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Abstract

The largest economic cost of the COVID-19 pandemic could arise 
from changes in behavior long after the immediate health crisis is 
resolved. A potential source of such a long-lived change is scarring 
of beliefs, a persistent change in the perceived probability of an ex-
treme, negative shock in the future. We show how to quantify the 
extent of such belief changes and determine their impact on future 
economic outcomes. We find that the long-run costs for the U.S. 
economy from this channel is many times higher than the estimates 
of the short-run losses in output. This suggests that, even if a vaccine 
cures everyone in a year, the COVID-19 crisis will leave its mark on 
the U.S. economy for many years to come.

Introduction

One of the most pressing questions of the day is the economic costs 
of the COVID-19 pandemic. While the virus will eventually pass, 
vaccines will be developed and workers will return to work, an event 
of this magnitude could leave lasting effects on the nature of economic 
activity. Economists are actively debating whether the recovery will be 
V-shaped, U-shaped or L-shaped.1 Much of this discussion revolves 
around confidence, fear and the ability of firms and consumers to  
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rebound to their old investment and spending patterns. Our goal is 
to formalize this discussion and quantify these effects, both in the 
short- and long-run. To explore these conjectures about the extent to 
which the economy will rebound from this COVID-induced down-
turn, we use a standard economic and epidemiology framework, with 
one novel channel: a “scarring effect.” Scarring is a persistent change 
in beliefs about the probability of an extreme, negative shock to the 
economy. We use a version of Kozlowski et al. (2020), to formalize 
this scarring effect and quantify its long-run economic consequences, 
under different scenarios for the dynamics of the crisis. 

We start from a simple premise: No one knows the true distribution 
of shocks in the economy. Consciously or not, we all estimate the dis-
tribution using past events, like an econometrician would. Tail events 
are those for which we have little data. Scarce data makes new tail 
event observations particularly informative. Therefore, tail events trig-
ger larger belief revisions. Furthermore, because it will take many more 
observations of non-tail events to convince someone that the tail event 
really is unlikely, changes in tail risk beliefs are particularly persistent. 

We have seen the scarring effect in action before. Before 2008, few 
people entertained the possibility of a financial crisis in the United 
States. Today, more than a decade after the global financial crisis, the 
possibility of another run on the financial sector is raised frequently, 
even though the system today is probably much safer (Baker et al. 
2019). Likewise, businesses will make future decisions with the risk of 
another pandemic in mind. Observing the pandemic has taught us 
that the risks were greater than we thought. It is this newfound knowl-
edge that has long-lived effects on economic choices. 

To explore tail risk in a meaningful way, we need to use an estima-
tion procedure that does not constrain the shape of the distribution’s 
tail. Therefore, we allow our agents to learn about the distribution 
of aggregate shocks non-parametrically. Each period, agents observe 
one more piece of data and update their estimates of the distribu-
tion. Section I shows how this process leads to long-lived responses 
of beliefs to transitory events, especially extreme, unlikely ones. The 
mathematical foundation for such persistence is the martingale prop-
erty of beliefs. The logic is that once observed, the event remains in 
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agents’ data set. Long after the direct effect of the shock has passed, 
the knowledge of that tail event affects beliefs and therefore, continues 
to restrain economic activity. 

To illustrate the economic importance of these belief dynamics, Sec-
tion II embeds our belief-updating tool in a macroeconomic model 
with an epidemiology event that erodes the value of capital. This 
framework is designed to link tail events like the current crisis to mac-
ro outcomes in a quantitatively plausible way and has been used–e.g., 
by Gourio (2012) and Kozlowski et al. (2020)–to study the 2007-09 
Great Recession. It features, among other elements, bankruptcy risk 
and elevated capital depreciation from social distancing, which sepa-
rates labor from capital. Section III describes the data we feed into the 
model to discipline our belief estimates. Section IV combines model 
and data and uses the resulting predictions to show how belief up-
dating can generate large, persistent losses. We compare our results 
to those from the same economic model, but with agents who have 
full knowledge of the distribution, to pinpoint belief updating as the 
source of the persistence. 

We model the economic effects of the COVID-19 crisis as a com-
bination of productivity decline and accelerated capital  obsoles-
cence. We use the well-known SEIR (susceptible-exposed-infected-
recovered) framework from the epidemiology literature to model the 
disease spread. But, it is the response to the disease that is the source 
of the adverse economic shock in our model. Our structure is capable 
of generating large asset price fluctuations, of the order observed at 
the onset of the pandemic, and provides a simple mapping from so-
cial distancing policies and other mitigation behavior to economic 
costs. It also allows us to connect to existing studies on tail risk in 
macroeconomics and finance. We present results for different sce-
narios, reflecting the considerable uncertainty about outcomes even 
in the short run. Our point is not to make a forecast of the coming 
year’s events but that that whatever you think will happen over the 
next year, the ultimate costs of this pandemic are much larger than 
your short-run calculations suggest. 

In the first scenario, GDP drops by about 9% in 2020, recovers 
gradually but does not go back to its previous trajectory. It persistently 
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remains about 4% below the previous pre-COVID steady state. The 
discounted value of the lost output is almost 10 times the 2020 drop 
and belief revisions account for bulk of the losses (almost six times the 
short-run effect). Greater tail risk makes investing less attractive, re-
ducing the stock of productive capital and (and therefore, labor input 
demand) persistently. In the second scenario, which captures a mild-
er mitigation response to the spread of the disease, both short- and 
long-run economic costs are longer, but the relative importance of 
belief revisions remains the same. 

The model also makes a number of predictions about asset prices. 
Interestingly, after an initial shock, credit spreads and equity valua-
tions are predicted to roughly return to their original levels. This is 
because firms respond to this increase in riskiness by cutting back on 
debt. The effects of scarring are more clearly noticeable in options 
prices. In scenario 1, for example, the option-implied third moment 
in the risk-neutral distribution of equity returns becomes significant-
ly more negative. 

For monetary policymakers, one of the most pressing questions is 
how belief scarring will affect the long-run natural rate of interest, 
often referred to as “r-star.” Following the onset of COVID in the 
United States, interest rates declined rapidly. A significant portion of 
that decline is related to demand for liquidity. In order to understand 
how much of that decline was temporary and how much permanent–
and more broadly about the interaction of liquidity and scarring–
we introduce a role for liquid assets in an extension of our baseline 
model in Section V. When most capital is only partially pledgeable, 
but riskless assets are fully pledgeable, riskless assets, of course, have 
more value. But what we learn is that value is sensitive to tail risk. 
A persistent increase in perceived risk from COVID-19 depresses the 
long-run natural rate of interest by 67 basis points. 

Our results also imply that a policy that prevents capital depre-
ciation or obsolescence, even if it has only modest immediate ef-
fects on output, can have substantial long-run benefits, several times 
larger than the short-run considerations that often dominate policy  
discussion. Obviously, no policy can prevent people from believing 
that future pandemics are more likely than they originally thought, 
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but policy can change how the ongoing crisis affects capital returns. By  
changing that mapping, the costs of belief scarring can be mitigated. 
For example, bankruptcies can lead to destruction of specific invest-
ments and a permanent erosion in the value of capital. Interventions 
which prevent widespread bankruptcies can thus limit the adverse 
effects of the crisis on returns and yield substantial long-run benefits. 
While the short-run gains from limiting bankruptcies is well-under-
stood, our analysis shows that neglecting the effect on beliefs leads 
one to drastically underestimate the benefits of such policies. 

Of course, future governments could also invest in public health to 
mitigate the cost of future pandemics. The ability of such an invest-
ment to heal beliefs depends on the nature of belief changes induced 
by this episode. If we only updated our beliefs about the ability of a 
particular type of communicable diseases to disrupt economic activity, 
then health investments will be highly effective. However, traumatic 
events often leave survivors with a more general sense that unexpect-
ed, disastrous events can arise without warning. This more amorphous 
fear will be much harder for policy to combat.

Comparison to the Literature 

There are many new studies of the impact of the COVID-19 pan-
demic on the U.S. economy, both model-based and empirical. Alva-
rez et al. (2020), Eichenbaum et al. (2020) and Farboodi et al. (2020) 
use simple economic frameworks to analyze the costs of the disease 
and the associated mitigation strategies. Leibovici et al. (2020) use an 
input-output structure to investigate the extent to which a shock to 
contact-intensive industries can propagate to the rest of the economy. 
Koren and Petõ (2020) build a detailed theory-based measure of the 
reliance of U.S. businesses on human interaction. On the empirical 
side, Ludvigson et al. (2020) use VARs to estimate the cost of the 
pandemic over the next few months, while Carvalho et al. (2020) use 
high-frequency transaction data to track expenditure and behavior 
changes in real time. We add to this discussion by focusing on the 
long-term effects from changes in behavior that persist long after the 
disease is gone. 
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Other papers share our focus on long-run effects. Jorda et al. (2020) 
study rates of return on assets using a data set stretching to the 14th 
century, focusing on 15 major pandemics (with more than 100,000 
deaths). Their evidence suggests a sustained downward pressure on 
interest rates, decades after the pandemic, consistent with long-last-
ing macroeconomic aftereffects. Reinhart and Rogoff (2009) exam-
ine long-lived effects of financial crises. Correia et al. (2020) find evi-
dence of persistent declines in economic activity following the 1918 
influenza pandemic. A few papers also use beliefs but rely on other 
mechanisms, such as financial frictions, for propagation. Elenev et 
al. (2020) and Krishnamurthy and Li (2020) propagate the shock 
primarily through financial balance sheet effects. In a more informal 
discussion, Cochrane (2020) explores whether the recovery from the 
COVID-shock will be V, U or L shaped. This work formalizes many 
of the ideas in that discussion. 

Outside of economics, biologists and socio-biologists have noted 
long ago that epidemics change the behavior of both humans and ani-
mals. Loehle (1995) explore the social barriers to transmission in ani-
mals as a mode of defense against pathogen attack. Past disease events 
have effects on mating strategies, social avoidance, group size, group 
isolation and other behaviors for generations. Gangestad and Buss 
(1993) find evidence of similar behavior among human communities. 

In the economics realm, a small number of uncertainty-based theo-
ries of business cycles also deliver persistent effects from other sorts 
of transitory shocks. In Straub and Ulbricht (2013) and Van Nieu-
werburgh and Veldkamp (2006), a negative shock to output raises 
uncertainty, which feeds back to lower output, which in turn creates 
more uncertainty. To get even more persistence, Fajgelbaum et al. 
(2017) combine this mechanism with an irreversible investment cost, 
a combination which can generate multiple steady-state investment 
levels. These uncertainty-based explanations are difficult to embed in 
quantitative DSGE models and to discipline with macro and finan-
cial data. 

Our belief formation process is similar to the parameter learning  
models by Johannes et al. (2016), Cogley and Sargent (2005) and 
Kozeniauskas et al. (2014) and is similar to what is advocated by 



	
Scarring Body and Mind: The Long-Term Belief-Scarring Effects of COVID-19	 131

Hansen (2007). However, these papers focus on endowment econo-
mies and do not analyze the potential for persistent effects in a setting 
with production.2 The most important difference is that our non-
parametric approach allows us to incorporate beliefs about tail risk.

I.	 Belief Formation  

Before laying out the underlying economic environment, we begin 
by explaining how we formalize the notion of belief scarring, the 
non-standard, but most crucial part of our analysis. We then em-
bed it in an economic environment and quantify the effect of belief 
changes from the COVID-19 pandemic on the U.S. economy. 

No one knows the true distribution of shocks to the economy. All 
of us–whether in our capacity as economic agents or modelers or 
econometricians–estimate such distributions, updating our beliefs as 
new data arrives. Our goal is to model this process in a reasonable and 
tractable fashion. The first step is to choose a particular estimation 
procedure. A common approach is to assume a normal or other para-
metric distribution and estimate its parameters. The normal distribu-
tion, with its thin tails, is unsuited to thinking about changes in tail 
risk. Other distributions raise obvious concerns about the sensitivity 
of results to the specific distributional assumption used. To minimize 
such concerns, we take a non-parametric approach and let the data in-
form the shape of the distribution. 

Specifically, we employ a kernel density estimation procedure, one 
of most common approaches in non-parametric estimation. Essen-
tially, it approximates the true distribution function with a smoothed 
version of a histogram constructed from the observed data. By us-
ing the widely used normal kernel, we impose a lot of discipline on our 
learning problem but also allow for considerable flexibility. We also ex-
perimented with a handful of other kernels. 

Consider a shock !φt   whose true density g is unknown to agents in 
the economy. The agents do know that the shock !φt   is i.i.d. Their 
information set at time t,  denoted It ,  includes the history of all 
shocks !φt    observed up to and including t. They use this available data 
to construct an estimate ĝ t   of the true density g. Formally, at every 
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date, agents construct the following normal kernel density estimator 
of the pdf g

ĝ t !φ( ) = 1
ntκ t

Ω
s=0

nt −1

∑
!φ − !φt −s
κ t

⎛
⎝⎜

⎞
⎠⎟                                 

(1)

where Ω(·) is the standard normal density function, κ t  is the smooth-
ing or bandwidth parameter and n

t
 is the number of available obser-

vations at date t. As new data arrives, agents add the new observation 
to their data set and update their estimates, generating a sequence of 
beliefs ĝ t{ } .

The key mechanism in the paper is the persistence of belief changes 
induced by transitory !φt    shocks. This stems from the martingale prop-
erty of beliefs–i.e., conditional on time-t information (It ), the esti-
mated distribution is a martingale. Thus, on average, the agent expects 
her future belief to be the same as her current beliefs. This property 
holds exactly if the bandwidth parameter κ t  is set to zero and holds 
with tiny numerical error in our application.3 In line with the literature 
on non-parametric assumption, we use the optimal bandwidth.4 As a 
result, any changes in beliefs induced by new information are expected 
to be approximately permanent. This property plays a central role in 
generating long-lived effects from transitory shocks.

II.	 Economic and Epidemiological Model

To gauge the magnitude of the scarring effect of the COVID-19 
pandemic on long-run economic outcomes, we need to embed it in 
an economic model in which tail risk and belief changes can have 
meaningful effects. For this, a model needs two key features. First, it 
should have the potential for “large” shocks, that have both transitory 
and lasting effects. The former would include lost productivity from 
stay-at-home orders preventing services from reaching consumers. 
But for this shock to look like the extreme event it is to investors, the 
model must also allow for the possibility of a more persistent loss of 
productive capital. This loss represents the interior of the restaurant 
that went bankrupt, or the unused capacity of the hotel that will not 
fill again for many years to come. When stay-at-home orders forced 
consumers to work and consume differently, it persistently altered 
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tastes and habits, rendering some capital obsolete. One might think 
this is hard-wiring persistence in the model. Yet, as we will show, this 
loss of capital by itself has a short-lived effect and typically triggers 
an investment boom, as the economy rebuilds capital better suited 
to the new consumption normal. We explore two possible scenarios 
that highlight the enormous importance of preventing capital obso-
lescence, because of the scarring of beliefs. 

The second key feature is sufficient curvature in policy functions, 
which serves to make economic activity sensitive to the probability of 
extreme large shocks. Two ingredients—namely, Epstein-Zin prefer-
ences and costly bankruptcy—combine to generate significant non-
linearity in policy functions. 

It is important to note that none of these ingredients guarantees 
persistent effects. Absent belief revisions, shocks, no matter how 
large, do not change the long-run trajectory of the economy. Similar-
ly, the non-linear responses induced by preferences and debt influence 
the size of the economic response, but by themselves do not generate 
any internal propagation. They simply govern the magnitude of the 
impact, both in the short and long run. 

To this setting, we add belief scarring. We model beliefs using the 
non-parametric estimation described in the previous section and 
show how to discipline this procedure with observable macro data, 
avoiding free parameters. This belief updating piece is not there to 
generate the right size reaction to the initial shock. Instead, belief 
updating adds the persistence, which considerably inflates the cost.	

   II.i. The Disease Environment

This block of the model serves to generate a time path for disrup-
tion to economic activity, which will then be mapped into transitory 
productivity shock and capital obsolescence. Of course, we could have 
directly created scenarios for the shocks and arrived at the same predic-
tions. The explicit modeling of the spread of disease allows us to see 
how different social distancing policies map into shocks and ultimately 
into long-term economic costs from belief scarring. Given this motiva-
tion, we build on a very simple SEIR model, which is a discrete-time 
version of Atkeson (2020) or Stock (2020), who build on work in 
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the spirit of Kermack and McKendrick (1927). To this model, we add 
two ingredients: 1) a behavioral/policy rule that imposes capital idling 
when the infection rate increase (for example, this rule could represent 
optimal behavior or government policy); and 2) a higher depreciation 
rate of unused capital. While we normally think of capital utilization 
depreciating capital, this is a different circumstance where habits, tech-
nologies and norms are changing more rapidly than normal. Unused 
capital may be restaurants whose customers find new favorites, old 
conferencing technologies replaced with new online technology or of-
fice space that will be replaced with home offices. This higher deprecia-
tion rate represents a speeding up of capital obsolescence.

Disease and shutdowns 

On Jan. 20, 2020, the first case of COVID was documented in the 
United States. Therefore, we start our model on that day, with one 
infected person. Because we are examining persistence mechanisms, 
we want to impose a clear end date to the COVID shock. Therefore, 
we assume that COVID-19 will be over by the end of 2020. The SEIR 
model predicts the evolution of the pandemic. Our policy shutdown 
rule, maps the infection rate series into a value for the aggregate shock 
to the U.S. economy in 2020. From 2021 onward, we assume that 
COVID-19 will be over. However, we explore scenarios where the 
economy may suffer other pandemics in the future. 

Time is discrete and infinite. For the disease part of the model, we 
will count time in days, indexed by t̃.   Later, to describe long-run ef-
fects, we will change the measure of time to t, which represents years. 
There are N agents in the economy. At date 1, the first person gets 
infected. Let S represent the number of people susceptible to the dis-
ease, but not currently exposed, infected, dead or recovered. At date 
1, that susceptible number is S(1) = N − 1. Let E be the number of 
exposed persons and I  be the number infected. We start with E(1) 
= 0 and  I(1) = 1. Finally, D represents the number who are either 
recovered or dead, where D(1) = 0. The following four equations 
describe the dynamics of the disease.

S ( !t +1) = S ( !t )− !β !t S ( !t )I ( !t ) /N                               (2) 

E ( !t +1) = E ( !t )+ !β !tS ( !t )I ( !t ) /N −σ EE ( !t )                      (3)
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I ( !t +1) = I ( !t )+σ EE ( !t )−γ I I ( !t )                           (4)

D( !t +1) =D( !t )+γ I I ( !t )                               (5)

The parameter γ
I
 is the rate at which people exit infection and be-

come deceased or recovered. Thus, the expected duration of infection is 
approximately 1/ γ

I
, and the number of contacts an infected person has 

with a susceptible person is  !β times the fraction of the population 
that is susceptible S ( !t ) /N . The initial reproduction rate, often re-
ferred to as R

0
 is therefore !β /γ I .

We put a t subscript on !β !t because behavior and policy can change 
it. When the infection rate rises, people reduce infection risk by 
staying home. This reduces the number of social contacts, reduc-
ing  !β . Lockdown policies also work by reducing  !β . We capture 
this relationship by assuming that  !β can vary between a maxi-
mum of γ

I
R

0
 and a minimum of γ

I
R

min
. R

min
 is the estimated U.S. 

reproduction rate for regions under lockdown. Where on the spec-
trum the contact rate lies depends on the last 30-day change in  
infection rates, measured with a 15-day lag.5 Let ∆I

t
 be the difference 

between the average 15-29 day past infections and the average of  

30-44 day infections: ΔIt = (1/15) I
τ =15

29

∑ (t −τ )− I
τ =30

44

∑ (t −τ )
⎛
⎝⎜

⎞
⎠⎟ . This captures the 

fact that most policymakers are basing policy on two-week changes 
in hospitalization rates, which are themselves observed with a 14-
day lag. Then policy and individual behavior achieves a frequency of 
social contact:

!β !t = γ I ×min(R0 ,max (Rmin ,R0 −ζ *ΔIt ))                      (6)

The key part of the epidemic from a belief-scarring perspective is 
that reducing the contact rate requires separating labor from capital. 
In other words, capital is idle. No capital is idled (full capacity) when 
no mitigation efforts are underway, i.e. when !β !t = γ IR0 . But as !β !t
falls, capital idling (K¯ ) rises. We formalize that relationship as

K
!t
− = !θ * (R0 − !β !t /γ I ).                              (7)
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Idle capital depreciates as a rate !δ .  As mentioned before, this is not 
physical deterioration of the capital stock. Instead, it represents a loss 
of value from accelerated obsolescence due to changes in tastes, hab-
its and technologies. It could also represent a loss in value because of 
persistent upstream or downstream supply chain constraints.

II.ii. The Economy

Preferences and technology

To describe long-term economic consequences, we switch from the 
daily time index !t to an annual time index t. An infinite horizon, dis-
crete time economy has a representative household, with preferences 
over consumption (C

t
) and labor supply (L

t
):

Ut = 1− β( ) ctγ (1− lt )1−γ( )1−ψ + βEt Ut +1
1−η( )%1−ψ

1−η⎡
⎣⎢

⎤
⎦⎥

1
1−ψ

              
(8)

where Ψ is the inverse of the inter-temporal elasticity of substitution, 
η indexes risk-aversion, γ indexes the share of consumption in the 
period utility function, and β represents time preference. 

The economy is also populated by a unit measure of firms, indexed 
by i and owned by the representative household. Firms produce out-
put with capital and labor, according to a  standard Cobb-Douglas 
production function ztkitα lit1−α.

Aggregate uncertainty is captured by a single random variable, !φt , 
which is i.i.d over time and drawn from a distribution g(·). The i.i.d. 
assumption is made in order to avoid an additional, exogenous, source 
of persistence.6 The effect of this shock on economic activity depends 
on the realized default rate Def

t
 (the fraction of firms who default in t, 

characterized later in this section). Formally, it induces a capital obso-
lescence “shock” φt ≡Φ( !φt ,Deft ). The function Φ(·) will be made explicit 
later. This composite shock has both permanent and transitory effects. 
The permanent component works as follows: a firm that enters the 
period t with capital k̂ it  has effective capital kit =φt k̂ it .

In addition to this permanent component, the shock φ
t
 also has a 

temporary effect, through the TFP term zt =φtν . The parameter ν  
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governs the relative strength of the transitory component. This specifi-
cation allows us to capture both permanent and transitory disruptions 
with only one source of uncertainty. By varying ν, we can capture a 
range of scenarios without having to introduce additional shocks.

Firms are also subject to an idiosyncratic shock v
it
. These shocks 

scale up and down the total resources available to each firm (after pay-
ing labor, but before paying debtholders’ claims)

	 Πit =v it ztkitα lit1−α −Wtlit + (1−δ )kit[ ]                       (9)

where δ is the ordinary rate of capital depreciation. The additional 
obsolescence from idle capital is already removed from k

it
, via the 

shock φ
t
. The shocks v

it
 are i.i.d. across time and firms and are drawn 

from a known distribution,  F.7 The mean of the idiosyncratic shock 
is normalized to be one: v it∫ di = 1. The primary role of these shocks 
is to induce an interior default rate in equilibrium, allowing a more 
realistic calibration, particularly of credit spreads.

What is capital obsolescence? 

 Capital obsolescence shock reflects a long-lasting change in the eco-
nomic value of the average unit of capital. A realization of  φ < 1 captures 
the loss of specific investments or other forms of lasting damage from a 
prolonged shutdown. This could come from the lost value of cruise ships 
that will never sail again, businesses that do not re-open, loss of customer 
capital or just less intensive use of commercial space due to a persistent 
preference for more distance between other diners, travelers, spectators 
or shoppers. It could also represent permanent changes in health and 
safety regulations that make transactions safer, but less efficient from an 
economic standpoint.

An important question is whether future investment could be made 
in ways or in sectors that avoid these costs. Of course, such substitu-
tion is likely to happen to some extent. But, the fact that the patterns 
of investment were not chosen previously suggests that these adjust-
ments are costly or less profitable. More importantly, we learned that 
the world is riskier and more unpredictable than we thought. The 
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shocks that hit one sector (or type of capital) today may hit another 
tomorrow, in ways that are impossible to foresee.

Capital markets and default

Firms have access to a competitive non-contingent debt market, 
where lenders offer bond price (or equivalently, interest rate) sched-
ules as a function of aggregate and idiosyncratic states, in the spirit 
of Eaton and Gersovitz (1981). A firm enters period t+1 with an 
obligation, b

it+1
 to bondholders. The shocks are then realized and 

the firm’s shareholders decide whether to repay their obligations or 
default. Default is optimal for shareholders if and only if

Πit +1 −bit +1 + Γt +1 < 0

where Γ
t+1

 is the present value of continued operations. Thus, the default 
decision is a function of the resources available to the firm Π

it+1
 (output 

plus undepreciated capital less wages) and the obligations to bondhold-
ers b

it+1
. Let r

it+1
 ∈  {0, 1}  denote the default policy of the firm.

In the event of default, equity holders get nothing. The productive 
resources of a defaulting firm are sold to an identical new firm at a  
discounted price, equal to a fraction θ < 1 of the value of the defaulting 
firm. The proceeds are distributed pro-rata among the bondholders.8

Let q
it
 denote the bond price schedule faced by firm i in period t, i.e., 

the firm receives q
it
 in exchange for a promise to pay one unit of output 

at date t + 1. Debt is assumed to carry a tax advantage, which creates 
incentives for firms to borrow. A firm which issues debt at price q

it
 and 

promises to repay b
it+1

 in the following period, receives a date-t payment 
of  χq

it
b

it+1
, where χ > 1. This subsidy to debt issuance, along with the 

cost of default, introduces a trade-off in the firm’s capital structure deci-
sion, breaking the Modigliani-Miller theorem.9

For a firm that does not default, the dividend payout is its total 
available resources, minus its payments to debt and labor, minus the 
cost of building next period’s capital stock (the undepreciated cur-
rent capital stock is included in Π

it
), plus the proceeds from issuing 

new debt, including its tax subsidy

                          dit = Πit −bit − k̂ it +1 + χqitbit +1. 	 (10)
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Importantly, we do not restrict dividends to be positive, with nega-
tive dividends interpreted as (costless) equity issuance. Thus, firms 
are not financially constrained, ruling out another potential source 
of persistence.

Bankruptcy and obsolescence 

Next, we spell out the relationship between default and capital ob-
solescence, φt = Φ( !φt ,Deft )  where  Deft ≡ rit∫ di . This  is  meant  to  cap-
ture  the idea that widespread bankruptcies can amplify the erosion 
in the economic value of capital arising from the primitive shock !φt . 
This might come from lost supply chain linkages, interfirm relation-
ships or other ways in which economic activity is interconnected. For 
example, a retailer might ascribe a lower value to space in a mall if a 
number of other stores go out of business. Similarly, a manufacturer 
might need to undertake costly search or make adjustments to his 
factory in order to accommodate new suppliers. We capture these 
effects with a flexible functional form:

lnφt = lnΦ( !φt ,Deft ) = ln !φt − µ  Deft1−ϖ ,                (11)

where µ and ϖ are parameters that govern the relationship between 
default and the loss of capital value.

Timing and value functions:

1.	 Firms enter the period with a capital stock k̂ it  and outstand-
ing debt b

it
.

2.	 The aggregate capital obsolescence shocks are realized.10 Labor 
choice is made and production takes place.

3.	 Firm-specific shocks v
it
 are realized. The firm decides whether 

to default or repay (r
it
 ∈{0, 1}) its debt claims and distribute 

any remaining dividends.

4.	 The firm makes capital k̂ it +1 and debt b
it+1

 choices for the fol-
lowing period. 

In recursive form, the problem of the firm is

V k̂it ,bit ,v it ,St( ) = max 0, max
dit ,lit ,k̂ it +1,bit +1

dit +EtMt +1V k̂it +1,bit +1,v it +1,St +1( ),⎡
⎣⎢

⎤
⎦⎥ (12)
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where M
t+1

 is the representative households’ stochastic discount fac-
tor, subject to

	 Dividends: dit ≤ Πit −bit − k̂ it +1 + χqitbit +1                 (13)

Resources: Πit =v it ztkitα lit1−α −Wtlit + (1−δ )kit[ ]             (14)

Bond price: qit = EtMt +1 rit +1 + 1− rit +1( )θ
!Vit +1

bit +1

⎡

⎣
⎢

⎤

⎦
⎥
             

(15)

Finally, firms hire labor in a competitive market at a wage W
t
. We 

assume that this decision is made after observing the aggregate shock 
but before the idiosyncratic shocks are observed, i.e., labor choice 
solves the following static problem:

max
lit

zt (φt k̂ it )α lit1−α −Wtlit

 The first max operator in (12) captures the firm’s option to default. 
The expectation Et  is taken over the idiosyncratic and aggregate 
shocks, given beliefs about the aggregate shock distribution. The value 
of a defaulting firm is simply the value of a firm with no external obli-
gations, i.e., !Vit =V k̂it ,0,v it ,St( ) .

The  aggregate  state  S
t
  consists  of (K̂ t , !φt ,It )  where It is the  econ-

omy-wide  information set. Equation (15) reveals that bond prices 
are a function of the firms capital k̂ it +1 and debt bit+1,  as well as the 
aggregate state St. The firm takes the aggregate state and the function 
qit = q k̂it +1,bit +1,St( ) as given, while recognizing that its choices affect 
its bond price.

Information, beliefs and equilibrium	

The set It  includes the history of all shocks !φt observed up to and 
including time-t. The expectation operator Et  is defined with re-
spect to this information set. Expectations are probability-weighted 
integrals, where the probability density is ĝ( !φ ) . The function gˆ arises 
from using the kernel density estimation procedure in equation (1). 

For a given belief ĝ , a recursive equilibrium is a set of functions for 
(i) aggregate consumption and labor that maximize (8) subject to a 
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budget constraint, (ii) firm value and policies that solve (12), taking 
as given the bond price function (15) and the stochastic discount 
factor, (iii) aggregate consumption and labor are consistent with in-
dividual choices and (iv) capital obsolescence is consistent with de-
fault rates according to (11).

II.iii. Characterization

The equilibrium of the economic model is a solution to the fol-
lowing set of nonlinear equations. First, the fact that the constraint 
on dividends (13) will bind at the optimum can be used to substi-
tute for d

it
 in the firm’s problem (12). This leaves us with two inter-

temporal choice variables (k̂ it +1,bit +1) and a default decision. The latter 
is described by a threshold rule in the idiosyncratic output shock v

it
:

rit =
0 if  vit < vt

1 if  vit ≥ vt

⎧
⎨
⎪

⎩⎪

which implies that the default rate Def
t
 = F (v

t
). It turns out to be 

more convenient to redefine variables and cast the problem as a 

choice of k̂ it +1 and leverage, lev it +1 ≡
bit +1

k̂ it +1

. The full characterization 

to the Appendix. Since all firms make symmetric choices for these 
objects, in what follows, we suppress the i subscript. The optimality 
condition for k̂t +1 is:

1= E[Mt +1Rt +1
k ]+ (χ −1)levt +1qt − (1−θ )E[Mt +1Rt +1

k h(vt +1)]         (16)

where Rt +1
k =

φt +1
α+νk̂t +1

α lt +1
1−α −Wt +1lt +1 + 1−δ( )φt +1k̂t +1

k̂t +1              
(17)

The objectRt +1
k is the ex-post per-unit, post-wage return on capital, 

which is obviously a function of the obsolescence shock φ
t
. The de-

fault threshold is given by vt +1 =
levt +1

Rt +1
k

while h v( ) ≡ v
−∞

v

∫ f (v )dv  is the 

default-weighted expected value of the idiosyncratic shock. 

The first term on the right hand side of (16) is the usual expected 
direct return from investing, weighted by the stochastic discount fac-
tor. The other two terms are related to debt. The second term reflects 
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the indirect benefit to investing arising from the tax advantage of 

debt–for each unit of capital, the firm raises bt +1

k̂t +1

qt from the bond 

market and earns a subsidy of χ−1 on the proceeds. The last term is 
the cost of this strategy–default-related losses, equal to a fraction 1−θ 
of available resources.

Note that the default threshold is a function of φ
t
, which in turn is 

affected by default, through (11). Therefore, the threshold equation

vt +1 =
levt +1

Rt +1
k

 implicitly defines a fixed-point relationship:

vt +1 =
levt +1

Rt +1
k

= levt +1

φt +1
α+νk̂t +1

α−1lt +1
1−α −Wt +1

lt +1

k̂t +1

+ 1−δ( )φt +1

               

(18)

Next, the firm’s optimal choice of leverage, lev
t+1

 is

1−θ( )Et Mt +1
levt +1

Rt +1
k

f levt +1

Rt +1
k

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

χ −1
χ

⎛
⎝⎜

⎞
⎠⎟
Et Mt +1 1−F levt +1

Rt +1
k

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥. (19)

The left hand side is the marginal cost of increasing leverage–it raises 
the expected losses from the default penalty (a fraction 1− θ of the 
firms value). The right hand side is the marginal benefit—the tax 
advantage times the value of debt issued.

Finally, firm and household optimality implies that labor solves the 
intra-temporal condition:

(1−α )yt
lt

=Wt =
1−γ
γ

ct
1− lt                    

(20) 

The optimality conditions, (16)–(20), along with those from the 
household side, form the system of equations we solve numerically.

III.	 Measurement, Calibration and Solution Method

This section describes how we use macro data to estimate beliefs and 
parameterize the model, as well as our computational approach. A 
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strength of our theory is that we can use observable data to estimate 
beliefs at each date.

Measuring past shocks 

Of course, we have not seen a health event like COVID in the last 
95-100 years. However, from an economic point of view, COVID is 
one of many past shocks to returns that happens to be larger. When 
we think about COVID changing our beliefs, or our perceived prob-
ability distribution of outcomes, those outcomes are realized returns 
on capital. Therefore, to estimate the pre-COVID and post-COVID 
probability distributions, we first set out to measure past capital re-
turns that map neatly into our model.

A helpful feature of capital obsolescence shocks, like the ones in 
our model, is that their mapping to available data is straightforward. 
A unit of capital installed in period t − 1 (i.e., as part of k̂ it ) is, in ef-
fective terms, worth φ

t
 units of consumption goods in period t. Thus, 

the change in its market value from t − 1 to t is simply φ
t
.

We apply this measurement strategy to annual data on commer-
cial capital held by U.S. corporates. Specifically, we use two time 
series Non-residential assets from the Flow of Funds, one evaluated 
at market value and the second, at historical cost.11 We denote the 
two series by NFAtMV  and NFAtHC  respectively. To see how these two 
series yield a time series for φ

t 
, note that, in line with the reasoning 

above, NFAtMV  maps directly to effective capital in the model. For-
mally, letting Ptk  be the nominal price of capital goods in t, we have 
PtkKt = NFAtMV . Investment X

t
 can be recovered from the historical  

series, Pt −1
k Xt = NFAtHC − 1−δ( )NFAt −1

HC . Combining, we can construct a 
series forPt −1

k K̂ t :

Pt −1
k K̂ t = (1−δ )Pt −1

k Kt −1 +Pt −1
k Xt

         = (1−δ )NFAt −1
MV +NFAtHC − 1−δ( )NFAt −1

HC

Finally, in order to obtain φt =
Kt

K̂ t
, we need to control for nominal  

 
price changes. To do this, we proxy changes in Ptk using the price 
index for non-residential investment from the National Income and 
Product Accounts (denoted PINDX

t
).12 This yields:
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φt =
Kt

K̂ t
= PtkKt

Pt −1
k K̂ t

⎛
⎝⎜

⎞
⎠⎟
PINDXt −1

k

PINDXt
k

⎛
⎝⎜

⎞
⎠⎟

   = NFAtMV
(1−δ )NFAt −1

MV +NFAtHC − 1−δ( )NFAt −1
HC

⎡

⎣
⎢

⎤

⎦
⎥
PINDXt −1

k

PINDXt
k

⎛
⎝⎜

⎞
⎠⎟

        

(21)

Using the measurement equation (21), we construct an annual 
time series for capital depreciation shocks for the U.S. economy since 
1950. The mean and standard deviation of the series over the entire 
sample are 1 and 0.03, respectively. The autocorrelation is statisti-
cally insignificant at 0.15.

Next, we recover the primitive shock !φt  from the time series t . 
To do this, we use (11), along with data on historical default rates 
from Moody’s Investors Service (2015)13 and values for the feedback 
parameters (µ, ϖ) as described below. The first panel of Chart 2 shows 
the estimated !φ .

Parameterization   

A period t is interpreted as a year. We choose the discount fac-
tor β = 0.95, depreciation δ = 0.06, and the share of capi-
tal in the production, α, is 0.40. The recovery rate upon  
default, θ, is set to 0.70, following Gourio (2013). The distribution 
for the idiosyncratic shocks, v

it
  is assumed to be lognormal, i.e.,  

ln v it ~N − σ̂
2

2
,σ̂ 2⎛

⎝⎜
⎞
⎠⎟ with σ̂ 2  chosen to target a default rate of 0.02.14   The  

 
share of consumption in the period utility function, γ, is set to 0.4.

For the parameters governing risk aversion and intertemporal elas-
ticity of substitution, we use standard values from the asset pricing 
literature and set ψ = 0.5 (or equivalently, an IES of 2) and η=10. 
The tax advantage parameter χ is chosen to match a leverage target of 
0.50, the ratio of external debt to capital in the U.S. data–from Gou-
rio (2013). Finally, we set the parameters of the default-obsolescence 
feedback function, namely µ and ϖ. Ideally, these parameters would 
be calibrated to match the variability of default and its covariance 
with the observed t shock. Unfortunately, our one-shock model fails 
to generate enough volatility in default rates and therefore, struggles 
to match these moments. Fixing this would almost certainly require 
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a richer model with multiple shocks and more involved financial fric-
tions. We take a simpler way out here and target a relatively modest 
feedback with values of µ = 0.2 and ϖ = 0.5. These values imply 
roughly an amplification 3% at a baseline default rate of 2%, rising 
to 5% for a 6% default.15

Epidemiology parameters 

A major hurdle to quantifying the long-run effects is the lack of 
data and uncertainty surrounding estimates of the short-run im-
pact. While this will surely be sorted out in the months to come, 
for now, with the crisis still raging and policy still being set, the im-
pact is uncertain. More importantly for us, the nature of the eco-
nomic shock is uncertain. It may be a temporary closure with fur-
loughs, or it could involve widespread bankruptcies and changes 
in habits that permanently separate workers from capital or make 
the existing stock of capital ill-suited to the new consumption 
demands. Since it is too early to know this, we present two pos-
sible scenarios, chosen to illustrate the interaction between learning 
and the type of shock we experience. All involve significant losses  
in the short term but their long-term effects on the economy are 
drastically different.

We begin by describing parameter choices that are fixed across 
the scenarios. Following Wang et al. (2020)’s study of infection in  
Hubei, China, we calibrate σ

E
 = 1/ 5.2 and γ

I
 = 1/18 to the average 

duration of exposure (5.2 days) and infection (18 days). We use an 
initial reproduction number of R

0
 = 3.5, based on more recent esti-

mates of higher antibody prevalence and more asymptomatic infec-
tion than originally thought and R

min
 = 0.8 based on the estimates 

of the spread in New York, at the peak of the lockdown (Center for 
Disease Control 2020). This implies that the initial number of con-
tacts per period must be !β = γ IR0 .

The  extent  to  which  capital  idling  reduces  contact  rates  is  set  to 
!θ = 1/ 3 . This implies that a lockdown which reduces the reproduction 

number to 0.8 is associated with 50% capital idling. This is broadly 
consistent with the 25% drop in output, estimated during the lock-
down period in Hubei province, China. The rate of excess depreciation 
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of idle capital at the rate of 6.5% per month or !δ = 0.065 / 30  daily. As 
we will see, this implies a 10% erosion of the value of capital in our first 
scenario, which lines up with the drop in commercial real estate prices 
since the pandemic started–see CPPI (2020).

The two scenarios, which differ in the sensitivity of lockdown policy 
to observed infection increases, i.e., the parameter ζ

I
. In scenario 1, 

we set ζ
I
 = 300, which generates an initial lockdown that lasts for two 

months. This version of the model predicts waves of re-infection and 
new lockdowns in the months to come, echoing predictions by the 
Centers for Disease Control. Scenario 2, which considers a much less 
aggressive response by setting ζ

I
 = 50, has only one lockdown episode.

Numerical solution method  

Table 1 summarizes the resulting parameter choices. Since curva-
ture in policy functions is an important feature of the economic envi-
ronment, our algorithm solves equations (20)−(19) with a non-linear 
collocation method. Appendix A.B describes the iterative procedure. 
In order to keep the computation tractable, we need one more approx-
imation. The reason is that date-t decisions (policy  functions)  depend  
on  the  current  estimated  distribution (ĝ t ( !φ ))  and  the  probability 
distribution h over next-period estimates, ĝ t +1( !φ ) . Keeping track of 
h(ĝ t +1( !φ )), (a compound lottery) makes a function a state variable, which 
renders the analysis intractable. However, the approximate martingale  
property of ĝ t discussed in Section I offers an accurate and 
computationally efficient approximation to this problem. The  
martingale property implies that the average of the compound lottery 
isEt [ĝ t +1( !φ )]≈ ĝ t ( !φ ),∀ !φ.  Therefore, when computing policy func-
tions, we approximate the compound distribution h(ĝ t +1( !φ )) with the 
simple lottery ĝ t ( !φ ) , which is today’s estimate of the probability dis-
tribution. We use a numerical experiment to show that this approxi-
mation is quite accurate. The reason for the small approximation error 
is that h(ĝ t +1)  results in distributions centered around ĝ t ( !φ ),  with 
a small standard deviation. Even 30 periods out, ĝ t +30( !φ ) is still quite 
close to its mean ĝ t ( !φ ). For 1-10 years ahead, where most of the util-
ity weight is, this standard error is tiny.
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To compute our benchmark results, we begin by estimating ĝ 2019   
using  the  data  on !φt described above. Given this ĝ 2019, we compute 
the stochastic steady state by simulating the model for 5,000 peri-
ods, discarding the first 500 observations and time-averaging across 
the remaining periods. This steady state forms the starting point for 
our results. Subsequent results are in log deviations from this steady 
state level. Then, we subject the model economy to two possible ad-
ditional adverse realizations for 2020, one at a time. Using the one ad-
ditional data point for each scenario, we re-estimate the distribution, 
to get ĝ 2020 To see how persistent economic responses are, we need 

Parameter Value Description

Preferences:

β 0.95 Discount factor

η 10 Risk aversion

ψ 0.50 1/Intertemporal elasticity of substitution

γ 0.40 Share of consumption in the period utility function

Technology:

α 0.40 Capital share

δ 0.06 Depreciation rate

σ̂ 0.28 Idiosyncratic volatility

Debt:

χ 1.06 Tax advantage of debt

θ 0.70 Recovery rate

µ 0.2 Default-obsolescence feedback

ϖ 0.5 Default-obsolescence elasticity

Disease / Policy:

R
0 3.5 Initial disease reproduction rate

R
min 0.8 Minimum U.S. disease reproduction rate

σE 1/52 Exposure to infection transition rate

γI 1/18 Recovery / death rate

ζI 300 (50) Lockdown policy sensitive to past infections

θ̃ 0.19 Capital idling required to reduce transmission

δ̃ 0.002 Excess depreciation (daily) of idle capital

Table 1 
Parameters

Notes: The number in parentheses is used in scenario 2.
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a long future time series. We don’t know what distribution future 
shocks will be drawn from. Given all the data available to us, our best 
estimate is also ĝ 2020 . Therefore, we simulate future paths by draw-
ing many sequences of future !φ shocks from the ĝ 2020 distribution. 
In the results that follow, we plot the mean future path of various 
aggregate variables.

IV.	 Main Results

Our goal in this paper is to quantify the long-run effect of the CO-
VID crises, stemming from the belief scarring effect, i.e., from learn-
ing that pandemics are more likely than we thought. We formalizte 
and quantify the effect on beliefs, using the assumption that people 
do not know the true distribution of aggregate economic shocks and 
learn about it statistically. This is the source of the long-run econom-
ic effects. Comparing the resulting outcomes to ones from the same 
model under the assumption of full knowledge of the distribution 
(no learning) reveals the extent to which beliefs matter.

But first, we briefly describe the disease spread, the policy reaction 
and the economic shocks these policies generate.

Epidemiology and economic shutdown

 Chart 1 illustrates the spread of disease, in both scenarios, as well as 
the response, which results in capital idling. Recall that scenario 2 has 
ζ

I
 = 50, i.e., a policy that is six times less responsive to changes in the 

infection rate than the ζ
I
 = 300 policy in scenario 1. As a result, it also 

has significantly less idle capital and a faster spike in infection rates.

For our purposes, the sufficient statistic in each scenario is the re-
alization for !φ2020.  In scenario 1,  the  COVID-19  shock  implies  
!φt = 0.9,  i.e.,  the  loss  of  value  due  to  obsolescence is equal to 10% 

of the capital stock. In scenario 2, only 5% of capital is lost to obso-
lescence: !φt = 0.95 . The target for the initial, transitory impact is line 
with most forecasts for 2020: a 9% (or 6%) annual decline in GDP. 
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Chart 1
Disease Spread and Capital Dynamics
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Chart 1
continued

Notes: Parameters listed in Table 1. Scenario 1 uses an aggressive lockdown policy ζ
I
 = 300, while scenario 2 uses a 

more relaxed policy of ζ
I
 = 50.
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This is likely a conservative estimate for the second quarter of  2020, 
but more extreme than some forecasts for the entire year.

How much belief scarring? 

We apply our kernel density estimation procedure to the capital 
return time series and our two scenarios to construct a sequence of 
beliefs. In other words, for each t, we construct ĝ t{ } using the avail-
able time series until that point. The resulting estimates for 2019 
and 2020 are shown in Chart 2. The differences are subtle. Spot-
ting them requires close inspection where the dotted and solid lines 
diverge, around 0.90 and 0.95, in scenarios 1 and 2, respectively. 
They show that the COVID-19 pandemic induces an increase in 
the perceived likelihood of extreme negative shocks. In scenario 1, 
the estimated density for 2019 implies near zero (less than 10−5%) 
chance of a !φt = 0.90  shock; the 2020 density attaches a 1-in-70 or 
1.4% probability to a similar event recurring.

As the graph shows, for most of the sample period, the shock real-
izations are in a relatively tight range around 1, but we saw a large 
adverse realizations during the Great Recession of 0.93 in 2009. 
This reflects the large drops in the market value of non-residential 
capital stock. The COVID shock is now a second extreme realization 
of negative capital returns in the last 20 years. It makes such an event 
appear much more likely. 

Effect on GDP

 Observing a tail event like the COVID-19 pandemic changes out-
put in a persistent way. Chart 3 compares the predictions of our model 
for total output (GDP) to an identical model without learning. The 
units are log changes, relative to the pre-crisis steady-state. In the 
model without learning, agents are assumed to know the true proba-
bility of pandemics. As a result, when they see the COVID crisis, they 
do not update the distribution. This corresponds to the canonical “ra-
tional expectations” assumption in macroeconomics. The model with 
learning, which uses our real-time kernel density estimation to inform 
beliefs, generates similar short-term reactions, but worse long-term 
effects. The post-2020 paths are simulated as follows: each econo-
my is assumed to be at its stochastic steady state in 2019 and is  
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Chart 2
Beliefs About the Probability Distribution of Outcomes Plotted 

Before and During the COVID-19 Crisis

Notes: The first panel shows the realizations of φ̃   . The second and third panels show the estimated kernel densities 
for 2019 (solid line) and 2020 (dashed line) for the two scenarios. The subtle changes in the left tail represent the 
scarring effect of COVID-19.
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Chart 3
Output With Scarring of Beliefs (Solid Line) and 

Without (Dashed Line)
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subjected to the same 2020 !φ shock; subsequently, sequences of 
shocks drawn from the estimated 2020 distribution.

The scenarios under learning correspond to what one might call a 
V-shaped or tilted-V recession: the recovery after the shock has passed 
is significant but not complete. Note that the drop in GDP on im-
pact is a calibration target–what we are interested in is its persistence, 
which arguably matters more for welfare. The graph shows that, in 
Scenario 1, learning induces a long-run drop in GDP of about 4%. 
The right panel shows a similar pattern but the magnitudes are smaller. 
Of course, agents also learn from smaller capital obsolescence shocks. 
These also scar their beliefs going forward. But the scarring is much 
less, producing only a 3% loss in long-run annual output.

Higher tail risk (i.e., greater likelihood of obsolescence going for-
wards) increases the risk premium required on capital investments, 
leading to lower capital accumulation. It is important that these 
shocks make capital obsolete, rather than just reduce productivity, 
because obsolescence has a much bigger effect on capital returns than 
lower productivity does. Labor also contracts, but that is a reaction 
to the loss of available capital that can be paired with labor. When 
a chunk of capital becomes maladapted and worthless, that is an or-
der of magnitude more costly to the investor than the temporary  
decline in capital productivity. Since most of the economic effect 
works through capital risk deterring investment, that lower return is 
important to get the economic magnitudes right.

Turning off belief updating

When agents do not learn, both scenarios exhibit quick and com-
plete recoveries, even with a large initial impact. Without the scarring 
of beliefs, facilities are  re-fitted, workers find new jobs, and while the 
transition is painful, the economy returns to its pre-crisis trajectory 
relatively quickly. In other words, without belief revisions, the negative 
shock leads to an investment boom, as the economy replenishes the 
lost effective capital. While the curvature in utility moderates the speed 
of this transition to an extent, the overall pattern of a steady recovery 
back to the original steady state is clear. This is in sharp contrast to 
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the version with learning. Note that since the no-learning economy 
is endowed with the same end-of-sample beliefs as the learning mod-
el, they both ultimately converge to the same levels. But, they start at  
different steady states (normalized to 0 for each series). This shows that 
learning is what generates long-lived reductions in economic activity.

Decomposing long-run losses

Next, we perform a simple calculation to put the size of the long-run 
loss in perspective. Specifically, we use the stochastic discount factor 
implied by the model to calculate the expected discounted value of the 
reduction in GDP. These estimates, reported in Table 2, imply that 
the representative agent in this economy values the cumulative losses 
between 57% and 90% of the pre-COVID GDP. Most of this comes 
from the belief scarring mechanism.

Note that the 1-year loss during the pandemic is 6-9% of GDP. 
The cost of belief scarring is five to six times as large, in both cases. 
The cost of obsolete capital is about four times as large as the damage 
done during the pandemic. Chart 4 illustrates the losses each year 
from the capital obsolescence and belief changes. The area of each 
of these regions, discounted as one moves to the right in time, is the 
NPV calculation in Table 2. The one-year cost is a tiny fraction of 
this total area.

Of course, that calculation misses an important aspect of what we’ve 
learned–that pandemics will recur. Since our agents have 70 years of 
data, during which they’ve seen one pandemic, they assess the future 
risk of pandemics to be 1-in-70 initially. That probability declines 
slowly as time goes on and other pandemics are not observed. But 
there is also the risk there will be more pandemics, like this. This is 
not really a result of this pandemic. But that risk of future pandemics 
is what we should consider if we think about the benefits of public 
health investments. The pandemic cost going forward, in a world 
where a pandemic has a 1/70th probability of occurring each year, 
is given in Chart 5. Note that the risk of future pandemics costs the 
economy about 7-12% of GDP. This is similar to the one-year cost 
during the COVID crisis.
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Scenario 2020  
GDP drop

NPV 
(Belief Scarring)

NPV 
(Obsolete capital)

I. Tough −9% −52% −38%

II. Light −6% −33% −24%

Table 2
New Present Value Costs in Percentages of 2019 GDP

Chart 4
Long-Term Costs of the Pandemic
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Chart 5
Long-Term Costs of Future Pandemics
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Investment and labor

Chart 6 shows the effect of belief changes on investment. When 
agents do not learn, investment surges immediately (as the economy 
replenishes the obsolete capital). With learning, investment shows a 
much smaller surge (starting in 2021), but eventually falls below the 
pre-COVID levels.

In Chart 7, we see that the initial reaction of labor is milder than 
for investment, but the bigger differences arise from 2021 onward. 
When the transitory shock passes, investment surges, to higher than 
its initial level, to compensate for the obsolescence shock. But labor 
remains below the pre-COVID levels, reflecting the effect of the scar-
ring effect on the stock of capital and through that on the demand 
for labor.

Defaults, riskless rates and credit spreads

The scenarios differ in their short-term implications for default as 
well. Default spikes only in 2020, the period of impact, returning to 
average from 2021 onwards. But, the higher default rate in scenario 
1 (6% relative to 4% in scenario 2) contributes to greater scarring 
(since default amplifies obsolescence). This result suggests a role for 
policy: preventing default/bankruptcy can lead to long-lasting bene-
fits. In Section VI, we present a quantitative analysis of such a policy.

Nearly immediately, after the pandemic passes, default rates in 
both scenarios return to their original level. While defaults leave per-
manent scars on beliefs, the defaults themselves are not permanently 
higher. It is the memory of a transitory event that is persistent.

Because defaults were elevated, the pandemic had a large, imme-
diate impact on credit spreads. However, these high spreads were 
quickly reversed. Some authors have argued that heightened tail 
risk should inflate risk premia, as well as credit spreads (Hall 2016). 
While the argument is intuitive, it ignores any endogenous response 
of discounting, investment or borrowing. A surge in risk triggers dis-
investment and deleveraging. Because firms borrow less, this low-
ers default rates back down, which offsets the increase in the credit 
spread. We can see this channel at work in the drop in debt and the 
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Chart 6
Without Belief Scarring, Investment Surges

Notes: Results show average aggregate investment, with scarring of beliefs (solid line) and without (dashed line). 

Common parameters listed in Table 1. Scenario-specific parameters are: Scenario 1: !φ2020 = 0.90 , Scenario 2: 
!φ2020 = 0.95
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Chart 7
Labor With Scarring of Beliefs (Solid Line) and  

Without (Dashed Line)

Scenario 1

Scenario 2

Notes: Common parameters listed in Table 1. Scenario-specific parameters are: Scenario 1: !φ2020 = 0.90 , Scenario 2: 
!φ2020 = 0.95.
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Table 3
Changes in Financial Market Variables: Baseline, 

Scenarios 1 and 2

Notes: Baseline is the steady state pre-pandemic, under 2019 beliefs. Columns labelled “change” are the raw differ-
ence between the long-run average values under 2019 and 2020 beliefs in each scenario. They do not capture any 
changes that take place along the transition path or during the pandemic. The aggregate market capitalization in our 
model is the value of the dividend claim times the aggregate capital stock. Third moment is E Re −Re( )3 ×10 4, where 
R e is the return on equity. The expectation is taken under the risk-neutral measure. For the no-learning model, all 
changes are zero.

2019 Scenario 1 Scenario 2

Baseline level change level change

Credit Spreads 0.837% 0.842% +0.5 bps 0.838% +0.1 bps

Debt 2.75 2.56 -0.19 2.63 -0.12

Default 2.0% 2.0% 0 2.0% 0

Risk free rate 3.66% 3.46% -20 bps 3.54% -11 bps

Equity market value 0.44 0.45 +0.01 0.44 0

SKEW 102.7 111.3 +8.6 104.2 +1.5

Third moment E Re −Re( )3 -1.5 -9.8 -8.3 -2.6 -1.1

lack of change in long-run defaults (Table 3). The credit spread is 
the implied interest on risky debt, 1/q

t
 less the risk-free rate r f . The 

credit spread in the stochastic steady state under the 2019 belief is 
less than a basis point higher in the post-pandemic long run. Thus, 
belief revisions can have significant and long-lived real effects, even if 
the long-run change in credit spreads is very small.

Equity markets and implied skewness

One might think the recent recovery in equity prices appears incon-
sistent with a persistent rise in tail risk. The model teaches us why this 
logic is incomplete. When firms face higher tail risk, they also reduce 
debt, which pushes in the opposite direction as the rise in risk. Fur-
thermore, when firms reduce investment and capital stocks decline, 
the marginal value of capital rises. Finally, when interest rates and thus 
future discount rates decline, future equity payments are worth more 
in present value terms. These competing effects cancel each other out. 
In our model, the market value of a dividend claim associated with a 
unit of capital is nearly identical under the post-COVID beliefs than 
under the pre-COVID ones. In other words, the combined effect of the 
changes in tail risk and debt reduction is actually mildly positive. While 
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Chart 8
Realized Default does not Respond Much to Beliefs

Notes: Results show with scarring of beliefs (solid line) and without (dashed line) often with the two lines on top 

of each other. Common parameters listed in Table 1. Scenario-specific parameters are: Scenario 1: !φ2020 = 0.90 , 

Scenario 2: !φ2020 = 0.95 .
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the magnitudes are not directly interpretable, our point is simply that 
rising equity valuations are not evidence against tail risk.

If credit spreads and equity premia are not clear indicators of tail 
risk, what is? For that, we need to turn option prices, in particular 
out-of-the-money put options on the S&P 500, which can be used 
to isolate changes in perceived tail risk. A natural metric is the third 
moment of the distribution of equity returns. The last row of Table 
3 reports this object (computed under the risk neutral measure). It 
shows that the perceived distribution after the shock is more nega-
tively skewed.16

This might sound inconsistent with the behavior of the SKEW in-
dex reported by the CBOE. This showed a short-lived spike at the 
onset of the pandemic, but recovered quite rapidly. To understand 
this pattern, note that the SKEW indexes the standardized third mo-
ment implied by options prices, which is obtained by dividing the 
third moment from the previous paragraph by the implied standard 
deviation (or VIX). Tail events typically lead to a spike in market 
volatility, both realized and implied. This increase in VIX tends to 
mechanically lower the skewness. More generally, the SKEW index 
confounds changes in the third moment with the changes in the sec-
ond moment, which often reflects many other factors. This is the main 
reason why we focus on the (non-standardized) third moment. As we 
saw, this measure clearly reveals the persistent change in beliefs and is 
consistent with evidence from newspapers and surveys in Barrero and 
Bloom (2020).

V.	 Liquidity and Interest Rates

In this section, we augment the baseline model to include a liquidity 
friction. This is motivated by evidence showing liquidity becoming 
more scarce following the onset of the pandemic–see Boyarchenko et 
al. (2020). As we will show, a liquidity motive amplifies the effects of 
tail risk on rates of return for liquid assets, such as Treasuries. This 
helps bring this dimension of the model’s predictions closer to the 
observed drops in recent months. We also present evidence from 
bond markets consistent with the rise in liquidity premia.
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Recall that, in the baseline model, riskless rates fall in response 
to higher demand for safe assets. Just as firms react to the increased 
tail risk by deleveraging, investors would like to protect themselves 
against low-return states by holding more riskless assets. They cannot 
all hold more. Therefore, the price increases (the rate of return falls) 
to clear the market. Table 3 reports the riskless rate falls by 20 bps (10 
bps) in scenario 1 (scenario 2). The sign of this change is consistent 
with what we saw following the onset of the pandemic, but the magni-
tude is not: interest rates, especially in the Treasury market, fell much 
more dramatically.

We introduce liquidity considerations using a stylized yet trac-
table specification, in the spirit of Lagos and Wright (2005).17 

A positive NPV investment opportunity requires liquid funds. 
Both capital and government bonds provide liquidity (the former 
only partially). An adverse capital obsolescence shock reduces the 
value of capital and thus the amount of liquidity it provides. Thus, an 
increase in the risk of such a shock makes capital liquidity uncertain 
and raises the value of riskless bonds, which always retain their full, 
liquid value. Thus, higher tail risk also raises liquidity risk and makes 
riskless bonds, which serve as liquidity insurance, even more attrac-
tive. This channel amplifies the effect on their return and turns out 
to be quantitatively very large. The increased tail risk brought on by 
the pandemic, combined with liquidity risk, will turn out to depress 
interest rates three and a half times as much as in the model without 
liquidity risk.

Formally, firms are assumed to have access to a profitable intra-period 
opportunity, yielding a net return of H (xt )− xt  where xt  is the amount 
invested. The net return is maximized at x

t
 = x*. But, the firm faces 

a liquidity constraint: x
t
  cannot exceed the amount of pledgeable 

collateral. Formally,

xt ≤ at +dkt                                       (22)

where the parameter d indexes the pledgeability of capital and α
t
 de-

notes a riskless, fully liquid asset. This can be interpreted narrowly as 
government bonds,18 but it could also be thought of as the total liquid-
ity available from other sources. Note that the liquidity value of capital 
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is a function of effective capital, i.e., net of obsolescence. As a result, 
shocks to capital obsolescence influence the availability of liquidity.

The supply of the liquid asset is assumed to be fixed at a  Thus, the 
amount invested in the opportunity in t is given by xt = min(x * ,a +dkt ) .   
The liquidity premium is the marginal value (in units of consump-
tion) of an additional unit of pledgeable collateral:

µt = ′H (xt )−1.                                  (23)

The return on government bonds, i.e., the liquid asset, is characterized

1
Rta

= Et Mt +1(1+ µt +1)[ ] .
                           

(24)

The final model alternation is that the liquidity premium shows 
up in the first term of the optimality condition for capital (16), which 
becomes Et Mt +1(Rt +1

k +d µt +1)⎡⎣ ⎤⎦ .

Parameterization

To set values for the liquidity parameters, we follow the strategy 
in Kozlowski et al. (2019). We use the following functional form for 
the benefit to invest on liquid assets: H (x ) = 2ι x −ξ . The parameter 
that governs how much of capital is a pledgeable, liquid asset, d , is 
set to 0.16 to match the ratio of short-term obligations of U.S. non-
financial corporations to the capital stock in the Flow of Funds. The 
liquid asset supply a = 0.8 and the return parameter ι = 1.4 are chosen 
so that the ratio of liquid assets to capital is 0.08 and their return in 
the pre-COVID steady state equals 2%. Finally, the parameter ξ = 
1.94 is set so the net return of the project is close to zero (on average) 
in the pre-COVID steady state.

Riskless rates with liquidity premia 

The purpose of this extension was to explore how liquidity consid-
erations affect scarring-induced changes in riskless rates. To evaluate 
this, we compute riskless rates in the stochastic steady states associated 
with the pre- and post-COVID beliefs. These are presented in Table 
4. The model predicts that the yield on liquid  bonds drops by 67 
bps in the new steady state. In contrast, the return on a riskless but  
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completely illiquid asset falls only by 8 bps: in other words, the liquid-
ity premium rises by 59 bps.

The table also shows changes in various market interest rates be-
tween January and July 2020. The yield on the one-year and five-
year  Treasuries were almost 1.4% lower in July 2020 (relative to the  
beginning of the year). Note that these are not directly comparable 
with the model numbers. The latter compare steady-states and so are 
most appropriately thought of as long-run predictions while the cur-
rent data obviously reflect short-term, more transitory considerations 
as well. We therefore construct a proxy for the long-run rates using 
forward rates implied by the Treasury yield and long-term inflation 
expectations. Specifically, we use the instantaneous rate five years for-
ward from the Treasury yield curve and 5y5y inflation expectations19 

to calculate the change in long-term real rates. This shows a decline of 
about 89 bps, smaller than short-term rates and closer to the model’s 
predictions.

Next, the table also reports the change in the yield on AAA corpo-
rate bonds. These securities carry very little default risk, but are not as 
liquid as Treasuries. As a result, the yield spread on these bonds rela-
tive to Treasuries is often viewed as a proxy for liquidity premia–see, 

Table 4
Implications for Interest Rates with Liquidity Frictions,  

Model vs. Data 

Pre-COVID Post-COVID Chg

Model

Riskless rate (liquid) Rta −1 2.12% 1.46 % -67 bps

Riskless rate (illiquid) 4.97% 4.89 % -8 bps

Data

1y Treasury yield (nominal) 1.56% 0.14% -142 bps

5y Treasury yield (nominal) 1.67% 0.28% -139 bps

5y forward rate (real) -0.09% -0.98% -89 bps

AAA Yield 2.53% 1.48% -105 bps

AAA Spread (rel. to 5y Treasury) 0.86% 1.20% 34 bps

Notes: Data comes from FRED. Pre-COVID (post-COVID) data are for Jan. 1, 2020 (July 16, 2020).
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e.g., Krishnamurthy and Vissing-Jorgensen (2012) and Del Negro et 
al. (2017). In recent months, this spread rose by 34 bps, consistent 
with increased liquidity scarcity. The model liquidity premium re-
ported in the table shows a larger rise. This is to be expected since the 
model object is defined as the spread of a completely illiquid security 
whereas AAA bonds are probably partially liquid.

Chart 9 shows the time path of the natural rate of interest. Notice 
that the short-run fluctuations are much larger than the long-term ef-
fects reported in the table. This is consistent with short-term market 
disruptions that are now settling down.

Finally, in interpreting recent data, it is worth pointing out that 
the last few months have seen unprecedented policy interventions in 
bond markets, which almost certainly have contributed to the drop in 
interest rates on both liquid and illiquid assets–see Boyarchenko et al. 
(2020). Our analysis completely abstracts from such interventions20 

so it is perhaps not too surprising that the model underpredicts 
the fall in interest rates. Overall, these results suggest a quantitative-
ly meaningful role for the belief scarring mechanism in the recent  
behavior of interest rates.

VI.	 The Role of Financial Policy

The COVID-19 pandemic has sparked an unprecedented policy 
response. These responses fall into three broad categories: social 
distancing and other mobility restrictions, transfers to households 
and financial assistance to firms. We explored the consequences of 
more lax social distance policy in constructing scenarios for our base-
line results. Transfers to households has an important role to mitigate 
the economic fallout, but does not directly affect productive capacity, 
the key object in our analysis. Financial assistance to firms, on the 
other hand, can help the economy maintain productive capacity, for 
example by preventing widespread bankruptcies. In our setting, such 
a policy would have beneficial long-run effects as well, since they miti-
gate the consequences of belief scarring. In this section, we use our 
baseline model to quantify these long-run benefits. We find that the 
longer-term effects of a policy of debt relief are as much as 10 times 
larger than the short-run effects.
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The need for policy intervention in the model stems from the pres-
ence of debt and the associated risk of bankruptcy. Bankruptcy is so-
cially costly because it exacerbates capital obsolescence. Therefore, we 
model financial policy as designed to prevent/limit bankruptcies by 
reducing firms’ effective debt. This could take the form of the govern-
ment or other policymaker buying up the debt from private creditors 
or offering direct assistance to firms. Before examining the effects of 
such a policy, we perform a simple exercise to quantify the costs of 
bankruptcy in our baseline model. This is the cost that financial policy 
might plausibly remedy.

Effect of the default-obsolescence feedback

 To understand the role of this feedback rule, suppose that obso-
lescence is entirely exogenous, i.e., it does not vary with default. This 
amounts to setting µ = 0 in (11). Chart 10 shows the GDP impact of 
the COVID-19 shock under our benchmark specification (in the left 
panel) and without default feedback (in the right panel). The broad 
patterns are similar with belief revisions accounting for a significant 
portion of the impact, but the magnitudes are slightly smaller in the 

Chart 9
Belief Scarring Lowers Riskless Rate in Long Run

Notes: Results show the return on a riskless asset, in scenario 1, with scarring of beliefs (solid line) and without 

(dashed line). Common  parameters  listed  in  Table 1. Scenario-specific  parameters are  Scenario 1: !φ2020 = 0.90 . 
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Chart 10
Default Feedback Increases Long-Run Effects
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right panel (GDP falls by just under 4% in the long run, relative to a 
5% drop in the benchmark). This difference between the two panels is 
the effect of the default-obsolescence  feedback.

VI.i. Financial Assistance Policy

We consider a simple policy that prevents bankruptcy by reduc-
ing firms debt burden, specifically a reduction in each firm’s debt 
by 10%. This in turn mitigates the effective capital obsolescence 
and consequently beliefs are slightly less pessimistic going forward. 
We then simulate the model with these new beliefs and calculate the 
short- and long-term GDP effects, reported in Table 5.

The table shows that financial assistance of this magnitude only 
saves 1% of GDP in 2020. From that metric alone, one might judge 
the cost of the policy to be too high.21 However, preventing bank-
ruptcies in the short run also helps reduce losses over time. The present 
discounted value of those savings are worth 11% of 2019 GDP. Of 
that 11%, 7% comes from ameliorating belief scarring and another 
4% comes from the direct effects of limiting capital obsolescence. 
This exercise shows that considering the long-run consequences can 
significantly change the cost-benefit analysis for financial policies 
aimed at assisting firms.

VII.	 What If  We Had Seen a Pandemic Like This Before?

In our benchmark analysis, pre-COVID beliefs were formed using 
data that did not witness a pandemic (though it did have other tail 

Table 5
Firm Financial Assistance Policy: No Assistance vs.  

10% Debt Reduction

Notes: Results  are  for  scenario 1( !φ2020 = 0.90). Numbers shown are in percentages of the pre-COVID  
steady-state GDP.

No assistance 10% debt reduction Benefit

GDP drop in 2020 -9% -8% 1%

NPV of long-term output loss

     from belief scarring -52% -45% 7%

     from obsolescence -38% -34% 4%
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events like the 2007-09 Great Recession). But, pandemics have oc-
curred before–Jorda et al. (2020) identify 12 pandemics (with greater 
than 100,000 deaths) going to the 14th century. This raises the  
possibility that economic agents in 2019 had some awareness of these 
past tail events and believed that they could happen again. To under-
stand how this might change our results, we assume that the pre-CO-
VID data sample includes the 1918 episode. Unfortunately, we do not 
have good data on capital utilization and obsolescence during that 
period,22 so we simply use the time series for the capital return shock 
!φt  from 1950-2020 as a proxy for the !φt  series from 1880-1949. 

In other words, we are asking: What if we had seen all of this unfold 
exactly the same way before?

The previous data does not change the short-term impact of the 
shock. But, it does cut the long-term effect of it in half. Just before 
the pandemic of 2020 struck, our data tells us that there has been one 
pandemic in nearly 140 years. We assess the probability to be about 
1-in-140. After 2020, we saw two pandemics in 141 years. Therefore, 
we revise our perceived probability from 1-in-140 to 2-in-141. That 
is about half the change in probability, relative to the original model 
where the probability rose from zero to 1-in-70.

But considering data from so long ago does raise the question of 
whether it is perceived as less relevant. There is a sense that the world 
has changed, institutions are stronger, science has advanced, in ways 
that alter the probability of such events. Such gradual change might 
logically lead one to discount old data.

In a second exercise, we assume that agents discount old data at 
the rate of 1% per year. In this case, two forces compete. The pres-
ence of the 1918 events in the sample reduces the surprise of the new 
pandemic as before, albeit with a much smaller weight. The coun-
tervailing force is that when old data is down-weighted, new data is 
given a larger weight in beliefs. The larger role of the recent pandemic 
in beliefs going forward makes belief scarring stronger for the next 
few decades. These forces more or less cancel each other out leaving 
the net results indistinguishable, in every respect, from the original  
results with data only from 1950.
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Of course, more recently, we saw SARS, MERS and Ebola arise 
outside the United States. Other countries may have learned from 
these episodes. But the lack of preparation and slow response to events 
unfolding in China suggests that U.S. residents and policymakers 
seem to have inferred only that diseases originating abroad stay out-
side the U.S. borders.

VIII.	 Conclusion

No one knows the true distribution of shocks to the economy. 
Macroeconomists typically assume that agents in their models know 
this distribution, as a way to discipline beliefs. For many applications, 
assuming full knowledge has little effect on outcomes and offers trac-
tability. But for unusually large events, like the current crisis, the differ-
ence between knowing these probabilities and estimating them with 
real-time data can be large. We argue that a more plausible assump-
tion for these phenomena is to assume that agents do the same kind 
of real-time estimation along the lines of what an econometrician 
would do. This introduces new, persistent dynamics into a model 
with otherwise transitory shocks. The essence of the persistence 
mechanism is this: once observed, a shock (a piece of data) stays in 
one’s data set forever and therefore persistently affects belief forma-
tion. The less frequently similar data is observed, the larger and more 
persistent the belief revision.

When we quantify this mechanism, our model’s predictions tell us 
that the ongoing crisis will have large, persistent adverse effects on 
the U.S. economy, far greater than the immediate consequences. Pre-
venting bankruptcies or permanent separation of labor and capital, 
could have enormous consequences for the value generated by the U.S. 
economy for decades to come

Authors’ Notes: The views expressed are those of the authors and do not necessarily 
reflect official positions of the Federal Reserve Bank of St. Louis, the Federal Re-
serve System, or the Board of Governors. We thank Kenneth Rogoff for a generous 
and insightful discussion, as well as Dean Corbae and Pablo D’Erasmo for shar-
ing data on corporate defaults and Marco Del Negro and Andrea Tambalotti for 
liquidity and interest rate data.



	
Scarring Body and Mind: The Long-Term Belief-Scarring Effects of COVID-19	 173

Appendix A
Solution

A.A.	 Equilibrium Characterization

An equilibrium is the solution to the following system of equations:

1= EMt +1 Rt +1
k[ ]J k (vt )

Rt +1
k =

(1−α )φt +1
α+νk̂t +1

α lt +1
1−α + 1−δ( )φt +1k̂t +1
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1− lt
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⎛
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A.B. Solution Algorithm

To solve the system described above at any given date t (i.e., after 
any observed history of !φt ), we recast it in recursive form with grids 
for the aggregate state (k̂ ) and the shocks !φ . We then use an iterative 
procedure:

•  Estimate ĝ on the available history using the kernel estimator.

•  Start with a guess (in polynomial form) for u (k̂ , !φ ),c(k̂ , !φ ),l (K̂ , !φ ) .

•  Solve (25) – (28) for ˆ′k ,le ′v ,l using a non-linear solution procedure.

• Verify/update the guess for U, c, l using (29)–(30) and  
	 iterate until convergence.
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Endnotes
 1See e.g. Summers FT, 2020, Krugman 2020, Reinhart and Rogoff 2020 and 

Cochrane 2020.

2Other learning papers in this vein include papers on news shocks, such as Be-
audry and Portier 2004, Lorenzoni 2009, Veldkamp and Wolfers 2007, uncer-
tainty shocks, such as Jaimovich and Rebelo 2006, Bloom et al. 2018, Nimark 
2014 and higher-order belief shocks, such as Angeletos and La’O 2013 or Huo and 
Takayama 2015.

3As  κ
t
 → 0,  the CDF of the kernel converges Ĝt0 !φ( ) = 1

nt
11

s=0

nt −1

∑ !φt −s ≤ !φ{ }.  Then, for 
any !φ and any j ≥1

Et Ĝt + j0 !φ( ) It⎡
⎣

⎤
⎦ = Et

1
nt + j

11
s=0

nt + j−1

∑ !φt + j−s ≤ !φ{ } It⎡

⎣
⎢

⎤

⎦
⎥ =

nt
nt + j

Ĝt0 !φ( )+ j
%nt + j

Et 11 !φt +1 ≤ !φ{ } It⎡
⎣

⎤
⎦

Thus, future beliefs are, in expectation, a weighted average of two terms–the 
current belief and the distribution from which the new draws are made. Since our 
best estimate for the latter is the current belief, the two terms are exactly equal, 
implying Et Ĝt + j0 !φ( ) It⎡

⎣
⎤
⎦ = Ĝt

0 !φ( ) .

4See Hansen 2015.

5This is consistent with the U.S. official policy on re-opening (CDC 2020). 
Note that individual optimal choice to social distance are also included in this 
“policy.” These optimal choices look similar. See Kaplan et al. 2020. 

6The i.i.d. assumption also has empirical support. In the next section, we use 
macro data to construct a time series for !φt . We estimate a statistically insignificant 
autocorrelation of 0.15.

7This is a natural assumption: with a continuum of firms and a stationary shock 
process, firms can learn the complete distribution of any idiosyncratic shocks after 
one period. 

8In our baseline specification, default does not destroy resources—the penalty is 
purely private. This is not crucial—it is straightforward to relax this assumption by 
assuming that all or part of the cost of the default represents physical destruction 
of resources. 

9The subsidy is assumed to be paid by a government that finances it through a 
lump-sum tax on the representative household.

10To simulate the COVID-19 pandemic, we run the epidemiology model from 
Section II.i for one year and use the predicted capital obsolescence as the realized 
shock for 2020. For more details, see Section III.

11These are series FL102010005 and FL102010115 from Flow of Funds.



176	 Julian Kozlowski, Laura Veldkamp and Venky Venkateswaran

12Our results are robust to alternative measures of nominal price changes, e.g., 
computed from the price index for GDP or Personal Consumption Expenditure. 

13The Moody’s data is for rated firms and shows a historical average default rate 
of 1% (our calibration implies a default rate of 2%), probably reflecting selection. 
Accordingly, we scaled the Moody’s estimates by a factor of 2 while performing this 
calculation. We also used estimates of exit and bankruptcy rates from Corbae  and 
D’Erasmo 2017 and found broadly similar results.

14This is in line with the target in Khan et al. 2017, though a bit higher than 
the one in Gourio 2013. We verified that our quantitative results are not sensitive 
to this target.

15Section VI studies a version without default amplification and finds that it gen-
erates similar patterns, albeit with slightly smaller magnitudes, as our benchmark 
economy. 

16It is straightforward to compute this from the SKEW and VIX indices re-
ported by the CBOE. The third central moment under the risk-neutral measure 
is E Re −R e( )3

= 100−SKEWt

10
⋅VIXt

3 . This calculation reveals that, between February and 
May 2020, the market implied third moment also became significantly more nega-
tive (from -0.04 to -0.09).

17See also Kozlowski et al. 2019.

18For concreteness, we adopt this assumption in our analysis. The bonds are is-
sued by a government, which balances its budget with lump-sum taxes/transfers.

195y5y  inflation  expectations  are  the  expectations  of  inflation  over  the  five-
year  period,  starting  five  years from today. Source: FRED, Federal Reserve Bank 
of St. Louis. The series tickers are THREEFF5 and T5YIFR, respectively. 

20We do evaluate the effects of a financial policy in the following section.

21Strictly speaking, in our model with a representative agent and lump-sum 
taxes,  there is no real cost to implementing this policy. But, obviously, in a more 
realistic setting with heterogeneity and distortionary taxation, taking over 10% of 
corporate debt would entail substantial costs/dead-weight losses. 

22See Correia et al. 2020 and Velde 2020 for analysis of the economic effects of 
the 1918 over the short- to medium-term.
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