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Abstract

To capture the evolving relationship between multiple economic variables, time variation in

either coefficients or volatility is often incorporated into vector autoregressions (VARs). The

state space representation that links the transition of possibly unobserved state variables with

observed variables is a useful tool to estimate VARs with time-varying coefficients or stochas-

tic volatility. In this paper, we discuss how to estimate VARs with time-varying coefficients

or stochastic volatility using the state space representation. We focus on Bayesian estimation

methods which have become popular in the literature. As an illustration of the estimation

methodology, we estimate a time-varying parameter VAR with stochastic volatility with the

three U.S. macroeconomic variables including inflation, unemployment, and the long-term in-

terest rate. Our empirical analysis suggests that the recession of 2007-2009 was driven by a

particularly bad shock to the unemployment rate which increased its trend and volatility sub-

stantially. In contrast, the impacts of the recession on the trend and volatility of nominal

variables such as the core PCE inflation rate and the ten-year Treasury bond yield are less

noticeable.
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1 Introduction

Vector autoregressions (VARs) are widely used in macroeconomics to detect comovements among

multiple economic time series. In a nutshell, VARs regress each time series onto various lags of

multiple time series included in the model. When coefficients are assumed to be stable, each

equation in a VAR becomes an example of a multiple linear regression. In the simplest form, error

terms in the VAR are assumed to have constant variances.

While convenient, assuming time-invariant coefficients and variances turns out to be quite re-

strictive in capturing the evolution of economic time series. For example, U.S. business cycle

dynamics and monetary policy have changed substantially over the post-war period. To describe

these changes in the VAR framework requires one to allow shifts in coefficients or volatility (e.g.

Canova and Gambetti (2009), Clark (2009), Cogley and Sargent (2005), Cogley, Primiceri, and

Sargent (2010), Primiceri (2005), Sims and Zha (2006)).

When time variation is introduced to either coefficients or volatility in a VAR, the state space

representation of the VAR is typically used in empirical analysis to estimate unobserved time-

varying coefficients or volatility. Since allowing time variation in coefficients or volatility introduces

too many parameters unless restricted, the literature evolved in a way of introducing random

processes to time-varying coefficients or volatility to avoid the “overparameterization ”problem

(Koop and Korobilis (2010)). The randomness in these parameters fits quite well with Bayesian

methods because there is no strict distinction between fixed “true ”parameters and random samples

in the Bayesian tradition.

This chapter will discuss applying Bayesian methods for estimating a time-varying paramter

VAR with stochastic volatility using the state space representation of the VAR. Section 2 describes

the state space representation and estimation methods for VARs. In particular, each step in

the Bayesian estimation procedure of a time-varying parameter VAR with stochastic volatility is

explained. Section 3 provides empirical analysis of a time-varying parameter VAR with stochastic

volatility using three U.S. macroeconomic variables. We will focus on implications of estimates for

the time-varying trend and volatility of each variable during the recent period since the start of the

recession of 2007-9. Section 4 concludes.
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2 State space representation and Estimation of VARs

2.1 State space representation

Let yt be an n× 1 vector of observed variables and q the length of lags. A canonical representation

of a VAR(q)) with time-invariant parameters and volatility takes the following form.

yt = c0 + c1yt−1 + · · ·+ cqyt−q + et , et ∼ (0,Σe). (1)

Since all the state variables are observed, there is no need to distinguish a state transition equation

from a measurement equation in this case. However, if we allow time variation in coefficients

(c0, c1, · · · , cq) or volatility (Σe), the model includes some unobserved components as state variables.

To estimate these unobserved components based on the observed data, it is useful to distinguish

a state transition equation from a measurement equation as in the canonical representation of a

state space model. Here are examples of the state space representation of VARs with time-varying

coefficients and volatility.

Example 1 (Time-varying parameter VAR with time-invariant volatility)

yt = X ′tθt + εt , εt ∼ N (0,Σε) , (Measurement Equation), (2)

θt = θt−1 + vt , vt ∼ N (0,Σv) , (State Transition Equation). (3)

Here Xt includes a constant plus lags of yt, and θt is a vector of VAR parameters. εt and vs are

assumed to be independent of one another for all t and s. Given the linear and Gaussian state

space representation of the above VAR, we can apply the Kalman filter to estimate θt conditional

on the time series of observed variables yt. If we further allow a possible correlation between εt and

vt, the model studied in Cogley and Sargent (2001) belongs to this example.

Example 2 (VAR with stochastic volatility)

yt = X ′tθ + Σtεt , εt ∼ N (0, In) , Σt = diag(
√
Hi,t) , (Measurement Equation), (4)

lnHi,t = lnHi,t−1 + ui,t , ui,t ∼ N (0, Q) , (State Transition Equation). (5)

Here Σt is a diagonal matrix whose diagonal elements are
√
Hi,t, (i = 1, · · · , n). The measurement

equation is a nonlinear function of the unobserved log stochastic volatility (lnHi,t). Hence, the

Kalman filter is not applicable in this case. Simulation-based filtering methods are typically used
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to back out stochastic volatility implied by the observed data. The above model is close to the

one studied in Clark (2011), who shows that allowing stochastic volatility improves the real time

accuracy of density forecasts out of the VAR model.

Example 3 (Time-varying parameter VAR with stochastic volatility)

As emphasized by Sims (2001), ignoring time-varying volatility may overstate the role of time-

varying coefficients in explaining structural changes in the dynamics of macroeconomic variables.

Adding stochastic volatility to a time-varying parameter VAR will alleviate this concern. The

time-varying parameter VAR with stochastic volatility can be described as follows:

yt = X ′tθt + εt , εt ∼ N (0, B−1HtB
−1′) , (Measurement Equation), (6)

θt = θt−1 + vt , vt ∼ N (0,Σv) (7)

lnHi,t = lnHi,t−1 + ui,t , ui,t ∼ N (0, Qi) , (State Transition Equation). (8)

Here Ht is a diagonal matrix whose diagonal element is Hi,t. B−1 is a matrix used to identify

structural shocks from VAR residuals. If we allow for a correlation between εt and vt, this model

is the one studied in Cogley and Sargent (2005).1

2.2 Estimation of VARs

Without time-varying coefficients or volatility, the VAR can be estimated by equation-by-equation

ordinary least squares (OLS) which minimizes the sum of residuals in each equation of the VAR.

However, estimating VARs with time-varying coefficients or volatility requires one to use filtering

methods to extract information about unobserved states from observed time series. For example,

in the time-varying parameter VAR model with time-invariant volatility, we can use the Kalman

filter to obtain the estimates of time-varying coefficients conditional on parameters determining the

covariance matrix and initial values of coefficients.

Under the frequentist approach, we estimate the covariance matrix and initial values of co-

efficients first and obtain estimates of time-varying coefficients conditional on the estimated co-

variance matrix and initial values of coefficients. While conceptually natural, implementing this

1If we allow the time variation in the B matrix, the model becomes a time-varying structural VAR in Primiceri

(2005). And we can also incorporate the time-varying volatility of vt too to capture fluctuations in variances of

innovations in trend components as in Cogley, Primiceri, and Sargent (2010).
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procedure faces several computational issues especially for a high-dimensional model. The likeli-

hood is typically highly nonlinear with respect to parameters to be estimated and maximizing it

over a high-dimensional space is computationally challenging.

As emphasized by Primiceri (2005), Bayesian methods can deal efficiently with these types

of models using the numerical evaluation of posterior distributions of parameters and unobserved

states. The goal of Bayesian inference is to obtain joint posterior distributions of parameters and

unobserved states. In many cases such as VARs with time-varying parameters or volatility, these

joint distributions are difficult or impossible to characterize analytically. However, distributions of

parameters and unobserved states conditional on each other are easier to characterize or simulate.

Gibbs sampling, which iteratively draws parameters and unobserved states conditional on each

other, provides draws from joint distributions under certain regularity conditions.2

As an illustration of Bayesian estimation methods in this context, consider Example 1. Denote

zT be a vector or matrix of variable zt from t = 0 to t = T . In this model, unobserved states are time-

varying coefficients θt and parameters are covariance matrices of VAR residuals and innovations in

coefficients (Σε,Σv). Prior distributions for θ0 and Σε can be represented by p(θ0) and p(Σε). The

Bayesian estimation procedure for this model is described as follows:

(Bayesian Estimation Algorithm for a Homoskedastic Time-varying Parameter VAR)

Step 1: Initialization

Draw Σε from the prior distribution p(Σε).

Step 2: Draw VAR coefficients θT

The model is a linear and Gaussian state space model. Assuming that p(θ0) is Gaussian, the

conditional posterior distribution of p(θt|yt,Σε,Σv) is also Gaussian. A forward recursion using the

Kalman filter provides expressions for posterior means and the covariance matrix.

p(θt|yt,Σε,Σv) = N(θt|t, Pt|t),

Pt|t−1 = Pt−1|t−1 + Σv,

Kt = Pt|t−1Xt(X
′
tPt|t−1Xt + Σε)

−1,

θt|t = θt−1|t−1 +Kt(yt −X ′tθt−1|t−1),

Pt|t = Pt|t−1 −KtX
′
tPt|t−1. (9)

2See Lancaster (2004, Chap. 4) for necessary conditions.
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Starting from θT |T and PT |T , we can run the Kalman filter backward to characterize posterior

distributions of p(θT |yT ,Σε,Σv).

p(θt|θt−1, yT ,Σε,Σv) = N(θt|t+1, Pt|t+1),

θt|t+1 = θt|t + Pt|tP
−1
t+1|t(θt+1 − θt|t),

Pt|t+1 = Pt|t − Pt|tP−1t+1|tPt|t. (10)

We can generate a random trajectory for θT using the backward recursion starting with a draw

of θT from N (θT |T , PT |T ) as suggested by Carter and Kohn (1994).

Step 3: Draw covariance matrix parameters for VAR coefficients Σv

Conditional on a realization for θT , innovations in VAR coefficients vt are observable. Assuming

the inverse-Wishart prior for Σv with scale parameter Σv and degree of freedom Tv0, the posterior

is also inverse-Wishart.3

p(Σv|yT , θT ) = IW (Σ−1v,1, Tv,1),

Σv,1 = Σv +

T∑
t=1

vtv
′
t , Tv,1 = Tv,0 + T. (11)

Step 4: Draw covariance matrix parameters for VAR residuals Σε

Conditional on a realization for θT , VAR residuals εt are observable. Assuming the inverse-Wishart

prior for Σε with scale parameter Σε and degree of freedom Tε,0, the posterior is also inverse-Wishart.

p(Σε|yT , θT ) = IW (Σ−1ε,1 , Tε,1),

Σε,1 = Σε +

T∑
t=1

εtε
′
t , Tε,1 = Tε,0 + T. (12)

Step 5: Posterior Inference

Go back to step 1 and generate new draws of θT , Σv, and Σε. Repeat this M0 + M1 times and

discard the initial M0 draws. Use the remaining M1 draws for posterior inference. Since each draw

is generated conditional on the previous draw, posterior draws are generally autocorrelated. To

3Notations here closely follow those in the appendix of Cogley and Sargent (2005).
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reduce the autocorrelation, we can thin out posterior draws by selecting every 20th draw from M1

draws, for example.

Although posteior draws are obtained from conditional distributions, their empirical distribu-

tions approximate the following joint posterior distribution p(θT ,Σv,Σε|yT ). Hence, integrating

out uncertainties about other components of the model is trivial. For instance, if we are interested

in the median estimate of θT , which integrates out uncertainties of Σv and Σε, we can simply use

the median value of M1 draws of θT .

In the above example, conditional distributions of parameters and unobserved states are known.

However, in models with stochastic volatility such as Example 2 and Example 3, the conditional

posterior distribution of volatility is known up to a constant. Without knowing the constant, we

can directly sample from the conditional posterior distribution for stochastic volatility. Instead,

we can use Metropolis-Hastings algorithm following Jacquier, Polson, and Rossi (1994) to generate

posterior draws for stochastic volatility.

As an illustration, consider Example 3. Posterior simulation for time-varying coefficients θT

and Σv are essentially the same as before. Below, I will describe steps to generate posterior draws

for Hi,t and B conditional on θT , yT , and Σv.

(Drawing stochastic volatility Ht and covariance parameters B)

Step 1 Given yT , θT , we can generate a new draw for B. Notice the following relationship between

VAR residuals εt and structural shocks ut.

Bεt = ut. (13)

Conditional on yT and θT , εt is observable. Since B governs only covariance structures among

different shocks, n(n+1)
2 elements of the matrix are restricted. For example, if B is the following

2× 2 matrix,

B =

 1 0

B21 0

 ,

with B21 ∼ N (B21, V21), the relation between εt and ut implies the following transformed regres-
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sions.

ε1t = u1t

(H−.52t ε2t) = B21(−H−.52t ε1t) + (H−.52t u2t). (14)

As explained by Cogley and Sargent (2005), the above regressions imply the normal posterior

for B21.

B21|yT , HT , θT ∼ N (B̂21, V̂21) , V̂21 = (V −121 +
∑

(
ε21t
H2t

))−1 , B̂21 = V̂21(V
−1
21 B21 −

∑
(
ε1tε2t
H2t

)).

(15)

Step 2 Conditional on εt, we can write down the following state representation for Ht.

n∑
j=1

Bijεjt =
√
Hitwit , wit ∼ i.i.d.N (0, 1), (16)

lnHi,t = lnHi,t−1 + ui,t , ui,t ∼ N (0, Qi). (17)

The above system is not linear and Gaussian with respect to Hit. The conditional posterior

density of Hit is difficult to characterize analytically but known up to a constant.

p(Hit|Hi,t−1, Hi,t+1, y
T , θT , B,Qi) ∝ p(uit|Hit, B)p(Hit|Hi,t−1)p(Hi,t+1|Hit),

∝ H−1.5it exp(−0.5
u2it
Hit

)exp(−0.5
(lnHit − µit)2

0.5Qi
),

µit = 0.5(lnHi,t−1 + lnHi,t+1). (18)

We can use the Metropolis-Hastings algorithm which draws Hit from a certain proposal density

q(Hit).
4 Each mth draw is accepted with probability αm,

αm =
p(Hm

it |Hm
i,t−1, H

m−1
i,t+1, y

T , θT , B,Qi)q(H
m−1
i,t )

p(Hm−1
it |Hm

i,t−1, H
m−1
i,t+1, y

T , θT , B,Qi)q(Hm
i,t)

. (19)

As shown by Jacquier, Polson, and Rossi (1994), this sampling scheme generates posterior draws

for Hit.

4One example of such a proposal density is N (µit, 0.5Qi).
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3 Application: A Time-varying Parameter VAR with Stochastic

Volatility for the three U.S. Macroeconomic Variables

As an application of state space modelling, we estimate a time-varying parameter VAR with stochas-

tic volatility for U.S. macroeconomic time series consisting of inflation, the unemployment rate and

the long-term interest rate.5 The model is close to Cogley and Sargent (2005) but there are two

main differences. First, we shut down the correlation VAR residuals and innovations in time-varying

parameter transition equations. Second, we use the long-term interest rate rather than the short-

term interest rate to cover overall monetary policy stance at the recent zero lower bound period.

The estimated model can be casted into the following state space representation like Example 3

in the previous section.

yt = θ0,t + yt−1θ1,t + yt−2θ2,t + εt , εt ∼ N (0, B−1HtB
−1′),

θt = θt−1 + vt , θt = [θ0,t
′, θ1,t

′, θ2,t
′]′ , vt ∼ N (0,Σv),

lnHi,t = lnHi,t−1 + ui,t , ui,t ∼ N (0, Qi) , (i = 1, 2, 3). (20)

yt contains three variables in the order of the 10-year yield, core PCE inflation, and the civilian

unemployment rate. The sample period is from 1960:Q1 to 2011:Q4. We assume that B is a lower

triangular matrix whose diagonal elements are all equal to 1.

3.1 Priors

Priors are set in the same way as Cogley and Sargent (2005), using pre-sample data information

from 1953:Q2 to 1959:Q4.6

First, we estimate seemingly unrelated regressions for the pre-sample data and use the point

estimate of coefficients as the prior mean for θ0 and its asymptotic variance P as the prior variance.

Second, we use an inverse-Wishart distribution as the prior for Σv with degree of freedom T0 = 22

and scale matrix Σv = T0×0.001×P . Third, the prior distribution of the log of the initial volatility

is set to the normal distribution whose mean is equal to the variance of regression residuals using

5Doh (2011) estimates the same model with shorter sample data and focuses on the time-varying relationship

between inflation and unemployment.

6For pre-sample data, we use total PCE inflation because core PCE inflation is not available for this period.
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the pre-sample data. The prior variance is set to 10. Fourth, the prior distributions of elements

in B are normal with the mean equal to 0 and the covariance matrix equal to 10000× I3. Finally,

the prior for the variance of the innovation to volatility process is inverse gamma with the scale

parameter equal to 0.012 and the degree of freedom parameter equal to 1.

3.2 Posterior Simulation

We generate 100,000 posterior draws and discard the first 50,000 draws. Among the remaining

50,000 draws, I use every 20th draw to compute posterior moments. Following Cogley and Sargent

(2005), we throw away draws implying the non-stationarity of the VAR. Hence, if θT contains

coefficients which indicate the non-stationarity of the VAR at any point of time, we redraw θT until

the stationarity is ensured all the time.

Consider a companion VAR(1) for [y′t, y
′
t−1]

′. Technically speaking, stationarity is guaranteed if

all the eigenvalues of At =

 θ1,t θ2,t

I3 0

 are inside the unit circle. The truncation is particulary

useful when we back out time-varying trend components from estimated coefficients. When we use

the companion form for long-horizon forecasts, the stochastic trend in [y′t, y
′
t−1]

′ can be approxi-

mated as (I − At)−1[θ′0,t, 0]′. Below, we will use this approximation to obtain posterior estimates

of time-varying trends in yt.

3.3 Posterior estimates of time-varying trends and volatility

Over the last fifty years, the U.S. economy has shown substantial changes. In particular, there is

considerable evidence that trend inflation and volatility of inflation rose during the mid 1970s and

the early 1980s but then declined after the Volcker disinflation.7 Also, the decline in the volatility

of inflation is one primary factor for explaining the decline in the term premium of long-term

government bonds since the late 1980s (Wright (2011)). On the other hand, economic slack seems

to be less important in predicting inflation since 1984.8 In addition, the volatility of real activity

declined since the mid 1980s.9

Most papers on these issues rely on data before the most recent recession that started in

7For example, see Cogley, Primiceri, and Sargent (2010) and papers cited there.

8See Doh (2011) and papers discussed there.

9See Canova and Gambetti (2009) and papers cited there.
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late 2007. The severity of the recession and the unprecedented policy actions including keeping

the short-term interest rate at the effective zero lower bound and implementing large-scale asset

purchases raised a question about the robustness of the above-mentioned changes.

Our time-varying parameter VAR model with stochastic volatility can shed light on this ques-

tion. First of all, we can investigate if the recession and the subsequent policy responses affected

mainly trend components or cyclical components of the three macroeconomic variables. Impacts

on cyclical components are expected to be temporary while those on trend components are sup-

posed to be more persistent. Second, we can do a similar exercise for the volatility of the three

macroeconomic variables. For instance, we can compute the short-run and the long-run volatility

of the three variables in the VAR and see if there might be shifts during the recent period.

Our posterior estimates of time-varying trends in Figure 1 suggest that trends in nominal

variables such as inflation and the long-term interest rate were little affected by the recent episode

while the trend unemployment rate was affected more substantially. This result is interesting

because the level of all the variables moved significantly during the same period as shown in

Figure 2. For the inflation rate, movements in the trend component explain about 9 percent of

the overall movements in the level of the inflation rate.10 The relative contribution of the trend

component further declines to about 6 percent for the nominal ten-year bond yield. In contrast, the

movement in the trend unemployment rate explains more than 15 percent of the overall movement

in the unemployment rate for the same period.

These differences in the relative contribution of time-varying trends across variable suggest that

it will take a longer time for the unemployment rate to return to the pre-recession level than other

variables. However, it is possible that the relatively small role of trend component volatility was

driven by our assumption of constant volatility of innovations in time-varying coefficients. To check

the robustness of our finding, we allowed for the time-varying volatility for innovations in θt in an

alternative specification. Even is this version of the model, we got essentially the same relative

contribution of trend components during the recent period.11

We can apply the similar trend-cycle decomposition for volatility estimates, too. Following

Cogley, Primiceri, and Sargent (2010), we approximate the unconditional variance of [y′t, y
′
t−1]

′ by

10This calculation is based on comparing the standard deviation of each variable during the relevant period.

11The drawback of this generalization of time-varying volatility is that so many volatility estimates become explosive

during the mid 1970s, casting doubts on the convergence property of the model estimates. For the model without

stochastic volatility for innovations in θt, we do not observe such a convergence issue.
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∞∑
h=0

(At)
hB−1HtB

−1′((At)
h)′. (21)

This unconditional variance is dominated by slowly moving trend components of volatility estimates

while Ht is mainly based on the short-run movements of volatility estimates. The volatility of

residuals went up for all the variables as shown in Figure 3. In addition, the unconditional volatility

of the unemployment rate moved up more noticeably during the recent period to the historical peak

level as shown in Figure 4. The finding suggests that the increase in volatility since the recession

may not be driven by a common factor affecting the entire economy. This interpretation is in

line with the observation in Clark (2009) that the recent increase in volatility is concentrated in

certain sectors of the economy (goods production and investment but not services components,

total inflation but not core).

Overall, our posterior analysis indicates that the trend and volatility of the unemployment

rate have experienced substantial changes during the recent episode while core inflation and the

nominal long-term interest rate have been relatively immune from these changes. Analyzing causes

of different responses across variables may require a more structural model of the economy built

on decisions of agents. Our analysis can be a starting point for such a project.

4 Conclusion

VARs are widely used in macroeconomics and finance to describe the historical dynamics of multiple

time series. When the VAR is extended to incorporate time-varying coefficients or volatility to

capture structural shifts in the economy over time, the state space representation is necessary

for the estimation. Applying the Kalman filter in the state space representation of a time-varying

parameter VAR provides estimates of unobserved time-varying coefficients that we are interested in.

Also, we can obtain estimates of time-varying volatility by applying the simulation-based filtering

method to the state space representation of the volatility process.

We illustrate the value of applying the state space representation to the time-varying parameter

VAR with stochastic volatility by estimating such a model with the three U.S. macro variables. Our

empirical analysis suggests that the recession of 2007-9 was driven by a particulary bad shock to the

unemployment rate which increased the trend and volatility of the unemployment rate substantially.

In contrast, nominal variables such as the core PCE inflation rate and the ten-year Treasury bond
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yield have exhibited relatively less noticeable movements in terms of their trend and volatility.

Further identifying underlying causes of unemployment dynamics may requires us to go beyond the

small scale time-varying parameter VAR model that we are considering in this chapter.
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Figure 1: Time-varying trend
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when the recession started.
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Figure 2: Data
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Figure 3: Time-varying volatility of residuals
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percent highest posterior density regions.
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Figure 4: Time-varying unconditional volatility
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The solid line stands for posterior median estimates and dashed lines for estimates of the 70

percent highest posterior density regions.
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