
beliefs represented by density gt(xτ). The distribution is time varying and depends
on the duration between t and τ. Uncertainty accumulates over time and may be more
pronounced during periods of financial or macroeconomic turmoil. The valuation of
an option also depends on the marginal utility of the investor, u′(xτ), which can be
a function of the underlying. If u′(xτ) is large, investors value additional funds and
hence are willing to pay a higher price for an option that makes a payment in that
state. This leads us to the definition of a stochastic discount factor (SDF), which is
increasing in u′(xτ). Investors further discount the future by the discount rate β < 1,
which is inversely related to the steady state monthly real risk-free rate r. The value of
an American call option with maturity h and strike k can then be defined as

vt(h, k) = max
τ∈[t;t+h]

 βτ−t︸︷︷︸
Discount: e−r(τ−t)

∫ ∞

0

u′(xτ)

u′(xt)︸ ︷︷ ︸
SDF: λ(xτ)

max (xτ − k, 0)︸ ︷︷ ︸
Payoff

gt(xτ)dxτ

 , (1)

such that the value of an American call equals the maximum, discounted, marginal
utility weighted expected payoff over the lifetime of the option.6 The first max operator
arises from American options, which unlike European options, can be exercised at any
date until maturity.

Financial Market Frictions

Our goal is to make inferences about beliefs gt(xτ). Yet, we only observe the
risk-free rate and the payoff conditional on xτ. However, one can infer the valuation
of options based on observed market prices. In any financial market, the price of an
asset equals the valuation plus some error ϵt, which represents price distortions from
financial market imperfections, such as bid-ask spreads or transaction costs. Therefore,

ct(h, k)︸ ︷︷ ︸
Price

= vt(h, k)︸ ︷︷ ︸
Valuation

+ ϵt︸︷︷︸
Frictions

. (2)

6Put options are analogously defined with max (k − xτ , 0) representing the payoff.
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As long as markets are liquid, the error term ϵt is small, implying

ct(h, k) ≈ vt(h, k).

Conversely, if markets are illiquid or distorted by financial frictions, prices may not
reflect the value assigned by investors. This explains why we focus on highly liquid
options like the American oil options.

Risk-Neutral Probabilities

The SDF tends to be related to the realization of the underlying asset. For example,
in the case of oil, generally speaking, investors are either commercial investors,
such as airlines or oil producers, who have ’skin in the game’ with profits directly
depending on oil prices, or non-commercial investors, whose profits are tied to
economic conditions, which are associated with oil prices.

Combining the SDF with the stochastic belief distribution, we can define a
“risk-neutral” distribution (RND), g̃t(xτ) ≡ λ(xτ)gt(xτ), that re-weights the physical
states according to their desirability. Note that the risk-neutral distribution bears its
name from the assumption that a risk-neutral distribution coincides with beliefs only
if the investor is risk-neutral. All of our results regarding the forecasted distribution
are related to the risk neutral distribution rather than beliefs per se. We then resort
to results established in the literature to analyze if deviations of g̃t(xτ) from actual
realizations are due to preferences, as encapsulated in the SDF (λ(xτ)), or due to
misspecified beliefs, as represented by gt(xτ).

Statistical Error

Given above arguments, the price of an American oil option approximately equals
the maximum, discounted, expected payoff over the lifetime of the option, where
expectations are formed with respect to the risk neutral distribution. For a call option,
this implies

ct(h, k) ≈ max
τ∈[t;t+h]

{
e−r(τ−t)

∫ ∞

0
max (xτ − k, 0) g̃t(xτ)dxτ

}
. (3)

Apart from g̃t(xτ), every element in this equation is directly observable or can be
inferred conditional on xτ. In order to extract the RND of the underlying at maturity,

8



g̃t(xt+h), we resort to the existing option pricing literature.7 Overall, option pricing
methods differ by whether they are suitable for American or European options and
by the parametric assumptions they impose. Given the myriad of approaches and
given that the underlying option pricing problem for oil futures is relatively simple,
we prefer to use methods that perform well in typical environments and are easy to
implement.

Each method introduces its own statistical error, so the choice of the option pricing
model is important. Suppose we use method z to extract g̃t(xt+h). The estimated
density function ̂g̃t(xt+h)z can then be described by

̂g̃t(xt+h)z︸ ︷︷ ︸
Calculated Distribution

= g̃t(xt+h)︸ ︷︷ ︸
RND

+ zt(xt+h)︸ ︷︷ ︸
Error Function

,

where zt(xt+h) refers to the error function associated with method z, which may
vary over time. An ideal approach would be one that guarantees zt(xt+h) ≈ 0.
However, because the RND is latent, it is not straightforward to distinguish g̃t(xt+h)

from ̂g̃t(xt+h)z. To tackle this issue, we proceed as follows. We adopt three popular
approaches that are quite distinct in terms of their assumptions to extract the RND:
a parametric approach based on Binomial Trees (Cox et al., 1979), a semi-parametric
procedure based on Shimko (1993) which adopts a variant of the Black-Scholes option
pricing model, and a non-parametric method (Swanson, 2006). We then assess their
overall accuracy. We find that Binomial Trees and the Swanson method yield almost
identical results with quite accurate distributional forecasts. The Shimko method, on
the other hand, yields density forecasts that are less accurate. Given that we obtain
almost identical results based on two well-performing approaches, we argue that our
results are not an artifact of the statistical method adopted. Moreover, with Binomial
Trees being particularly designed to analyze American style options, we focus on this
method in the remainder of this section. The other two approaches are discussed in
the appendix.

3.2. The Binomial Tree

The idea of a Binomial Tree is that future (unknown) price developments of the
underlying can be approximated by a series of discrete upward (u) and downward
(d) jumps. Starting from the current price of the underlying at time t and calibrating

7This literature is extensive, hence a thorough review is beyond the scope of this paper. Important
contributions include, but are by far not limited to, Black and Scholes (1973), Cox et al. (1979), and
Longstaff and Schwartz (2001).
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the tree to observed option prices, one can obtain a lattice that approximates the
distribution g̃t(xt+h) based on the likelihood of observing a specific number of upward
and downward jumps. Figure 3 illustrates the first two periods of a Binomial Tree.
Following Cox et al. (1979) for the specification of the up and down movements, one
can characterize the market value of the underlying as

xt+1 = xt ∗ exp{σ
√
△t}︸ ︷︷ ︸

u

with probability p

xt+1 = xt ∗ exp{−σ
√
△t}︸ ︷︷ ︸

d

with probability 1 − p,

where the parameter σ determines the dispersion of the estimated RND.8 The variable
△t captures the length of each discrete time interval: with longer intervals, the jumps
have to increase in order to generate the same uncertainty about the underlying asset
at maturity. We fix the total number of intervals (or periods) at N to ensure that the
RNDs are approximated by the same number of nodes regardless of the horizon h. As
a consequence, all forecasted distributions are equivalently “smooth”.

The probability of an upward movement, p, is given by

p =
er△t − d

u − d
,

which equalizes the expected return for each △t with the expected return of the
continuous counterpart over the same period.9 Furthermore, given a real risk-free rate
r, the probability of an upward movement depends on only one unknown parameter:
σ.

A few remarks about this approach are in order. First, due to the exponential
function in the jump process, the value of the underlying asset is strictly greater than
zero at each node, which is a realistic feature as oil prices are generally positive.10

Second, the tree is recombinant, i.e. if the underlying moves up and then down (u,d),
the value (price) will be the same as if it had moved down and then up (d,u). This
property reduces the number of tree nodes, and thus the computational burden. Third,
the discrete distribution converges to a log normal distribution if the number of periods

8More specifically, σ characterizes the standard deviation of the continuously compounded return of
the underlying future contract.

9Formally, p is the solution to pxtu + (1 − p)xtd = xtexp(r△t), where the risk-free rate r is the
expected return of the underlying asset in a risk-neutral world.

10The oil price turned negative on April 20, 2020 during the early stages of the COVID-19 pandemic
when concerns of physical storage for crude reaching full capacity implied acute over supply. However,
oil prices returned to positive values the next day.
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Figure 3: Binomial Tree: Illustration for 2 Periods
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is large. Therefore, the crucial assumption is that oil futures returns approximate a
normal distribution, an assumption that is also imposed by Black and Scholes (1973).
How consequential is this assumption? Figure A1 plots returns from oil futures, both
at daily and quarterly frequency. While returns are not normally distributed, the
deviations are rather small. Overall, they appear to have more mass around the center,
thus approximating a t-distribution. The more subtle and also more important question
is if this implicit distributional assumption relates to our main finding that investors
consistently underestimate tail risk. We argue this is not the case, primarily because
we derive similar results based on the non-parametric Swanson (2006) approach.

We are now able to price an American call or put option. Let n denote the discrete
period of the Binomial Tree, n = {0, 1, .., N}. We denote Binomial Tree episodes by
n rather than time t, as the time interval of a period in the Binomial Tree does not
coincide with calendar dates. However, both counters are linked: period N is equivalent
to time t + h. In other words, the last set of nodes in the Binomial Tree represents
an estimate for g̃t(xt+h). As such, n = 0 refers to “today,” i.e. time t. At the terminal
nodes of the tree, the payoff and hence the price of a call option at maturity is simply

cN,i,j(0, k) = max
(

uidjx0 − k, 0
)

s.t. i+j=N and i, j ≥ 0, (4)

where i (j) denotes the number of up (down) movements. Therefore, i and j jointly
characterize the specific node of the distribution g̃t(xt+h). Iterating back, in any given
period n < N, the value of an option depends on the maximum of exercising the call
option and the continuation value, that is
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cn,i,j(N-n, k) = max


(

uidjx0 − k
)

︸ ︷︷ ︸
Early Exercise

, e−r△t
(

pcn+1,i+1,j(N-n+1, k) + (1 − p)cn+1,i,j+1(N-n+1, k)
)

︸ ︷︷ ︸
Continuation Value


(5)

such that

i+j=n and i, j ≥ 0.

The continuation value represents the discounted expected payoff from holding the
option until the next period. With probability p, the price of the underlying jumps up
and with probability 1 − p, the price jumps down. With backward induction, we can
then recursively calculate the Binomial Tree implied option price at time t, or n = 0, as
a function of σ, the only unknown. We choose σ to minimize the difference between
the model implied option price and the observed option price in the data:

min
σ

{
c0,0,0(h, k; σ)− ct(h, k)|data

}
, (6)

for each strike, maturity, trade date, and put or call option.

We then introduce the subscript l to uniquely identify options based on their strike
price and option type, i.e. l ∈ {k, put={0, 1}, call={0, 1}}. For given h and t, we obtain
an estimate σ̂l from the minimization problem described by equation (6) and iterate
the tree forward to estimate ̂g̃t(xt+h)l. In other words, we obtain one distribution for
each l at every forecasting horizon and date. To obtain our object of interest ̂g̃t(xt+h),
we average these individual distributions based on a weighting scheme that allocates
more weight to triples l with a higher trading volume. As shown in Figure A2, strikes
closer to the value of the underlying are more frequently traded. More liquid options
in turn might contain a more precise signal about future beliefs. But even without this
argument, it is intuitive to allocate the same weight to each individual transaction,
which requires a weighting scheme based on volume per strike. The description of
our algorithm can be summarized as follows:

Binomial Tree Algorithm: Let the time interval between two nodes be △t = h/N months,
where N = 500, and assume an annual real risk-free interest rate of 0.02 (monthly rate, r, is
therefore 0.02/12). Then, for each l identifying the strike and option type, horizon h, and trade
date t,

1. given a target σ, the model implied option price at time t is recursively calculated
according to equations (4) and (5),

12



2. σ̂l is obtained by solving the minimization problem (6),

3. given σ̂l , forward iteration of the Binomial Tree from time t until t+h yields one forecasted
density ̂g̃t(xt+h)l,

4. these individual ̂g̃t(xt+h)l’s are weighted by the number of transactions for each l relative
to the total number of transactions to obtain ̂g̃t(xt+h). That is, let #lt,h be the number of
transactions related to l for given t and h, then

̂g̃t(xt+h) = ∑
l

̂g̃t(xt+h)l
#lt,h

∑l #lt,h
∀ t, h.

Note that each individual distribution ̂g̃t(xt+h)l is by construction discrete with unique
xt+h values. So, to average discrete distributions, we first generate identical bins (with
a size of one U.S. dollar each) across individual forecasts.

It is worth emphasizing that our results are robust to various weighting schemes.11

In the next subsection, we show that the estimated distributions provide a reasonable
characterization of the oil market.

3.3. An Initial Evaluation of Oil Density Forecasts

We begin by examining the first and second order moments generated by our
risk-neutral distributions (RNDs) for an initial assessment of their overall accuracy.
Figure 4, Panel (a) presents the mean of the RNDs based on the WTI crude oil options
(solid blue line) along with the price of the WTI futures from 2001 to mid-2022 (red
dashed line). These two series are expected to overlap given that futures prices reflect
the price of oil that the buyer and the seller both agree upon delivery, hence providing
direct information about investors’ expectations. As can be seen, oil prices have posted
large fluctuations ranging between around $20 a barrel and $140 a barrel over this
period. For example, from the end of 2001 to mid-2007, oil prices tripled with a steady
increase. Prices then steepened sharply and reached an all time high of over $140
a barrel in the summer of 2008, only to be followed by a dramatic collapse.12 The

11In particular, we obtain identical results when we increase the required transactions per strike and
day (from 10 in our baseline), or when we only derive forecasting distributions based on at-the-money
options.

12Remarkably stable global oil production in the 2000s combined with strongly growing global oil
demand, largely driven by China, contributed to the price appreciation during 2007-2008 (Hamilton,
2009). These gains were erased in less than six months with the global financial crisis weighing on
demand just as additional supplies were ramping up, and the market experienced a historic price
collapse.
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first moment of our RNDs captures these extreme price movements. The mean is
almost perfectly correlated with the underlying futures price over the entire sample
(corr=0.99), validating the reliability of our estimates.

Figure 4: Validity of Density Forecasts

(a) Mean Oil Forecast versus Oil Futures Price
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(b) Standard Deviation versus OVX
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Notes: Panel (a): The solid blue line displays the mean of the extracted distributions based on oil options expiring
within 2-3 months. The dashed red line presents the price of the underlying future expiring at the same time.
Sample: Daily Observations, January 2001-June 2022. Panel (b): The solid blue line displays the standard
deviations of the distributions based on oil options expiring within 20-40 days. The dashed red line represents the
level of the OVX. The OVX series is only available since May 2007 and is a direct measure of implied volatility
over the next 30 days. Both series are normalized. Sample: Daily observations, May 2007 - June 2022.

A more critical validation requires looking into higher moments, such as volatility.
One way to directly measure oil market volatility based on option prices is the CBOE’s
Crude Oil ETF Volatility Index (OVX). The index characterizes the implied 30 day
volatility, just as the VIX for the S&P 500. The red dashed line in Figure 4, Panel (b)
presents the historical OVX. Not surprisingly, the OVX reached a peak during the
financial crisis in line with the severe price movements highlighted above. The implied
volatility was even higher during the onset of the pandemic with the OVX reaching
unprecedented levels, largely driven by the economic contraction caused by COVID-19

and a sudden increase in oil supply following the suspension of agreed production cuts
in early 2020 among the Organization of the Petroleum Exporting Countries (OPEC)
and partner countries. Overall, this option-implied parameter co-moves reasonably
well with the standard deviation of our extracted RNDs (right panel, blue line), though
the standard deviation misses the spike in April 2020. In fact, the correlation between
the two series is 0.31.13

13The OVX is based on a different methodology. Moreover, its calculation is based on changes in oil
prices, whereas our RNDs forecast the level of the oil price. These factors contribute to the less than
perfect fit.
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Figure 5: Density Forecasts: 10th, 50th, 90th Percentiles and Futures Price at Maturity

(a) 1-Month Horizon
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(b) 6-Month Horizon
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Notes: Charts present the 10th, 50th, 90th percentiles of the forecasted distribution, as well as the oil futures
price at different maturities: panel (a) plots statistics for the 1-month horizon, panel (b) for the 6-month horizon.
In each month, we choose the trading date that is closest to a maturity in 1 or 6 months. Shaded areas represent
the 10 - 90 percentile range. Sample: Monthly observations, January 2001 - June 2022.

Finally, we look into the behaviour of our RNDs at different maturities and over
time. As uncertainty increases with the forecasting horizon, one may expect the
dispersion of the RNDs to increase at more distant maturities (see, for example, Chen
et al., 2018). In this context, Figure 5 presents the 10th, 50th, and 90th percentiles
of our estimated RNDs at two maturities, 1-month and 6-month, over the entire
sample. Similar charts for all 12 forecasting horizons are available in Figure A3 in the
appendix. The blue lines show the median forecasts and shaded areas indicate the
10-90 percentile range. In the panels, we also present the realizations of the 1-month
ahead and 6-month ahead oil futures prices (red dashed lines). Comparing the left
and right panels of Figure 5 reveals two notable features. First, estimated distributions
widen with the horizon. Second, although most realizations are within the 10-90

percentile range, there are deviations particularly at the lower end, hinting towards
an under-prediction of left tail events. To explore these findings in more depth, we
develop a systematic way to evaluate the accuracy of our estimated distributions in
Section 4.

4. New Measures of Density Forecast Accuracy

Our framework presented in Section 3 highlights several factors that could lead to
deviations between the forecasted distribution and the target distribution. We quantify
these (potential) deviations via our ‘Total Accuracy’ and ‘Relative Accuracy’ statistics.
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The main difference between these statistics and existing work (see, for example,
Kolmogorov, 1933; Berkowitz, 2001; Bai and Ng, 2005; Corradi and Swanson, 2006) is
that we do not resort to a limited set of characteristics, such as the first few moments
or the maximum distance between actual and target distribution, to determine the
accuracy of a distribution. Our statistics also do not involve formal hypothesis testing
and hence do not require a limiting distribution or assumptions about the correlation
structure.

A density forecast is accurate (’correctly calibrated’) if its distribution closely
matches the true uncertainty of the underlying for the same horizon h and the same
time period t. A correctly calibrated density forecast, therefore, does not necessarily
imply an accurate mean forecast of the underlying, which is difficult to come by. For
example, it has been thus far challenging to provide accurate point forecasts in the oil
market, even for shorter horizons (see, for example, Alquist et al., 2013, Calomiris et al.,
2021, Baumeister et al., 2022). Using our new measures, we show that our density
forecasts are relatively accurate, but they have a large variance, making it difficult to
derive precise point forecasts.

In a nutshell, our assessment of density forecasts is based on two steps. First,
we calculate the percentile of the underlying at maturity relative to the forecasted
distribution, which is often referred to as a probability integral transformation. Second,
we examine if these realized percentiles for many different dates follow a uniform
distribution on the [0, 1] interval, which would be the (desired) outcome if the density
was correctly calibrated (Dawid, 1984; Diebold et al., 1998). The intuition is as follows.
The t+h forecast performed at time t contains information that is relevant at time t. Over
the period of h months, however, new information arrives. A negative demand shock,
for example, can reduce the oil price, resulting in a price at time t+h that is at the lower
end of the forecasted distribution. An individual realization is therefore not particularly
informative about the accuracy of the distribution. However, if upside or downside
risks are appropriately forecasted, then as multiple realizations at different periods in
time are collected, positive and negative shocks cancel out. Because percentiles of any
distribution are uniformly distributed, one can contrast the distribution of realized
percentiles with a uniform distribution. The distance then determines the precision of
the forecast.

We conceptualize these thoughts in Section 4.1 and introduce two new statistics
that allow us to determine the overall forecasting accuracy and the accuracy over
certain percentile intervals in Section 4.2.
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4.1. Methodology

Let us denote the CDF of g̃t(xt+h) by G̃t(xt+h). By construction, the percentiles of a
CDF would follow a uniform distribution on the interval [0, 1], thus,

G̃t(xt+h) ∼ U[0,1] ∀ t, h. (7)

For every time period t and forecasting horizon h, the associated percentile of one
realization of the oil future price at t+h, referred to as x̂t+h, is G̃t(x̂t+h). If the forecasted
distribution was accurate, then x̂t+h would be drawn from g̃t(xt+h), implying
G̃t(x̂t+h) ∼ U[0,1]. In other words, unless x̂t+h was drawn from a different distribution,
the percentiles of realized observations would follow a uniform distribution.

An individual observation is insufficient to obtain a distribution over the realized
percentiles. However we can exploit that equation (7) holds for all t. Formally, one
can stack the CDFs for a given horizon h in the vector G̃(xh) ≡ {G̃t(xt+h)}∀t, where
xh refers to the underlying x, h months ahead for all t. Each element in G̃(xh) by
construction follows a uniform distribution:

G̃(xh) ∼ U[0,1] ∀ h. (8)

The crucial point is that we have about 13 to 14 observations for G̃(x̂h) per month,
which based on 21 years of data, implies about 3300 realizations for 1-month forecasts.
The sample size declines with the forecast horizon as shown in Table 1 due to sample
boundaries and fewer days with trading activity. Yet, the sample size remains large,
which is helpful for two reasons. First, our results rely on a Law of Large Numbers.
Without sufficient observations, the CDF of the realized percentiles (G̃(x̂h)) does not
converge to a uniform distribution, even when the forecasted distribution is correctly
calibrated. Second, realized percentiles for multi-period ahead forecasts are serially
correlated. For example, realizations from forecasts made in January and February
2020 for April and May 2020, respectively, would be both in the left tail, simply because
the COVID-19 shock was not yet realized at the beginning of 2020. Such persistence
shrinks the effective information in each realization, requiring more data that covers
time periods with positive and negative shocks to the price of oil.

Finally, it is important to point out that the aggregation of CDFs across time is not
without a caveat. If realized percentiles G̃(x̂h) deviate from a uniform distribution,
one can conclude that at least some density forecasts g̃t(xt+h) are inaccurate. However,
we cannot identify individual periods during which density forecasts are inaccurate.
That is, our results in subsequent sections represent averages over time.
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Table 1: Sample Size by Horizon

h = 1 2 3 4 5 6 7 8 9 10 11 12

Obs. 3746 3732 3702 3666 3545 3248 2784 2322 1859 1526 1243 1006

Notes: The table presents the number of realizations for each horizon h.

4.2. Accuracy Measures

This subsection introduces two novel statistics, which we refer to as ‘Total Accuracy’
(TAcc(h)) and ‘Relative Accuracy’ (RAcc(α, h)). The former provides insights into
the overall accuracy of a forecasted distribution, while the latter sheds light on the
accuracy over individual percentiles. Importantly, these statistics are applicable to any
density forecast and are not limited to option implied distributions.

Let’s begin with defining the realized percentile at maturity by

α̂t,h ≡ G̃t(x̂t+h).

The empirical CDF of α̂t,h over t, Fα̂h(α), can then be obtained as

Fα̂h(α) ≡
∑t 1{α̂t,h ≤ α}

T
,

where T denotes the total number of realizations over time (see Table 1). The numerator
counts the number of α̂t,h’s that are less than or equal to α for a given horizon h. Based
on previous arguments, the empirical CDF, Fα̂h(α), follows a uniform distribution by
the Law of Large Numbers provided that x̂t+h is sampled from g̃t(xt+h). Given that,
we define our first statistic ‘Total Accuracy’ as follows:

TAcc(h) ≡ 1 −
∫ 1

0

(
|Fα̂h(α)− Fαh(α)|

)
dα∫ 1

0 Fαh(α)dα
. (9)

The statistic is normalized to range between 0 and 1, where 1 indicates correct
calibration. The numerator of the fraction calculates the absolute difference between
the empirical CDF and the theoretical uniform benchmark, Fαh(α), and integrates
the difference over all percentiles. The denominator is simply a normalizing object:
It captures the maximum possible difference between the empirical CDF and the
benchmark, which materializes when Fα̂h(α) = 0 ∀α, as Fα̂h(α) is by construction
non-decreasing in α.
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The second statistic, ‘Relative Accuracy’, corresponds to the PDF of the realized
percentiles and captures the slope of the empirical CDF. More formally,

RAcc(α, h) ≡
∂Fα̂h(α)

∂α
. (10)

If x̂t+h was sampled from g̃t(xt+h), the slope of Fα̂h(α) would be 1. Therefore, the
relevant threshold for this statistic is 1. A value above 1 indicates oversampling relative
the specific interval of the RND and a value below 1 suggests fewer realizations.

Note that both statistics do not follow a well defined distribution. We therefore
determine confidence bands based on a simple block bootstrap algorithm that
generates 1000 new samples by drawing from the original sample with replacement.14

We illustrate both statistics in Figure 6 for 1- and 6-month horizons. The solid
blue lines show the empirical CDF, Fα̂h(α), as a function of α. The dashed red lines
indicate the hypothetical uniform distribution benchmark for a correctly calibrated
density, Fαh(α). The numerator in the TAcc(h) statistic simply integrates over the
absolute difference between the red and blue line and the denominator normalizes
the numerator by the maximum possible deviation between both lines. The RAcc(α, h)
statistic represents the slope of the solid blue lines.

Figure 6: Empirical CDF versus Benchmark
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Notes: Horizontal axis: percentiles of distribution. Vertical axis: CDF. If the actual forecast (solid blue line) is
below the benchmark (dashed red line), there are fewer realizations than predicted based on the distributional
forecast for a given percentile. Panel (a) (Panel (b)) presents the accuracy of the distributional forecast for the 1 (6)
month horizon. Sample: January 2001 - June 2022.

14Each block is of length N1/3, where N is the total number of observations in the original data set.
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5. Results: The Missing Tail Risk

We first assess the density forecasts based on our statistics developed in the previous
section. Figure 7 shows the TAcc of the density forecasts over different forecast
horizons based on the Binomial Tree, the Swanson, and Shimko methods. In each
panel, the solid lines present the values of the TAcc measure and the shaded areas
represent 90% confidence intervals. Panels (a) and (b) show that the Binomial Tree
and Swanson method perform quite well yielding a relatively stable total accuracy
measure that ranges between 0.8 and 0.9 across forecast horizons up to a year. In
contrast, the Shimko approach performs significantly worse, with the TAcc declining
from 0.8 to below 0.6 as the forecast horizon increases from 1 month to 6 months.15

Figure 7: Overall Accuracy of Distributional Forecasts
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(b) Swanson Method
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(c) Shimko Method
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Notes: These charts plots the accuracy of the distributional forecast based on Binomial Trees (Panel (a)), the
Swanson method (Panel (b)), or the Shimko method (Panel (c)) over various forecast horizons (horizontal axis).
The goodness of fit is characterized by the TAcc(h) measure as defined in equation (9). A value of 1 refers to a
“perfect” distributional forecast (’correct calibration’). Shaded areas represent 90% confidence intervals based on
1000 block bootstrap replications. Sample: January 2001 - June 2022.

We draw two insights from these findings. First, the comparison of different
approaches highlights the importance of an appropriate statistical procedure. As a
result, we advocate to carefully assess a density forecast before interpreting it at face
value. This can be accomplished via our TAcc measure that can be universally applied.
Second, the 90% confidence intervals for the Binomial Tree and the Swanson methods
imply relatively accurate forecasts that overlap with each other despite the orthogonal
assumptions underpinning each of these methods.

Next, we analyze the relative accuracy of our distributional forecasts. Figure 8

shows the relative forecasting accuracy (RAcc) measures over the entire distribution
based on the Binomial Tree method across different forecast horizons.16 As apparent,
the RAcc measures in the right tail are generally close to 1 apart from the 1-month

15The numerical algorithm did not converge for forecasting horizons beyond 6 months.
16We smooth the RAcc statistic to improve the exposition. Our results hold under the unfiltered RAcc

statistic too, see Figures A5 and A6.
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Figure 8: Binomial Tree: Forecasting Accuracy over the Distribution
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(c) 3-Month Horizon
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(d) 4-Month Horizon
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(e) 5-Month Horizon
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(f) 6-Month Horizon
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(h) 8-Month Horizon
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(i) 9-Month Horizon
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(j) 10-Month Horizon
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(k) 11-Month Horizon
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(l) 12-Month Horizon
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Notes: The charts portray the relative sampling frequency per percentile. A value above 1 implies oversampling.
Horizontal axis: Theoretical percentile of distribution (α). Vertical Axis: Relative sampling frequency for a given
percentile (RAcc(α, h)). RAcc(α, h) is smoothed over three percentiles. The shaded area represents 90% confidence
intervals based on 1000 block bootstrap replications. Sample: January 2001 - June 2022.

and 12-month horizons. Importantly, there is no systematic pattern regarding the
over- or under-sampling of oil prices in the right tail. This changes in the left tail: At
every horizon, the smoothed RAcc for the 1st percentile is well above 1, indicating
oversampling of left tail events relative to the specific interval of the forecasted
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distribution. This feature carries over when we use the Swanson method as apparent
from Figure A4. We subsequently zoom in on the anomaly in the left tail.

A Closer Look at the Left Tail

What type of events can characterize the left tail of the distribution over our
sample period? Figure 9 plots the realized futures price (blue line) along with the left
tail events that represent the 1st percentile realizations (shaded regions). These extreme
events tend to cluster around either economic downturns or oil supply surprises. For
example, a number of 1% left tail events occur during the Global Financial Crisis in
2008 and the pandemic recession in 2020, when global demand was hit hard. The
episodes during 2014-2016 also coincide with a plunge in oil prices, partly driven by
oil supply surprises including the U.S. shale oil boom. The key takeaway is that we
observe more of these 1% events than expected based on our distributional forecasts.

Figure 9: Futures Price and Left Tail Events
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(b) 6-Month Horizon
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Notes: The chart plots the futures price (blue line) and the incidence of left tail events defined as future price
realizations within the 1st percentile of the forecasted distribution (grey shaded areas) for h=1,6. Monthly
Observations. Sample: January 2001 - June 2022.

Discussion: What can explain the anomaly?

In section 3.1, we showed that the price of an option depends on investor beliefs,
preferences, financial market frictions, and statistical methods used in estimating
density forecasts. This means that any of these factors can play a role in driving the
missing left tail of oil options.

To begin with, we can rule out two of these possibilities: financial frictions and
statistical methods. As shown in Figure 2, oil options are very liquid, translating
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into small bid-ask spreads.17 This limits the possibility that our results are driven by
financial frictions. Furthermore, our results are not likely to be driven by the statistical
method. This is because we observe similar results based on the Binomial Tree and the
Swanson method, despite orthogonal modeling assumptions. In addition, we observe
trading activity for options that insure against extreme left tail events (as shown in
Figure A8), highlighting that our finding in the tail is not an extrapolated artifact of
the estimation method but instead is driven by actual data.

This leaves us with an explanation based on misguided beliefs and/or preferences.
We resort to the existing literature to argue that distorted beliefs are more likely
the reason. Therefore, we interpret this robust anomaly as investors under-insuring
themselves against oil price risk. In other words, the options are mispriced with
investors being exposed to excessive risk during downturns when oil prices decline
significantly. Standard finance models would interpret this persistent anomaly as
investors “leaving money on the table”.

The first piece of evidence comes from Christoffersen et al. (2022), who found,
based on the Black (1976) option price model, that very low and very high oil prices
are associated with a high marginal utility. The argument is that large increases or
large decreases in oil prices are indicative of deteriorating economic conditions, which
in turn imply a high marginal utility. The ratio of the marginal utilities (SDF) would
then be a u-shaped function of the oil price. A similar argument is also made by Jacobs
and Li (2023). They find that call and put option returns in the oil market are on
average negative, and more so for out of the money options in the tails of the oil price
distribution. A negative return particularly in the tails implies that investors are willing
to pay a premium for insurance against extreme outcomes, which again suggests a
u-shaped SDF. Taking these findings at face value would imply that investors increase
demand for options that insure against left or right tail events. A higher option price
would then be associated with a higher probability mass in the tails of our risk-neutral
density forecasts, which is clearly not what we observe.

One can infer further insights from studies examining the behavior of oil market
participants. The literature examining the trading behavior of market participants in
commodity futures tend to group traders as commercials and noncommercials, which
are often viewed as hedgers and speculators, respectively.18 Rouwenhorst and Tang

17This is also confirmed by Christoffersen et al. (2022) and Jacobs and Li (2023), who show that crude
oil options have very large open interest and trading volume.

18This grouping partly stems from the definition provided by the Commodity Futures Trading
Commission. Note that although traders in commodity futures markets have been analyzed, see for
example Kang et al. (2020), we are unaware of a comprehensive analysis of participants in the oil option
market.
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(2012) show for crude oil futures that open interest represented by non-commercials has
gradually increased since the early 2000’s, converging toward the share of commercials.19

Relatedly, the authors argue that commercial investors adjust their positions in
response to price fluctuations relatively quickly. Assuming similar patterns hold
for the oil option market, this has the following implications. First, the meaningful
share of non-commercial investors suggests that investor characteristics are likely
similar to other asset markets, such as equities where investors are risk averse (e.g.,
Mehra and Prescott, 1985). Taken together, these suggest that non-commercial investors
in the oil market might have a high marginal utility when the oil price is significantly
lower (recession fears). Second, if non-commercial investors can quickly adjust their
portfolio of oil options, just like they do for futures, then they are likely to be marginal
and drive equilibrium prices.20

Preferences of commercial traders are more difficult to gauge. For example, jet fuel
expenses represent about 20% of total operating expenses for airlines (Rampini et al.,
2014). Oil price fluctuations hence represent a key source of cash flow risk. This may
suggest that airlines hedge against high oil prices, but not necessarily low oil prices.
But this is far from clear: Rampini et al. (2014) find that financial constraints (and not
fuel prices per se) are an important determinant of risk management for commercial
airlines. Airlines may therefore hedge less during economic downturns or when fuel
prices skyrocket, as these episodes correlate with financial constraints and overall low
net worth. Oil producers, on the other hand, could have a higher incentive to hedge
against low oil prices, as their profits directly increase with oil prices. Overall, there is
no clear evidence against a u-shaped SDF among commercial traders.

The next piece of evidence favoring misguided beliefs rather than preferences
follows from Dew-Becker et al. (2021). The authors compute the return of straddles
that fully hedge against risk (long call and put with same strike) and show that
investors in multiple option markets (including crude oil) are willing to accept a
negative risk premium to limit their exposure to realized volatility (negative gamma),
which often coincides with economic downturns. Motivated by their findings, we also
compute realized volatility, defined as the squared realized oil futures returns over the

19In more detail,the share of trader activity for non-commercials increased from below 20% to above
40% in a decade, while commercials’ share dropped from about 80% to around 50% (non-reportables
make up the rest). In a more recent paper, Kang et al. (2020) consider net trading (defined as the net
purchase of futures contracts normalized by the open interest) as a measure to characterize the positions
and trading behavior of market participants. They show that the absolute values of the net position
changes of commercial and noncommercial traders average 1.72% and 1.42% of total open interest in
the oil market, respectively. These overall suggest that non-commercials are as active as commercials.

20Supporting this argument is Kang et al. (2020)’s finding that non-commercials are on average
momentum traders.
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forecasting horizon, i.e.

Realized Volatility = (ln(xt+h)− ln(xt))
2 .

The blue lines in Figure 10 plot this measure of realized volatility in oil options along
with left tail events (shaded regions) for 1- and 6-month forecasting horizons. Similar
graphs for the remaining horizons are available in Figure A9 in the appendix. We find
that periods of high realized volatility are all associated with left tail events. This in
turn suggests that investors are willing to pay a premium to insure against events
that drive the aforementioned anomaly in the left tail. In other words, investors have
a high marginal utility and hence a high SDF during left tail events, which should
increase the risk neutral probability mass in the left tail, contrary to what we observe.
As a result, we argue that the under-prediction of left tail events is likely due to a
behavioral bias.

Figure 10: Realized Volatility and Left Tail Events
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(b) 6-Month Horizon
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Notes: The charts present the realized volatility defined as squared ex-post returns along with the futures
price realizations within the 1st percentile of the forecasted distribution (grey shaded areas) for h=1,6. Monthly
observations over January 2001 - June 2022.

6. Conclusion

This paper contributes to the literature on deviations from rational expectations in
financial markets and to the literature on evaluating density forecasts. In that context,
we address two questions: How accurate are distributional forecasts based on oil
option prices? Do we observe any behavior that suggests deviations from rational
expectations?
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To answer these questions, we propose two new statistics that 1) analyze the overall
accuracy of a distributional forecast and 2) the relative accuracy over the range of the
distribution. Both measures are easy to implement and can be broadly applied. Based
on these novel statistics, we find an anomaly in the left tail of the distribution that is
likely driven by a behavioral bias: Investors consistently underestimate the likelihood
of very low oil prices and hence economic downturns. This type of underinsurance
may have important implications. The investment portfolio could become excessively
volatile. Similarly, businesses in the industry could expose themselves to excess risk
during downturns.

We also highlight the importance of statistical methods. One needs to be careful
when interpreting option based density forecasts at face value due to potential
statistical errors in the estimation stage. We, therefore, suggest to compare different
forecasting methods in terms of their accuracy and avoid premature conclusions
regarding investor beliefs.
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A. Appendix: Methods

Swanson (2006) Approach

We subsequently detail a non-parametric approach to estimate density forecasts
based on Swanson (2006). The crucial assumption of this method is that options are
not exercised until maturity. This is equivalent to assuming that early exercise is never
optimal. While this is true for American call options on non-dividend paying stocks,
this is not true for put options, or call and put options on underlying futures, like the
oil futures in this study. However, assuming that American options are not exercised
prematurely, does not seem to have much of an effect on density forecasts (Chaudhury
and Wei, 1994; Soderlind and Svensson, 1997).

The starting point for this non-parametric approach is equation (3). We rewrite this
equation for τ=t+h below:

ct(h, k) ≈ e−rh
∫ ∞

0
max (xt+h − k, 0) g̃t(xt+h)dxt+h.

The equation prices a call option. For a put option, the arguments in the max operator
are reversed. The risk neutral distribution g̃t(xt+h) is subsequently discretized into
M bins {x1,t+h, ..., xM,t+h}. We pick 100 bins (M=100) ranging from $0 to $200. Each
realization xi,t+h materializes with the risk neutral probability p̃i,t. Therefore,

ct(k, h) ≈ e−rh
M

∑
i=1

p̃i,tmax (xi,t+h − k, 0) . (A.1)

Each day, we observe option prices for multiple strikes at a given horizon. We denote
these strikes by {k1, ..., kN} where N refers to the total number of traded strikes and
stack equation (A.1) across strikes. This provides a system of equations,

ct(h) ≈ At(h)p̃t,

where

ct(h) =


ct(k1, h)

...
ct(kN , h)

 ; At(h) = e−rh


max (x1,t+h − k1, 0) · · · max (xM,t+h − k1, 0)

...
. . .

...
max (x1,t+h − kN , 0) · · · max (xM,t+h − kN , 0)

 ; p̃t =


p̃1,t

...
p̃M,t

 .

We can derive a similar system for put options and stack both systems, hence
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[
ct(h)call

ct(h)put

]
︸ ︷︷ ︸

ct(h)

≈
[

At(h)call

At(h)put

]
︸ ︷︷ ︸

At(h)

p̃t,

which leads to the following constrained optimization problem:

p̃∗
t ≡ min

p̃t
{At(h)p̃t − ct(h)} subject to

M

∑
i=1

p̃i,t = 1 & p̃i,t ≥ 0 ∀ i (A.2)

We solve this optimization problem separately for every horizon and trade date with a
numerical nonlinear least-square solver in Matlab (“lsqnonlin”).

Shimko (1993) Approach

This procedure relies on a well-known result in finance by Breeden and Litzenberger
(1978) which states the density forecast is proportional to the second derivative of the
pricing function (3), that is,

g̃t(xt+h = k) ≈ erh ∂2ct(h, k)
∂2k

. (A.3)

We only observe the price of an option at a finite number of strikes, hence it is necessary
to interpolate the cost function and then take a numerical second derivative. We follow
the widely used approach by Shimko (1993), who acknowledges the sensitivity to
the interpolation method, and suggests to interpolate implied volatility rather than
the cost function directly. We obtain implied volatility based on the formula of Black
(1976), which itself is a variant of the famous Black Scholes model adjusted for options
with an underlying futures contract. The formula for a call option is

ct(h, k) = e−rh (xtΦ(d1)− kΦ(d2)) ,

and for a put option,

ct(h, k) = e−rh (kΦ(−d2)− xτΦ(−d1)) .

Φ is the CDF of a standard normal distribution. d1 and d2 are defined as

d1 =
ln(xt/k) + (σ2/2)T

σ
√

T
,

and
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d2 = d1 − σ
√

T,

where T represents the days until maturity.

We solve for the implied volatility σ using numerical methods in Matlab (“fsolve”).
For numerical reasons we drop all options with prices less than < $0.1. We also drop
spurious observations that do not satisfy basic arbitrage conditions, that is, a positive
(negative) first derivative of the cost function with respect to the strike for a call
(put) option, and options with a negative second derivative. We then fit a smoothing
spline with smoothing parameter 0.99 trough the implied volatility and strike price
space for all calls and puts jointly. We average the implied volatility of calls and puts
with the same strike.21 We then back out the option price based on Black (1976) for
all interpolated implied volatilities (a retransformation). Last but not least, we take
a numerical second derivative of the interpolated option price function (“diff” in
Matlab), drop negative probabilities (prices with negative second derivative), and
re-normalize the density to one. This provides one density forecast for each trade date
t and forecast horizon h.

21We also analyzed calls and puts separately, however obtained a worse fit based on our TAcc statistic.
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B. Appendix: Additional Figures

Figure A1: Future Returns

(a) Daily
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Notes: The charts show the daily (Panel (a)) or quarterly (Panel(b)) returns △ln(xt) (in %) of oil future contracts.
The return is calculated as the log difference between consecutive days (or quarters). We focus on futures that
expire in more or equal to 60 days to avoid effects from the convergence of future prices towards the spot price.
The blue lines represent normal distributions with mean and standard deviation fitted to the data.

Figure A2: Trading Volume by Strikes
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Notes: The chart plots the trading volume for 1-month options at two dates relative to the strike price. The specific
dates are indicative of very high and low oil prices. Trading volumes are combined put and call volumes. Strike
prices are further discretized into bins of 5 US dollar to smooth the distribution. The vertical lines portray the
price of the underlying future.
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Figure A3: Binomial Tree: Density Forecasts Over Time
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(b) 2-Month Horizon
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(c) 3-Month Horizon
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(d) 4-Month Horizon
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(e) 5-Month Horizon
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(f) 6-Month Horizon
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(g) 7-Month Horizon
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(h) 8-Month Horizon
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(i) 9-Month Horizon
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(j) 10-Month Horizon
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(k) 11-Month Horizon
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(l) 12-Month Horizon
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Notes: Each chart plots the 10th, 50th, 90th percentile of the forecasted distribution, as well as the oil future price
at maturity over time. We choose trading dates that are closest to a maturity in exactly h-months. Shaded areas
represent the 90th-10th percentile range. Sample: Monthly Observations, January 2001 - June 2022.
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Figure A4: Swanson Method: Forecasting Accuracy over the Distribution
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Notes: The charts portray the relative sampling frequency per percentile. A value above 1 implies oversampling.
Horizontal axis: Theoretical percentile of distribution (α). Vertical Axis: Relative sampling frequency for a given
percentile (RAcc(α, h)). RAcc(α, h) is smoothed over three percentiles. The shaded area represents 90% confidence
intervals based on 1000 block bootstrap replications. Sample: January 2001 - June 2022.
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Figure A5: Binomial Tree: Forecasting Accuracy over the Distribution - Not Smoothed

(a) 1-Month Horizon

0

1

2

3

R
el

. S
am

pl
in

g 
Fr

eq
ue

nc
y 

(R
Ac

c(
1)

)

0 10 20 30 40 50 60 70 80 90 100
Range (α)

(b) 2-Month Horizon

0

1

2

3

4

R
el

. S
am

pl
in

g 
Fr

eq
ue

nc
y 

(R
Ac

c(
2)

)

0 10 20 30 40 50 60 70 80 90 100
Range (α)

(c) 3-Month Horizon

0

1

2

3

4

5

R
el

. S
am

pl
in

g 
Fr

eq
ue

nc
y 

(R
Ac

c(
3)

)

0 10 20 30 40 50 60 70 80 90 100
Range (α)

(d) 4-Month Horizon

0

1

2

3

4

5

R
el

. S
am

pl
in

g 
Fr

eq
ue

nc
y 

(R
Ac

c(
4)

)

0 10 20 30 40 50 60 70 80 90 100
Range (α)

(e) 5-Month Horizon

0

1

2

3

4

5

R
el

. S
am

pl
in

g 
Fr

eq
ue

nc
y 

(R
Ac

c(
5)

)

0 10 20 30 40 50 60 70 80 90 100
Range (α)

(f) 6-Month Horizon

0

1

2

3

4

5

R
el

. S
am

pl
in

g 
Fr

eq
ue

nc
y 

(R
Ac

c(
6)

)

0 10 20 30 40 50 60 70 80 90 100
Range (α)

(g) 7-Month Horizon

0

1

2

3

4

5

R
el

. S
am

pl
in

g 
Fr

eq
ue

nc
y 

(R
Ac

c(
7)

)

0 10 20 30 40 50 60 70 80 90 100
Range (α)

(h) 8-Month Horizon

0

1

2

3

4

5

R
el

. S
am

pl
in

g 
Fr

eq
ue

nc
y 

(R
Ac

c(
8)

)

0 10 20 30 40 50 60 70 80 90 100
Range (α)

(i) 9-Month Horizon

0

2

4

6

R
el

. S
am

pl
in

g 
Fr

eq
ue

nc
y 

(R
Ac

c(
9)

)

0 10 20 30 40 50 60 70 80 90 100
Range (α)

(j) 10-Month Horizon

0

2

4

6

R
el

. S
am

pl
in

g 
Fr

eq
ue

nc
y 

(R
Ac

c(
10

))

0 10 20 30 40 50 60 70 80 90 100
Range (α)

(k) 11-Month Horizon

0

2

4

6

R
el

. S
am

pl
in

g 
Fr

eq
ue

nc
y 

(R
Ac

c(
11

))

0 10 20 30 40 50 60 70 80 90 100
Range (α)

(l) 12-Month Horizon

0

2

4

6

8

R
el

. S
am

pl
in

g 
Fr

eq
ue

nc
y 

(R
Ac

c(
12

))

0 10 20 30 40 50 60 70 80 90 100
Range (α)

Notes: The charts portray the relative sampling frequency per percentile. A value above 1 implies oversampling.
Horizontal axis: Theoretical percentile of distribution (α). Vertical Axis: Relative sampling frequency for a given
percentile (RAcc(α, h)). Sample: January 2001 - June 2022.
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Figure A6: Swanson Method: Forecasting Accuracy over the Distribution - Not Smoothed
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Notes: The charts portray the relative sampling frequency per percentile. A value above 1 implies oversampling.
Horizontal axis: Theoretical percentile of distribution (α). Vertical Axis: Relative sampling frequency for a given
percentile (RAcc(α, h)). Sample: January 2001 - June 2022.
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Figure A7: Futures Price and Left Tail Events - All Horizons
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Notes: The charts plot the futures price (blue line) and the incidence of left tail events defined as future price
realizations within the 1st percentile of the forecasted distribution (grey shaded areas) for various horizons.
Monthly Observations. Sample: January 2001 - June 2022.
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Figure A8: Minimum and Maximum Strikes and the Left/Right Tail of the Forecasted Distribution
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Notes: The charts display the minimum and maximum strike over time along with the 1st and 99th percentile of
the forecasted belief distribution. Monthly Observations. Sample: January 2001 - June 2022.
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Figure A9: Realized Volatility and Left Tail Events - All Horizons
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Notes: The charts portray the realized volatility defined as squared ex-post returns along with the futures price
realizations within the 1st percentile of the forecasted distribution (grey shaded areas) for various horizons.
The return is defined as the log difference between the futures price at maturity and at settlement. Monthly
Observations. Sample: January 2001 - June 2022.
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