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Monetary policymakers depend heavily on forecasts about 
the future state of the economy. Since the beginning of the 
COVID-19 pandemic, however, the Federal Open Market 

Committee (FOMC) and economists in general have not been able to 
accurately forecast inflation. The surge of inflation in 2021–22 caught 
most experts by surprise, and even economists who predicted a surge 
in inflation underpredicted the size. Although central bankers’ inflation 
forecasts tend to be fairly accurate during normal times, they do not 
perform as well during downturns and periods of extreme uncertainty. 

To improve this performance gap, researchers over the past 20 years 
have proposed various innovations to a benchmark class of models 
known as “time-varying parameter models,” which allow the relation-
ships between forecasting variables to change over time. Although these 
innovations have improved models’ forecasting performance during pre-
vious recessions, most research on the efficacy of these innovations was 
conducted prior to the COVID-19 pandemic. A natural question is how 
these “improved” models have performed during recent extreme events. 

In this article, we investigate whether innovations in time-varying pa-
rameter models led to improved inflation forecasting during the pandemic. 
We find that despite their promise prior to the pandemic, forecasting in-
novations did not improve the accuracy of inflation forecasts relative to a 
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baseline time-varying parameter model during the pandemic. Our results 
suggest that forecasters may need to develop a new class of forecasting mod-
els, introduce new forecasting variables, or rethink how they forecast to yield 
more effective inflation forecasts during extreme events.

Section I outlines different forecasting innovations of the past 20 
years. Section II compares the performance of different forecasting mod-
els for U.S. inflation during the pandemic and shows that innovative 
time-varying parameter models did not outperform a baseline time-vary-
ing parameter model. 

I. Innovation in Forecasting  

Many of the time- and computationally intensive innovations in 
forecasting over the past several years have resulted from time-varying 
parameter models. These models are very flexible, as they allow for the 
relationships between forecasting variables to change over time. How-
ever, this flexibility comes with costs. Estimating relationships that are 
not fixed and can change over time is both time- and computationally 
intensive. Additionally, researchers may not know exactly which vari-
ables to include at a given time. As a result, researchers have combined 
time-varying parameter models with methods like shrinkage, high di-
mensionality, and variable selection to maintain the flexibility of time-
varying parameter models while minimizing the costs. 

Time-varying parameter models

Changes in policy, technology, or economic conditions can all lead 
the relationship between variables in a regression model to change over 
time, a quality known as “parameter instability.” Both Stock and Watson 
(1996) and Ang and Bekaert (2002) show that many macroeconomic 
and financial time series models exhibit parameter instability. Account-
ing for this quality is important, as models that do not consider param-
eter instability may yield less accurate forecasts. For example, a researcher 
may attempt to understand or describe how the FOMC responds to 
changes in output and inflation by estimating a Taylor rule, which relates 
the value of the federal funds rate to inflation and economic slack. But 
the Committee’s responses to changes in these variables may depend on 
the individuals that make up the Committee. Thus, when the Commit-
tee changes, the estimated parameters in the Taylor rule may need to 
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change as well to better reflect the Committee. As a result, a researcher 
seeking to estimate the Taylor rule consistent with the Committee’s de-
cisions must account for potential parameter instability to avoid mis-
leading forecasts or analysis. 

Time-varying parameter models provide a general way to deal 
with parameter instability by allowing the parameters of the model 
to change in each time period in the sample. Intuitively, time-varying 
parameter models work by discounting information over time, giving 
more weight to recent information about a particular economic vari-
able than past information for any given time period. 

Although time-varying parameter models have existed at least since 
the 1970s, they were not popular initially due to computational dif-
ficulties, and the number of variables included in these models was 
generally limited to five. In the 2000s, however, Cogley and Sargent 
(2005) and Primiceri (2005) introduced workhorse time-varying pa-
rameter models that could be used for forecasting, and other researchers 
demonstrated that time-varying parameter models could outperform 
their constant parameter counterparts.1 Recently, more efficient estima-
tion methods and approximations have been introduced that can lessen 
the computational burden of these models. 

High dimensionality and shrinkage

Forecasters often have to make difficult choices about how much 
information to include in their models. Generally, forecasters want to 
include as much relevant information as possible to maximize the ac-
curacy of their forecasts. To do so, they can estimate a high-dimensional 
model—that is, a model with many independent variables. However, in-
cluding too much information in a model can lead to imprecise param-
eter estimates and therefore imprecise forecasts. For example, if a model 
includes too many variables relative to the sample size, the parameters 
may not be estimated accurately; this could lead variables that are rela-
tively less important to have disproportionate influence on the forecast, 
thereby distorting the forecast. A model with too many independent 
variables is often described as being “overparameterized.”

Overparameterization can be dealt with in several ways, includ-
ing using “shrinkage.” Shrinkage is simply a method that “shrinks” an 
estimate of a parameter toward a pre-specified value. More precisely, 
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shrinkage can be used so that parameters that are less relevant shrink 
toward zero, while parameters that are more important are left alone 
(or have minimal shrinkage). Note that shrinkage is not only used in 
models with many variables. Researchers often use shrinkage to restrict 
certain parameter values in models with only a few variables. For exam-
ple, forecast models, including time-varying parameter models, often 
include past values of a variable, such as inflation, to predict what future 
values of that variable will be. Because more recent values of inflation 
are assumed to be more important for predicting future inflation than 
older values, researchers may elect to shrink the parameters for older 
values of inflation toward zero so that they are weighted less heavily in 
the forecast. 

Sparsity or variable selection

Shrinkage is often combined with sparsity or variable selection 
methods to prevent issues such as overparameterization. Despite ad-
vances in high dimensional models, computational constraints or prac-
tical considerations may still limit the number of variables researchers 
can include in a model. For example, a time-varying parameter model 
estimates a different parameter for each period, so for a sample size of 
T, the model would have T times the number of parameters of a model 
where the parameters do not change. If a constant parameter model 
covering 200 periods (for example, 50 years of quarterly data) has 12 
parameters, a time-varying parameter model covering the same period 
would have 2,400.

One way to limit the number of variables in a model is to use 
sparsity or variable selection methods. As their name suggests, these 
methods can reduce the number of potential variables in a model to 
a smaller set that ideally includes enough information to generate ac-
curate forecasts. Although variable selection has been used since at least 
the early 1990s, algorithms and computing power have only recently 
evolved to the point where researchers can perform variable selection 
without a supercomputer.2

Dynamic variable selection is a particular form of variable selec-
tion that can be especially useful when combined with time-varying 
parameter models. Dynamic variable selection accounts for the fact that 
some variables may be helpful in forecasting during certain time periods 
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but not others—as is often the case for macroeconomic and financial 
variables (see, for example, Korobilis and Koop 2020). For example, ex-
pected shipping times are not generally used when predicting inflation, 
as shipping logjams have historically not been large enough to measur-
ably affect inflation. During the pandemic, however, the increase in 
expected shipping times is thought to have led to higher shipping costs 
and hence higher prices, so incorporating an expected shipping time 
variable could improve inflation forecasts. Dynamic variable selection 
allows forecasters to incorporate variables in their models only when 
they are likely to be relevant, thus providing an alternative to estimating 
high dimensional models.

In general, sparsity can also be used to prevent overfitting of a mod-
el. An overfitted model is one that does a good job explaining random 
variation in one dataset but that performs relatively poorly when used 
with other datasets. As an analogy, consider a student preparing for a test 
not by studying the material holistically but by spending too much time 
on one-off questions used on previous versions of the test. In this case, 
the student will be prepared only for the one-off questions rather than 
more general material likely to appear on the test. Similarly, an overfitted 
model is one that is adapted too closely to “one-off” data (for example, 
an outlier), which may worsen its ability to forecast. To prevent overfit-
ting, forecasters often use a mechanism such as sparsity or shrinkage that 
prevents the model from adapting too well to the initial sample.

II.  Estimating the Performance of Innovative Time-Varying 
Parameter Models during the Pandemic

To determine whether the forecasting innovations of the past two 
decades improved inflation forecasting during the COVID-19 pandem-
ic, we conduct a forecasting exercise that compares the performance of 
two simple time-varying parameter models generally used in inflation 
forecasting as well as three newer models that incorporate some of the 
innovations from the previous section. In particular, we forecast infla-
tion as measured by the price index for personal consumption expen-
ditures (PCE), as PCE inflation is the Federal Reserve’s preferred mea-
sure (Bernanke 2015). Our two baseline models are the unobserved 
components model from Stock and Watson (2007), which estimates a 
time-varying mean of inflation and includes no other predictors, and 
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the time-varying parameter model from Primiceri (2005), which has 
a small number of variables. Our three newer time-varying parameter 
models are the model from Carriero and others (2021), which is a mod-
erate-sized dimensional model that incorporates shrinkage and is de-
signed to handle outliers; the model from Chan (2021), which includes 
many predictors and uses shrinkage; and the model from Korobilis and 
Koop (2020), which incorporates many predictors, dynamic variable 
selection, and shrinkage.3 In summary, the two baseline models have 
only time-varying parameters, while the three newer models combine 
time-varying parameters with high dimensionality, shrinkage, or vari-
able selection. Additional details on each of these models as well as their 
implementation are available in the appendix. 

To judge the forecasting performance of the models, we compare 
their root mean square errors (RMSE). The RMSE quantifies how much 
a model prediction deviates from the actual data, with smaller RMSEs 
indicating better forecast performance. In addition, a model’s RMSE 
can help reflect the influence of outliers, in that an inaccurate predic-
tion in one period will have a greater effect on the model’s RMSE than 
an accurate prediction. This quality makes RMSEs especially useful for 
policymakers. Because one inaccurate inflation forecast can lead to the 
wrong policy prescription, policymakers may care more about avoiding 
especially “bad” predictions than about achieving “good” predictions 
most of the time. 

To capture our models’ accuracy in forecasting both short-term 
and longer-term inflation, we examine both one-quarter-ahead and 
one-year-ahead forecasts. We begin our one-quarter-ahead forecasts in 
2020:Q1, at the start of the pandemic, and forecast inflation for the 
next quarter based on information known up until the previous quarter. 
For example, our one-quarter-ahead forecast for 2020:Q2 inflation is 
based on data from up until 2020:Q1. Similarly, our one-year-ahead 
forecast is based on information known up until the previous year. For 
this reason, we begin our one-year-ahead forecast in 2021:Q1, as earlier 
years would not reflect any information from the pandemic. 

Panels A and B of Chart 1 show that the baseline models forecast at 
least as well as the newer models. Panel A shows that the two baseline 
models (blue bars) have lower RMSEs than the newer models (green bars) 
for one-quarter-ahead inflation forecasting. Similarly, Panel B shows that 
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Chart 1
RMSE for Inflation Forecasts during the Pandemic
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Sources: Stock and Watson (2007), Primiceri (2005), Korobilis and Koop (2020), Chan (2021), Carriero and  
others (2021), and FRED (Federal Reserve Bank of St. Louis).

the unobserved components model from Stock and Watson (2007) has 
the lowest RMSE for one-year-ahead forecasting. Together, the panels 
suggest that the baseline models yield inflation forecasts at least as accu-
rate—if not more so—than newer models for both time horizons. 

The superior performance of the baseline models is somewhat dis-
concerting. In general, the newer models are more flexible versions 
of the baseline models; given their increased flexibility, newer models 



28 FEDERAL RESERVE BANK OF KANSAS CITY

should be able to perform at least as well as the baseline models. Par-
ticularly concerning is that the unobserved components model from 
Stock and Watson (2007), which simply estimates a time-varying mean 
of inflation and includes no other predictors, outperforms models with 
a larger number of predictors. The Stock and Watson model has the 
lowest RMSE for the one-year-ahead forecasts, and the second-lowest 
RMSE for the one-quarter-ahead forecasts, eclipsed only by the base-
line Primiceri (2005) time-varying parameter model. Thus, including 
additional information does not appear to improve inflation forecasts 
during the pandemic for the models and data sets we consider. 

However, these results do not suggest that newer, more sophisticat-
ed models should be abandoned entirely. During the Great Recession, 
for example, these models showed improved forecasting performance 
against the baseline models. Panel A of Chart 2 shows that for one-
quarter-ahead forecasts during the Great Recession, the newer models 
have a lower RMSE than the baseline models. Although the results are 
more mixed for the one-year-ahead forecasts during the Great Reces-
sion, Panel B of Chart 2 shows that one of the newer models has the 
lowest RMSE. 

To show how the models’ forecasting performance evolved over 
the full Great Recession period, Chart 3 compares the models’ fore-
cast errors—the difference between the actual and predicted values of 
inflation—from 2007:Q4 to 2009:Q2. Values closer to zero indicate 
a smaller forecast error and therefore better performance. Panel A of 
Chart 3 shows that no one model dominates for the one-quarter-ahead 
forecasts. Similarly, Panel B of Chart 3 shows that no one model domi-
nates for the one-year-ahead forecasts, though the relative performance 
of each model tends to stay consistent across the sample with the excep-
tion of the unobserved component model of Stock and Watson (2007). 
Together, the results from Charts 2 and 3 show that newer models out-
performed baseline models during the Great Recession, suggesting they 
may yet have some benefits in times of distress outside of the pandemic. 

Moreover, it may be the case that additional information would 
have improved inflation forecasts during the pandemic, but that our 
newer models included the wrong information. Macroeconomic fore-
casting models in general use macroeconomic and financial variables 
to forecast. During the COVID-19 pandemic, however, the standard 
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Chart 2
RMSE for Forecasts during the Great Recession
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Chart 3
Forecast Errors during the Great Recession
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macro and financial variables may have been less useful in forecast-
ing inflation due to the unique combination of strong demand and 
persistent supply shocks; instead, variables such as U.S. hospitalization 
rates for COVID-19, expected shipping logjam times at U.S. ports, and 
some type of production indicator for the countries exporting to the 
United States may have been more relevant to inflation and thus may 
have improved inflation forecasts. 

Finally, our comparison only accounts for the performance of these 
models in forecasting inflation—newer models may offer improve-
ments over the baseline models during the pandemic for other variables 
of interest. Even though the baseline models perform slightly to some-
what better overall, no one model dominates every period. Indeed, 
Panels A and B of Chart 4, which plot the difference between actual 
inflation and predicted inflation for the different forecasting models, 
show a wide variation in the performance of these models across differ-
ent periods.  

Overall, our results suggest that forecasters should not focus on 
only one model but rather continuously monitor multiple models. One 
way to do this systematically is by using model averaging, or averag-
ing the predictions of a set of models. Importantly, this method can 
be combined with time-varying parameter models: dynamic model 
averaging allows the “importance” or influence of each model on the 
average prediction to change over time. Some studies have shown that 
model averaging or combining forecasts can outperform any one model 
by safeguarding against a bad forecast from a single model (Hoeting 
and others 1999; Faust and Wright 2013). As the results from this ar-
ticle intimate, model averaging might be a useful tool for forecasting 
during future extreme events.
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Chart 4
Forecast Errors during the Pandemic
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Conclusion  

In this article, we investigate whether forecasting innovations in 
time-varying parameter models led to improved inflation forecasting 
during the pandemic. We find that despite their promise prior to the 
pandemic (including during the Great Recession), these innovations did 
not improve the accuracy of inflation forecasts relative to a baseline mod-
el during the pandemic. Considering that forecasting inflation is more 
important during times of duress than normal times, researchers may 
need to continue developing models that can perform well during all pe-
riods or develop a different set of models specifically for times of duress.
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Appendix

Model Specifications

All models use four lags, and all the samples start around 1960, 
with some slight variation due to data availability. For the Primiceri 
(2005) we use PCE inflation, the three-year Treasury yield constant 
maturity, and the unemployment rate as variables and obtain data from 
the FRED series PCEPI, DGS3, and UNRATE, respectively. We use 
the three-year Treasury yield to avoid issues with the zero lower bound 
(see Swanson and Williams 2014). For the Primiceri (2005) model, we 
use a Minnesota prior with code derived from Chan (2021). For the 
Stock and Watson (2007) model, we use the non-centered parameter-
ization and priors from Chan (2018) and use PCE inflation data from 
FRED (PCEPI). For the Carriero and others (2021) model, we obtain 
the input data from FRED-MD, a monthly macroeconomic database. 
The code from Carriero and others constructs quarterly averages based 
on this monthly data series, and we use the “SVOt” specification to run 
the model. For the Chan (2021) and Korobilis and Koop (2020) mod-
els, we use the same priors and variables as in the papers and obtain 
the input data from FRED-QD, a quarterly macroeconomics database.
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Endnotes

1For example, Granger (2008) shows that time-varying parameter models can 
even approximate nonlinearities in general (in the conditional mean).

2Advancements in algorithms and computing power were necessary for vari-
able selection due to the sheer number of variables considered in this method. 
For example, if a researcher wanted to consider p different variables in their in-
flation forecasting model, then they would need to consider 2p different model 
combinations with those predictions. Thus, if p = 20, the researcher would need 
to estimate and compare the performance of 1,048,576 different models. Esti-
mating and comparing all those models would be impractical, so methods were 
developed to allow researchers to estimate a small number of models and decide 
which model to estimate next based on the forecast performance of the previously 
estimated models. 

3In the Carriero and others (2021) model, only the covariance matrix is  
time-varying.
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