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Abstract

It is well known that Local Projections (LP) residuals are autocorrelated. Conventional wisdom says that

LP have to be estimated by OLS with Newey-West (or some type of Heteroskedastic and Autocorrelation

Consistent (HAC)) standard errors and that GLS is not possible because the autocorrelation process is un-

known and/or because the GLS estimator would be inconsistent. I show that the autocorrelation process

of LP is known and can be corrected for using a consistent GLS estimator. Estimating LP with GLS has

three major implications: 1) LP GLS can be less biased, more efficient, and generally has better coverage

properties than estimation by OLS with HAC standard errors. 2) Consistency of the LP GLS estimator gives

a general counterexample showing that strict exogeneity is not a necessary condition for GLS. 3) Since the

autocorrelation process can be modeled explicitly, it is now possible to estimate time-varying parameter LP.

*I thank Regis Barnichon, Bill Branch, Todd Clark, Ivan Jeliazkov, Òscar Jordà, Lutz Kilian, Daniel Lewis, Fabio Milani, Eric Swanson,
Jonathan Wright, and seminar participants at several venues for helpful comments, discussions, and/or suggestions. This material is
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Reserve Bank of San Francisco’s Thomas J. Sargent Dissertation Fellowship, and the Federal Reserve Bank of Boston under the American
Economic Association Summer Fellowship. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the National Science Foundation, the Federal Reserve Bank of San
Francisco, the Federal Reserve Bank of Boston, the Federal Reserve Bank of Kansas City, or the Federal Reserve System.

1



1 Introduction

For decades, Vector Autoregressions (VARs) have been a major tool used in empirical macroeconomic anal-

ysis, primarily being used for causal analysis and forecasting through the estimation of impulse response

functions. In a seminal paper, Jordà (2005) argued that impulse response functions could be estimated

directly using linear regressions called Local Projections (LP) and that LP are more robust to model mis-

specification than VARs.1,2 LP have been growing in popularity ever since, and the two methods often give

different results when applied to the same problem (Ramey, 2016, Nakamura and Steinsson, 2018b). If the

true model is a VAR, then a correctly specified VAR is more efficient than LP because VARs impose more

structure than LP (Ramey, 2016). If the true model is not a finite order VAR or if the lag length of the VAR is

not sufficiently long, then LP can outperform VARs (Plagborg-Møller and Wolf, 2019). Being that LP impulse

responses nest VAR impulse responses, the choice of whether to use impulse responses from LP or VARs can

be thought of as the bias-variance tradeoff problem with VARs and LP lying on a spectrum of small sample

bias variance choices.

It is well known that LP residuals are autocorrelated. Practitioners exclusively estimate LP via OLS

with Newey-West standard errors (or some type of Heteroskedastic and Autocorrelation Consistent (HAC)

standard errors) (Ramey, 2016). Jordà (2005) argues that since the true data-generating process (DGP) is

unknown, Generalized Least Squares (GLS) is not possible and HAC standard errors must be used. Hansen

and Hodrick (1980) claim that direct forecast regressions (LP) cannot be estimated by GLS because estimates

would be inconsistent.3 I show that under standard time series assumptions, the autocorrelation process is

known and can be corrected for using GLS. Moreover, I show the consistency and asymptotically normality

of the LP GLS estimator.4

Being able to estimate LP with GLS has 3 major implications. First, LP GLS can be less biased, substantially

more efficient, and generally has better coverage properties than LP estimated via OLS with HAC standard

errors. Monte Carlo simulations for a wide range of models highlight the benefits of LP GLS. Moreover,

under assumptions discussed in section 4, LP GLS impulse responses can be approximately as efficient as

VAR impulse responses. Whether or not LP GLS impulse responses are approximately as efficient depends

1As noted in Stock and Watson (2018), LP are direct multistep forecasts. However, the goal of direct multistep forecast is an optimal
multistep ahead forecast, whereas the goal of LP are accurate estimates of the corresponding impulse responses.

2In the case of stationary time series, Plagborg-Møller and Wolf (2019) show linear time-invariant VAR(∞) and LP(∞) estimate the
same impulse responses.

3Hansen and Hodrick (1980) assume strict exogeneity (which neither LP or VARs satisfy) is a necessary condition for GLS.
4Montiel Olea and Plagborg-Møller (2020) have concurrently come up with an LP procedure that avoids HAC inference, but their

procedure assumes the model can be written as a finite order VAR(p), at least p + 1 lags are included in estimation, and that the error
term satisfies mean independence. Many macroeconometric models cannot be written as finite order VARs (Nakamura and Steinsson,
2018b, Kilian and Lütkepohl, 2017). Mean independence is in general not satisfied by conditional heteroskedasticity models (see
Brüggemann et al. (2016) Remark 2.5). It excludes many non-symmetric parametric models, models where the conditional error has
a non-symmetric distribution, and stochastic volatility models (Goncalves and Kilian, 2004). The proposed GLS procedure is derived
under more general conditions allowing for infinite lag representations and general conditional or unconditional heteroskedasticity.
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on the persistence of the system, the horizon, and the dependence structure of the system. All else equal,

the more persistent the system, the more likely LP GLS impulse responses will be approximately as efficient

for horizons typically relevant in practice. It follows that LP can be much more efficient than previously

believed.

Second, LP GLS shows that strict exogeneity is not a necessary condition for GLS estimation. It is often

claimed in popular econometric textbooks that strict exogeneity is a necessary condition for GLS, which

makes GLS more restrictive than OLS (Hayashi, 2000, Stock and Watson, 2007). Hansen and Hodrick (1980)

is the earliest paper I find that claims strict exogeneity is a necessary condition, but they do not the provide

a proof showing strict exogeneity is a necessary condition. Hamilton (1994) pg. 225 and Greene (2012)

pg. 918 gives popular time series examples of what can go wrong when doing GLS with lagged endogenous

variables, but simply showing an example where a GLS procedure is inconsistent is not sufficient to show

that strict exogeneity is a necessary condition.5 Since it was assumed that strict exogeneity is a necessary

condition for GLS, GLS was in part abandoned for OLS with HAC estimation since OLS with HAC can be

done under weaker conditions (Hayashi, 2000, Stock and Watson, 2007). Since consistency of LP GLS

provides a general counterexample that strict exogeneity is not necessary condition for GLS, it follows that

GLS estimation is not as restrictive as previously thought and that GLS may be extended to other situations

where strict exogeneity is not satisfied.

Third, since autocorrelation is explicitly modeled, it is now possible to estimate time-varying parameter

LP. This was not possible before because the Kalman filter and other popular techniques used to estimate

time-varying parameter models require that the error term is uncorrelated or that the autocorrelation process

is specified (Hamilton, 1994). Time-varying parameter models can be useful for several reasons. Researchers

are often interested in whether there is parameter instability in regression models. As noted in Granger and

Newbold (1977), macro data encountered in practice are unlikely to be stationary. Stock and Watson (1996)

and Ang and Bekaert (2002) show many macroeconomic and financial time series exhibit parameter insta-

bility. It is also commonplace for regressions with macroeconomic time series to display heteroskedasticity

of unknown form (Stock and Watson, 2007), and in order to do valid inference, the heteroskedasticity must

be taken into account. Parameter instability can occur for many reasons such as policy changes, technolog-

ical evolution, changing economic conditions, etc. If parameter instability is not appropriately taken into

account, it can lead to invalid inference, poor out of sample forecasting, and incorrect policy evaluation.

Moreover, as shown in Granger (2008), time-varying parameter models can approximate any non-linear

model (non-linear in the variables and/or the parameters), which makes them more robust to model mis-

specification.

The paper is outlined as follows: Section 2 contains the core result showing that the autocorrelation

5LP GLS can consistently estimate both of them.
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process of LP is known and illustrates why GLS is possible. Section 3 explains how to estimate LP GLS.

Section 4 discusses the relative efficiency of LP estimated by OLS with HAC standard errors vs LP GLS.

Section 5 contains Monte Carlo evidence of the small sample properties of LP GLS. Section 6 discusses

time-varying parameter LP, Section 7 the empirical application to Gertler and Karadi (2015), and Section 8

concludes.

Some notation: N(⋅, ⋅) is the normal distribution. plim is the probability limit,
pÐ→ is converges in proba-

bility, and
dÐ→ is converges in distribution.

p∗Ð→ is converges in probability, and
d∗Ð→ is converges in distribution

with respect to the bootstrap probability measure. vec is the vector operator and ⊗ is the Kronecker product.

2 The Autocorrelation Process, OLS, and GLS

This section is broken up into 3 parts. Subsection 2.1 discusses how LP work, drawbacks of OLS estimation

with LP, and how GLS estimation can improve upon it. Subsection 2.2 presents the core result: the auto-

correlation process of LP is known and can be corrected for via GLS. Subsection 2.3 discusses how to do the

FGLS correction and its basic properties.

2.1 LP and OLS

To illustrate how LP work, take the simple VAR(1) model

yt+1 = A1yt + εt+1,

where yt is a demeaned r × 1 vector of endogenous variables and εt is an r × 1 vector white noise process

with E(εt) = 0 and var(εt) = Σ. Assume that the eigenvalues of A1 have moduli less than unity and A1 ≠ 0.

Iterating forward leads to

yt+h = Ah1yt +Ah−1
1 εt+1 + . . . +A1εt+h−1 + εt+h.

To estimate the impulse responses of a VAR, one would estimate A1 from equation (1) and then use the

delta method, bootstrapping, or Monte Carlo integration to perform inference on the impulse responses:

{A1, . . . ,A
h
1}. To estimate impulse responses using LP, one would estimate the impulse responses directly at

each horizon with separate regressions

yt+1 = B(1)
1 yt + e(1)t+1,

yt+2 = B(2)
1 yt + e(2)t+2,
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⋮

yt+h = B(h)
1 yt + e(h)t+h,

where h is the horizon, and when the true DGP is a VAR(1), {B(1)
1 , . . . ,B

(h)
1 } and {A1, . . . ,A

h
1} are equivalent.

Even if the true DGP is not a VAR(1), B(1)
1 = A1 because the horizon 1 LP is a VAR. In practice, it is common

for more than one lag to be used. A VAR(k) and the horizon h LP(k) can be expressed as

yt+1 = A1yt + . . . +Akyt−k+1 + εt+1,

and

yt+h = B(h)
1 yt + . . . +B(h)

k yt−k+1 + e(h)t+h,

respectively. Bear in mind that any VAR(k) can be written as a VAR(1) (companion form), so results and

examples involving the VAR(1) the can be generalized to higher order VARs.

LP have been advocated by Jordà (2005) as an alternative to VARs. There are several advantages of using

LP as opposed to VARs. First, LP do not constrain the shape of the impulse response function like VARs, so it

can be less sensitive to model misspecification (i.e. insufficient lag length) because misspecifications are not

compounded in the impulse responses when iterating forward.6 Second, LP can be estimated using simple

linear regressions. Third, joint or point-wise analytic inference is simple. Fourth, LP can easily be adapted to

handle non-linearities (in the variables or parameters).

As pointed out in Nakamura and Steinsson (2018b), Kilian and Lütkepohl (2017) among others, many

macroeconometric models cannot be written as finite order VARs or LP. The finite order VARs and LP are

just approximating infinite lag versions of themselves, so truncation bias (bias from omitted lags) can play

a major role in inference. To illustrate, I conduct a simple Monte Carlo simulation where I generate 1,000

samples of length 250 from the following MA(35):

yt = εt +
35

∑
i=1

θiεt−i, εt ∼ N(0,1),

where

θi =
θ∗i

∑35
i=1 θ

∗
i

, θ∗i = αexp{ − (j − β
δ

)
2

} for j = 1, . . . ,35 ,

and

α = 1, β = 6, δ = 12.

The parameters are chosen so that the true impulse response is hump shaped, and the cumulative impulse

6In the case of the linear time-invariant estimators, VAR(∞) and LP(∞) estimate the same impulse responses asymptotically
(Plagborg-Møller and Wolf, 2019). This result does not hold if the models are augmented with nonlinear terms.
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response sums up to 1. I then estimate the impulse responses using a VAR and LP estimated with OLS, using

lag lengths chosen by the AIC. Figure 1 plots the mean impulse response for both estimation methods along

with the true impulse response. The VAR does an poor job approximating the shape of the impulse response,

and it will be shown in the Monte Carlo section that when including uncertainty bands to do inference, the

researcher will often come to the wrong conclusion. LP, though not perfect, can capture the shape of the true

impulse response. The general qualitative results are not sensitive to using BIC, HQIC, or using the shortest

lag length that yields white noise residuals for the VAR. Plagborg-Møller and Wolf (2019) prove that in finite

samples it’s possible to choose a large enough lag length such that the LP and VAR impulse responses are

approximately the same, but there is currently no method or criteria for how to select such a lag length and

obviously the impulse responses need not agree when using popular lag length selection procedures.
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Figure 1: Mean Impulse Response of MA(35)

LP do have a couple of drawbacks. First, because the dependent variable is a lead, a total of h observations

are lost from the original sample when estimating projections for horizon h. Second, the error terms in LP

for horizons greater than 1 are inherently autocorrelated. Assuming the true model is a VAR(1), it is obvious

that autocorrelation occurs because the LP residuals follow an VMA(h−1) process of the residuals in equation

(1). That is,

e
(h)
t+h = A

h−1
1 εt+1 + . . . +A1εt+h−1 + εt+h,

or written in terms of LP

e
(h)
t+h = B

(h−1)
1 εt+1 + . . . +B(1)

1 εt+h−1 + εt+h.

Frequentists account for the inherent autocorrelation using HAC standard errors, which will yield asymptot-
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ically correct standard errors in the presence of autocorrelation and heteroskedasticity of unknown forms.7

Autocorrelation can be corrected for explicitly by including {εt+1, . . . , εt+h−1} in the conditioning set of the

horizon h LP. Obviously {εt+1, . . . , εt+h−1} are unobserved and would have to be estimated, but this issue can

be ignored for now and is addressed later.

There are two major advantages of correcting for autocorrelation explicitly. The first is that it fixes

what I dub the “increasing variance problem”. To my knowledge, the increasing variance problem has not

been noticed in the literature. If the true model is a VAR(1), then var(e(h)t+h) = ∑h−1
i=0 A

i
1ΣAi1

′, which is

increasing in h.8 HAC standard errors are valid in the presence of autocorrelation because they take into

account autocorrelation is present when estimating the covariance matrix; they do not, however, eliminate

autocorrelation.9,10 To illustrate, let the true model be an AR(1) with

yt+1 = .99yt + εt+1,

where var(εt) = 1. The var(e(h)t+h) = ∑h−1
i=0 A

i
1ΣεA

i
1
′ = ∑hi=0 .992i. The table below presents the asymptotic

variance of the residuals for different horizons when estimated by OLS with HAC standard errors vs LP

estimated with GLS.

Table 1: Asymptotic Variance of Residuals for LP Horizons

Horizons 5 10 20 40

LP OLS 5.7093 9.9683 17.3036 28.2102

LP GLS 1 1 1 1

Even if HAC standard errors are used, the increasing variance problem persists. In terms of the MLE and

OLS, correcting for autocorrelation explicitly is asymptotically more efficient because var(εt+h) ≤ var(e(h)t+h),

where the equality only binds when A1 = 0. The increasing variance problem not only causes standard errors

to be larger than they have to be, the larger variance is one of the reasons why LP impulse responses are

sometimes erratic.11

The second major advantage of correcting for autocorrelation explicitly is that it helps remedy what I dub

the “increased small sample bias problem”. When LP are estimated with OLS and HAC standard errors, the

small sample bias from estimating dynamic models increases relative to the model with no autocorrelation.

To see why, let us first review the finite sample bias problem with VARs (see (Pope, 1990) for detailed

7There is a major line of research indicating that HAC standard errors perform poorly in small samples with persistent data (Müller,
2014).

8Since A1 has moduli less than unity, geometric progression can be used to show that the sum is bounded asymptotically.
9This is a major reason why Kilian and Kim (2011) found that LP had excessive average length relative to the bias-adjusted bootstrap

VAR interval in their Monte Carlo simulations. I provide Monte Carlo evidence of this in section 5.
10Macro variables tend to be persistent, so Ai

1 may decay slowly leading to the increase in the variance to be pretty persistent as h
increases.

11Obviously, eliminating the increasing variance problem would not prevent erratic behavior of LP impulse responses since they are
not restricted.
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derivations). Assume the true model is a VAR(1). The OLS estimate for the VAR is

Â1 = A1 +
T−1

∑
t=1

εt+1y
′
t(
T−1

∑
t=1

yty
′
t)−1.

This estimate is biased in finite samples becauseE(∑T−1
t=1 εt+1y

′
t(∑

T−1
t=1 yty

′
t)−1) ≠ 0 because εt+1 and y′t(∑

T−1
t=1 yty

′
t)−1

are not uncorrelated, i.e. strict exogeneity is not satisfied. The stronger the correlation between εt+1

and y′t(∑
T−1
t=1 yty

′
t)−1, the larger the bias. In macroeconomic applications, the bias is typically downward.

The bias disappears asymptotically since εt+1 would be correlated with an increasingly smaller share of

y′t(∑
T−1
t=1 yty

′
t)−1.

If one were to estimate LP via OLS with HAC standard errors at horizon h, the OLS estimate would be

B̂
(h),OLS
1 = B(h)

1 +
T−h

∑
t=1

e
(h)
t+hy

′
t(
T−h

∑
t=1

yty
′
t)−1.

If one were to correct for autocorrelation by including {εt+1, . . . , εt+h−1} , the estimate would be

B̂
(h),GLS
1 = B(h)

1 +
T−h

∑
t=1

εt+hy
′
t(
T−h

∑
t=1

yty
′
t)−1.

The absolute value of the correlation between e(h)t+h and y′t(∑
T−h
t=1 yty

′
t)−1 is larger than the absolute value of

the correlation between εt+h and y′t(∑
T−h
t=1 yty

′
t)−1 because e(h)t+h = A

h−1
1 εt+1 + . . .+A1εt+h−1 + εt+h is correlated

with a larger share of y′t(∑
T−h
t=1 yty

′
t)−1.12 To illustrate, I conduct a simple Monte Carlo simulation where I

generate 1,000 samples of length 200 for the following AR(1):

yt+1 = .99yt + εt+1,

where var(εt) = 1. I then estimate the impulse responses using a VAR, LP estimated with OLS, and LP

estimated with GLS. To correct for autocorrelation using GLS, I include the estimated residuals. Below is the

table of the mean impulse responses at different horizons for the different methods.

Table 2: Mean Impulse Response Estimates for T=200

Horizons 5 10 20 40

True .951 .9044 .8179 .6690

VAR .8355 .7072 .5231 .3148

LP OLS .8259 .6713 .4223 .0787

LP GLS .8347 .7045 .5160 .2965

12This is a major reason why Kilian and Kim (2011) found that LP impulse responses were more biased than the VAR impulse
responses in their Monte Carlo simulations.
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All of the estimates can be substantially biased, but not correcting for autocorrelation can make the bias

considerably worse. Even if autocorrelation is corrected for in LP, there can still be a small sample bias due

to the correlation between εt+h and y′t(∑
T−h
t=1 yty

′
t)−1 not being zero in finite samples, but additional bias

due to not explicitly correcting for autocorrelation would be eliminated.13 Intuitively, the bias in LP OLS is

caused by the autocorrelation in the errors, and by strict exogeneity not being satisfied. The reason why LP

GLS and VAR OLS bias are approximately the same in this example is because the only thing causing the bias

in both cases is strict exogeneity not being satisfied, while in the OLS case it’s additionally being caused by

the autocorrelation in the errors.

2.2 The Autocorrelation Process of LP

First, I will show that even when the true DGP is not a VAR, including the horizon 1 LP residuals (or equiv-

alently, VAR residuals), {εt+1, . . . , εt+h−1}, in the horizon h conditioning set will eliminate autocorrelation as

long as the data are stationary and the horizon 1 LP residuals are uncorrelated. Second, I will show that the

autocorrelation process of e(h)t+h is known.

Assumption 1. The data {yt} are covariance stationary and purely non-deterministic so there exists a Wold

representation

yt = εt +
∞

∑
i=1

Θiεt−i.

Assumption 1 implies that by the Wold representation theorem, there exists a linear and time-invariant

Vector Moving Average (VMA) representation of the uncorrelated one-step ahead forecast errors {εt} . It fol-

lows from the Wold representation theorem that εt = yt−Proj(yt∣yt−1, yt−2, . . .) where Proj(yt∣yt−1, yt−2, . . .)

is the (population) orthogonal projection of yt onto {yt−1, yt−2, . . .}.

Consider for each horizon h = 1,2, . . . the infinite lag linear LP

yt+h = B(h)
1 yt +B(h)

2 yt−1 + . . . + e(h)t+h.

Proposition 1. Under Assumption 1, including {εt+1, . . . , εt+h−1} in the conditioning set of the horizon h LP

will eliminate autocorrelation in the horizon h LP residuals.

Proof. I first show that

Proj(yt+h∣εt+h−1, . . . , εt+1, yt, yt−1, . . .) = Proj(yt+h∣εt+h−1, . . . , εt+1, yt+h−1, yt+h−2, . . .).

From the Wold representation we know that εt+h−1 = yt+h−1 − Proj(yt+h−1∣yt+h−2, yt+h−3, . . .), which implies

13LP GLS tends to be a little more biased than the VAR because LP estimated at horizon h lose h observations at the end of the sample.

9



that {εt+h−1, yt+h−1, yt+h−2, yt+h−3, . . .} are linearly dependent. This implies that yt+h−1 can be dropped from

Proj(yt+h∣εt+h−1, . . . , εt+1, yt+h−1, yt+h−2, . . .) since it contains redundant information. Therefore,

Proj(yt+h∣εt+h−1, . . . , εt+1, yt+h−1, yt+h−2, . . .) = Proj(yt+h∣εt+h−1, . . . , εt+1, yt+h−2, yt+h−3, . . .).

Similarly, εt+h−2 = yt+h−2−Proj(yt+h−2∣yt+h−3, yt+h−4, . . .), which implies that {εt+h−2, yt+h−2, yt+h−3, yt+h−4, . . .}

are linearly dependent. This implies that yt+h−2 can be dropped from Proj(yt+h∣εt+h−1, . . . , εt+1, yt+h−2, yt+h−3, . . .)

since it contains redundant information. Therefore,

Proj(yt+h∣εt+h−1, . . . , εt+1, yt+h−2, yt+h−3, . . .) = Proj(yt+h∣εt+h−1, . . . , εt+1, yt+h−3, yt+h−4, . . .).

This process is repeated until yt+1 is being dropped due to linear dependence yielding

Proj(yt+h∣εt+h−1, . . . , εt+1, yt+1, yt, . . .) = Proj(yt+h∣εt+h−1, . . . , εt+1, yt, yt−1, . . .).

Therefore, if the data are stationary and the horizon 1 LP residuals are uncorrelated,

Proj(yt+h∣εt+h−1, . . . , εt+1, yt, yt−1, . . .) = Proj(yt+h∣εt+h−1, . . . , εt+1, yt+h−1, yt+h−2, . . .).

It follows that

[yt+h−Proj(yt+h∣εt+h−1, . . . , εt+1, yt, yt−1, . . .)] ⊥ [yt+h−i−Proj(yt+h−i∣εt+h−i−1, . . . , εt−i+1, yt−i, yt−i−1, . . .)]∀i ≥ 1,

where ⊥ is the orthogonal symbol.

Therefore, if the data are stationary and the residuals {εt} are uncorrelated, autocorrelation can be

eliminated in the horizon h LP by including {εt+1, . . . , εt+h−1} in the conditioning set. Of course, if the true

model requires only finitely many lags in the LP specification, then the proof above applies to that case as

well, since the extraneous lags will all have coefficients of zero in population.

Theorem 1. Under Assumption 1, the autocorrelation process of the horizon h LP residuals (e(h)t+h) is known.

Proof. We know from the Wold representation that εt ⊥ yt−1, yt−2, . . ., hence εt ⊥ εs for t ≠ s. Recall that the

infinite lag horizon h LP is

yt+h = B(h)
1 yt +B(h)

2 yt−1 + . . . + e(h)t+h = Proj(yt+h∣yt, yt−1, . . .) + e(h)t+h.

By Proposition 1, including {εt+1, . . . , εt+h−1} in the conditioning set eliminates autocorrelation, so the hori-
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zon h LP can be rewritten as

yt+h = Proj(yt+h∣εt+h−1, . . . , εt+1, yt, yt−1, . . .) + u(h)t+h,

where u(h)t+h = e(h)t+h − Proj(yt+h∣εt+h−1, . . . , εt+1) = e(h)t+h − Proj(yt+h∣εt+h−1) − . . . − Proj(yt+h∣εt+1). The Proj

can be broken up additively because {εt+1, . . . , εt+h−1} are orthogonal to each other and to {yt, yt−1, . . .}. By

Proposition 1, u(h)t+h is not autocorrelated. By the Wold representation we know that

Proj(yt+h∣εt) = Θhεt.

This implies, the horizon h LP can be written as

yt+h = B(h+1)
1 yt +B(h+1)

2 yt−1 + . . . +Θh−1εt+1 + . . . +Θ1εt+h−1 + u(h)t+h,

which implies

e
(h)
t+h = Θh−1εt+1 + . . . +Θ1εt+h−1 + u(h)t+h.

As a result, the autocorrelation process of e(h)t+h is known. Using the same linear dependence arguments as in

Proposition 1, it can be shown that

Proj(yt+h∣εt+h−1, . . . , εt+1, yt, yt−1, . . .) = Proj(yt+h∣yt+h−1, yt+h−2, . . .),

which implies that

u
(h)
t+h = εt+h,

in population.

Thus in population, the error process is a VMA(h − 1) even if the true model is not a VAR. In population

B
(h)
1 = Θh,

which implies

e
(h)
t+h = B

(h−1)
1 εt+1 + . . . +B(1)

1 εt+h−1 + εt+h.

2.3 LP GLS and Its Properties

Since e(h)t+h can be written as

e
(h)
t+h = B

(h−1)
1 εt+1 + . . . +B(1)

1 εt+h−1 + u(h)t+h,

11



GLS can be used to eliminate autocorrelation in LP while avoiding increasing the number of parameters

by including {εt+1, . . . , εt+h−1} in the horizon h conditioning set. To understand how, I’ll first explain what

happens when {εt+1, . . . , εt+h−1} is included in the conditioning set. Just like it is impossible to estimate a

VAR(∞) in practice, one cannot estimate LP with infinite lags since there is insufficient data. In practice

truncated LP are used where the lags are truncated at k. The proofs of consistency and asymptotic normality

discuss the rate at which k needs to grow with the sample size to ensure consistent estimation of the impulse

responses. In practice, k, needs to be large enough that the estimated residuals from the horizon 1 LP are

uncorrelated, which is what will be assumed for now. From Theorem 1 we know the horizon h LP is

yt+h = B(h)
1 yt + . . . +B(h)

k yt−k+1 +B(h−1)
1 εt+1 + . . . +B(1)

1 εt+h−1 + u(h)t+h,k,

where u
(h)
t+h,k is the lag k analogue of u(h)t+h. Due to {εt+1, . . . , εt+h−1} being unobserved, the estimates

{ε̂t+1,k, . . . , ε̂t+h−1,k} from the horizon 1 LP/VAR with k lags must be used instead. Estimates of the im-

pulse responses are still consistent (will be shown in Theorem 2), however, even if the sample size is large,

textbook formulas for GLS standard errors underrepresent uncertainty because {ε̂t+1,k, . . . , ε̂t+h−1,k} are gen-

erated regressors (Pagan, 1984) and because the textbook formulas for GLS assume strict exogeneity is

satisfied. In order to do valid inference, one must use formulas that take into account that the generated

regressors were estimated, which the FGLS estimator does.14

Including {ε̂t+1,k, . . . , ε̂t+h−1,k} in the conditioning set increases the number of parameters in each equa-

tion in the system by (h−1)×r. If consistent estimates of {B(h−1)
1 , . . . ,B

(1)
1 } are obtained in previous horizons,

one can do a Feasible GLS (FGLS) transformation. Let ỹ(h)t+h = yt+h − B̂
(h−1),GLS
1 ε̂t+1,k − . . . − B̂(1),OLS

1 ε̂t+h−1,k.

Then one can estimate horizon h via the following equation:

ỹ
(h)
t+h = B

(h)
1 yt + . . . +B(h)

k yt−k+1 + ũ(h)t+h,k.

ỹ
(h)
t+h is just a GLS transformation that eliminates the autocorrelation problem in LP without having to sacrifice

degrees of freedom and ũ
(h)
t+h,k is the error term corresponding to this FGLS transformation. If the impulse

responses are estimated consistently, then by the continuous mapping theorem, ỹ(h)t+h converges in probability

to the true GLS transformation y(h)t+h = yt+h −B
(h−1)
1 εt+1 − . . . −B(1)

1 εt+h−1 asymptotically. For clarification LP

can be estimated sequentially horizon by horizon as follows. First estimate the horizon 1 LP/VAR

yt+1 = B(1)
1 yt + . . . +B(1)

k yt−k+1 + εt+1,k.

14In the proof of asymptotic normality of the limiting distribution, it can be seen that the impact of the generated regressors does not
disappear asymptotically.
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B̂
(1),OLS
1 and ε̂t,k are estimates of B(1)

1 and εt,k respectively . Horizon 2 can be estimated as

ỹ
(2)
t+2 = B

(2)
1 yt + . . . +B(2)

k yt−k+1 + ũ(2)t+2,k,

where ỹ(2)t+2 = yt+2 − B̂(1),OLS
1 ε̂t+1,k, and B̂(2),GLS

1 is the GLS estimate of B(2)
1 . Horizon 3 can be estimated as

ỹ
(3)
t+3 = B

(3)
1 yt + . . . +B(3)

k yt−k+1 + ũ(3)t+3,k,

where ỹ(3)t+3 = yt+3 − B̂(2),GLS
1 ε̂t+1,k − B̂(1),OLS

1 ε̂t+2,k, and B̂(3),GLS
1 is the GLS estimate of B(3)

1 . Horizon 4 can

be estimated as

ỹ
(4)
t+4 = B

(4)
1 yt + . . . +B(4)

k yt−k+1 + ũ(4)t+4,k,

where ỹ(4)t+4 = yt+4−B̂(3),GLS
1 ε̂t+1,k−B̂(2),GLS

1 ε̂t+2,k−B̂(1),OLS
1 ε̂t+3,k, B̂(4),GLS

1 is the GLS estimate of B(4)
1 , and

so on.

The LP GLS estimator has several desirable properties. But first, some assumptions need to be introduced.

Assumption 2. Let yt satisfy the Wold representation as presented in Assumption 1. Assume that in addition

(i) εt is strictly stationary and ergodic such that E(εt ∣ Ft−1) = 0 a.s, where Ft−1 = σ(εt−1, εt−2, . . .) is the sigma

field generated by {εt−1, εt−2, . . .}.

(ii) E(εtε′t) = Σ is positive definite.

(iii) Θh satisfy ∑∞h=0 ∥ Θh ∥< ∞ where ∥ Θh ∥2= tr(Θ′
hΘh) with Θ0 = Ir.

Note that for any Wold representation det{Θ(z)} ≠ 0 for ∣z∣ ≤ 1 where Θ(z) = ∑∞h=0 Θhz
h. It follows from

Assumption 2 that the Wold representation can be written as an infinite order VAR representation

yt =
∞

∑
j=1

Ajyt−j + εt,

with ∑∞j=1 ∥ Aj ∥< ∞ and A(z) = Θ(z)−1 . By recursive substitution

yt+h = B(h)
1 yt +B(h)

2 yt−1 + . . . + εt+h +Θ1εt+h−1 + . . . +Θh−1εt+1,

where B(h)
1 = Θh, B(h)

j = Θh−1Aj +B(h−1)
j+1 for h ≥ 1 and with B(0)

j+1 = 0; Θ0 = Ir for j ≥ 1. The standard horizon

h LP consists of estimating Θh from a least squares estimate of Ah1 with truncated regression

yt+h = B(h)
1 yt + . . . +B(h)

k yt−k+1 + e(h)t+h,k,

where

e
(h)
t+h,k =

∞

∑
j=k+1

B
(h)
j yt−j+1 + εt+h +

h−1

∑
l=1

Θlεt+h−l.

13



Assumption 3. Let yt satisfy Assumption 2. Assume that in addition,

(i) The r-dimensional εt has absolutely summable cumulants up to order 8. That is,

∞

∑
i2=−∞

. . .
∞

∑
ih=−∞

∣ κa(0, i2, . . . , ij) ∣< ∞ for j = 2, . . . ,8,

a1, . . . , aj ∈ {1, . . . , r}, a = {a1, . . . , aj}, and κa(0, i2, . . . , ij) denotes the jth joint cumulant of ε0,a1 , εi2,a2 , . . . , εij ,aj .

In particular, this condition includes the existence of the eight moments of ε.

(ii) LrE(vec(εtε′t−j)vec(εtε′t−j)′)L
′

r is positive definite for all j, and Lr is a finite r(r + 1)/2 × r2 elimination

matrix as defined Lrvec(A) = vech(A).

(iii) k satisfies
k4

T
→ 0; T, k →∞.

(iv) k satisfies

(T − k −H)1/2
∞

∑
j=k+1

∥ Aj ∥→ 0 T, k →∞.

Theorem 2. Under Assumption 3, the LP GLS estimator is consistent. In particular

B̂
(h),GLS
1

p→ Θh.

More generally

∥ B̂(k, h,GLS) −B(k, h) ∥ p→ 0,

where

B̂(k, h,GLS)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r×kr

= (B̂(h),GLS
1 , . . . , B̂

(h),GLS
k ), B(k, h)

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
r×kr

= (B(h)
1 , . . . ,B

(h)
k ).

Theorem 3. (Asymptotic Normality of Limiting Distribution) Under Assumption 3,

√
T − k −Hl(k)′vec[B̂(k, h,GLS) −B(k, h)] d→ N(0,Ω(k, h,GLS)),

where l(k) is a sequence of kr2 × 1 vectors such that

0 <M1 ≤∥ l(k) ∥2≤M2 < ∞.

and the explicit formula for Ω(k, h,GLS) is defined in the next section.

Remark. l(k,H) is simply a Cramer-Wold device, which is used to show that any linear combinations of

the parameters that satisfy the condition have asymptotically normal limiting distributions. Goncalves and
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Kilian (2007) use these assumptions to show consistency and asymptotic normality of the VAR(∞) when

there is conditional heteroskedasticity. These assumptions are more general versions of the ones used by

Lewis and Reinsel (1985) and Jordà and Kozicki (2011) who show consistency and asymptotic normality of

the VAR(∞) and the LP(∞) respectively in the i.i.d. case. These are sufficient conditions. Some of the proofs

can be written under weaker conditions (e.g. Theorem 2 with k2

T
→ 0 and Theorem 3 with k3

T
→ 0), but for

sake of brevity these will suffice.

Proof. See appendix.

As noted earlier, the parameters used in the GLS correction are not known, and their uncertainty must

be taken into account in order to do valid inference. To take into account the uncertainty in the generated

regressors, frequentist can use bootstrapping, multi-step estimation (Murphy and Topel, 1985), or joint es-

timation (Greene, 2012). Bootstrapping and multistep estimation for reduced form and structural inference

will be discussed in the next section.

3 LP GLS Estimation

Section 3 is broken up into 5 subsections. Subsections 3.1 and 3.2 discuss how to do reduced form inference

using multistep estimation and bootstrapping respectively. Subsections 3.3 and 3.4 discuss how to do struc-

tural inference using multistep estimation and bootstrapping respectively. Section 5 discusses how structural

identification is handled.

3.1 Multistep Estimation for Reduced Form

Inference

The limiting distributions of the multistep estimators are derived in the appendix, so multistep estimation

is straightforward. Researchers can simply apply the FGLS method of section 2.3 and use the multistep

standard errors that are adjusted for uncertainty in the FGLS transformation. Define:

B̂(k, h,GLS)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r×kr

= (B̂(h),GLS
1 , . . . , B̂

(h),GLS
k ) = (T − k −H)−1

T−h

∑
t=k

ỹ
(h)
t+hX

′
t,kΓ̂−1

k ,

15



Γk
¯
kr×kr

= E(Xt,kX
′
t,k), Γ(m−n),k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kr×kr

= E(Xm,kX
′
n,k), Xt,k

±
kr×1

= (y′t, . . . , y′t−k+1)′.

From Theorem 3,

(T − k −H)1/2l(k)′vec[B̂(k, h,GLS) −B(k, h)] d→ N(0,Ω(k, h,GLS)),

with the multistep covariance matrix

Ω(k, h,GLS) = l(k)′{E[(Γ−1
k Xt,k⊗Ir)εt+hε′t+h(Γ−1

k Xt,k⊗Ir)′]+E[sk,h(Γ−1
k Xt,k⊗Ir)εt+1ε

′
t+1(Γ−1

k Xt,k⊗Ir)′s′k,h]

+E[(Γ−1
k Xt,k ⊗ Ir)εt+hε′t+h(Γ−1

k Xt+h−1,k ⊗ Ir)′s′k,h] +E[sk,h(Γ−1
k Xt+h−1,k ⊗ Ir)εt+hε′t+h(Γ−1

k Xt,k ⊗ Ir)′]}l(k),

where

sk,h = (
h−1

∑
l=1

{Γ−1
k Γ′(h−l−1),k ⊗Θl}),

and l(k) is the Cramer-Wold device defined earlier. Anywhere a parameter is not know, the estimated sample

analogue would be use, i.e. Γ̂−1
k for Γ−1

k . For joint inference on reduced form impulse responses from multiple

horizons, it is straightforward to deduce the following corollary from Theorem 3.

Corollary 1. Under Assumption 3,

l(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(T − k −H)1/2vec[B̂(k,H,GLS) −B(k,H)]

⋮

(T − k −H)1/2vec[B̂(k,2,GLS) −B(k,2)]

(T − k −H)1/2vec[B̂(k,1,OLS) −B(k,1)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d→ N(0, V11(k,H)),

where l(k,H) is a sequence of kr2H × 1 vectors such that 0 <M1 ≤∥ l(k,H) ∥2≤M2 < ∞,

V11(k,H) =
∞

∑
p=−∞

cov(Score(H)

t , Score
(H)

t−p ),

Score
(H)

t+H = l(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Γ−1
k Xt,k ⊗ Ir)εt+H + sk,H(Γ−1

k Xt,k ⊗ Ir)εt+1

⋮

(Γ−1
k Xt,k ⊗ Ir)εt+2 + sk,2(Γ−1

k Xt,k ⊗ Ir)εt+1

(Γ−1
k Xt,k ⊗ Ir)εt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. See appendix.
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3.2 Bootstrapping Estimation for Reduced Form Inference

LP are typically bootstrapped using a block bootstrap since the errors are autocorrelated and it was assumed

that the autocorrelation process is unknown. If one is only interested in functions of the reduced form

estimates, block bootstrapping is not necessary. LP GLS can be implemented using a score wild bootstrap

(Kline and Santos, 2012). More specifically, the wild bootstrap is applied to a “rearranged” scaled regression

score. It follows from Corollary 1 that for finite H

plim

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

l(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
T − k −Hvec[B̂(k,H,GLS) −B(k,H)]

⋮
√
T − k −Hvec[B̂(k,2,GLS) −B(k,2)]

√
T − k −Hvec[B̂(k,1,OLS) −B(k,1)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= plim{(T − k −H)−1/2
T−H

∑
t=k

Score
(H)

t+H} = plim{(T − k −H)−1/2
T−H

∑
t=k

j(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Γ−1
k Xt,k ⊗ Ir)εt+H

sk,H(Γ−1
k Xt,k ⊗ Ir)εt+1

⋮

(Γ−1
k Xt,k ⊗ Ir)εt+2

sk,2(Γ−1
k Xt,k ⊗ Ir)εt+1

(Γ−1
k Xt,k ⊗ Ir)εt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}

= plim{(T − k −H)−1/2
T−H

∑
t=k

Rscore
(H)

t+1 } = plim{(T − k −H)−1/2
T−H

∑
t=k

j(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Γ−1
k Xt−H+1,k ⊗ Ir)εt+1

sk,H(Γ−1
k Xt,k ⊗ Ir)εt+1

⋮

(Γ−1
k Xt−1,k ⊗ Ir)εt+1

sk,2(Γ−1
k Xt,k ⊗ Ir)εt+1

(Γ−1
k Xt,k ⊗ Ir)εt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

},

where Score(H)

t+H is the original scaled score. Rscore(H)

t+1 is the rearranged scaled score where the time sub-

scripts of ε line up, and j(k,H)′ is a (2H − 1)kr2 × 1 Cramer-Wold device such that

Score
(H)

t+H = l(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Γ−1
k Xt,k ⊗ Ir)εt+H + sk,H(Γ−1

k Xt,k ⊗ Ir)εt+1

⋮

(Γ−1
k Xt,k ⊗ Ir)εt+2 + sk,2(Γ−1

k Xt,k ⊗ Ir)εt+1

(Γ−1
k Xt,k ⊗ Ir)εt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= j(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Γ−1
k Xt,k ⊗ Ir)εt+H

sk,H(Γ−1
k Xt,k ⊗ Ir)εt+1

⋮

(Γ−1
k Xt,k ⊗ Ir)εt+2

sk,2(Γ−1
k Xt,k ⊗ Ir)εt+1

(Γ−1
k Xt,k ⊗ Ir)εt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The score wild bootstrap is implemented by applying the wild bootstrap directly to the score (in our case

the rearranged scaled score).15 Since we’re interested in doing inference on the limiting distribution of the

scaled score or a function of it, the score wild bootstrap obviates the need to recompute the estimator in

each bootstrap iteration. Let η be a zero mean unit variance random variable with finite fourth moments,

then the sample analogue of the bootstrap rearranged scaled score

ˆRScore
(H),∗

t = ˆ
Rscore

(H)

t ηt,

can be used to back out into bootstrap LP GLS estimates

l(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec[B̂∗(k,H,GLS) − B̂(k,H,GLS)]

⋮

vec[B̂∗(k,2,GLS) − B̂(k,2,GLS)]

vec[B̂∗(k,1,OLS) − B̂(k,1,OLS)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (T − k −H)−1
T−H

∑
t=k

ˆRScore
(H),∗

t+1 .

Conveniently, this can be done by just applying the wild bootstrap to {ε̂t}Tt=k+1. To summarize,

1. Decide on the number of bootstrap draws, J , and the maximum number of impulse response horizons

to be estimated, H.

2. Use the FGLS procedure described in section 2.3 to obtain estimates of {B(h)
1 , . . . ,B

(h)
k } for each of the

H horizons. The horizon 1 LP yields estimates of {ε̂t,k}Tt=k+1.

3. For each bootstrap draw, J , generate zero mean unit variance random normal variables η to generate

{ε̂∗t,k}Tt=k+1, where

ε̂∗t,k = ε̂t,kηt.

Then bootstrap draws can be created for each horizon by

B̂∗(k,1,OLS) = B̂(k,1,OLS) + (T − k −H)−1{
T−H

∑
t=k

ε̂∗t+1,kX
′
t,k}Γ̂−1

k ,

B̂∗(k,2,GLS) = B̂(k,2,GLS)+(T−k−H)−1({
T−H

∑
t=k

ε̂∗t+2,kX
′
t,k}Γ̂−1

k +
1

∑
l=1

Θ̂∗
l {
T−H

∑
t=k

ε̂∗t+1,kX
′
t,k}Γ̂−1

k Γ̂(h−l−1),kΓ̂−1
k ),

⋮

B̂∗(k, h,GLS) = B̂(k, h,GLS)+(T−k−H)−1({
T−H

∑
t=k

ε̂∗t+h,kX
′
t,k}Γ̂−1

k +
h−1

∑
l=1

Θ̂∗
l {
T−H

∑
t=k

ε̂∗t+1,kX
′
t,k}Γ̂−1

k Γ̂(h−l−1),kΓ̂−1
k ).

15Since LP are projecting more than one period forward, it necessitates that the scaled score be rearranged before applying the wild
bootstrap in order for the bootstrap to be valid.
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Denoting {B̂∗,j(k, h,GLS)} as jth bootstrap replication for the impulse responses, 95% confidence intervals

can then be constructed by taking the 2.5% and 97.5% quantiles of the parameter(s) of interest. When im-

plemented, η is Gaussian, but it need not be.16 The bootstrap can also be implemented with bias adjustment

if desired. The bias of the LP parameters can be calculated by applying the bias correction of West and Zhao

(2019) to the FGLS LP models.17

Theorem 4. (Asymptotic Validity of the Bootstrap) Under Assumptions 3,

l(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(T − k −H)1/2vec[B̂∗(k,H,GLS) − B̂(k,H,GLS)]

⋮

(T − k −H)1/2vec[B̂∗(k,2,GLS) − B̂(k,2,GLS)]

(T − k −H)1/2vec[B̂∗(k,1,OLS) − B̂(k,1,OLS)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d∗→ N(0, V11(k,H)).

Proof. See appendix.

3.3 Multistep Estimation for Structural

Inference

Following Brüggemann et al. (2016), a mixing condition is imposed for structural inference.

Assumption 4. Let yt satisfy Assumption 3. Assume that in addition, εt is strong (α) mixing, with α(m) of

size −4(ν + 1)/ν for some ν > 0, where α(m) = supA∈F0
−∞
,B∈F∞

m
∣P (A ∩B) − P (A)P (B)∣ for m = 1,2, . . . denote

the α mixing process of εt where F0
−∞ = σ(. . . , ε−2, ε−1, ε0) and F∞m = σ(εm, εm+1, . . .).

Remark. Assumption 4 is slightly to somewhat stronger than the condition used in Brüggemann et al. (2016),

and is probably a stronger condition than necessary. However, it allows for the use of mixingale inequalities

which in turn allows for a straightforward proof using the mixingale CLT. The proof can probably be written

using weaker conditions and following a proof similar to Theorem 3.1 in Brüggemann et al. (2016) .

16See Kline and Santos (2012) for a list of other variables that can be used.
17Whether or not one should bias adjust in practice is debatable. Bias adjustment can push sample estimates further away from the

true values, and bias adjustment can increase the variance (Efron and Tibshirani, 1993).
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Theorem 5. Under Assumption 4,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

l(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
T − k −Hvec[B̂(k,H,GLS) −B(k,H)]

⋮
√
T − k −Hvec[B̂(k,2,GLS) −B(k,2)]

√
T − k −Hvec[B̂(k,1,OLS) −B(k,1)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦√
T − k −Hvech[Σ̂ −Σ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

d→ N(0, V (k,H)),

where

V (k,H) =
⎡⎢⎢⎢⎢⎢⎣

V11(k,H) V12(k,H)

V21(k,H) V22

⎤⎥⎥⎥⎥⎥⎦
,

V22 = L′r{
∞

∑
p=−∞

E(vec(εtε′t), vec(εt−pε′t−p)′) − vec(Σ)vec(Σ)′}Lr,

V12(k,H) = V 21(k,H)′ =
∞

∑
p=−∞

cov(Score(H)

t , vec(εt−pε′t−p −Σ)′Lr).

Proof. See appendix.

Even though the GLS correction eliminates the need for a HAC estimator for V11(k,H), HAC estimators

are still needed for V12(k,H) = V21(k,H)′ and V22. This is also true in the VAR case as noted in Brüggemann

et al. (2016).18 A HAC estimator combined with the delta method would lead to asymptotically valid joint

inference. I do not explore which type of HAC estimators will perform best. I instead propose a block wild

bootstrap sampling scheme due to its simplicity.

Notwithstanding, the Delta Method can be applied directly following Theorem 5.

Corollary 2. (Delta Method for Structural Inference) It follows from Theorem 5 that for continuous and differ-

entiable g(⋅) and if H is fixed,

√
T − k −H

⎛
⎝
g(vec[B̂(H),GLS

1 ], . . . , vec[B̂(1),GLS
1 ], vech[Σ̂]) − g(vec[ΘH], . . . , vec[Θ1], vech[Σ])

⎞
⎠

d→ N(0, V (k,H)delta),
18This is due to the more general assumption of conditional heteroskedasticity for the errors. In the i.i.d. case a HAC estimator would

not be needed.
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where ▽ is the gradient,

V (k,H)delta = ▽g(vec[B(H)

1 ], . . . , vec[B(1)
1 ], vech[Σ])′Vmarginal ▽ g(vec[B(H)

1 ], . . . , vec[B(1)
1 ], vech[Σ]),

and where V (k,H)marginal is covariance matrix of

√
T − k −H

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec[B̂(H),GLS
1 −ΘH]

⋮

vec[B̂(2),GLS
1 −Θ2]

vecB̂
(1),GLS
1 −Θ1]

vech[Σ̂ −Σ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

V (k,H)marginal =
∞

∑
m=−∞

cov(r(H),marginal
t , r

(H),marginal
t−m

′),

r
(H),marginal
t+H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir2 0 . . . 0

⋮ ⋮ ⋮ ⋮

Ir2 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r2H×r2kH

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Γ−1
k Xt,k ⊗ Ir)εt+H + sk,H(Γ−1

k Xt,k ⊗ Ir)εt+1

⋮

(Γ−1
k Xt,k ⊗ Ir)εt+2 + sk,2(Γ−1

k Xt,k ⊗ Ir)εt+1

(Γ−1
k Xt,k ⊗ Ir)εt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vech

⎡⎢⎢⎢⎢⎣
(εt+1ε

′
t+1 −Σ)

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. Simply a direct application of the Delta method.

3.4 Bootstrap Estimation for Structural

Inference

As noted in Brüggemann et al. (2016), structural inference using the standard wild bootstrap is invalid. The

intuition behind their result is that if you apply a wild bootstrap to the errors, it cannot properly mimic

the fourth order moments, and since fourth order moments are needed to calculate V12(k,H) = V21(k,H)′

and V22, structural inference based on the wild bootstrap would be invalid. A standard block bootstrap

on y could be used, but for LP if one wants to calculate a statistic which is a function of parameters from

multiple horizons, i.e. a cumulative multiplier, it has the drawback that the blocks would need to be of

length H +k+`. To appreciate this point, note that up to this point, when a researcher wants to conduct joint
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inference using LP OLS via a block bootstrap, they would first need to construct all possible {yt+H , ..., yt−k+1}

tuples to preserve the joint dependence. Then blocks of ` consecutive tuples are concatenated together to

create bootstrap samples of the data which are then used to construct LP estimates. This is equivalent to

sampling random blocks of size H + k + ` and concatenating them. To highlight why this is relevant in

practice, take Ramey’s (2016) application of Gertler and Karadi (2015). Impulse responses were estimated

48 horizons out and the regressions included 2 lags. If one wanted to calculate the cumulative impact of a

monetary policy shock for the 48 horizons, H = 48 and k = 2, and the block length would be 50 + `. If one

were to instead estimate impulse horizons 16 horizons out, the block length would be 18+`. Considering the

bias variance tradeoff involved in choosing a block length, having the block length also depend on H and k

is clearly an undesirable feature.

To overcome these issues, I propose a hybrid score block wild bootstrap. This bootstrap combines the

score wild bootstrap, with the block wild bootstraps of Shao (2011), Yeh (1998). Brüggemann et al. (2016)

argue that the block wild bootstrap leads to invalid inference, but that result is due to the way they imple-

mented the bootstrap. The key is to recognize since we’re not doing inference on the error terms, we don’t

need to bootstrap the error terms and generating the dependent variable like you would in a traditional wild

bootstrap. Just like the score wild bootstrap, one can just bootstrap the rearranged scaled score. Note that

plim

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

l(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
T − k −Hvec[B̂(k,H,GLS) −B(k,H)]

⋮
√
T − k −Hvec[B̂(k,2,GLS) −B(k,2)]

√
T − k −Hvec[B̂(k,1,OLS) −B(k,1)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦√
T − k −Hvech[Σ̂ −Σ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= plim{(T −k−H)−1/2
T−H

∑
t=k

StrucScore
(H)

t+H} = plim{(T −k−H)−1/2
T−H

∑
t=k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Γ−1
k Xt,k ⊗ Ir)εt+H

sk,H(Γ−1
k Xt,k ⊗ Ir)εt+1

⋮

(Γ−1
k Xt,k ⊗ Ir)εt+2

sk,2(Γ−1
k Xt,k ⊗ Ir)εt+1

(Γ−1
k Xt,k ⊗ Ir)εt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
vech(εt+1ε

′
t+1 −Σ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}
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= plim{(T−k−H)−1/2
T−H

∑
t=k

RStrucScore
(H)

t+1 } = plim{(T−k−H)−1/2
T−H

∑
t=k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Γ−1
k Xt−H+1,k ⊗ Ir)εt+1

sk,H(Γ−1
k Xt,k ⊗ Ir)εt+1

⋮

(Γ−1
k Xt−1,k ⊗ Ir)εt+1

sk,2(Γ−1
k Xt,k ⊗ Ir)εt+1

(Γ−1
k Xt,k ⊗ Ir)εt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
vech(εt+1ε

′
t+1 −Σ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

},

where StrucScore
(H)

t+H is the original scaled “structural”score and the RStrucScore
(H)

t+1 is the rearranged

scaled “structural” score where the ε′s line up. Applying the block wild bootstrap to the sample analogue of

the rearranged scaled score leads to a valid bootstrap. For simplicity assume T − k −H = N` where N is the

number of blocks of length ` is the length of each block. Instead of multiplying the rearranged scaled scores

by the i.i.d. {ηk+1, . . . , ηT−H+1}, yielding

ˆRStrucScore
(H),∗

t = ˆ
RStrucScore

(H)

t ηt,

one would create

ˆRStrucScore
(H),∗

t = ˆ
RStrucScore

(H)

t η[t/`].

That is, cut { ˆ
RStrucScore

(H)

k+1 , . . . ,
ˆ

RStrucScore
(H)

T−H+1} into N blocks of length ` and multiply the jth block

by ηj to get the bootstrap sample { ˆRStrucScore
(H),∗

k+1 , . . . , ˆRStrucScore
(H),∗

T−H+1}. This can be implemented

simply by applying the block wild bootstrap to

⎡⎢⎢⎢⎢⎢⎣

ε̂∗t,k

(ε̂t,kε̂
′

t,k − Σ̂)∗

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

ε̂t,k

(ε̂t,kε̂
′

t,k − Σ̂)

⎤⎥⎥⎥⎥⎥⎦
η[t/`],

and replace the replacing the corresponding sample analogues with their bootstrap quantities. To summarize,

1. Decide on the number of bootstrap draws, J , and the maximum number of impulse response horizons

to be estimated, H.

2. Use the FGLS procedure described in section 2.3 is used to obtain estimates of {B(h)
1 , . . . ,B

(h)
k } for

each horizon the H horizons. The horizon 1 LP yields estimates of {ε̂t,k, (ε̂t,kε̂
′

t,k − Σ̂)}Tt=k+1.

3. Divide {ε̂t,k, (ε̂t,kε̂
′

t,k − Σ̂)}Tt=k+1, into N blocks of length `. For each bootstrap draw, J , generate N zero

mean unit variance random normal variables η, and multiply the jth block by ηj where

⎡⎢⎢⎢⎢⎢⎣

ε̂∗t,k

(ε̂t,kε̂
′

t,k − Σ̂)∗

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

ε̂t,k

(ε̂t,kε̂
′

t,k − Σ̂)

⎤⎥⎥⎥⎥⎥⎦
η[t/`].
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Then bootstrap draws can be created for each horizon by

B̂∗(k,1,OLS) = B̂(k,1,OLS) + (T − k −H)−1{
T−H

∑
t=k

ε̂∗t+1,kX
′
t,k}Γ̂−1

k ,

B̂∗(k,2,GLS) = B̂(k,2,GLS)+(T−k−H)−1({
T−H

∑
t=k

ε̂∗t+2,kX
′
t,k}Γ̂−1

k +
1

∑
l=1

Θ̂∗
l {
T−H

∑
t=k

ε̂∗t+1,kX
′
t,k}Γ̂−1

k Γ̂(h−l−1),kΓ̂−1
k ),

⋮

B̂∗(k, h,GLS) = B̂(k, h,GLS)+(T−k−H)−1({
T−H

∑
t=k

ε̂∗t+h,kX
′
t,k}Γ̂−1

k +
h−1

∑
l=1

Θ̂∗
l {
T−H

∑
t=k

ε̂∗t+1,kX
′
t,k}Γ̂−1

k Γ̂(h−l−1),kΓ̂−1
k ),

and

Σ̂∗ = Σ̂ + (T − k −H)−1
T−H

∑
t=k

(ε̂t,kε̂
′

t,k − Σ̂)∗.

The draws of Σ̂∗ are not guaranteed to be positive semi-definite. Whenever Σ̂∗ is not positive semi-definite,

the entire iteration is redone with new draws of η.19 With the exception of using a block wild bootstrap

scheme and calculating bootstrap estimates of Σ, these steps are essentially identical to the ones used section

3.2.

Since theX ′s are fixed and the joint autocovariances of

⎡⎢⎢⎢⎢⎢⎣

ε∗t,k

(εt,kε
′

t,k −Σ)∗

⎤⎥⎥⎥⎥⎥⎦
are preserved for ` lags, the score

block wild bootstrap properly mimics the fourth order moments of ε needed to yield consistent estimates of

V12(k,H) = V21(k,H)′ and V22 if `→∞ at a suitable rate. The bootstrap would yield consistent estimates of

V11(k,H), whether or not ` grows.

Assumption 5. Let yt satisfy Assumption 4. Assume that in addition,

k8

T
→ 0; T, k →∞.

`8

T
→ 0; T, `→∞.

Theorem 6. (Validity of Bootstrap for Structural Inference) Under Assumption 6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

l(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
T − k −Hvec[B̂∗(k,H,GLS) − B̂(k,H,GLS)]

⋮
√
T − k −Hvec[B̂∗(k,2,GLS) − B̂(k,2,GLS)]

√
T − k −Hvec[B̂∗(k,1,OLS) − B̂(k,1,OLS)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦√
T − k −Hvech[Σ̂∗ − Σ̂]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

d∗→ N(0, V (k,H)).

19In the empirical application, only a handful of iterations had to be redone.
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Proof. See appendix.

Since structural inference only involved the first and second moments of the rearranged scaled score,

and since the rearranged scaled score has a mean of 0, applying the block wild bootstrap to the rearranged

scaled score is valid since it preserves the first and second moments of the scaled score, which is all we need

to in order to do structural inference. By bootstrapping the rearranged scaled score, the structural inference

problems discussed in Brüggemann et al. (2016) are avoided entirely. Theorem 6 includes the sieve VAR as

a special case, thus the bootstrap also provides a sieve extension of Brüggemann et al. (2016).20

There are no great rules of thumb for choosing ` in general. Since the block length involves a bias variance

tradeoff with longer block lengths yielding less biased test statistics with larger variances and shorter block

lengths yielding the opposite, data dependent rules such as those listed in Ch 7. of Lahiri (2003), but which

optimize coverage, should to be developed in future research.

It follow directly from Theorem 6 that a bootstrap version of Corollary 2 exists.

Corollary 3. (Delta Method for Bootstrap Structural Inference) It follows from Theorem 6, that for continuous

and differentiable g(⋅) and if H is fixed,

√
T − k −H

⎛
⎝
g(vec[B̂(H),GLS,∗

1 , . . . , B̂
(1),GLS,∗
1 ], vech[Σ̂∗]) − g(vec[B̂(H),GLS

1 , . . . , B̂
(1),GLS
1 ], vech[Σ̂])

⎞
⎠

d∗→ N(0, V (k,H)delta).

Proof. Simply a direct application of the Delta method.

3.5 Structural Identification

This subsection briefly discusses structural identification in LP GLS. These techniques can be applied to both

the bootstrapped LP and the analytical LP. In the analytical case, uncertainty bands can be constructed using

the delta method. For an extensive review of structural identification in VARs and LP see Ramey (2016), and

for an extensive treatment of identification in VARs and LP using external instruments see Stock and Watson

(2018). For simplicity of exposition, assume the Wold representation can be written as a finite order VAR(k).

Going back to the horizon 1 LP

yt+1 = B(1)
1 yt +B(1)

2 yt−1 + . . . +B(1)
k yt−k+1 + εt+1,

20It should be noted that Brüggemann et al. (2016) use a moving block bootstrap in a traditional recursive design VAR bootstrap
setup, while here I apply a block wild bootstrap to the scaled score.
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and let εt = Rst where st is a vector of structural shocks and R is an invertible matrix. If R is known,

after estimating {B(1)
1 , . . . ,B

(h)
1 }, one can construct the structural impulse responses, {G(1), . . . ,G(h)}, via

Monte Carlo integration where G(h) = B(h)
1 R. Typically R is not known but can be estimated, so Monte

Carlo integration can still be applied. An example of R being estimated would be a triangular (recursive)

ordering.21 One would estimated horizon 1 LP, and then apply a recursive ordering to bootstrap draws of Σ

to obtain draws of R, and then draws of G(h) can be constructed via G(h) = B(h)
1 R.

It is often the case that the researcher may not know all of the identifying restrictions in R or may

believe that R is not invertible, but the researcher has an instrument that they believe can trace out impulse

responses of interest. The impulse responses of interest can instead be estimated by LP instrumental variable

regressions (LP-IV). Stock and Watson (2018) show that in order for LP-IV to be valid, 3 conditions need to

be satisfied. Decompose st into s1,t and s2,t where s1,t is the structural shock of interest at time t and s2,t

represents all other structural shocks at time t. Let zt be an instrument that the researcher believes can trace

out the impulse responses of s1,t. The instrument must satisfy the following three conditions

(i)E[s1,tzt] ≠ 0,

(ii)E[s2,tzt] = 0,

(iii)E[st+jzt] = 0 for j ≠ 0.

The first two conditions are just the standard relevance and exogeneity conditions for instrumental variable

regression. The third condition is a lead-lag exogeneity condition, which guarantees that the instrument, zt,

is only identifying the impulse response of the shock s1,t. If the third condition is not satisfied, then zt will

amalgamate the impulse responses at different horizons. It may be the case that these conditions are only

satisfied after conditioning on suitable control variables (e.g. the lags of a VAR/horizon 1 LP).

Researchers typically estimate LP-IV via two-stage least squares (2SLS). For example, say I want to es-

timate the impulse response, g(h), the impact a shock to monetary policy has on output at horizon h. Let

output be denoted as outputt and the monetary policy variable mpt. One can estimate LP-IV by estimating

outputt+h = g(h)mpt + control variables + error(h)t+h,

via 2SLS and using zt as an instrument for mpt. Newey and West (1987) standard errors are typically used

to account for autocorrelation, but as shown section 2, this ignores the increasing variance problem. The

increasing variance problem can be particularly problematic with LP-IV, because the increasing variance can

21In the literature a triangular (recursive) ordering is often called a cholesky ordering because people often apply a cholesky decom-
position to impose the ordering. It should be noted that the cholesky normalizes the variances of the structural shocks to unity. If one
does not want to normalize the structural shocks, one can instead use the LDL decomposition to impose recursive the ordering.
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weaken the strength of instrument for h ≥ 1 if one is estimating a cumulative multiplier directly. Alternatively,

the impulse responses of shocks to s1,t can be recovered if zt is included as an endogenous variable in the

system, and ordering it first in a recursive identification scheme (Plagborg-Møller and Wolf, 2019). Let

ẙt =
⎡⎢⎢⎢⎢⎢⎣

zt

yt

⎤⎥⎥⎥⎥⎥⎦
where yt contains mpt, outputt, and the control variables at time t, then the horizon 1 LP/VAR is

ẙt+1 = B̊(1)
1 ẙt + B̊(1)

2 ẙt−1 + . . . + B̊(1)
k ẙt−k+1 + ε̊t+1.

Since zt is ordered first due to its exogeneity, the residual for the zt equation, ε̊1,t, will be able to trace out the

structural impulse responses of interest.22 Going back to the monetary policy example, the impulse response

g(h) can be constructed as the ratio of the impulse response of outputt+h to ε̊1,t divided the impulse response

of mpt to ε̊1,t. Hence by imbedding zt as an endogenous variable in the system and ordering it first in a

recursive identification scheme, one can just estimate equation (2) via their preferred LP GLS method and

construct the impulse responses of interest.

4 LP GLS and Relative Efficiency

To give a sense of potential efficiency gains of estimating LP via GLS, I will compare the asymptotic relative

efficiency of the LP GLS estimator and the LP OLS estimator when the true model is an AR(1). Take the

simple AR(1) model

yt+1 = ayt + εt+1,

where ∣a∣ < 1, a ≠ 0, and εt is an i.i.d. error process with E(εt) = 0 and var(εt) = σ2. Define {b(1), . . . , b(h)} as

the LP impulse responses for the AR(1) model. For simplicity, assume the lag length is known. By Proposition

6 in appendix, the limiting distribution of the LP GLS impulse response at horizon h is

√
T (b̂(h),GLS − ah) dÐ→ N(0, [1 + (h2 − 1)a2h−2](1 − a2)).

The limiting distribution of the LP OLS impulse response at horizon h is

√
T (b̂(h),OLS − ah) dÐ→ N(0, (1 − a2)−1[1 + a2 − {2h + 1}a2h + {2h − 1}a2h+2]),

(Bhansali, 1997).
22Even if the control variables are exogenous to the system, any VARX can be written as a VAR with the exogenous variables ordered

first in a block recursive scheme.
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Theorem 7. (FGLS Efficiency) Assume the true model is an AR(1) as specified above with ∣a∣ < 1, a ≠ 0, and εt

is an i.i.d. error process with E(εt) = 0 and var(εt) = σ2. Then,

plim(var(
√
T (b̂(h),GLS − ah))) ≤ plim(var(

√
T (b̂(h),OLS − ah))).

Proof. See Appendix.

The relative efficiency between the LP GLS and LP impulse responses (given by the ratio of the variances),

[1 + (h2 − 1)a2h−2](1 − a2)2

[1 + a2 − {2h + 1}a2h + {2h − 1}a2h+2]
,

determines how much more efficient one specification is relative to another. Note that the relative efficiency

not only depends on the persistence, a, but on the horizon as well. Table 3 presents the relative efficiency

between the LP GLS and LP OLS impulse responses for different values of a. The gains from LP GLS can be

large but they are not necessarily monotonic. This is because if the persistence is not that high, the impulse

responses decay to zero quickly making the variance of the impulse responses small, and the gains from

correcting for autocorrelation are not as large.

Table 3: Relative Efficiency of LP (GLS) to LP (OLS)

Autocorrelation Horizons

Coefficient 3 5 10 20 30 40

a = .99 .993 .979 .945 .88 .818 .759

a = .975 .983 .948 .864 .713 .580 .464

a = .95 .966 .896 .735 .475 .288 .165

a = .9 .931 .792 .508 .179 .061 .029

a = .75 .827 .53 .195 .123 .123 .123

a = .5 .727 .496 .45 .45 .45 .45

a = .25 .854 .828 .827 .827 .827 .827

a = .1 .971 .97 .97 .97 .97 .97

a = .01 1 1 1 1 1 1

The efficiency gains of estimating LP GLS do not stop there. It turns out that when the true model is an

AR(1) and the system is persistent enough, LP GLS can be approximately as efficient as the AR(1). Let â be
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the OLS estimate, the OLS estimate of a has the limiting distribution

√
T (â − a) dÐ→ N(0,1 − a2).

By the delta method, the horizon h impulse response has the limiting distribution

√
T (âh − ah) dÐ→ N(0, h2a2h−2(1 − a2)).

The asymptotic relative efficiency between the AR and LP GLS impulse responses

h2a2h−2

h2a2h−2 + (1 − a2h−2)
,

determines which specification is more efficient. Since the true model is an AR(1), if the errors are normal,

the AR(1) model will be asymptotically more efficient due to the Cramer-Rao lower bound (Bhansali, 1997).

Table 4 presents the relative efficiency between the AR and LP GLS impulse responses for different values of

a.

Table 4: Asymptotic Relative Efficiency of AR to LP (GLS)

Horizons 5 10 20 30 40

a = .99 .997 .998 .999 .999 .999

a = .975 .991 .994 .996 .996 .996

a = .95 .980 .985 .985 .980 .968

a = .9 .95 .946 .881 .667 .302

a = .75 .736 .362 .007 0 0

a = .5 0 0 0 0 0

If the data is persistent enough, the LP GLS impulse responses have approximately the same variance for

horizons relevant in macro. For example, the economics profession has still not determined if GDP has a

unit root or not. Assume that GDP is stationary but highly persistent with an AR(1) coefficient of .99. In this

case, the AR(1) impulse responses has approximately the same variance for at least the first 40 horizons.

Müller (2014) estimates the AR(1) coefficient for unemployment to be approximately .973. This would lead

to the AR(1) impulse responses having approximately the same variance for at least the first 40 horizons.

Other important macroeconomic variables such as inflation and the 3 month interest rate and most macro

aggregates are also highly persistent and would display similar results. It is not until the AR(1) coefficient is

.9 that you can see a notable difference over the first 40 horizons, and even then it is not until about 20 or

so horizons out. For less persistent values of a the AR(1) dominates.

When the true model is a multivariate VAR things become more complicated. Efficiency still depends on
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the horizon and persistence, but because persistence can vary across the equations in the system, LP GLS

could be approximately as efficient for some impulse responses and much less efficient for others. To see

why, let us return to the VAR(1) model

yt+1 = A1yt + εt+1.

Take the eigenvalue decomposition of A1 = EΛ1E
−1, where Λ1 = diag(λ1, . . . , λr) is the diagonal matrix of

eigenvalues which are assumed to be distinct and nonzero. E is the corresponding eigenmatrix. As a result

Ah1 = EΛh1E
−1. Define wt = E−1yt and εt = E−1εt. For simplicity assume E is known. This implies the VAR

can be transformed into

wt+1 = Λ1wt + εt+1,

which will be called the transformed model. Consequently,

wt+h = Λh1wt +Λh−1
1 ηt+1 + . . . +Λ1ηt+h−1 + εt+h.

Since Λ1 is diagonal, each equation in the transformed VAR(1) is an AR(1) model. Therefore the results

derived earlier in this subsection for the AR(1) model apply.

More generally, it should be noted that: 1) all of the variation in Âh1 is emanating from Λ̂h1 (it was assumed

E is known);

2)

var(
√
Tvec[Âh1 −Ah1 ]) = var(

√
Tvec[E(Λ̂h1 −Λh1)E−1]) = [E′−1 ⊗E]var(

√
Tvec[Λ̂h1 −Λh1 ])[E′−1 ⊗E]′.

Hence, the efficiency gains of impulse responses estimated via LP GLS impulse for a particular horizon de-

pends on the relative efficiency of the eigenvalues, and how much an eigenvalue contributes to the variance

of an impulse response. So if A1 contains different eigenvalues, the eigenmatrices would determine how

much the variance of an eigenvalue contributes to the variance of an impulse responses in the untrans-

formed model and hence determine the relative efficiency of LP GLS impulse response to the VAR impulse

responses.23 Essentially, the efficiency gains of the VAR come from the less persistent components. Depend-

ing on the persistent eigenvalues and how much they contribute to the variance of the impulse responses, it

is possible for LP GLS to be approximately as efficient as the VAR. Whether LP GLS impulse responses would

be approximately as efficient would depend on the true DGP, the persistence of the system, the dependence

structure of the variables, and the horizon. In other words, it would be specific to the situation. It should

be noted that persistent eigenvalues would not necessarily get the most weight.24 It follows that LP can be

23Note that if the correlation matrix of var(√Tvec[Λ̂h
1 − Λh

1 ]) differs across estimation methods, then the correlation matrix also
determines relative efficiency for the untransformed model impulse responses.

24In order to apply that argument, A would have to be positive definite.
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much more efficient than previously believed.

5 Monte Carlo Evidence

In this section, I present a battery of Monte Carlo evidence of the finite sample properties of the LP GLS

bootstrap and the multistep (analytical) LP GLS estimator. I compare the following estimators:

• LP GLS bootstrap (LP GLS Boot),

• Bias-adjusted LP GLS bootstrap (LP GLS Boot BA),

• Analytical LP GLS estimator (LP GLS),

• Analytical VAR estimator (VAR),

• Bias-adjusted VAR bootstrap (Kilian, 1998) (VAR Boot BA),

• LP OLS with equal-weighted cosine HAC standard errors (Lazarus et al., 2018) (LP OLS).

The abbreviations in the parentheses are what the estimators are referred to in the figures. In summary, I

find that the LP GLS bootstrap estimators minimizes downside risk. The VAR had the shortest confidence

interval on average, but coverage can vary widely depending on the DGP. LP OLS typically had at least

decent coverage, but coverage typically did not exceed that of its GLS counterparts, and it was relatively

inefficient compared to the GLS estimators. LP GLS bootstrap coverage doesn’t drop below approximately

86% and is often in the low to mid 90’s. The analytical LP GLS estimator does not perform as well as the LP

GLS bootstraps.

Unless stated otherwise, all simulations use a sample size of 250, which is representative of a quarterly

data set dating back to 1960. Even though the most prominent macro variables such as GDP, inflation, and

unemployment date back to at least 1948, many do not date back that far. The comprehensive McCracken

and Ng (2016) data set goes back to 1959 for quarterly and monthly data of, so a sample size of 250 would

be representative lower bound for practically most quarterly macroeconomic variables of interest.25

All of the methods use the same lag length for each simulation. The LP GLS methods requires that the

VAR residuals are white noise. For the simulations, lag lengths are chosen using a lag length criteria (e.g.

AIC, BIC, HQIC) and then the VAR residuals are tested for autocorrelation using the Ljung-Box Q-test. The

baseline lag length used is AIC, but results are not sensitive to other choices. If the null of white noise is

rejected, a lag is added, the model is reestimated, and the new residuals are tested for autocorrelation. This
25If one is doing LP-IV and the instrument is not available for the same sample period as the other variables in the system, then

estimation can only be done for the sample period that the instrument is available (Stock and Watson, 2018). Fortunately, the major
instruments used in macroeconomics are available for at least 200 observations (Ramey, 2016).
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process is repeated until the null of white noise is not rejected for the VAR residuals. This lag length is then

used for all estimation procedures (including the non LP GLS procedures).

Simulations were conducted 1,000 times, and bootstraps have 5,000 replications each. Coverage and

average length for 95% confidence intervals of the reduced form impulse responses are calculated. That is,

for each simulation, I estimated the model for each desired horizon using all of the estimation methods and

then check if the 95% confidence intervals contain the true impulse response. I then calculate the probability

that the 95% confidence interval contains the true impulse response over the Monte Carlo simulations which

gives me the coverage for each method and horizon. For each simulation draw, I also save the length of the

95% interval for the the different methods for each horizon. The lengths are then averaged over each Monte

Carlo simulation for each method and horizon to get the respective average length of the 95% confidence

intervals for each method and horizon. Unless stated otherwise, 15 horizons are analyzed, which would be

representative of analyzing four years of impulse responses for quarterly data. The selected results for the

Monte Carlos are presented in figures 4-9 in the appendix.

I redo several of the Monte Carlos in Kilian and Kim (2011). I start with the following VAR (1):

yt+1 = A1yt + εt+1,

where

A1 =
⎡⎢⎢⎢⎢⎢⎣

A11 0

.5 .5

⎤⎥⎥⎥⎥⎥⎦
,A11 ∈ {.5, .9, .97}, and εt ∼ N(

⎛
⎜
⎝

0

0

⎞
⎟
⎠
,
⎛
⎜
⎝

1 .3

.3 1

⎞
⎟
⎠
).

Despite the model being simplistic, it has been a benchmark in the literature. For this DGP, the bias-adjusted

VAR bootstrap performs the best overall. The LP GLS bootstraps also perform well, but they’re not as efficient,

and for the persistent eigenvalues, the coverage is slightly worse than the bias-adjusted VAR. The analytical

LP GLS, LP OLS, and the analytical VAR performance deteriorates the most when the eigenvalues are more

persistent. Despite this, all of the estimators have coverage of at least 80% for all horizons. Select results are

presented in Figure 4.

The second Monte Carlo I replicate from Kilian and Kim (2011) is the following ARMA(1,1),

yt+1 = .9yt + εt+1 +mεt,

where m ∈ {0, .25, .5, .75}, and εt ∼ N(0,1). The bias-adjusted VAR bootstrap performs the best, but LP GLS

bootstraps perform well, with coverage of at least approx. 90% at all horizons. Again the GLS estimators

are more efficient than the LP OLS estimator. LP OLS has slightly better coverage than the analytical LP GLS

estimators, but not the bootstraps. In terms of coverage, the analytical VAR performs the worst out of them

all, and appears to have the shortest average length because it’s underestimating uncertainty. Select results
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can be found in Figure 5.

The final DGP I replicate from Kilian and Kim (2011) is their empirically calibrated VARMA(1,1) based

on quarterly investment growth, inflation, and the commercial paper rate.

yt+1 = A1yt + εt+1 +M1εt,

where

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

.5417 −.1971 −.9395

.04 .9677 .0323

−.0015 .0829 .808

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−.1428 −1.5133 −.7053

−.0202 .0309 .1561

.0227 .1178 −.0153

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

9.2352 0 0

−1.4343 3.607 0

−.7756 1.2296 2.7555

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and εt ∼ N(0, PP ′). For the VARMA(1,1) only the analytic VAR doesn’t have coverage of at least 90% for all

parameters. Coverage drops as low as 79%, for one response, but 5 of the 9 responses are at least 90% for

all horizons. The average length for the LP GLS estimators are quite a bit shorter than the LP OLS estimator.

Select results are presented in Figure 6.

In summary so far, the LP GLS bootstraps performed well, but not as well as the bias-adjusted VAR.

The LP analytical estimator tended to perform better than the analytical VAR and LP OLS, but all three of

these estimators had coverage that tended to fall off more when estimators had more persistent eigenvalues.

Relative to Kilian and Kim (2011), the LP estimators used in these Monte Carlos performed much better. The

poor performance of LP estimators in Kilian and Kim (2011) was due to two reasons. First, Kilian and Kim

(2011) were limited to using the LP estimators of the time. They used a block bootstrap LP estimator and an

LP OLS estimator with Newey-West standard errors. The drawbacks of using a standard block bootstrap for

LP was discussed in Section 3.4. Newey-West standard errors have well known coverage distortions (Müller,

2014). The equal-weighted cosine HAC standard errors of Lazarus et al. (2018) is a much better alternative.

Monte Carlos with Newey-West standard errors are not included, but preliminary Monte Carlo evidence

corroborates the evidence that equal-weighted cosine HAC standard errors are a better alternative relative

to standard Newey-West. Second, not explicitly modeling for autocorrelation and doing a GLS correction

appears to have negatively affected LP performance.

The Kilian and Kim (2011) Monte Carlos provide evidence that if the VAR can do a good job approximat-

ing the DGP, it will tend to have better performance than LP. If VARs cannot do a good job approximating the

DGP, it can drastically impact inference. To illustrate, I return to the MA(35) from section 2.1. The results

are presented in Figure 7. Here, the LP estimators have approximately 95% coverage for all horizons. The

VAR estimators, on the other hand, have about 90% coverage for the first 1 or 2 horizons before coverage

drops precipitously. Even though the MA(35) is not empirically calibrated, it may not be too dissimilar from

what can occur in practice.
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Next I’ll present evidence for two empirically calibrated Monte Carlos for a fiscal VAR and technology

shock VAR. But before I get into the details, it’s important that I first discuss a potential shortcoming in the

way we calibrate empirical models in the impulse response literature. Jordà (2005) and Kilian and Kim

(2011) each empirically calibrated a VAR(12) in the spirit of Christiano et al. (1999) to give an empirically

relevant Monte Carlo that would give a gauge of what is happening in practice. The problem with empirically

calibrated VARs is that if the the model used to generate the data suffers from truncation bias, the Monte

Carlo simulation may mask the actual amount of truncation bias that could occur in practice. For example,

take the MA(35) from section 2.1. Say the VAR that corresponds to the mean impulse response for the

VAR is used to generate data in a Monte Carlo. If the coverage in that Monte Carlo is great, one might

conclude that the truncation bias is not an issue and in practice truncation bias is unlikely to be a problem.

Obviously we know truncation bias can be an issue because we know what the true impulse responses are.

In practice when empirically calibrating a Monte Carlo, the results of the Monte Carlo are only as good as

the calibration, and in practice we don’t know how good the calibration is.26 To protect against this problem,

I estimate empirically calibrated VARs with lag lengths longer than what is typically used in practice in order

to protect against truncation bias. 27

I empirically calibrate 2 different quarterly VARs. For the quarterly data sets, researchers will typically not

include more than one or two years worth of lags, so I estimate a VAR(16). I assume the errors are normally

distributed. The first empirically calibrated VAR is a fiscal VAR that includes growth rates of real GDP per

capita and real spending per capita, which are the baseline variables used in fiscal multiplier analysis (Ramey

and Zubairy, 2018). The data runs from 1947Q2-2019Q4. The results are presented in Figure 8. For the bias-

adjusted VAR, coverage drops below 80% after approximately 7 horizons out for at least one response, and by

15 horizons out, 2 responses have coverage below 20%, and 3 below 60%. For the analytical VAR, coverage

rates respond in a similar manner, with 2 of the four responses having coverage below 15% at 15 horizons

out, and 3 of the four responses having coverage below 50%. All of the LP estimators, on the other hand,

have coverage of approximately 90% or higher at all horizons. The results are only somewhat sensitive to

using the conservative lag length suggestion of Kilian and Lütkepohl (2017) and including one or two years

worth of lags. Though not included in the figures, including 2 years worth of lags slightly improves the

coverage of the VAR estimators, but the truncation bias still causes massive coverage deterioration at higher

horizons, with coverage rates still dropping below 12% for 2 of the 4 responses and below 71% for 3 of the

4 responses.

The second empirical Monte Carlo is a technology VAR that includes growth rates of labor productivity,

real GDP per capita, real stock prices per capita, and total factor productivity. These are the baseline vari-

26This argument also applies to the calibrated VARMA(1,1) presented earlier.
27Alternatively, I could also generate the model using LP to estimate the Wold coefficients up to q horizons out and generate data

based off of that MA(q). Unfortunately, it would be more cumbersome since it would require more choices in the setup and hence more
robustness checks.
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ables used in Ramey (2016). The data runs from 1947Q2-2015Q4. Again, I estimate a VAR(16) and use that

to generate the data. Select results are presented in Figure 9. With the exception of the first horizon, the

LP estimators have coverage of at least 90% for essentially all response at all horizons, with the occasional

response dipping into the mid to high 80s. Since the horizon 1 LP is a VAR, the horizon 1 impulse responses

had a sub par performance for all of the estimators. Like for the fiscal VAR, the VAR estimators have serious

coverage distortions across most horizons. Excluding the horizon 1 impulse responses, responses had cover-

age fall below 80% as early as 5 horizons out. By horizon 15, most responses had coverage rates drop below

50%, with some dropping as low 11% for the bias-adjusted VAR bootstrap and 9% for the analytical VAR.

Including 2 years worth of lags did not substantially improve the performance of the VAR estimators.

The coverage distortion results for the VAR should be alarming. For empirically calibrated VAR DGP, the

results can be thought of as an upper bound, in the sense that the true model is probably not a VAR(16),

so information gleamed from these Monte Carlo’s are limited to how good the approximations are, and

the truncation bias problem with the VARs can be much worse. Even though LPs have good coverage, the

truncation bias can be worse for them as well, but probably not as bad as the VAR.

In summary, I find that LP GLS does the best at balancing efficiency while still have proper nominal

coverage. LP GLS bootstrap estimators in general had coverage of at least 89%. They were generally more

efficient than the LP OLS estimator (unless the LP OLS estimator was underestimating uncertainty).28 The

analytical LP GLS estimator did not perform as well as its bootstrap counterparts, but it tended to perform

better than the LP OLS. LP OLS typically had decent coverage, but it was clearly the most inefficient out

of all the estimators (unless it was underestimating uncertainty). The VAR is the most efficient out of the

estimators. When the VAR does a good job of approximating the DGP, coverage is at or near nominal level,

but coverage can vary widely depending on the DGP. As highlighted in the empirically calibrated Monte

Carlos, it can easily be the case that the VAR has truncation bias issues that leads to poor coverage rates.

6 Structural Breaks and Time-Varying

Parameter LP

It is worth reiterating that the GLS procedure presented in Section 2 and the consistency and asymptotic

normality of the procedure assumes stationarity.29 Nonstationarity can be caused by unit roots or structural

28There were cases where the OLS estimator had shorter confidence intervals, but the coverage was below the nominal level.
29If unit roots are the cause, consistency can still hold if the errors have enough moments (Jordà, 2009), so the procedure would

still eliminate autocorrelation, but asymptotic normality of the results could break down in general. That being said, inference would
be valid in the presence of unit roots in certain cases (see Jordà (2009) Proposition 4 for details). Montiel Olea and Plagborg-Møller
(2020) show that lag augmentation with LP can handle unit roots more generally.
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breaks. When nonstationarity is caused by structural breaks, all methods will break down if they do not

properly take into account change(s) in the parameters. Stationarity guarantees that the model has a linear

time-invariant VMA representation. If the data are not stationary and structural breaks are the cause, then

the procedure may not eliminate autocorrelation. To understand why it matters if structural breaks are

present, note that if the data are not stationary, it is possible for the estimated horizon 1 LP residuals to

be uncorrelated since the VAR can still produce reasonable one-step ahead forecasts when the model is

misspecified (Jordà, 2005). A “Wold representation” exists for nonstationary data, but the impulse responses

for this VMA representation are allowed to be time dependent (Granger and Newbold, 1977, Priestley,

1988).30 Assuming there is no deterministic component, any time series process can be written as

yt = εt +
∞

∑
i=1

Θi,tεt−i,

where Θi,t is now indexed by the horizon and time period and var(εt) = Σt. Using recursive substitution,

the time dependent Wold representation can be written as a time dependent VAR or a time dependent LP. It

can be shown that a time dependent version of Theorem 1 exists. The horizon h time dependent LP is

yt+h = B(h)
1,t yt +B

(h)
2,t yt−1 + . . . + e(h)t+h,

where

e
(h)
t+h = Θh−1,tεt+1 + . . . +Θ1,tεt+h−1 + εt+h,

B
(h)
1,t = Θh,t.

If impulse responses are time dependent at higher horizons, but a time invariant version of LP GLS is applied,

autocorrelation may not be eliminated at these horizons because the time-invariant LP are misspecified. In

other words, if the data are nonstationary and the nonstationarity is caused by structural breaks, the time

invariant version of LP GLS may not eliminate autocorrelation in the residuals since the estimates of the

impulse responses may not be consistent. In this sense, LP GLS is a type of general misspecification test,

because if one had estimated LP using OLS and HAC standard errors, the autocorrelation in the residuals

would not hint toward potential misspecification since the residuals are inherently autocorrelated.

Just like the time invariant case, k can be infinite in population but will be truncated to a finite value

in finite samples. Similarly to the time-invariant transformation, one can do a GLS transformation ỹ
(h)
t+h =

30Nonstationarity in economics typically refers to explosive behavior (e.g. unit roots), but nonstationarity is more general and refers
to a distribution that does not have a constant mean and/or variance over time. Depending on the true model, differencing may not
make the data stationarity (Leybourne et al., 1996, Priestley, 1988).
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yt+h − B̂(h−1)
1,t ε̂t+1,k − . . . − B̂(1)

1,t ε̂t+h−1,k. Then one can estimate horizon h via the following equation:

ỹ
(h)
t+h = B

(h)
1,t yt +B

(h)
2,t yt−1 + . . . +B(h)

k,t yt−k+1 + ũ(h)t+h,k.

Estimation is carried out in the same way as in the time-invariant case, except the models are being estimated

with time-varying parameters.

Just like a static LP model can be less sensitive to model misspecification than a static VAR, a time-varying

parameter LP model can be less sensitive to model misspecification than a time-varying parameter VAR. If

the true model is time varying, then the misspecification of the VAR can extend to the time variation as

well. Due to the iterative nature of the VAR, misspecification in time variation would be compounded in the

construction of the impulse responses alongside other misspecifications in the VAR. Time-varying parameter

LP, however, allow for the amount and nature of time variation to change across horizons. Since time-varying

parameter models can also approximate any non-linear model, time-varying parameter LP can do a to better

job capture the time variation in the impulse responses at each horizon.

As noted in Granger and Newbold (1977), macro data encountered in practice are unlikely to be sta-

tionary, implying that the Wold representation may be time dependent. If the impulse responses of the

Wold representation are time dependent, since time-varying parameter models can approximate any form of

non-linearity (Granger, 2008), a time varying version of LP GLS may be applied. The time-varying param-

eter version of the above GLS procedure presented in section 2 will be able to eliminate autocorrelation as

long as the parameter changes are not so violent that a time-varying parameter model cannot track them.

All else equal, the more adaptive the time-varying parameter model, the better the time-varying parameter

model will be able to track changes and the better the approximation.31 If the nature of the time depen-

dence is known, that is, the researcher knows when the structural breaks occur or the nature of the time

variation, then that specific time dependent model can be applied to the LP GLS procedure. The conditions

under which this procedure is consistent and asymptotically normal, as well as the proofs for consistency

and asymptotic normality could vary depending on the type of time-dependent model being used and the

estimation procedure and is therefore left for future research.

7 Application to Gertler and Karadi (2015)

To illustrate how results can change when using LP GLS, I redo the analysis Gertler and Karadi (2015).

One of the reasons why the Gertler and Karadi (2015) analysis is so interesting is because there has been

31Baumeister and Peersman (2012) show via Monte Carlo simulations that time-varying parameter models are able to capture discrete
breaks in a satisfactory manner should they occur.
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tension in the literature about the results. Using a Proxy Structural SVAR, Gertler and Karadi (2015) find

an increase in the one-year Treasury rate leads to a decrease in both industrial production and CPI. Several

papers have challenged different aspects of Gertler and Karadi’s (2015) methodology and implementation

(Ramey, 2016, Brüggemann et al., 2016, Stock and Watson, 2018, Jentsch and Lunsford, 2019a).32 Using

LP-IV with Newey-West standard errors, Ramey (2016) finds that an increase in the one-year Treasury leads

to a significant decrease in CPI but a significant increase in industrial production. Output does not respond

for at least a year, and inflation does not respond for at least 30 months. Both output and CPI respond

more slowly relative to the Gertler and Karadi (2015) results. The Gertler and Karadi (2015) and the Ramey

(2016) results are presented in Figure 2.

Figure 2: Left: Proxy SVAR results with 90% bootstrap confidence intervals. Right: LP-IV results with 90%
Newey-West confidence intervals.

The system of macroeconomic variables includes output (log of industrial production), inflation (log of

CPI), the one-year Treasury yield, the excess bond premium spread, and a high frequency identification

instrument. I do baseline analyses using 2 different instruments: the surprise to the one-month ahead fed

funds futures and the surprise to the three-month ahead fed funds futures. When using the the three-month

surprise the data spans 1990M1-2012M6 and spans from 1988M10-2012M6 when using the one-month

surprise. I estimate the systems using the LP GLS bootstrap (without bias adjustment) based on 20,000

32Jentsch and Lunsford (2019a,b) prove the invalidity of Gertler and Karadi’s (2015) Proxy SVAR bootstrap and show that it can
dramatically underestimate uncertainty. Ramey (2016), Stock and Watson (2018) point out that the high frequency identification
instruments are correlated, thus violating the lead-lag exogeneity condition discussed in section 3.5.
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replications. I use 12 lags in estimation as in Gertler and Karadi (2015) and a block length of 20, but

my results are qualitatively similar across alternative choices for these parameters. The structural impulse

responses are constructed as discussed in Subsection 3.5.
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Figure 3: LP GLS bootstrap results with 90% confidence intervals. Left: Three-month fed funds futures
surprise as instrument. Right: One-month fed funds futures surprise as instrument.

The LP GLS bootstrap results for output and inflation are presented in Figures 3. In general, I cannot

reject the null hypothesis that a change in the one-year Treasury has no impact on output or inflation during

the first four years. There is, however, evidence of an output puzzle at horizon 1 when using the 3 month

surprise as the instrument.33 Relative to the VAR, the LP GLS results are more uncertain and less pronounced.

Relative to LP OLS, the puzzling output result mostly go away for the LP GLS. The LP GLS results are

generally not significant while the LP OLS results are at higher horizons.34 The results are also not sensitive

to using growth rates of industrial production and CPI instead of log levels.35 F-test indicates the instrument

is relevant, with the bootstrap LP FGLS having a mean F-statistic of approximately 25 and 32 for the three-

33Puzzles are not uncommon when using high frequency monetary policy instruments (Ramey, 2016).
34The significance of the OLS results is likely due to Newey-West standard errors underestimating uncertainty. See Müller (2014) for

a summary of papers studying the size distortions of HAC estimators. An earlier version of this paper used Newey-West standard errors
in the Monte Carlo analysis and found that coverage could be drastically short of the nominal level.

35The results are noticeably more erratic when growth rates are used.
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month and one-month future surprises respectively.36

The results are consistent with what Nakamura and Steinsson (2018a) refer to as the “power problem”.

That is, the signal to noise ratio may be too small to estimate the impact of monetary policy on lower

frequency macroeconomic variables such as output and inflation with any precision. The high frequency

identification shocks are changes in the federal funds futures in a tight window (e.g. 30 minutes) around an

FOMC meeting. Even if the identification scheme is valid, the shocks may be too small to determine changes

in output and inflation, which are monthly variables that are impacted by a host of structural shocks. The

horizon h structural impulse response of output to the one-year Treasury yield, for example, is the horizon h

response of output to the high frequency instrument divided by the contemporaneous response of the one-

year Treasury yield to the instrument. Even if the instrument is relevant (the contemporaneous response of

the one-year Treasury yield to the instrument is nonzero and is estimated with precision), if the response of

output to the instrument cannot be estimated with any precision, no meaningful inference can be done. The

high frequency instruments have an insignificant impact on output and inflation, despite being relevant. The

LP GLS results indicate that maybe the high frequency identification shocks cannot be used to determine the

impact that monetary policy has on lower frequency aggregate variables like output and inflation.37

8 Concluding Remarks

I show that LP can be estimated with GLS. Estimating LP with GLS has three major implications. First, LP GLS

can be substantially more efficient and less biased than estimation by OLS with HAC standard errors. Monte

Carlo simulations for a wide range of models highlight the benefits of LP GLS. Under assumptions discussed

in section 4, it can be shown that impulse responses from LP GLS can be approximately as efficient as impulse

responses from VARs. Whether or not the LP GLS is approximately as efficient depends on the persistence of

the system, the horizon, and the dependence structure of the system. All else equal, the more persistent the

system, the more likely LP GLS impulse responses will be approximately as efficient for horizons typically

relevant in practice. It follows that LP can be much more efficient than previously believed.

Second, LP GLS shows that strict exogeneity is not a necessary condition for GLS estimation. Conven-

tional wisdom says that strict exogeneity is a necessary condition for GLS, which makes GLS is more restric-

tive than OLS (Hayashi, 2000, Stock and Watson, 2007). Since strict exogeneity is considered a necessary

condition for GLS, GLS was in part abandoned for OLS with HAC estimation, since OLS with HAC estimation

was considered to be more general. Since LP GLS provides a general counterexample that strict exogeneity

36Instrument strength varied with block length, but was always above the rule of thumb threshold of 10.
37Using similar data and an asymptotically valid Proxy SVAR block bootstrap of Jentsch and Lunsford (2019a), Paul (2020) could not

reject the null that monetary policy has no effect on output and inflation at the 95% level (see Paul (2020) for more details). Note that
Proxy SVARs assume invertibility (Plagborg-Møller and Wolf, 2019).
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is not necessary condition for GLS, it follows that GLS estimation is not as restrictive as previously thought

and that GLS may be extended to other situations where strict exogeneity is not satisfied.

Third, since the autocorrelation process can be modeled explicitly, it is now possible to estimate time-

varying parameter LP. This was not possible before because the Kalman filter and other popular techniques

used to estimate time-varying parameter models require that the error term is uncorrelated or that the au-

tocorrelation process is specified. Time-varying parameter LP can take into account structural instability in

the regression coefficients and/or the covariance matrix, and since time-varying parameter models can ap-

proximate any form of non-linearity, makes them more robust to model misspecification (Granger, 2008).38

The results in this paper have many potential extensions. It would be useful to derive a data dependent

rule or cross validation method for the optimal block length when using block bootstrapping for LP. It may

be interesting to derive conditions for consistency and asymptotically normality for time-varying parameter

LP estimators. It may also be useful to extend LP GLS to a non-linear (in the variables) or non-parametric

setting. One potential solution would be to extend polynomial LP, which are motivated by a non-linear

version of the Wold representation (see Jordà (2005) section 3 for more details). If one does not want to

make assumptions about the functional form or the model, the second potential solution would be to extend

nonparametric LP. Lastly, since LP are direct multistep forecasts, the results in this paper have the potential

to improve the forecast accuracy of direct multistep forecasts.

38Even though time-varying parameter models can approximate any non-linear model (non-linear in the variables and/or the param-
eters), the approximation is for the conditional mean. If the true model is non-linear in the variables, estimation of the linear (in the
variables) time-invariant or time-varying parameter LP GLS would lead to inconsistent estimates of the true impulse responses.
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Online Appendix

Preliminaries

Some preliminaries that will be used in the proofs. The proofs rely on several results from Goncalves and

Kilian (2007) who focus on univariate autoregressions. As noted in Goncalves and Kilian (2007), multivari-

ate generalizations are possible for all of their results but at the cost of more complicated notation. Define

the matrix norm ∥ C ∥2
1= supl≠0l

′Cl/l′l, that is, the largest eigenvalue of C. When C is symmetric, this is

the square of the largest eigenvalue of C. A couple of useful inequalities are ∥ AB ∥2≤∥ A ∥2
1∥ B ∥2 and

∥ AB ∥2
1≤∥ A ∥2∥ B ∥2

1. Let E∗(⋅) and var∗(⋅) denote the expectation and variance with respect to the

bootstrap data conditional on the original data.

B̂(k, h,OLS) −B(k, h) = U1T Γ̂−1
k +U2T Γ̂−1

k +U3T Γ̂−1
k ,

B̂(k, h,GLS) −B(k, h) = U1T Γ̂−1
k +U2T Γ̂−1

k +U3T Γ̂−1
k −U4T Γ̂−1

k ,

where

U1T = {(T − k −H)−1
T−H

∑
t=k

(
∞

∑
j=k+1

B
(h)
j yt−j+1)X ′

t,k},

U2T = {(T − k −H)−1
T−H

∑
t=k

εt+hX
′
t,k},

U3T = {(T − k −H)−1
T−H

∑
t=k

(
h−1

∑
l=1

Θlεt+h−l)X ′
t,k},

U4T = {(T − k −H)−1
T−H

∑
t=k

(
h−1

∑
l=1

Θ̂lε̂t+h−l,k)X ′
t,k}.

The Mixingale Central Limit Theorem will be useful in proving several results (c.f. White (2001) pages

124-25).

Definition. Let {rt,Ft} be an adapted stochastic sequence with E(r2
t ) < ∞. Then {rt,Ft} is an adapted

mixingale if there exists finite nonnegative sequences {ct} and {γi} such that γi → 0 as i→∞ and

(E(E(rt∣Ft−i)2))1/2 ≤ ctγi.

Theorem. Mixingale CLT. Let {rt,Ft} be a stationary ergodic adapted mixingale with γi = Op(i−1−δ) for some
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δ > 0. Then var({(T − k −H)−1/2∑T−Ht=k rt})
p→ ∑∞p=−∞ cov(rt, rt−p) < ∞, and if ∑∞p=−∞ cov(rt, rt−p) > 0,

{(T − k −H)−1/2
T−H

∑
t=k

rt}
d→ N(0,

∞

∑
p=−∞

cov(rt, rt−p)).

A.1 Auxiliary Propositions and Lemmas

A.1.1 Propositions

Proposition 2. Under Assumption 3,

∥ B̂(k, h,OLS) −B(k, h) ∥ p→ 0.

Proof.

∥ B̂(k, h,OLS) −B(k, h) ∥≤ {∥ U1T ∥ + ∥ U2T ∥ + ∥ U3T ∥} ∥ Γ̂−1
k ∥1 .

Lemma A.1 in Goncalves and Kilian (2007) establishes that ∥ Γ̂−1
k ∥1 is bounded in probability , so consistency

in LP OLS consists of showing that ∥ U1T ∥,∥ U2T ∥, and ∥ U3T ∥ converge in probability to 0. This was shown

in Jordà and Kozicki (2011), but assuming the errors are i.i.d. However, their proof showing ∥ U3T ∥
p→ 0

is incorrect. It is incorrect because (∑h−1
l=1 Θlεt+h−l)X ′

t,k is assumed to be independent across time. It is not.

Here I will present a correct proof under the more general conditions stated in Assumption 3 (which include

Jordà and Kozicki (2011) as a special case). A correct proof is

∥ U3T ∥2= (T − k −H)−2trace{
T−H

∑
m=k

T−H

∑
n=k

(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)X ′
m,kXn,k},

by the cyclic property of traces.

E ∥ U3T ∥2= (T − k −H)−2trace
T−H

∑
m=k

T−H

∑
n=k

E{(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)X ′
m,kXn,k}.

For ∣n −m∣ > h − 1

E{(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)X ′
m,kXn,k} = 0,

by the martingale difference assumption. So

E ∥ U3T ∥2= (T − k −H)−2trace
T−H

∑
m=k

∑
∣n−m∣<h

E{(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)X ′
m,kXn,k}.

47



Note that

∣ E{(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)X ′
m,kXn,k} ∣≤ (E[{(

h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)}2])1/2(E[{X ′
m,kXn,k}2])1/2

by Cauchy-Schwarz inequality. E[(X ′
m,kXn,k)2] = Op(k2) and ∣ E([(∑h−1

l=1 Θlεn+h−l)′(∑h−1
l=1 Θlεm+h−l)]2) ∣< ∞

due to the finite fourth moments of ε and ∑∞h=0 ∥ Θh ∥< ∞. Consequently for ∣n −m∣ ≤ h − 1,

trace{(E[{(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)}2])1/2(E[{X ′
m,kXn,k}2])1/2} = Op(k).

Since h is finite it follows that

E ∥ U3T ∥2= (T − k −H)−2trace
T−H

∑
m=k

∑
∣n−m∣<h

E{(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)X ′
m,kXn,k} ≤

k × constant
T − k −H

.

Therefore ∥ U3T ∥= Op( k1/2

(T−k−H)1/2
) p→ 0. To complete the proof of consistency it just needs to be shown

that ∥ U1T ∥
p→ 0 and ∥ U2T ∥

p→ 0. The proof that ∥ U1T ∥
p→ 0 is unaffected by allowing for conditional

heteroskedasticity, so the proof of convergence in Jordà and Kozicki (2011) (their Proposition 1) can be

used. The proof that ∥ U2T ∥
p→ 0 follows from Lemma A.2 part C in Goncalves and Kilian (2007).

Proposition 3. Under Assumptions 3, for LP OLS

(T − k −H)1/2l(k)′vec[B̂(k, h,OLS) −B(k, h)] d→ N(0,Ω(k, h,OLS)),

where

Ω(k, h,OLS) =
h−1

∑
p=−h+1

cov(r(h),OLSt , r
(h),OLS
t−p ).

Proof. Under the assumptions Lewis and Reinsel (1985) used to show asymptotic normality of the limiting

distribution of the VAR(∞), Jordà and Kozicki (2011) showed the asymptotic normality of the limiting

distribution of the LP(∞). It turns out Jordà and Kozicki (2011) use the incorrect Central Limit Theorem.

Jordà and Kozicki (2011) proof follows the same argument as Lewis and Reinsel (1985). Lewis and Reinsel

(1985) use a martingale CLT to prove asymptotic normality. This is not possible with LP because

r
(h),OLS
t+h = l(k)′vec{(εt+h +

h−1

∑
l=1

Θlεt+h−l)X ′
t,kΓ−1

k },

is not a martingale difference sequence. Since εt is stationary and ergodic, r(h),OLSt+h is stationary and ergodic

by Theorem 3.35 in White (2001). Here I will show the corrected proof of LP OLS under the more general

conditions of Assumption 3 using the mixingale CLT. The proof will proceed in 2 steps.
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1. I’ll show {r(h),OLSt ,Ft} is an adapted mixingale with γi = Op(i−1−δ) for some δ > 0,

2. I’ll show ∑∞p=−∞ cov(r(h),OLSt , r
(h),OLS
t−p ) > 0.

Step 1. Note that when i > h − 1, E[r(h),OLSt ∣Ft−i] = 0 by the martingale difference sequence assumption on

the errors. Let ct = (E(E(r(h),OLSt ∣Ft−i)2))1/2∆, where ∆ = hν/(ν+1) for any ν > 0, and γi = i−(ν+1)/ν . Note

that −(ν + 1)/ν < −1 for any ν > 0 and δ = 1/ν.

Step 2. r
(h),OLS
t can only be correlated up to h − 1 horizons out. Since r(h),OLSt is a zero mean sta-

tionary process with absolutely summable autocovariances, r(h),OLSt can be written in terms of its the Wold

representation r(h),OLSt = ft +∑∞j=1 µjft−j , with det{µ(z)} ≠ 0 for ∣z∣ ≤ 1, since the Wold representation is in-

vertible by construction. Since the autocovariances are absolutely summable∑∞p=−∞ cov(r(h),OLSt , r
(h),OLS
t−p ) =

sr(h),OLS(0), where sr(h),OLS(ω) = ∣µ(e−iω)∣2(2π)−1var(ft) is the spectral density of r(h),OLSt at frequency ω.

By equation 5.7.9 in Brockwell and Davis (1991) ∣µ(e0)∣2 = ∣µ(1)∣2 = ∣∑∞j=1 µj ∣2 > 0, therefore

∞

∑
p=−∞

cov(r(h),OLSt , r
(h),OLS
t−p ) = ∣

∞

∑
j=1

µj ∣2(2π)−1var(ft) > 0.

Proposition 4. Under Assumption 3, for LP GLS

(T − k −H)1/2l(k)′vec[B̂(k, h,GLS) −B(k, h)] p→ (T − k −H)1/2l(k)′vec[U2TΓ−1
k +U3TΓ−1

k −U4TΓ−1
k ].

Proof. To show

(T − k −H)1/2l(k)′vec[B̂(k, h,GLS) −B(k, h)] p→ (T − k −H)1/2l(k)′vec[U2TΓ−1
k +U3TΓ−1

k −U4TΓ−1
k ],

we need to show that

∥ (T − k −H)1/2l(k)′vec[U1T +U2T +U3T −U4T ](Γ̂−1
k − Γ−1

k ) ∥ p→ 0,

and

∥ (T − k −H)1/2l(k)′vec[U1TΓ−1
k ] ∥ p→ 0.

Jordà and Kozicki (2011) already showed that

∥ (T − k −H)1/2l(k)′vec{[U1T +U2T +U3T ](Γ̂−1
k − Γ−1

k )} ∥ p→ 0,

under the assumption that the errors are iid (see their Proposition 2). Under Assumption 3, their proof still
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holds since Goncalves and Kilian (2007) showed k1/2 ∥ Γ̂−1
k − Γ−1

k ∥1= op(1) (see their Lemma A.1). From

Proposition 2 in Jordà and Kozicki (2011), we know that ∥
√
T − k −HU1TΓ−1

k ∥ p→ 0. So to complete the

proof, I just need to show

∥ (T − k −H)1/2l(k)′vec[U4T (Γ̂−1
k − Γ−1

k )] ∥ p→ 0.

Since 0 <M1 ≤∥ l(k) ∥2≤M2 < ∞, it suffices to show that ∥ (T − k −H)1/2U4T (Γ̂−1
k − Γ−1

k ) ∥ p→ 0. Note that

√
T − k −HU4T (Γ̂−1

k − Γ−1
k ) = {(T − k −H)−1/2

T−H

∑
t=k

(
h−1

∑
l=1

Θ̂lε̂t+h−l,k)X ′
t,k}(Γ̂−1

k − Γ−1
k )

= {(T − k −H)−1/2
h−1

∑
l=1

Θ̂l

T−H

∑
t=k

(εt+h−l + (
∞

∑
j=k+1

Ajyt+h−l−j) − (B̂(k,1) −B(k,1))Xt+h−l−1,k))X ′
t,k}(Γ̂−1

k − Γ−1
k ),

since ε̂t,k = εt + (∑∞j=k+1Ajyt−j) − (B̂(k,1) −B(k,1))Xt−1,k). So

∥
√
T − k −HU4T (Γ̂−1

k − Γ−1
k ) ∥

≤
h−1

∑
l=1

∥ Θ̂l ∥ ( ∥ {[k(T − k −H)]−1/2
T−H

∑
t=k

(εt+h−l + (
∞

∑
j=k+1

Ajyt+h−l−j) − (B̂(k,1) −B(k,1))Xt+h−l−1,k))X ′
t,k} ∥ )

×{k1/2 ∥ (Γ̂−1
k − Γ−1

k ) ∥1}.

By Theorem 2, ∥ Θ̂l ∥
p→∥ Θl ∥< ∞ for each 1 ≤ l ≤ h − 1. We know from Goncalves and Kilian (2007) that

k1/2 ∥ (Γ̂−1
k − Γ−1

k ) ∥1
p→ 0. Since h − 1 is finite, I just need to show that

( ∥ {[k(T − k −H)]−1/2
T−H

∑
t=k

(εt+h−l + (
∞

∑
j=k+1

Ajyt+h−l−j) − (B̂(k,1) −B(k,1))Xt+h−l−1,k))X ′
t,k} ∥ ),

is bounded for each 1 ≤ l ≤ h − 1.

( ∥ {[k(T − k −H)]−1/2
T−H

∑
t=k

(εt+h−l + (
∞

∑
j=k+1

Ajyt+h−l−j) − (B̂(k,1) −B(k,1))Xt+h−l−1,k))X ′
t,k} ∥ )

≤∥ [k(T − k −H)]−1/2
T−H

∑
t=k

εt+h−lX
′
t,k ∥ +

∥ [k(T−k−H)]−1/2
T−H

∑
t=k

(
∞

∑
j=k+1

Ajyt+h−l−j)X ′
t,k ∥ + ∥ −[k(T−k−H)]−1/2

T−H

∑
t=k

(B̂(k,1)−B(k,1))Xt+h−l−1,kX
′
t,k ∥ .

∥ [k(T − k −H)]−1/2∑T−Ht=k εt+h−lX
′
t,k ∥ is bounded since it was shown in Theorem 2 that

∥ (T − k −H)−1
T−H

∑
t=k

εt+h−lX
′
t,k ∥= Op((

k

T − k −H
)

1/2

).
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Jordà and Kozicki (2011) show that ∥ [k(T − k − H)]−1/2∑T−Ht=k (∑∞j=k+1Ajyt+h−l−j)X ′
t,k ∥

p→ 0 (see their

Proposition 2). For the final term note that

∥ [k(T − k −H)]−1/2
T−H

∑
t=k

(B̂(k,1) −B(k,1))Xt+h−l−1,kX
′
t,k ∥

≤ (T − k −H
k

)
1/2

∥ (B̂(k,1) −B(k,1)) ∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bounded

∥ (T − k −H)−1
T−H

∑
t=k

Xt+h−l−1,kX
′
t,k ∥1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bounded

.

Proposition 5. Under assumption 4,

(T − k −H)1/2vech[Σ̂ −Σ] d→ N(0, V22).

Proof. Substituting out ε̂t,k = εt + (∑∞j=k+1Ajyt−j) − (B̂(k,1) −B(k,1))Xt−1,k),

√
T − k −HΣ̂ =

√
T − k −H

∑T−Ht=k ε̂t,kε̂
′
t,k

T − k −H

=
√
T − k −H∑

T−H
t=k εtε

′
t

T − k −H
+
√
T − k −H

∑T−Ht=k εt(∑∞j=k+1Ajyt−j)′

T − k −H
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Op(
√
T−k−H∑∞j=k+1∥Aj∥)

−
∑T−Ht=k εtX

′
t−1,k

T − k −H
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Op(( k

T−k−H )
1/2

)

√
T − k −H(B̂(k,1) −B(k,1))′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d
→

+
√
T − k −H

∑T−Ht=k (∑∞j=k+1Ajyt−j)ε′t
T − k −H

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Op(

√
T−k−H∑∞j=k+1∥Aj∥)

+
√
T − k −H

∑T−Ht=k (∑∞j=k+1Ajyt−j)(∑
∞
j=k+1Ajyt−j)′

T − k −H
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Op(
√
T−k−H(∑

∞

j=k+1∥Aj∥)2)

−
∑T−Ht=k (∑∞j=k+1Ajyt−j)X ′

t−1,k

T − k −H
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Op(k1/2∑∞j=k+1∥Aj∥)

√
T − k −H(B̂(k,1) −B(k,1))′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d
→

−
√
T − k −H(B̂(k,1) −B(k,1))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d
→

∑T−Ht=k Xt−1,kε
′
t

T − k −H
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Op(( k

T−k−H )
1/2

)

−
√
T − k −H(B̂(k,1) −B(k,1))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d
→

∑T−Ht=k Xt−1,k(∑∞j=k+1Ajyt−j)′

T − k −H
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Op(k1/2∑∞j=k+1∥Aj∥)

+
√
T − k −H(B̂(k,1) −B(k,1))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d
→

∑T−Ht=k Xt−1,kX
′
t−1,k

T − k −H
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bounded

(B̂(k,1) −B(k,1))′
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Op(( k
T−k−H )

1/2

)

.
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It follows that
√
T − k −H[Σ̂ −Σ] p→

√
T − k −H

⎡⎢⎢⎢⎢⎣

∑T−Ht=k εtε
′
t −Σ

T − k −H

⎤⎥⎥⎥⎥⎦
.

Since εt is mixing, by Theorem 3.49 in White (2001), εtε′t is mixing of the same order. Assuming V22 is

finite and positive definite, by the strong mixing Central Limit Theorem (Theorem A.8 in Lahiri (2003)),

(T − k −H)1/2vech[Σ̂ − Σ] d→ N(0, V22). To show that V22 is finite and positive definite, note that absolute

summability of fourth order cumulants implies absolute summability of fourth order moments (it follows

from Hannan (1970) equation 5.1 on pg. 23). Absolute summability of the fourth order moments of ε

implies V22 < ∞, and since the autocovariances of εtε′t are absolutely summable, positive definiteness of V22

follows the same argument used in Step 2 of the mixingale CLT proof in Proposition 3.

Proposition 6. Assume that yt+1 = ayt + εt+1, where ∣a∣ < 1 and εt is an i.i.d. process with E(εt) = 0 and

var(εt) = σ2. If the true lag order is known, then

√
T (b̂(h),GLS − ah) dÐ→ N(0, [{1 − a2h−2} + h2a2h−2](1 − a2)).

Proof. Define Γ̂ = 1
T−H

(∑T−Ht=1 y2
t ),

b̂(h),GLS = (
T−H

∑
t=1

y2
t )−1(

T−H

∑
t=1

yt(yt+h − b̂(h−1),GLS ε̂t+1 − . . . − b̂(1),GLS ε̂t+h−1)).

Substituting out yt+h = ahyt + ah−1εt+1 + . . . + aεt+h−1 + εt+h yields

b̂(h),GLS = (
T−H

∑
t=1

y2
t )−1(

T−H

∑
t=1

yt(ahyt + [ah−1εt+1 − b̂(h−1),GLS ε̂t+1] + . . . + [aεt+h−1 − b̂(1),OLS ε̂t+h−1] + εt+h)),

√
T −H(b̂(h),GLS − ah) = [

h−1

∑
p=1

1
√
T−H

∑T−Ht=1 yt[apεt+h−p − b̂(p),GLS ε̂t+h−p]

Γ̂
] +

1
√
T−H

∑T−Ht=1 ytεt+h

Γ̂
.

It follows from Lemma 5 that

√
T −H(b̂(h),GLS − ah) = (

h−1

∑
p=1

b̂(p),GLSah−p−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
plim=(h−1)ah−1

1
√
T−H

∑T−Ht=1 ytεt+1

Γ̂
+

1
√
T−H

∑T−Ht=1 ytεt+h

Γ̂
.

1
√

T−H
∑

T−H
t=1 ytεt+1

Γ̂
and

1
√

T−H
∑

T−H
t=1 ytεt+h

Γ̂
jointly convergence to a normal distribution due to the Mixingale CLT

(see proof of Proposition 3 for setup). Therefore

√
T −H(b̂(h),GLS − ah) dÐ→ N(0, [{1 − a2h−2} + h2a2h−2](1 − a2)).
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A.1.2 Lemmas

Lemma 1. If Assumption 3 holds,

(T − k −H)1/2l(k)′vec[B̂(k, h,GLS) −B(k, h)] p→

(T−k−H)−1/2l(k)′vec[(
T−H

∑
t=k

εt+hX
′
t,k)Γ−1

k ]+l(k)′(
h−1

∑
l=1

{Γ−1
k Γ′(h−l−1),k⊗Θl})vec[

√
T − k −H(B̂(k,1)−B(k,1))].

Proof. From Proposition 4 we know that

(T − k −H)1/2l(k)′vec[B̂(k, h,GLS) −B(k, h)] p→ (T − k −H)1/2l(k)′vec[U2TΓ−1
k +U3TΓ−1

k −U4TΓ−1
k ]

= (T − k −H)−1/2l(k)′vec{(
T−H

∑
t=k

εt+hX
′
t,k)Γ−1

k +
T−H

∑
t=k

(
h−1

∑
l=1

Θlεt+h−l)X ′
t,kΓ−1

k −
T−H

∑
t=k

(
h−1

∑
l=1

Θ̂lε̂t+h−l)X ′
t,kΓ−1

k }.

Note that

(T − k −H)−1/2
T−H

∑
t=k

(
h−1

∑
l=1

Θ̂lε̂t+h−l,k)X ′
t,kΓ−1

k = (T − k −H)−1/2
T−H

∑
t=k

h−1

∑
l=1

Θ̂l(
∞

∑
j=k+1

Ajyt+h−l−j)X ′
t,kΓ−1

k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
op(1)

+(T − k −H)−1/2
T−H

∑
t=k

h−1

∑
l=1

Θ̂lεt+h−lX
′
t,kΓ−1

k − (T − k −H)−1/2
T−H

∑
t=k

h−1

∑
l=1

Θ̂l(B̂(k,1) −B(k,1))Xt+h−l−1,kX
′
t,kΓ−1

k ,

where the first term converges to zero since h−1 is finite, ∥ Θ̂l ∥
p→∥ Θl ∥< ∞, ∥ Γ−1

k ∥1< ∞, and Theorem 1 in

Lewis and Reinsel (1985). Since ∥ Γ̂(h−l−1),k ∥ , ∥ Γ̂k ∥, and ∥ Θ̂l ∥ are consistent and bounded in probability

∥ (
h−1

∑
l=1

{Γ̂−1
k Γ̂′(h−l−1),k ⊗ Θ̂l}) ∥

p→∥ (
h−1

∑
l=1

{Γ−1
k Γ′(h−l−1),k ⊗Θl}) ∥< ∞.

Therefore

(T − k −H)−1/2l(k)′vec{
T−H

∑
t=k

(
h−1

∑
l=1

Θlεt+h−l)X ′
t,kΓ−1

k −
T−H

∑
t=k

(
h−1

∑
l=1

Θ̂lε̂t+h−l)X ′
t,kΓ−1

k } p→

l(k)′(
h−1

∑
l=1

{Γ−1
k Γ′(h−l−1),k ⊗Θl})vec[

√
T − k −H(B̂(k,1) −B(k,1))],
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and

(T − k −H)1/2l(k)′vec[B̂(k, h,GLS) −B(k, h)] p→ (T − k −H)−1/2l(k)′vec[(
T−H

∑
t=k

εt+hX
′
t,k)Γ−1

k ]

+l(k)′(
h−1

∑
l=1

{Γ−1
k Γ′(h−l−1),k ⊗Θl})vec[

√
T − k −H(B̂(k,1) −B(k,1))].

Lemma 2. Under Assumption 3, for the reduced form wild bootstrap

∥ B̂∗(k, h,GLS) − B̂(k, h) ∥p
∗

→ 0.

Proof. This will be a proof by induction. Assume the consistency for the previous h − 1 horizons has been

proven. Hence ∥ Θ̂∗
l ∥

p∗→∥ Θ̂l ∥< ∞ for 1 ≤ l ≤ h − 1.

∥ B̂∗(k, h,GLS) − B̂(k, h) ∥

≤∥ (T − k −H)−1
T−H

∑
t=k

ε̂∗t+h,kX
′
t,k ∥∥ Γ̂−1

k ∥1 +
h−1

∑
l=1

∥ Θ̂∗
l ∥∥ (T − k −H)−1

T−H

∑
t=k

ε̂∗t+1,kX
′
t,k ∥∥ Γ̂−1

k Γ̂(h−l−1),kΓ̂−1
k ∥1 .

∥ Γ̂−1
k ∥1, ∥ Θ̂∗

l ∥, and ∥ Γ̂−1
k Γ̂(h−l−1),kΓ̂−1

k ∥1 are bounded in probability so it’s sufficient to show that

∥ (T − k −H)−1
T−H

∑
t=k

ε̂∗t+h,kX
′
t,k ∥

p∗→ 0 and ∥ (T − k −H)−1
T−H

∑
t=k

ε̂∗t+1,kX
′
t,k ∥

p∗→ 0.

The proofs are the same, so I’ll just show E∗[∥ {(T − k −H)−1∑T−Ht=k ε̂∗t+h,kX
′
t,k} ∥2] p

∗

→ 0. Note that

(T−k−H)−2trace{[
T−H

∑
n=k

ε̂∗n+h,kX
′
n,k]′[

T−H

∑
m=k

ε̂∗m+h,kX
′
m,k]} = (T−k−H)−2trace{

T−H

∑
m=k

T−H

∑
n=k

ε̂∗
′

n+h,kε̂
∗
m+h,kX

′
m,kXn,k},

by the cyclic property of traces. Note that

E∗trace{
T−H

∑
m=k

T−H

∑
n=k

ε̂∗
′

n+h,kε̂
∗
m+h,kX

′
m,kXn,k} = trace{

T−H

∑
m=k

ε̂
′

m+h,kε̂m+h,kX
′
m,kXm,k} = Op((T − k −H)k),

since E∗[ε̂∗
′

n+h,kε̂
∗
m+h,k] = 0 for m ≠ n. It follows that

E∗ ∥ {(T − k −H)−1
T−H

∑
t=k

ε̂∗t+h,kX
′
t,k} ∥2≤ (T − k −H)−2Op([T − k −H]k) = Op(

k

T − k −H
) p

∗

→ 0.

To complete the proof, note that the horizon 1 LP is a VAR, and the proof of consistency is provided by
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Lemma A.5 in Goncalves and Kilian (2007).

Lemma 3. Under Assumption 3,

∥ V̂11(k,H) ∥ p→∥ V11(k,H) ∥ .

Proof. Let V̂11(k,H) = (T − k −H)−1∑T−Ht=k
ˆ

RScore
(H)

t+1

ˆ
RScore

(H)

t+1

′

. Define

Fk,m,n = E[(Xt−m,k ⊗ Ir)εt+1ε
′
t+1(Xt−n,k ⊗ Ir)′].

Let F̂k,m,n = (T −k−H)−1∑T−Ht=k [(Xt−m,k⊗Ir)εt+1ε
′
t+1(Xt−n,k⊗Ir)′] and sk,0 = Ikr2×kr2 . Form,n = 0, . . . ,H−1

and i, j = 0, . . . ,H

l(k)′ŝk,i(T − k −H)−1
T−H

∑
t=k

[(Γ̂−1
k Xt−m,k ⊗ Ir)ε̂t+1ε̂

′
t+1(Γ̂−1

k Xt−n,k ⊗ Ir)′]ŝ′k,j l(k)

−l(k)′sk,iE[(Γ−1
k Xt−m,k ⊗ Ir)εt+1ε

′
t+1(Γ−1

k Xt−n,k ⊗ Ir)′]s′k,j l(k)

= l(k)′ŝk,i(Γ̂−1
k ⊗ Ir)F̂k,m,n(Γ̂−1

k ⊗ Ir)′ŝ′k,il(k) − l(k)′sk,i(Γ−1
k ⊗ Ir)Fk,m,n(Γ−1

k ⊗ Ir)′sk,j l(k)

= l(k)′ŝk,i(Γ̂−1
k ⊗ Ir)[F̂k,m,n − Fk,m,n](Γ−1

k ⊗ Ir)′s′k,j l(k)

+l(k)′[ŝk,i(Γ̂−1
k ⊗ Ir) − sk,i(Γ−1

k ⊗ Ir)]F ′
k,m,n(Γ−1

k ⊗ Ir)′s′k,j l(k)

+l(k)′s′k,i(Γ−1
k ⊗ Ir)F̂k,m,n[ŝk,j(Γ̂−1

k ⊗ Ir) − sk,j(Γ−1
k ⊗ Ir)]′l(k).

Since ∥ ŝk,h ∥
p→∥ sk,h ∥< ∞, ∥ Γ̂−1

k ∥ p→∥ Γ−1
k ∥< ∞, ∥ Fk,m,n ∥< ∞, ∥ l(k)′ ∥< ∞, and 2H + 1 is finite, then

showing ∥ V̂11(k,H) ∥ p→∥ V11(k,H) ∥ simplifies to showing ∥ F̂k,m,n − Fk,m,n ∥
p→ 0 for m,n = 0, . . . ,H − 1.

Convergence follows same argument as the proof of Theorem 2.2 in Goncalves and Kilian (2007).

Lemma 4. Under Assumption 5,

∥ V̂ lr(k,H) ∥ p→∥ V (k,H) ∥,

where

V̂ lr(k,H) =
⎡⎢⎢⎢⎢⎢⎣

V̂ lr11(k,H) V̂12(k,H)

V̂21(k,H) V̂22

⎤⎥⎥⎥⎥⎥⎦
,

V̂ lr11(k,H) =
`

∑
p=−`

(T − k −H)−1
T−H

∑
t=k

ˆ
Rscore

(H)

t+1

ˆ
Rscore

(H)

t+1−p

′

,

V̂12(k,H) =
`

∑
p=−`

(T − k −H)−1
T−H

∑
t=k

{ ˆ
Rscore

(H)

t+1 vec

⎡⎢⎢⎢⎢⎣
ε̂t+1−pε̂

′
t+1−p − Σ̂

⎤⎥⎥⎥⎥⎦

′

Lr},
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V̂22 =
`

∑
p=−`

(T − k −H)−1L′r{
T−H

∑
t=k

(vec(ε̂t+1ε̂
′
t+1), vec(ε̂t+1−pε̂

′
t+1−p)′) − vec(Σ̂)vec(Σ̂)′}Lr.

Proof. First note that

∥ [(T − k −H)−1
T−H+1

∑
t=k+1

RStrucScore
(H)

t RStrucScore
(H)

t−p
′] −E[RStrucScore(H)

t RStrucScore
(H)

t−p
′] ∥

= Op(
k

(T − k −H)1/2
).

Proof follows the same argument as the proof of Theorem 2.2 in Goncalves and Kilian (2007) (in particular

their proof that A3 = Op( k
(T−k−H)1/2

)). Before applying their proof, replace the setup in the beginning

of their proof with the setup in Lemma 3 but applied to RStrucScore
(H)

t . Note that RStrucScore(H)

t =

[RScore(H)

t
′, vech(εt+1ε

′
t+1−Σ)′]′, and convergence is not affected by also accounting for vech(εt+1ε

′
t+1−Σ)′

due to cumulant condition on ε and since it’s finite dimensional. The explicit setup of RStrucScore(H)

t is

omitted due to brevity. It follows that

∥
`

∑
p=−`

{[(T − k −H)−1
T−H+1

∑
t=k+1

RStrucScore
(H)

t RStrucScore
(H)

t−p
′] −E[RStrucScore(H)

t RStrucScore
(H)

t−p
′]} ∥

= Op(
k`

(T − k −H)1/2
) p→ 0.

Therefore, I just need to show

∥
`

∑
p=−`

(T − k −H)−1
T−H+1

∑
t=k+1

[ ˆRStrucScore
(H)

t
ˆRStrucScore

(H)

t−p
′ −RStrucScore(H)

t RStrucScore
(H)

t−p
′] ∥ p→ 0.

The proof will proceed in 3 parts. First I’ll show ∥ V̂22 ∥
p→∥ V22 ∥, second ∥ V̂12(k,H) ∥ p→∥ V12(k,H) ∥, and

lastly ∥ V̂ lr11(k,H) ∥ p→∥ V11(k,H) ∥.

To show ∥ V̂22 ∥
p→∥ V22 ∥, note since ∥ (B̂(k,1) − B(k,1) ∥= Op( k

1/2

T 1/2 ), ∥ Xt−1,k ∥= Op(k1/2), and by

Theorem 1 and in Lewis and Reinsel (1985)

∥ ε̂t,k ∥≤ ∥ εt ∥
²
Op(1)

+∥ (
∞

∑
j=k+1

Ajyt−j) ∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Op(∑

∞

j=k+1Aj)

+∥ −(B̂(k,1) −B(k,1))Xt−1,k) ∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Op( k

T1/2
)

,

implying ∥ ε̂t,k − εt ∥= Op( k
T 1/2 ). It follows that ∥ ε̂t,kε̂t,kε̂t−p,kε̂t−p,k − εtεtεt−pεt−p ∥= Op( k

T 1/2 ). Therefore

∥ (T − k −H)−1
T−H+1

∑
t=k+1

[ε̂t,kε̂t,kε̂t−p,kε̂t−p,k − εtεtεt−pεt−p] ∥= Op(
k

T 1/2
)
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Ô⇒ ∥
`

∑
p=−`

(T − k −H)−1
T−H+1

∑
t=k+1

[ε̂t,kε̂t,kε̂t−p,kε̂t−p,k − εtεtεt−pεt−p] ∥= Op(
k`

T 1/2
).

Since ∥ Σ̂ −Σ ∥= Op([T − k −H]−1) by Proposition 5, ∥ V̂22 − V22 ∥= Op( k`
T 1/2 ) = Op((k

4

T
`4

T
)1/4) p→ 0.

Now to show ∥ V̂12(k,H) ∥ p→∥ V12(k,H) ∥. Using an analogous set up as Lemma 3, it suffices to show

that

∥
`

∑
p=−`

(T − k −H)−1
T−H+1

∑
t=k+1

{(Xt−m,k ⊗ Ir)[ε̂tvec
⎡⎢⎢⎢⎢⎣
ε̂t−pε̂

′
t−p − Σ̂

⎤⎥⎥⎥⎥⎦

′

− εtvec
⎡⎢⎢⎢⎢⎣
εt−pε

′
t−p −Σ

⎤⎥⎥⎥⎥⎦

′

]Lr} ∥
p→ 0.

for m = 1, . . . ,H. ∥ ε̂t,k − εt ∥= Op( k
T 1/2 ) implies ∥ ε̂t,kε̂t−p,kε̂t−p,k − εtεt−pεt−p ∥= Op( k

T 1/2 ). Therefore,

∥ (Xt−m,k ⊗ Ir)[ε̂tvec
⎡⎢⎢⎢⎢⎣
ε̂t−pε̂

′
t−p − Σ̂

⎤⎥⎥⎥⎥⎦

′

− εtvec
⎡⎢⎢⎢⎢⎣
εt−pε

′
t−p −Σ

⎤⎥⎥⎥⎥⎦

′

]Lr ∥= Op(
k2

T 1/2
),

since (Xt−m,k ⊗ Ir) is kr2 × r. It follows that

∥
`

∑
p=−`

(T − k −H)−1
T−H+1

∑
t=k+1

{l(k)′(Xt−m,k ⊗ Ir)ε̂tvec
⎡⎢⎢⎢⎢⎣
ε̂t−pε̂

′
t−p − Σ̂

⎤⎥⎥⎥⎥⎦

′

Lr} ∥

=∥
`

∑
p=−`

(T − k −H)−1
T−H+1

∑
t=k+1

{l(k)′(Xt−m,k ⊗ Ir)εtvec
⎡⎢⎢⎢⎢⎣
εt−pε

′
t−p −Σ

⎤⎥⎥⎥⎥⎦

′

Lr} ∥ +Op(
k2`

T 1/2
),

which implies ∥ V̂12(k,H) − V12(k,H) ∥= Op( k2

T 1/2 `) = Op((k
8

T
`4

T
)1/4) p→ 0.

Now to show ∥ V̂ lr11(k,H) ∥ p→∥ V11(k,H) ∥. Using an analogous set up as Lemma 3, it suffices to show

that

∥
`

∑
p=−`

(T − k −H)−1
T−H+1

∑
t=k+1

(Xt−m,k ⊗ Ir)[ε̂tε̂′t−p − εtε′t−p](Xt−p−n,k ⊗ Ir)′ ∥
p→ 0,

for m,n = 1, . . . ,H. Since ∥ ε̂t,kε̂t−p,k − εtεt−p ∥= Op( k
T 1/2 ), it follows that

∥ (Xt−m,k ⊗ Ir)[ε̂tε̂′t − εtε′t−p](Xt−p−n,k ⊗ Ir)′ ∥= Op(
k3

T 1/2
),

since (Xt−m,k ⊗ Ir) is kr2 × r. It follows that

∥
`

∑
p=−`

(T − k −H)−1
T−H+1

∑
t=k+1

(Xt−m,k ⊗ Ir)[ε̂tε̂′t−p − εtε′t−p](Xt−p−n,k ⊗ Ir)′ ∥= Op(
k3

T 1/2
`).

This implies that ∥ V̂ lr11(k,H) − V11(k,H) ∥= Op( k3

T 1/2 `) = Op((k
8

T
k8

T
k8

T
`8

T
)1/8) p→ 0.
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Lemma 5. Under the assumptions used for Proposition 6, for any integer 1 ≤ p ≤ h − 1,

1
√
T−H

∑T−Ht=1 yt[apεt+h−p − b̂(p),GLS ε̂t+h−p]

Γ̂

p→ b̂(p),GLSah−p−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
plim=ah−1

√
T −H(â − a)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dÐ→

+op(1).

Proof.

1
√
T−H

∑T−Ht=1 yt[apεt+h−p − b̂(p),GLS ε̂t+h−p]

Γ̂
=

1
√
T−H

∑T−Ht=1 yta
pεt+h−p

Γ̂
−

1
√
T−H

∑T−Ht=1 ytb̂
(p),GLS ε̂t+h−p

Γ̂
.

Substitute out ε̂t+h−p = (a − â)yt+h−p−1 + εt+h−p

=
1

√
T−H

∑T−Ht=1 yta
pεt+h−p

Γ̂
−

1
√
T−H

∑T−Ht=1 ytb̂
(p),GLS((a − â)yt+h−p−1 + εt+h−p)

Γ̂
,

=
1

√
T−H

∑T−Ht=1 yta
pεt+h−p

Γ̂
−

1
√
T−H

∑T−Ht=1 ytb̂
(p),GLS(a − â)yt+h−p−1

Γ̂
−

1
√
T−H

∑T−Ht=1 ytb̂
(p),GLSεt+h−p

Γ̂
,

= (ap − b̂(p),GLS)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

plim=0

1
√
T−H

∑T−Ht=1 ytεt+h−p

Γ̂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dÐ→

−b̂(p),GLS(a − â)
1

√
T−H

∑T−Ht=1 ytyt+h−p−1

Γ̂
,

where convergence in distribution is due to the Mixingale Central Limit Theorem. It follows that

1
√
T−H

∑T−Ht=1 yt[apεt+h−p − b̂(p),GLS ε̂t+h−p]

Γ̂
= op(1) + b̂(p),GLS(â − a)

1
√
T−H

∑T−Ht=1 ytyt+h−p−1

Γ̂
.

Substituting out yt+h−p−1 = ah−p−1yt + ah−p−2εt+1 + . . . + aεt+h−p−2 + εt+h−p−1

= op(1)+b̂(p),GLSah−p−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
plim=ah

√
T −H(â − a)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dÐ→

+ b̂(p),GLS(â − a)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

plim=0

1
√
T−H

∑T−Ht=1 yt(ah−p−2εt+1 + . . . + aεt+h−p−2 + εt+h−p−1)

Γ̂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dÐ→

,

where convergence in distribution is due to the Mixingale Central Limit Theorem. Consequently

1
√
T−H

∑T−Ht=1 yt[apεt+h−p − b̂(p),GLS ε̂t+h−p]

Γ̂
= b̂(p),GLSah−p−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
plim=ah−1

√
T −H(â − a)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dÐ→

+op(1).
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A.2 Proofs of Theorems and Corollaries

A.2.1 Proofs of Theorems

Proof of Theorem 2

Proof. To show consistency of LP GLS it suffices to show that ∥ U4T ∥
p→ 0 because

∥ B̂(k, h,GLS) −B(k, h) ∥≤ (∥ U1T ∥ + ∥ U2T ∥ + ∥ U3T ∥ − ∥ U4T ∥) ∥ Γ̂−1
k ∥1 .

From Proposition 2 we know ∥ Γ̂−1
k ∥1 is bounded in probability and that ∥ U1T ∥,∥ U2T ∥, and ∥ U3T ∥

converge in probability to 0. The proof showing ∥ U4T ∥
p→ 0 will be a proof by induction. Assume the

consistency for the previous h − 1 horizons has been proven. Hence ∥ Θ̂l ∥
p→∥ Θl ∥< ∞ for 1 ≤ l ≤ h − 1. Note

ε̂t,k = εt + (∑∞j=k+1Ajyt−j) − (B̂(k,1) −B(k,1))Xt−1,k). Therefore

U4T =
h−1

∑
l=1

Θ̂l{(T − k −H)−1
T−H

∑
t=k

(εt+h−l + (
∞

∑
j=k+1

Ajyt+h−l−j) − (B̂(k,1) −B(k,1))Xt+h−l−1,k)X ′
t,k}.

By Lemma A.2 part C in Goncalves and Kilian (2007), we know that ∥ {(T −k−H)−1∑T−Ht=k εt+h−lX
′
t,k} ∥

p→ 0,

for 1 ≤ l ≤ h − 1. Since h − 1 is finite and ∥ Θ̂l ∥
p→∥ Θl ∥< ∞,

∥
h−1

∑
l=1

Θ̂l{(T − k −H)−1
T−H

∑
t=k

εt+h−lX
′
t,k} ∥≤

h−1

∑
l=1

∥ Θ̂l ∥
´¹¹¹¹¹¸¹¹¹¹¹¶
bounded

∥ {(T − k −H)−1
T−H

∑
t=k

εt+h−lX
′
t,k} ∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
plim=0

p→ 0.

To show ∥ U4T ∥
p→ 0 it now suffices to show that

∥
h−1

∑
l=1

Θ̂l{(T − k −H)−1
T−H

∑
t=k

((
∞

∑
j=k+1

Ajyt+h−l−j) − (B̂(k,1) −B(k,1))Xt+h−l−1,k)X ′
t,k} ∥

p→ 0.

Owing to h − 1 is finite and ∥ Θ̂l ∥
p→∥ Θl ∥< ∞, this simplifies to showing

∥ {(T − k −H)−1
T−H

∑
t=k

(
∞

∑
j=k+1

Ajyt+h−l−j)X ′
t,k} − {(T − k −H)−1

T−H

∑
t=k

((B̂(k,1) −B(k,1))Xt+h−l−1,k)X ′
t,k} ∥

p→ 0.

By Theorem 1 in Lewis and Reinsel (1985), ∥ {(T − k −H)−1∑T−Ht=k ((∑∞j=k+1Ajyt+h−l−j))X ′
t,k} ∥

p→ 0. Now all

that is left to show is ∥ {(T − k −H)−1∑T−Ht=k ((B̂(k,1) −B(k,1))Xt+h−l−1,k)X ′
t,k} ∥

p→ 0. Note that

∥ {(T − k −H)−1
T−H

∑
t=k

((B̂(k,1) −B(k,1))Xt+h−l−1,k)X ′
t,k} ∥
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≤ ∥ {(B̂(k,1) −B(k,1)) ∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

plim=0

∥ (T − k −H)−1
T−H

∑
t=k

Xt+h−l−1,kX
′
t,k} ∥1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bounded

p→ 0.

Since this is a proof by induction, it was assumed that the first h− 1 horizons are consistent, so the first term

converges in probability to 0. The second term is bounded due to ∥ Γ̂k ∥1=∥ (T − k −H)−1∑T−Ht=k Xt,kX
′
t,k ∥1

being bounded and since the autocovariances are absolutely summable. It follows that

∥ Θ̂l{(T − k −H)−1
T−H

∑
t=k

((εt+h−l + (
∞

∑
j=1

Ajyt+h−l−j) − (
k

∑
i=1

Âiyt+h−l−i)))X ′
t,k} ∥

p→ 0,

for each 1 ≤ l ≤ h − 1. Therefore, ∥ U4T ∥
p→ 0. To complete the proof by induction, note that the horizon 1

LP is a VAR, and the consistency results for the VAR were proved in Goncalves and Kilian (2007) (Lemma

A.2).

Proof of Theorem 3

Proof. By Proposition 4 and Lemma 1 we know that

√
T − k −Hl(k)′vec[B̂(k, h,GLS) −B(k, h)] p→

(T − k −H)−1/2l(k)′vec[(
T−H

∑
t=k

εt+hX
′
t,k)Γ−1

k ] + (T − k −H)−1/2l(k)′sk,hvec[(
T−H

∑
t=k

εt+1X
′
t,k)Γ−1

k ].

Define

r
(h),GLS
t+h = l(k)′vec[εt+hX ′

t,kΓ−1
k ] + l(k)′sk,hvec[εt+1X

′
t,kΓ−1

k ].

To show asymptotic normality of r(h),GLSt+h the mixingale CLT will be used. The argument that {r(h),GLSt ,Ft}

is an adapted mixingale with γi = Op(i−1−δ) for some δ > 0, follows the exact same reasoning as the OLS case

(Proposition 3), and is omitted for brevity. Positive definiteness of ∑∞m=−∞ cov(r(h),GLSt , r
(h),GLS
t−m ) follows the

same argument used in the OLS case (Proposition 3).

Proof of Theorem 4

Proof. Note that ŝk,h can replace ŝ∗k,h in ˆRScore
(H),∗

t since plim{(T −k −H)−1/2∑T−Ht=k
ˆRScore

(H),∗

t+1 } is unaf-

fected by the change. To see why note that

∥ (
h−1

∑
l=1

{Γ̂−1
k Γ̂′(h−l−1),k ⊗ Θ̂∗

l − Θ̂l})(T − k −H)−1/2
T−H

∑
t=k

(Γ−1
k Xt,k ⊗ Ir)εt+1 ∥
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≤ ∥ (T − k −H)1/2(
h−1

∑
l=1

{Γ̂−1
k Γ̂′(h−l−1),k ⊗ Θ̂∗

l − Θ̂l}) ∥1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Op(k1/2)

∥ (T − k −H)−1
T−H

∑
t=k

(Γ−1
k Xt,k ⊗ Ir)εt+1 ∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Op(

k1/2

T1/2
)

= Op(
k

T 1/2
).

∥ j(k,H)′ ∥ is bounded by assumption and can be ignored. The first term on the last line is Op(k1/2) because

∥ Γ̂−1
k ∥1 and ∥ Γ̂′

(h−l−1),k ∥1 are consistent and bounded in probability and ∥ Θ̂∗
l − Θ̂l ∥= Op( k

1/2

T 1/2 ) by Lemma

2. The second term is Op( k
1/2

T 1/2 ) by Proposition 2. Since E∗[ ˆRScore
(H),∗

t ] = 0,

var∗((T − k −H)−1/2
T−H

∑
t=k

ˆRScore
(H),∗

t+1 ) = (T − k −H)−1
T−H

∑
t=k

ˆRScore
(H)

t+1
ˆRScore

(H)

t+1
′ = V̂11(k,H),

where the last equality is due to Lemma 3. Moreover, by Lemma 3 ∥ V̂11(k,H) ∥ p→∥ V11(k,H) ∥. To

show asymptotic normality, the mixingale CLT will be used. Conditional on the original data, ˆRScore
(H),∗

t

is an adapted mixingale. Let ct = (E∗(E∗( ˆRScore
(H),∗

t ∣F∗t−i)2))1/2∆, where F∗t−1 = σ(ηt−1, ηt−2, . . .) is the

bootstrap sigma field conditional on the original data, ∆ =Hν/(ν+1) and set γi = i−(ν+1)/ν for any ν > 0.

Proof of Theorem 5

Proof. To use the mixingale CLT, I need to show:

1. {ζStrucScore(H)

t ,Ft} is an adapted mixingale with γi = Op(i−1−δ) for some δ > 0,

2. ∑∞p=−∞ cov(ζStrucScore(H)

t , ζStrucScore
(H)

t−p ) > 0.

ζ = [ζ ′11, ζ
′
21]′ is a {[r(r + 1)/2] + 1} × 1 Cramer-Wold device where ζ11 is a scalar. Note that from Corollary 1

{Score(H)

t ,Ft} is an adapted mixingale with ct = (E(E(Score(H)

t ∣Ft−i)2))1/2∆, where ∆ = Hν/(ν+1) for any

ν > 0, and γi = i−(ν+1)/ν . By Theorem 3.49 and Lemma 6.16 in White (2001)

(E(E(ζ21vech(εtε′t −Σ)∣Ft−i)2))1/2 ≤ 2(21/2 + 1)α(i)1/4(E[(ζ21vech(εtε′t −Σ))4])1/4.

By Assumption 4, α(i)1/4 = Op(i−(ν+1)/ν) since α(m) = Op(m−4(ν+1)/ν). So {ζ21vech(εtε′t − Σ),Ft} is an

adapted mixingale sequence with ct = 2(21/2 + 1)(E[(ζ21vech(εtε′t − Σ))4])1/4 and γi = i−(ν+1)/ν . It follows

by Minkowski’s inequality that {ζStrucScore(H)

t ,Ft} is an adapted mixingale sequence with

ct = (E(E(ζ11StrucScore
(H)

t ∣Ft−i)2))1/2∆ + 2(21/2 + 1)(E[(ζ21vech(εtε′t −Σ))4])1/4,

where ∆ =Hν/(ν+1) and γi = i−(ν+1)/ν . Therefore {ζStrucScore(H)

t ,Ft} is a mixingale of size γi = Op(i−(ν+1)/ν).

Lastly, the proof ∑∞p=−∞ cov(ζStrucScore(H)

t , ζStrucScore
(H)

t−p ) > 0 follows the same argument as Propo-

sition 3 if it can be shown that StrucScore(H)

t has absolutely summable autocovariances. We already know

Score
(H)

t and εtε
′
t each have absolutely summable autocovariances. To show absolute summability of the
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autocovariances for StrucScore(H)

t , it suffices to show ∑∞p=−∞ ∥ cov(Score
(H)

t , vech(εt−pε′t−p − Σ)′) ∥< ∞.

Since X ′
t,k = [∑∞j=0(ε′t−jΘ′

j , . . . , ε
′
t−k+1−jΘ

′
j)],

∞

∑
p=−∞

∥ cov(Score(H)

t , vech(εt−pε′t−p −Σ)′) ∥

=
∞

∑
p=−∞

∥ E{j(k,H)′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Γ−1
k ⊗ Ir)vec([∑∞j=0(εt+Hε′t−j−1Θ′

j , . . . , εt+Hε
′
t−j−kΘ′

j)])

sk,Hvec([∑∞j=0(εt+1ε
′
t−j−1Θ′

j , . . . , εt+1ε
′
t−j−kΘ′

j)])

⋮

(Γ−1
k ⊗ Ir)vec([∑∞j=0(εt+2ε

′
t−j−1Θ′

j , . . . , εt+2ε
′
t−j−kΘ′

j)])

sk,2vec([∑∞j=0(εt+1ε
′
t−j−1Θ′

j , . . . , εt+1ε
′
t−j−kΘ′

j)])

(Γ−1
k ⊗ Ir)vec([∑∞j=0(εt+1ε

′
t−j−1Θ′

j , . . . , εt+1ε
′
t−j−kΘ′

j)])

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vech

⎡⎢⎢⎢⎢⎣
εt−pε

′
t−p −Σ

⎤⎥⎥⎥⎥⎦

′

Lr} ∥ .

Since ∥ (Γ−1
k ⊗ Ir) ∥, ∥ sk,h ∥, and ∥ Σ ∥ are bounded and H is finite, it suffices to show that

∞

∑
p=−∞

∥ E{vec([
∞

∑
j=0

(εt+hε′t−j−1Θj , . . . , εt+hε
′
t−j−kΘj)])vech

⎡⎢⎢⎢⎢⎣
εt−pε

′
t−p

⎤⎥⎥⎥⎥⎦

′

} ∥

≤
k

∑
s=1

∞

∑
p=−∞

∞

∑
j=0

∥ E{vec(εt+hε′t−j−sΘj)vech
⎡⎢⎢⎢⎢⎣
εt−pε

′
t−p

⎤⎥⎥⎥⎥⎦

′

} ∥< ∞,

for h = 1,2, . . . ,H. Note that E{vec(εt+hε′t−j−sΘj)vech
⎡⎢⎢⎢⎢⎣
εt−pε

′
t−p

⎤⎥⎥⎥⎥⎦

′

}, is a r2 × [r(r + 1)/2] matrix. For ease of

notation, assume for the rest of this proof r = 1 so that ε and Θ are scalars, and note that for the multivariate

case when r > 1, since r is finite, the sum of r2 × [r(r + 1)/2] finite constants is finite. Now

k

∑
s=1

∞

∑
p=−∞

∞

∑
j=0

∥ E{vec(εt+hε′t−j−sΘj)vech
⎡⎢⎢⎢⎢⎣
εt−pε

′
t−p

⎤⎥⎥⎥⎥⎦

′

} ∥

=
k

∑
s=1

∞

∑
p=−∞

∥ E{vec(εt+hε′t−sΘ0)vech
⎡⎢⎢⎢⎢⎣
εt−pε

′
t−p

⎤⎥⎥⎥⎥⎦

′

} ∥ +
k

∑
s=1

∞

∑
p=−∞

∥ E{vec(εt+hε′t−1−sΘ1)vech
⎡⎢⎢⎢⎢⎣
εt−pε

′
t−p

⎤⎥⎥⎥⎥⎦

′

} ∥ + . . .

≤∥ Θ0 ∥
k

∑
s=1

∞

∑
p=−∞

∥ E{vec(εt+hε′t−s)vech
⎡⎢⎢⎢⎢⎣
εt−pε

′
t−p

⎤⎥⎥⎥⎥⎦

′

} ∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bounded

+ ∥ Θ1 ∥
k

∑
s=1

∞

∑
p=−∞

∥ E{vec(εt+hε′t−1−s)vech
⎡⎢⎢⎢⎢⎣
εt−pε

′
t−p

⎤⎥⎥⎥⎥⎦

′

} ∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bounded

+ . . .

≤
∞

∑
j=0

∥ Θj ∥ ×constant < ∞,

where the boundedness is due to absolute summability of the fourth order cumulants (which implies the

absolute summability of the fourth order moments).
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Proof of Theorem 6

Proof. Using same argument as Theorem 4, ŝk,h can replace ŝ∗k,h in ˆRStrucScore
(H),∗

t+1 . Due to independence

of the blocks, var∗((T − k −H)−1/2∑T−Ht=k
ˆRStrucScore

(H),∗

t+1 ) = V̂ lr(k,H) by Lemma 4. Moreover, by Lemma

4 we know that ∥ V̂ lr(k,H) ∥ p→∥ V (k,H) ∥. Note that

(T − k −H)−1/2
T−H

∑
t=k

ˆRStrucScore
(H),∗

t+1 =
N

∑
j=1

(N)−1/2(`)−1/2
`

∑
s=1

ˆRStrucScore
(H),∗

k+s+(j−1)` = plim
N

∑
j=1

Q∗
j ,

where Q∗
j = (N)−1/2(`)−1/2∑`s=1

ˆRStrucScore
(H),∗

k+s+(j−1)`. It follows that E∗[Q∗
j ] = 0, E∗[Q∗

jQ
∗
s] = 0 for s ≠

j, and E∗[Q∗
jQ

∗
j ] = V̂ lr

(k,H)

N
. To show asymptotic normality, I will use the CLT for triangular arrays of

independent random variables, Theorem 27.3 in Billingsley (1995). Need to show

1.
N

∑
j=1

E∗(Q∗
jQ

∗
j
′) p

∗

→ V (k,H),

2.
∑Nj=1E

∗(∣ ζQ∗
j ∣2+ξ)

[∑Nj=1E
∗((ζQ∗

j )2)](2+ξ)/2
p∗→ 0,

where ζ is a {[r(r + 1)/2] + 1} × 1 Cramer-Wold device. The first condition has already been proven. For

Lyapunov condition, set ξ = 2. The denominator is bounded since

E∗[(ζQ∗
j )2] = (N)−1 (`)−1

`

∑
n=1

`

∑
m=1

ζ ˆRStrucScore
(H)

m+(r−1)`(ζ ˆRStrucScore
(H)

n+(r−1)`)′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ζV̂ lr(k,H)ζ′=Op(1)

= Op(N−1).

Therefore
N

∑
j=1

E∗[(ζQ∗
j )2] = Op(1) Ô⇒ [

N

∑
j=1

E∗((ζQ∗
j )2)]2 = Op(1).

To show the numerator converges to probability 0, note that since η has finite fourth moments and (ζQ∗
j )2 =

Op(N−1),
N

∑
j=1

E∗(∣ ζQ∗
j ∣4) =

N

∑
j=1

E∗[(ζQ∗
j )2(ζQ∗

j )2] = Op(N−1) p→ 0.

Proof of Theorem 7

Proof. Let

yt+1 = ayt + εt+1,
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∣a∣ < 1 and εt is an i.i.d. process with E(εt) = 0 and var(εt) = σ2. This implies that E(yt) = 0 and the

var(yt) = E(y′tyt) = σ2

(1−a2)
. The LP GLS model at horizon h is:

yt+h − b̂(h−1),GLS ε̂t+1 − . . . − b̂(1),GLS ε̂t+h−1 = b(h)yt + ũ(h)t+h.

Note that

limT→∞var[
√
T −H(b̂(h),OLS − ah)]

= limT→∞{var[
√
T −H(b̂(h),GLS − ah) −

√
T −H(b̂(h),GLS − b̂(h),OLS)]

= limT→∞{var[
√
T −H(b̂(h),GLS − ah)] + var[

√
T −H(b̂(h),OLS − b̂(h),GLS)]

+2cov[
√
T −H(b̂(h),GLS − ah),

√
T −H(b̂(h),OLS − b̂(h),GLS)]}.

In order to show that the GLS estimator is at least as efficient, it suffices to show that

limT→∞{2cov[
√
T −H(b̂(h),GLS − ah),

√
T −H(b̂(h),OLS − b̂(h),GLS)]} ≥ 0.

By Proposition 6

√
T −H(b̂(h),GLS − ah) p→ (h − 1)ah−1

1
√
T−H

∑T−Ht=1 ytεt+1

Γ̂
+

1
√
T−H

∑T−Ht=1 ytεt+h

Γ̂
.

By Proposition 6, we also know that

√
T −H[b̂(h),OLS − b̂(h),GLS] p→

1
√
T−H

∑T−Ht=1 yt(∑h−1
p=1 a

pεt+h−p)

Γ̂
− (h − 1)ah−1

1
√
T−H

∑T−Ht=1 ytεt+1

Γ̂
.

So

limT→∞cov[
√
T −H[b̂(h),OLS − b̂(h),GLS],

√
T −H{b̂(h),GLS − ah}]

= E[(h − 1)ah−1

1
√
T−H

∑T−Hm=1 ymεm+1

Γ̂
×

1
√
T−H

∑T−Hn=1 yn(∑h−1
p=1 a

pεn+h−p)

Γ̂
]

−E[(h − 1)ah−1

1
√
T−H

∑T−Hm=1 ymεm+1

Γ̂
× (h − 1)ah−1

1
√
T−H

∑T−Hn=1 ynεn+1

Γ̂
]

+E[
1

√
T−H

∑T−Hm=1 ymεm+h

Γ̂
×

1
√
T−H

∑T−Hn=1 yn(∑h−1
p=1 a

pεn+h−p)

Γ̂
]

−E[
1

√
T−H

∑T−Hm=1 ymεm+h

Γ̂
× (h − 1)ah−1

1
√
T−H

∑T−Hn=1 ynεn+1

Γ̂
].
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Since Γ̂
p→ σ2

(1−a2)
, we have

= limT→∞((1 − a
2)

σ2
)

2

{(h − 1)ah−1 1

T −H
E[

T−H

∑
m=1

T−H

∑
n=1

ymεm+1yn(
h−1

∑
p=1

apεn+h−p)]

−a2(h−1)(h − 1)2 1

T −H
E[

T−H

∑
m=1

T−H

∑
n=1

ymεm+1ynεn+1]

+ 1

T −H
E[

T−H

∑
m=1

T−H

∑
n=1

ymεm+hyn(
h−1

∑
p=1

apεn+h−p)] −
1

T −H
ah−1(h − 1)E[

T−H

∑
m=1

T−H

∑
n=1

ymεm+hynεn+1]}.

= ((1 − a
2)

σ2
)

2

{(h−1)ah−1
h−1

∑
p=1

ah−1 σ4

(1 − a2)
−a2(h−1)(h−1)2 σ4

(1 − a2)
+
h−1

∑
p=1

a2p σ4

(1 − a2)
−a2(h−1)(h−1) σ4

(1 − a2)
}.

= (1 − a2)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
positive

{(
h−1

∑
p=1

a2p) − a2(h−1)(h − 1)}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
non−negative

,

where the second to last line is due to independence of the errors. Note that the last term is non-negative

since
(∑h−1

p=1 a
2p)

a2(h−1)(h − 1)
=
∑h−1
p=1 a

2(p−h+1)

h − 1
≥ 1, for h = 2,3, . . .

where the inequality is due to p + 1 ≤ h and ∣a∣ < 1. Therefore GLS is more efficient since

limT→∞var[
√
T −H(b̂(h),OLS − ah)]

= limT→∞{var[
√
T −H(b̂(h),GLS − ah)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
positive

+ var[
√
T −H(b̂(h),OLS − b̂(h),GLS)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
positive

+2cov[
√
T −H(b̂(h),GLS − ah),

√
T −H(b̂(h),OLS − b̂(h),GLS)]}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
non−negative

.

A.2.2 Proofs of Corollaries

Proof of Corollary 1

Proof. Proof follows the exact same lines as Proposition 3, so only the broad strokes will be discussed. Note

that when i > H − 1, E[Score(H)

t ∣Ft−i] = 0 by the martingale difference sequence assumption on the errors.

ct = (E(E(Score(H)

t ∣Ft−i)2))1/2∆ where ∆ = Hν/(ν+1) for any ν > 0, and γi = i−(ν+1)/ν . Lastly, the proof

V11(k,H) > 0 follows the same argument as Proposition 3.
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A.2 Monte Carlo Evidence Figures
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Figure 4: Coverage Rates for 95% Confidence Intervals and Average Length for VAR(1) Models

Note: Bias-adjusted LP GLS bootstrap (LP GLS Boot BA), LP GLS bootstrap (LP GLS Boot), Analytical LP GLS estimator
(LP GLS), LP OLS with equal-weighted cosine HAC standard errors (LP OLS), Bias-adjusted VAR bootstrap (VAR Boot
BA), Analytical VAR estimator (VAR).
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Figure 5: Coverage Rates for 95% Confidence Intervals and Average Length for ARMA(1,1) Models

Note: Bias-adjusted LP GLS bootstrap (LP GLS Boot BA), LP GLS bootstrap (LP GLS Boot), Analytical LP GLS estimator
(LP GLS), LP OLS with equal-weighted cosine HAC standard errors (LP OLS), Bias-adjusted VAR bootstrap (VAR Boot
BA), Analytical VAR estimator (VAR).
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Figure 6: Coverage Rates for 95% Confidence Intervals and Average Length for VARMA(1,1)

Note: Bias-adjusted LP GLS bootstrap (LP GLS Boot BA), LP GLS bootstrap (LP GLS Boot), Analytical LP GLS estimator
(LP GLS), LP OLS with equal-weighted cosine HAC standard errors (LP OLS), Bias-adjusted VAR bootstrap (VAR Boot
BA), Analytical VAR estimator (VAR).
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Figure 7: Coverage Rates for 95% Confidence Intervals and Average Length for MA(35)

Note: Bias-adjusted LP GLS bootstrap (LP GLS Boot BA), LP GLS bootstrap (LP GLS Boot), Analytical LP GLS estimator
(LP GLS), LP OLS with equal-weighted cosine HAC standard errors (LP OLS), Bias-adjusted VAR bootstrap (VAR Boot
BA), Analytical VAR estimator (VAR).
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Figure 8: Coverage Rates for 95% Confidence Intervals and Average Length for Fiscal VAR

Note: Bias-adjusted LP GLS bootstrap (LP GLS Boot BA), LP GLS bootstrap (LP GLS Boot), Analytical LP GLS estimator
(LP GLS), LP OLS with equal-weighted cosine HAC standard errors (LP OLS), Bias-adjusted VAR bootstrap (VAR Boot
BA), Analytical VAR estimator (VAR).
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Figure 9: Coverage Rates for 95% Confidence Intervals and Average Length for Technology VAR

Note: Bias-adjusted LP GLS bootstrap (LP GLS Boot BA), LP GLS bootstrap (LP GLS Boot), Analytical LP GLS estimator
(LP GLS), LP OLS with equal-weighted cosine HAC standard errors (LP OLS), Bias-adjusted VAR bootstrap (VAR Boot
BA), Analytical VAR estimator (VAR).
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