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Abstract 

We study the usefulness of a large number of traditional variables and novel text-based measures 
for in-sample and out-of-sample forecasting of oil spot and futures returns, energy company stock 
returns, oil volatility, oil production, and oil inventories. After carefully controlling for small-
sample biases, we find compelling evidence of in-sample predictability. Our text measures hold 
their own against traditional variables for oil forecasting.  However, none of this translates to out-
of-sample predictability until we data mine our set of predictive variables. Our study highlights 
that it is difficult to forecast oil market outcomes robustly.  
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1. Introduction 

The oil market receives more attention among macroeconomists and financial 

economists, and among general news outlets, than any other commodity market. This reflects its 

unparalleled importance as a major input to production and consumption goods, as well as its 

regional and geopolitical significance for U.S. states or foreign countries that produce and 

consume petroleum products in large quantity.  Furthermore, the price of oil is a key variable in 

generating macroeconomic projections and in assessing macroeconomic risks.   

 In this study, we consider a broad range of predictors to forecast several important 

variables in the oil market, including oil futures returns, oil spot returns, the realized volatility of 

oil prices, the equity returns of oil companies, oil inventories and oil production for the period 

1998-2020. Our goal is to construct a fully transparent empirical methodology for considering a 

comprehensive list of potential forecasting variables and investigating their usefulness both in 

sample and out of sample. We consider a wide range of potential explanatory variables – many 

of which have been included in prior studies – including macroeconomic and financial indicators 

and various additional measures that capture time-varying oil returns risk.2 

In addition, we consider a set of new natural language processing (NLP) measures 

derived from the analysis of a corpus of oil news articles from Thomson Reuters (TR).  Recent 

work has shown the usefulness of text measures for forecasting the returns and risks of 

individual stock and stock indexes, and we find that these techniques have value for oil 

forecasting.  While some commonly used predictors of oil price changes, such as global oil 

production or global economic activity, are monthly and become available only with 

                                                
2 A range of aggregate and commodity-market specific financial and macroeconomic variables used to predict 
commodity market outcomes are examined in Baumeister and Kilian 2017. Hamilton and Wu 2014 document 
significant changes in risk premia in crude oil futures contracts since 2005.  
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considerable delays, text measures can capture a wide range of energy market developments in 

real-time. Given the volume of news coverage of the energy sector, application of NLP tools in 

this space seems particularly promising.  Indeed, we show that our textual measures can 

algorithmically identify important historical episodes in energy markets, in a way that traditional 

energy variables are unable to do.  Our NLP measures include topic-specific frequency and 

sentiment derived from energy news, as well as a measure of the unusualness or “entropy” of oil 

news (i.e., the frequency of occurrence of unusual strings of words). Topics are obtained from a 

corpus of TR articles using an algorithm that identifies co-occurring lists of words. We employ a 

network modularity approach for identifying topics, as in Calomiris and Mamaysky (2019a). 

Several features distinguish our approach from the literature: we begin with a 

comprehensive list of forecasting variables; our methodology for selecting variables is explicit; 

we adjust standard errors for selection bias with respect to determining which forecasting 

variables to include; we bootstrap our R-squareds to adjust for overlapping observations; and we 

consider a wide range of approaches to out-of-sample validation of our models.3  For these 

reasons, we believe our approach avoids reporting biases that are likely to arise when 

constructing such forecasting models.  

For example, a study might show the significance of a particular variable in a forecasting 

model, but does that variable prove significant if it is forced to compete for inclusion with a full 

range of other candidate variables? How should that variable’s standard error be adjusted upward 

to reflect the fact that it was selected from a list of other variables because it was found to be a 

useful forecaster?  And did the study in question report on all the other variables that were tried 

but that did not work? 

                                                
3 Foster et al. (1997) propose techniques for assessing the R-squareds of OLS regressions in asset pricing when 
researchers implicitly select the best k of m regressors to use in the forecasting model. 
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Additional reporting biases may arise from selective reporting of out-of-sample tests. For 

example, one could do an exhaustive search across many possible specifications to identify a 

forecasting models that “works” both in-sample and out-of-sample, and only report in-sample 

results for models that pass this test. But such a search undermines the legitimacy of out-of-

sample testing. Can one have confidence in any out-of-sample test that is reported 

simultaneously with the construction of an in-sample model? What out-of-sample validation 

technique can one use to provide a convincing validation? 

Our approach takes explicit account of a broad set of possible modeling choices, both in 

our in-sample analysis and our out-of-sample validation. And we adjust standard errors to avoid 

selection biases that otherwise would occur, and also to correct for biases in R-squareds related 

to the use of overlapping time-series observations. We first employ a forward-selection model 

capable of selecting parsimonious time series forecasting specifications from the entire list of 

potential forecasting variables.  The forward-selection approach accomplishes this via 

successively choosing each new variable as the one with the greatest contribution to the model 

R-squared.  While there are other model selection techniques (see Hastie, Tibshirani, and 

Tibshirani 2017), we believe the iterative process of forward selection closely mirrors what 

researchers have done – though not done explicitly – in practice.  Our approach avoids any bias 

associated with selecting in-sample models based on their out-of-sample properties, since we do 

not even consider out-of-sample performance at this stage of the process. Crucially, we adjust 

our standard errors to take into account the selection of the in-sample best-performing 

explanatory variables that is a feature of the forward selection algorithm. We show that the 

failure to adopt this methodological approach could (1) result in spuriously small in-sample 
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standard errors, and (2) invite the selection of in-sample models that pass out-of-sample tests by 

construction. 

We consider various approaches to out-of-sample testing. In a time series context such as 

ours (as panel models are not generally appropriate for energy forecasting due to a lack of like 

time series), parsimonious models are attractive. Nevertheless, even when adopting a 

parsimonious modeling discipline (selecting only a small number of potential forecasting 

variables), we are unable to construct a methodology for systematically identifying, in real time, 

a set of forecasting variables that works well enough out-of-sample.  We do identify interesting 

candidates for parsimonious oil forecasting models (that include our new NLP measures) by 

resorting to a brute force search over all possible forecasting models, but we remain agnostic 

about whether these models will prove useful in the future. A truly convincing out-of-sample test 

of these models can only be done via the passage of time.  

Forecasting the price of crude oil is a central question in the oil-macro space. Leading 

contributions include Alquist, Kilian and Vigfusson 2013, Baumeister and Kilian 2015, Manescu 

and van Robays 2016, and Baumeister et al. 2020. Different approaches ranging from reduced-

form monthly VARs containing the fundamental drivers of oil prices to DSGE models, product-

spread models, or time-varying parameter models have been used.  Although the models, the 

frequency of analysis and the variables considered in the oil-macro literature are generally 

different from ours, the general conclusion that it is hard to beat a random walk for out-of-

sample oil price forecasting is in line with our findings.   

A more related literature in finance investigates predictability in oil and other commodity 

markets.  Examples include Bessembinder and Chan 1992, De Roon, Nijman and Veld 2000, 

Hong and Yogo 2012, Gorton et al. 2013, and Yang 2013. These studies provide evidence that 
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returns in commodity futures markets can be predicted using a range of aggregate and 

commodity-specific financial and macroeconomic variables. They are typically based on in-

sample analysis with baseline models that contain six or seven predictors.  The papers usually 

propose new predictors and examine whether these improve predictability.  Our approach 

considers a wide range of financial and macro variables, including variables considered in this 

literature, as well as new text measures, and we test predictability in oil markets both in-sample 

and out-of-sample. In addition, we carefully control for small-sample biases. Our comprehensive 

approach to model selection and validation is informed by studies of equity markets that have 

shown the potential importance of reporting biases (e.g., Welch and Goyal 2008, and Harvey, 

Liu, and Zhu 2016). 

Identifying relevant news and how it is associated with changes in market returns and 

risks is a central topic in asset pricing. Recently, economists have brought new tools to bear in 

examining this question, including the analysis of various aspects of the words that appear in 

newspaper articles or other textual sources, which have been applied to equity and exchange rate 

markets (for example, Tetlock 2007, Tetlock, Saar-Tsechansky, and Macskassy, 2008, Calomiris 

and Mamaysky 2019a, 2019b, Glasserman and Mamaysky 2019). Motivated by the ability of 

text-based measures to predict risk and returns in stock markets and their availability on a daily 

basis, we build on this literature and construct NLP measures for energy markets and examine 

their usefulness in predicting a set of market and fundamental variables. In this context, our work 

also relates to recent work using textual analysis in analyzing the oil market (Brandt and Gao 

2019, Datta and Dias 2019, Loughran et al. 2019 and Plante 2019), but we consider a more 

comprehensive set of NLP measures. 
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The remainder of our paper proceeds as follows. Section 2 presents the list of forecasting 

variables we consider, and describes our data sources and our methods for constructing the NLP 

measures included in the models.  Section 3 explains our choice of in-sample modeling structure, 

which involves a forward selection model using overlapping weekly observations to forecast 

eight-week ahead energy market outcomes.  Section 3 also discusses our methodology for 

correcting standard errors for variable selection bias, and for correcting R-squareds for the use of 

overlapping observations, and presents our in-sample results.  Section 4 presents our out-of-

sample findings, using a variety of approaches and modeling choices. Section 5 concludes.  All 

data series, including the energy topics, are available at 

https://sites.google.com/view/hmamaysky. 

2. Data and Construction of Variables  

We consider a variety of traditional variables that capture returns and risks in the 

macroeconomy and the oil market, as well as new predictors constructed using TR news articles 

about the energy sector. The raw data used to construct the variables used in our analysis come 

from Bloomberg, the Energy Information Administration (EIA), the Wall Street Journal, and the 

Federal Reserve Board. This section describes the data and the construction of the key variables 

of the empirical analysis. We forecast on an eight-week ahead basis, using weekly observations; 

four-week ahead results are qualitatively similar, and are reported in the Online Appendix. 

2.1. Energy and Macro Series 

Our dependent variables – oil spot and futures returns, company stock returns for oil 

majors, realized oil volatility, oil production, and oil inventories – are crucial for investors, 

policymakers, and analysts, as they seek to understand the dynamics of oil markets.  Our 
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explanatory variables include lags of the dependent variables, as well as many other variables 

described below. 

We would like to use observations at the highest possible frequency to take full 

advantage of the links between information arriving in the market and market reactions to that 

information. Although oil prices are available daily, production and inventory data are available 

at a weekly frequency in the U.S.  We therefore perform our analysis using weekly observations.  

U.S. crude oil production and crude oil inventories (including the strategic petroleum reserve) 

data are released by the EIA on Wednesdays at 10:30am Eastern time.  For some weeks, 

typically those involving holidays, releases are delayed by one or two days.  As a result, when 

inventories or production levels are used as forecasting variables, for the dependent variables we 

use weekly returns (based on spot or futures prices, and oil company stocks) that use the closing 

price on Friday and measure changes to the Friday close of the following week. Our oil realized 

volatility series ends on Fridays, and looks back 30 trading days; we only use this measure in the 

eight-week ahead forecasting analysis.4  This timing convention ensures that the inventory and 

production numbers do not overlap with the variables they are intended to forecast.  When we 

are forecasting inventories and production levels, we use forecasting variables that end on the 

Tuesday of a given week.  For the other forecasting regressions, we use explanatory variables 

that end on Thursdays to avoid overlap with the 2:30 pm Friday close of oil futures markets.  

We consider the U.S. oil benchmark, West Texas Intermediate (WTI).  Our measure of 

spot price returns (!"#$ !"⁄ − 1) captures the percent spot price change over a j week period 

(here t is measured in weeks), where (	 = 	4, 8.  We use the front-month futures contract as the 

                                                
4 There would be overlap between the four-week ahead realized volatility measures and our forecasting variables.  
For this reason, we focus our analysis on eight-week ahead forecasts, though the four-week ahead results are 
qualitatively similar for all other dependent variables. 
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measure of spot price (as in Kilian and Vega 2011 and Loughran et al. 2019). While modeling 

spot returns is useful for capturing the dynamics of oil price changes, spot price changes do not 

represent an investable return because they ignore storage and transportation costs. 

To capture investable oil price returns, we measure realized returns from investing each 

week in the front-month oil futures contract.  On weeks that the front month future expires, we 

measure returns using an investment in the second month oil future (which will become the front 

month at the end of the week).  We construct j-week cumulative returns as the product of the past 

j weeks’ one-week returns. This measure captures the returns to a specific investment strategy, 

and reflects changes in spot prices, the realization of risk premia, and changes in risk premia over 

time.5  In a similar vein, energy company stock returns are also calculated as j-week percent 

changes in Friday to Friday stock prices. We consider three large multinational oil and gas 

companies’ stock returns (BP, Shell, ExxonMobil).6  Our measure of oil price volatility is the 30-

trading-day realized volatility of WTI prices from Bloomberg.  

To summarize, our eight dependent variables are oil spot and future returns, oil realized 

volatility, the stock returns of BP, Shell, and ExxonMobil, and oil inventories and oil production. 

Our forecasting variables include lags of these, as well as several measures commonly used in 

the literature to predict commodity returns. These predictors include the VIX, the yield on the 

ten-year Treasury note, the trade-weighted value of the dollar, S&P 500 returns, a measure of 

economic activity, and the oil future basis. Our measure of global economic activity is the 

month-over-month growth rate of world industrial production (WIPI) introduced by Baumeister 

                                                
5 Further details about the futures return calculation are in the Online Appendix. 
6 For BP and ExxonMobil, we use NYSE stock prices. For Royal Dutch Shell, we use Euronext Amsterdam Royal 
Dutch Shell Class A prices; therefore, the Friday close may be before the release of the EIA inventory and 
production data. For this reason, we use Monday to Monday closing prices for our Shell return calculation. 
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and Hamilton 2019.7 Our basis measure is the annualized ratio of the 3-month to 1-month price 

for crude oil futures, namely ./010" = 	 (33" 31"⁄ )6 − 1 (raising to the power of 6 converts this 

to an annualized measure).  A positive basis indicates the curve in contango, and all other things 

being equal buying longer-dated futures will lose money as they roll down the curve.  All right-

hand side variables are released into the market prior to the Friday 2:30 pm oil futures market 

close.  We refer to the variables defined in this section as our baseline measures. 

Table I presents definitions for all the variables used in the empirical analysis.  Table II 

reports summary statistics for all the variables used as either dependent variables or forecasting 

variables in the 1998-2020 sample period. For example, the average eight-week return on oil 

futures has been 1.35% with a standard deviation of 13.78%.  The average eight-week return on 

oil spot has been lower over the same period, at 0.64%, with a higher standard deviation of 

14.8%. Energy company stocks, on the other hand, have lower average returns (ranging between 

-0.35% and +0.20%) and are less volatile (ranging between 7.61% and 9.94%).8      

2.2. Risk Premium Measures 

      In addition to the traditional energy market and macro predictors, we include several 

measures that are useful for gauging market risk premia.  The first of these, vix_spx, measures 

the difference between the VIX index of short-term implied volatility of S&P 500 options and 

the last 30-day realized volatility of the S&P 500 index.  Many researchers, for example Bekaert 

and Hoerova 2014, argue that the difference between the VIX index and forecasts of future 

realized volatility reflect the variance risk premium.  Here we assume lagged realized volatility is 

a reasonable proxy for expected future volatility.  In a similar vein, we include ovx_cl1 which is 

                                                
7 Baumeister et al. 2020 evaluate global economic activity indicators based on their forecasting performance for the 
real price of oil and find that WIPI is one of the most useful indicators that has been proposed in the literature. For 
example, it outperforms measures based on shipping rates.  
8 Overall, four-week and eight-week summary statistics look similar.  
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the difference between the OVX index of implied volatility on an ETF which owns WTI futures 

and the last 30-day realized volatility of crude oil prices.  We use ovx_cl1 as a proxy for the 

volatility risk premium in the oil markets. 

      To construct an alternative measure of the risk-premium in energy markets, we follow the 

method of Hansen and Jagannathan 1991.  Letting R be an n-dimensional vector of daily gross 

returns from a candidate set of securities, the unconditional version of the basic no-arbitrage 

condition of asset pricing is 1 = 7[9:] (note 1 is an n-dimensional vector), where m is the 

stochastic discount factor (SDF).  Assuming m is in the linear span of the security returns implies 

9 = 1<7[::<]=<:. (1) 

Furthermore, it is well known that the expected excess return on a security is proportional to the 

negative of its covariance with the SDF (Cochrane 2005).  The conditional version of this 

relationship can be written as 

7?:1@ = −
ABC?D9,:1@E

7?9
, 

(2) 

where :F  is the daily excess return on security i and the expectations are taken as of week t.  We 

estimate (1) in windows of our data using daily returns on the Credit-Suisse WTI futures total 

return index, the total return of the S&P 500 index, a U.S. Treasury total return index from 

Bloomberg (which roughly tracks 10-year bonds), the total return from investing in 6-month U.S. 

T-bills, and the total return of the MSCI World Energy Sector index.  Then using the estimated 

SDF 9G", we approximate the week t conditional expectation in (2) by calculating the covariance 

between the excess return of the WTI futures index and  9G" over the prior 252 trading days.  We 

use this as our estimate of the WTI risk premium. 

           We use three different estimation methods for 9G".  In one, we use a rolling 756-day 

window (roughly three years), and use the  7H:IJKF  estimate from the window ending on day t as 
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the then prevailing estimate of the WTI risk premium.  We refer to this series as SDF_rolling.  In 

another variant, we use an expanding window that starts at a minimum of 756 days, and then 

expands for each successive day in the sample.  We refer to the WTI risk premium estimate from 

this approach as SDF_growing.  Both the rolling and growing SDF is used in our out-of-sample 

analysis.  In our in-sample analysis, we use the SDF constructed with the entire sample, which 

we label SDF_fullSample.  All calculations are done in windows that end on Tuesdays (for 

inventory and production forecasts) and Thursday (for all other forecasts). 

2.3. Text Analytics 

Our corpus for NLP analysis includes all 2.07 million articles in Thomson Reuters (TR) 

that are labeled as being energy-related from 1998 to 2020.  We say an article is energy related if 

it is classified by TR as belonging to one of the 98 topics, the full list of which is available in the 

Online Appendix.  To perform topical analysis, we compiled a list of energy-related words, 

bigrams and trigrams (two- and three-word phrases respectively) from several energy industry 

glossaries and other sources of energy words and phrases. This resulted in a list of 387 tokens.  

We then construct a 387 × 387 co-occurrence matrix which measures the cosine similarity 

between this initial list of tokens.   The cosine similarity between tokens i and j is given by 

NO
PNQ

‖NO‖SNQS
 where TU is the vector measuring the number of times token i appears in all the 

documents in our TR corpus, and ‖T‖ is the Euclidean norm of T.  We then employ the Louvain 

clustering algorithm (see Blondel et al. 2008) to identify disjoint (i.e., non-overlapping) word 

groups that maximize the modularity (see Newman and Girvan 2004) of the network represented 

by the word co-occurrence matrix. In this step, we set the diagonal of the co-occurrence matrix to 

zero, which then yields eight topics from the Louvain algorithm. The eighth topic contained only 
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several tokens, so we reallocated these tokens from the eighth topic to the other seven topics to 

maximize the resultant seven-topic network’s modularity. 

Once we identified the initial set of seven topics, we calculated the average co-occurrence 

of a large set of additional candidate energy related words, bigrams and trigrams with the 387 

initial energy words, bigrams and trigrams from the energy industry glossaries.  We then 

identified from the list of additional potential energy words those whose maximum topical co-

occurrence was very high relative to its average topical co-occurrence.  For example, the 

candidate token shell, which was not part of our original 387-token list, had an average cosine 

similarity with the existing tokens in topic 1 of 0.2076, whereas its average co-occurrence across 

all seven topics was 0.0374.  The resultant difference of 0.1702 was the second highest of all our 

candidate tokens.  We therefore included shell in our augmented token list.  The intuition behind 

this metric is that we wanted to exclude words that had high co-occurrence with all our topical 

clusters because these tended to be generic words (such as said or though).  However, words that 

had a high co-occurrence with a single topic tended to be energy-related words or bi- or trigrams.  

Applying this process to a large set of candidate tokens yielded an additional 54 tokens, which 

we then placed into one of the existing seven topical groups so as to maximize the network 

modularity of the new, 441-token network.  We refer to these 441 tokens as the energy words. 

Figure 1 displays the word clouds for each of our seven topics.9 We label the topical 

categories based on our interpretation of the common topical link defined by the words that 

appear in each of these word clouds.  Interestingly, the topics defined by the word clouds have 

readily interpretable meaning and exhibit sufficient variation over time to be useful in our 

analysis. We discuss this further in the next subsection. We label the topics as follows: company 

                                                
9 As a robustness check, we verified that latent Dirichlet allocation (LDA) produced similar topics to the Louvain-
based ones. A summary of this analysis is in the Online Appendix. 
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(Co), global oil market (Gom), environment (Env), energy/power generation (Epg), crude oil 

physical (Bbl), refining and petrochemicals (Rpc), and exploration and production (Ep).  We 

classify article i into topical category V by looking at the fraction of the energy words appearing 

in this article that belong to topic V, or 

WU,X =
YU,X

∑ Y$,X[
$\]

 

where YU,X is the number of energy words in article i that belong to topic V.  Notice the article 

topic weight sum to one. 

           The sentiment of article i is defined using the Loughran-McDonald sentiment dictionary 

as follows 

0U =
!B0U − Y@^U
_B?/`U

. 

Here !B0U, Y@^U, and _B?/`U are the number of positive, negative and total words in article i 

after stop words have been removed.  We define as article’s topic sentiment as the product of 

topic frequency and sentiment, or 

0U,X = WU,X × 0U. 

Given that article frequencies sum to one, topical-sentiment sums to sentiment for each article. 

Unusualness is defined using the entropy concept introduced in Glasserman and Mamaysky 

(2019) and Calomiris and Mamaysky (2019a). Specifically, we define article i’s unusualness as 

the negative average log probability of all 4-grams appearing in that article, or 

@U ≡ − b c$
$∈e=fghij
Uk	"lF	hg"UmnF

× log9G$, 

where c$ is the fraction of all 4-grams represented by the ("l  4-gram in article i, and  9G$ is the 

empirical probability of the fourth word in the 4-gram conditional on the first three, estimated 
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over a training corpus using all articles from months ? − 27 to ? − 4.10  Glasserman and 

Mamaysky 2019 showed that entropy can be used to measure the novelty of an article, and that 

higher entropy news flow is more informative for forecasting future market outcomes. 

We aggregate our article-level news measures to the daily level by taking a word-weighted 

average of all articles released between 2:30 pm of the prior business day and 2:30 pm of the 

present business day.  For Mondays, we count articles from 2:30 pm to midnight on Friday, in 

addition to articles from 2:30 pm on Sunday to 2:30 pm on Monday.  We then take an equal-

weighted average of the daily news flow measures (article count, topical frequency, topical 

sentiment, and entropy) ending on Tuesday or Friday of a given week.  We end on Tuesdays for 

news series meant to forecast oil production and oil inventories, and end on Fridays for news series 

used to forecast all other variables.  Finally, we calculate the average number of daily articles that 

mention energy markets in the TR corpus in weeks ending on Tuesday or Fridays.  This yields 16 

distinct text-based series: article count, entropy, the seven topical frequency series (labeled 

f[Topic]), and the seven topical sentiment series (labeled s[Topic]).  We standardize all our text-

based series, except entropy, to have mean zero and unit variance.  In the regression analysis, we 

use four-week rolling averages of all the weekly standardized text series.  In addition to these, we 

also add three measures of aggregate news flow: the first principal components (PCAs) of the 

seven topical frequency series (PCAfreq), of the seven topical sentiment series (PCAsent), and of 

all fourteen series together (PCAall).  The PCAs are calculated using the four-week averages of 

the weekly series, where the four-week averages have been normalized to be mean zero and unit 

variance. 

                                                
10 9G$  for 4-gram T]TsTtTe (the Tu’s refer to words) is the fraction of times Te follows the word sequence 
T]TsTt  in the training corpus.  Prior to doing this analysis, we tokenize and stem the documents, but do not remove 
the stop words. When a 4-gram has not been seen before in the training corpus, we assign to it a probability of 0.1.  
For more details of this methodology, see Glasserman and Mamaysky 2019 and Calomiris and Mamaysky 2019a. 
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2.4. Behavior of Energy News 

We plot four-week averages of the nineteen series in Figure 2.  As is clear from the figure, 

the text-based measures of news flow in energy markets display a large amount of time variation.  

To gain further insights into our measures of energy news flow, we explore whether unusual 

movements in our text measures correspond to important real world events in energy markets.  

To identify potentially interesting events, we look for the two most negative 4-week in the four-

week average series of our seven topical sentiment series.  For each episode, we then identify a 

set of candidate articles.  Candidate articles are those that have entropy scores equal to or higher 

than 2, that contain 100 or more words after stop words are removed, and that have a topic 

allocation above 0.8. i.e., WU,X > 0.8.  These articles typically present stories about specific 

situations, and are not news alerts, daily summaries, or statistical tables.  We then manually 

looked through the headlines and connected them to specific energy market episodes.  Almost all 

extreme moves in topical sentiment were associated with important events in energy markets, but 

we chose to focus on six in particular, each of which belongs to a distinct topic.  The end dates of 

the 4-week topical sentiment changes associated with these six episodes are marked with stars in 

Panels A and B of Figure 2. 

 While the events were identified based on changes in topical sentiment (Panel B), it is 

clear from Panel A that all of these events are also associated with large increases in the fraction 

of total news coverage devoted to that particular topic category.  This points to a more general 

feature of the topical sentiment and frequency series, namely that for each topic the two 

aggregate series are very negatively correlated (the correlations range from -0.57 to -0.93).   

Spikes in topical frequency tend to occur at times of very negative topical sentiment. 
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Table III shows the six episodes of interest that we identified (in the same order as they 

appear in Figure 2).  For each episode, we show the sentiment, entropy and headlines of the five 

most negative sentiment articles.  The particular historical episodes associated with sharp drops 

in topic sentiment, with the associated topic category in parentheses, are: the UK fuel protests in 

September of 2000 (company), the attempted Venezuelan coup in 2002 (global oil markets), the 

Volkswagen emissions scandal in 2015 (environment), the Enron bankruptcy hearings of 2002 

(energy/power generation), Hurricane Katrina in 2005 (crude oil physical), and the BP oil spill in 

2010 (exploration & production).    

It is notable that each event is classified into an appropriate topic. For example, many 

articles discussing the UK fuel protests focused on their impact on business.  Others discuss the 

reduction in OPEC output caused by the civil unrest in Venezuela affecting global oil markets.  

Furthermore, these events were identified algorithmically, and not cherry-picked by us.  It should 

be further noted that we assigned names to topics by looking only at the word clouds; the close 

match of headlines with their associated topics is a validation of the usefulness of our 

methodology. 

These results indicate that our news-based measures of energy markets capture important 

aspects of energy news in a way that traditional series cannot do.  In sections 3 and 4, we look to 

exploit the information content of these news series for both in- and out-of-sample forecasting of 

our eight dependent variables associated with the U.S. energy markets. 

3. In-sample Predictability 

Given the limits of degrees of freedom inherent in time series analysis, to avoid 

overfitting, we employ a forward-selection model to choose parsimonious time series forecasting 

specifications from a broad list of potential forecasting variables. The forward-selection 
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approach accomplishes this via successively choosing each new variable as the one with the 

greatest contribution to the model R-squared.11  We believe this is the method implicitly 

followed by many papers on predictability in energy markets: they select a smaller set of 

variables that work “best” from a larger list.  Our goal is to apply the same methodology 

formally – not implicitly – to all our dependent variables, to let the rich data speak, and come up 

with reliable inference that accounts for the selection criterion of our variables.   

Our 35 forecasting variables include lagged measures of spot and futures returns, energy 

company stock returns, oil price realized volatility, the change in oil price realized volatility, the 

change in oil production, the change in oil inventories, the VIX, the difference between the VIX 

and the realized volatility of the S&P 500 index, the market return on the S&P 500, the yield on 

the ten-year Treasury note, the change in the trade-weighted value of the dollar, the basis, the 

year-on-year growth rate of WIPI, and 19 NLP measures including article count, entropy, the 

seven topical frequency series, the seven topical sentiment series, and the three PCAs.12  To 

maintain consistency of our forecasting variables, they are calculated over the last four weeks for 

both the four- and eight-week ahead forecasting regressions; similarly, lagged realized volatility 

is always measured over the prior 30 trading days.  Prior to running the in-sample forward 

selection procedure, we first detrend all variables, to ensure that trend does not contribute to 

forecastability, and then residualize the data by regressing out the four-week version of the 

lagged dependent variable from both the left- and right-hand sides of the in-sample specification.  

We residualize because, otherwise, the lagged dependent variable would frequently be chosen in 

the forward selection procedure.  Our forecast horizon is either four- or eight-weeks ahead.13  We 

                                                
11 We use the fs() method from the R package selectiveInference to perform this analysis. 
12 To be conservative, we use only one lag because we already have numerous forecasting variables. 
13 The four-week horizon results, reported in the Appendix in Table A.IV, are consistent with the eight-week results. 
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use forward selection to select seven variables out of our set of 35, after all data has been 

detrended and residualized.14 

The model is estimated using weekly observations with either four- or eight-week ahead 

overlapping observations, which substantially increases the possibility of finding spurious 

forecasting relationships. It is well-known that the use of overlapping observations will 

downwardly bias standard errors and upwardly bias R-squareds (see, for example, Hodrick 1992, 

Kirby 1997, Ang and Bekaert 2007, and Boudoukh et al. 2008). Furthermore, we employ 

forward selection for choosing a parsimonious set of in-sample regressors, which tends to 

introduce upward bias in the R-squareds, and downward bias in the standard errors as well. To 

control for both of these sources of finite sample bias, we construct bootstrapped distributions for 

our t-statistics and R-squareds, a methodological contribution of our paper. We now describe our 

methodology. 

3.1. Controlling for Overlapping Observations and Sample Selection 

  We assess the in-sample forecasting power of our model by simulating the data and 

checking whether the empirical R-squareds are anomalous relative to the simulated R-squareds.  

We first estimate an AR(8) process for the dependent variable.  We then simulate a new 

dependent series based on the AR(8) model.  Next, we rerun our in-sample regressions, using all 

of the actual 35 forecasting variables, except replacing the lagged dependent variable with the 

simulated series.  By construction this simulated dependent series is independent of all our 

forecasting variables, except for the lagged dependent series itself which controls for the 

mechanical autoregressive properties of the series being forecast.  In one round of this 

                                                
14 The number of variables considered in studies examining return predictability in commodity markets ranges 
between one and seven (see Table 1 in Baumeister and Kilian 2017). In our out-of-sample analysis, we also consider 
a two-variable in-sample selection model.  
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simulation, we calculate the standard OLS t-statistics for the selected variables, keeping track of 

the order of selection, i.e. the t-statistic for the first selected variables, for the second selected 

variable, and so on.  We also record the R-squared of this one simulation round.  We then repeat 

this process 1,000 times to build a bootstrapped distribution for the ordered t-statistics, as well as 

for the model R-squared.  This process controls for both the selection and overlapping 

observation properties of our in-sample procedure.  More details are in the Appendix. 

 To give a sense for the impact of small-sample biases, Figure 3 shows the bootstrapped 

R-squared distributions for forecasting eight-week ahead oil futures returns and oil volatility.  

Under the null hypothesis of no predictability, other than the mechanical autoregressive 

properties of both series, there is a wide range of R-squareds in our simulated runs.  In fact, the 

dual small-sample problems of overlapping observations and variable selection lead to very high 

in-sample R-squared.  When reporting our actual R-squareds in Table IV, we show the 

percentage of simulated R-squareds that are lower than the actual ones (in the table row labeled 

“CDF”).  Rather than interpreting the outright value of the R-squared, a very high CDF value 

indicates that there is evidence of in-sample predictive ability even in the face of these biases. 

To understand the impact of small-sample biases on p-values, Figure 4 shows the 

distribution of the ordered t-statistics for the seven forward selected variables, under the null 

hypothesis of no predictability for forecasting oil futures returns and oil volatility.  The butterfly 

shaped distributions show the extreme bias that forward selection introduces to standard OLS t-

statistics.  The first chosen t-statistic (the widest bimodal distribution) shows that the modes for 

the t-statistic of the first selected variables are close to -6 and +6 respectively.  The modes for the 

seventh selected variable are expectedly smaller in magnitude, at approximately -3 and +3.  To 

the extent that other energy forecasting papers implicitly follow a variable selection methodology 
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reminiscent of forward selection (i.e., choose a subset of the best forecasting variables from a 

larger set), their standard error distribution under the null has the butterfly pattern shown in 

Figure 4.  Not adjusting for this introduces obvious biases.  We adjust for this issue by 

calculating p-values in our in-sample regressions by comparing the OLS t-statistics in our actual 

regressions to these distributions.  Let ĉ be the fraction of simulated t-statistics for a given 

ordered selected variable (e.g. the second selected variable in a given specification) that are less 

than the t-statistic for the actual ordered selected predictor.  Our bootstrapped p-value is reported 

as min	(ĉ, 1 − ĉ). A p-value less than or equal to 0.025 (0.05) indicates significance at the 5% 

(10%) level.  We don’t present bootstrapped distributions of R-squareds and t-statistics for all 

dependent variables (they are available from the authors), but Table IV summarizes this 

information. 

3.2. Results 

  Table IV presents the regression results for our 8 dependent variables using stepwise 

forward selection that chooses seven variables for each model. Only the predictors that were 

chosen by at least one model are presented in the table. For each dependent variable, we present 

coefficient estimates of the selected predictors, which are standardized, along with corresponding 

p-values as described in the last section. Our standardized coefficients report the standard 

deviation change in the dependent variable due to a one standard deviation change in the 

forecasting variable.15 

The standardized coefficients for the selected predictors range between 0.07 and 0.71 in 

absolute value. For example, a one standard deviation increase in economic activity growth 

                                                
15 These are . × 0|(:}~)/0|(Ä}~) where b is the estimated coefficient, 0|(:}~) is the standard deviation of the 
forecasting variable, and 0|(Ä}~) is the standard deviation of the dependent variable, calculated for the set of dates 
available for each individual forecasting regression. 
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(WIPImom) over the previous month increases eight-week ahead oil futures returns by 3.7% 

(0.27 × 13.78%).  Or, a one standard deviation increase in average sGom over the past month –

positive sentiment about global oil markets – increases BP returns by 1.3% (0.13 × 9.94%) over 

the next eight weeks. Moreover, around 63% of the selected variables are statistically significant, 

even after adjusting for overlapping observations and variable selection.  The variables chosen 

by the forward selection method are generally both economically and statistically significant. 

The actual adjusted R-squareds of the forecasting regressions also look good, ranging 

from 13% to 37%. At the bottom of Table IV, we present mean of the bootstrapped adjusted R-

squareds for each regression and their corresponding CDFs (i.e., the percentage of bootstrapped 

R-squareds that are lower than the empirical one). They suggest that the impressive empirical R-

squareds observed in our models are highly unlikely to have been generated by chance. That is, 

under the null hypothesis of no relationship between the dependent and the independent variables 

(except for the presence of the lagged independent variable), the probability of adjusted R-

squareds being greater than or equal to the empirical R-squareds reported is less than 0.5% for all 

models. 

Turning to the composition of the selected variables, out of the 56 predictors selected 

across all the models, 26 of them are text measures (about 46 percent), and of these about 73% 

are statistically significant. (The candidate explanatory variables are roughly equally split 

between text-based and traditional measures.) And, four of the text measures are chosen 

statistically significantly at least two times, namely entropy, sEnv, fRpc, and sEp. For example, 

BP returns, Shell returns, change in oil production and change in inventories are all forecastable 

by sEp. While 54 percent of the predictors selected are non-text measures, only 53 percent of 

them are statistically significant. And, six of the selected non-text variables are chosen 
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statistically significant at least two times, which are change in inventories, DFX, basis, 

tnote_10y, sp500Ret, and WIPImom. For instance, not surprisingly, DFX, basis, and WIPImom 

are all economically and statistically significant in forecasting oil futures returns.16  These results 

suggest not only that our new text measures are selected frequently (about as much as the 

traditional non-text measures), but also that they are statistically significant more often than the 

traditional measures. We conclude, therefore, that text measures are important in-sample 

forecasting variables for the oil market.  

However, some variables are more forecastable by text measures than others. For 

example, overall, non-text measures seem more useful in forecasting futures returns, while oil 

spot price changes and changes in realized oil volatility are forecastable by text measures. This is 

a surprising result, as one may expect text measures to be more useful in predicting risk premia, 

and hence futures returns. This takes us to the next question. Could text measures be selected 

because they are proxies for risk?  

          To address this question, we take the forward selection models considered above and 

presented in Table IV, and add each of our risk measures presented in Section 2.2 – vix, vix_spx, 

ovx_cl1, and sdf_fullSample – one by one after the seven variables were selected by stepwise 

forward selection.  As vix and vix_spx were included in the list of candidate variables for our 

forward selection procedure, they are included in this test only if they were not selected in the 

first place.  Risk measures are natural predictors of returns because time variation in expected 

returns may reflect forward-looking compensation for risk. Looking at how coefficients on text 

measures change, we find that adding the risk measures does not reduce the coefficients on the 

                                                
16 The basis variable comes in with a positive coefficient in Table IV for both futures returns and spot changes, 
indicating when the curve is in contango, expected oil returns are higher. This is surprising. But the result is due to 
the interaction of basis with the other regressors, because in univariate regressions, basis forecasts with the expected 
negative sign. 
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text measures towards zero (Appendix Table A.III).  In other words, one should not interpret the 

selected text measures as proxies for some omitted risk factor. Interestingly, sdf_fullSample 

enters significantly only once in these augmented regressions; though we will see the SDF 

variable often plays a larger role in the out-of-sample analysis in the next section.   

To sum up, we find compelling evidence of in-sample predictability after carefully 

controlling for small-sample biases. Next, we explore whether it translates into out-of-sample 

performance. 

4. Out-of-sample Predictability 

      We consider three out-of-sample approaches.  The first takes the variables chosen in the in-

sample forward selection model as given.  Because this approach suffers from lookahead bias, it 

gives our out-of-sample tests the best chance for success.  If a constant set of variables that are 

chosen using future information do not work well for out-of-sample forecasting, then perhaps the 

set of forecasting variables changes over time.  In recognition of this, our second approach 

identifies a time-varying set of candidate forecasting variables, and checks their out-of-sample 

performance.  The third approach engages in a brute force search over all possible two-variable 

forecasting models, and checks their out-of-sample performance.  For our set of forecasting 

variables, we augment the series that are available for the in-sample forward selection model in 

Section 3 with the two SDF-based expected return forecasts (SDF_rolling, SDF_growing), 

OVX_CL1, and sent, which is the sum of the four-week topical sentiments in a given week. 

4.1. Ability of in-sample regressors to forecast out-of-sample 

             To evaluate the effectiveness of our in-sample model selection technique for out-of-

sample forecasting, we first lower the bar by considering the seven forecasting variables selected 

for each dependent variable using the forward selection methodology over the entire sample.  
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Our dependent variables are eight-week ahead returns or changes, as they were for the in-sample 

analysis; for each dependent variable, the seven forecasting variables are those that were the 

most successful in-sample forecasters according to the forward selection model.  In our out-of-

sample analysis, to avoid imposing a forward-looking trend, we do not detrend any series, nor do 

we regress out the lagged dependent variable as we had done in the in-sample analysis.  Instead, 

we add the four-week version of the lagged dependent series as an additional forecasting 

variable.  This approach clearly suffers from lookahead bias because the best full-sample set of 

forecasting variables would not have been known for most of our data sample; in this sense, this 

methodology is extremely favorable for the out-of-sample test. 

           We then run rolling five-year lasso regressions, with automatic penalty parameter 

selection using ten-fold cross validation, to estimate rolling coefficients for out-of-sample 

forecasting of eight-week ahead changes or returns.17  We ensure each five-year training window 

uses data only from inside the window. 18 Using the lasso coefficient estimates in each training 

window, we then use the dependent variables available at the end of the window to make an 

eight-week ahead forecast.  We then march the training window forward by one week, re-

estimate the model, and make another eight-week ahead forecast. 

          To control for the possibility of overfitting a seven independent variable model in five-

year training windows, we redo the out-of-sample procedure just described using a two-variable 

version of the forward selection model run over the entire sample.  As before, we do not detrend, 

                                                
17 We consider rolling regressions rather than expanding window to account for possible regime shifts in the data.  
An expanding window would ultimately settle on a single regime, and not allow for structural breaks in the 
forecasting relationships. 
18 The first right-hand side observation in a five-year training window occurs eight weeks after the window’s start to 
allow for the lagged dependent variable as a regressor.  The last right-hand side observation in the training window 
occurs eight weeks prior to the end of the window to ensure that the left-hand side variable does not extend beyond 
the five-year training window.  For specifications where PCAsent (the other PCAs are never chosen in the full-
sample forward selection model) was chosen in the in-sample model selection, we re-estimate PCAsent using 
normalized four-week averages of the topical sentiment series in each five-year training window. 
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do not regress out the lagged dependent variable, but we do add the four-week version of the 

lagged dependent variable as the third forecasting variable.  This test also suffers from look-

ahead bias, but is perhaps less susceptible to overfitting in the five-year rolling training windows. 

          To measure the out-of-sample efficacy of the two versions (the two- and seven-variable 

models) of the lasso model, we use as a baseline model the five-year rolling averages of the left-

hand side variable.  We are again careful to make sure that the averages of eight-week changes 

used for what we call the constant model do not extend outside of the five-year training window.   

Our main test is to look at the ratio of the mean-squared-error (MSE) of our two- or seven-

variable lasso models (which suffers from lookahead bias) relative to the mean-squared-error of 

the constant model, i.e. 

É~7	Ñ/?1B = 	
É~7nhjjÖ

É~7mÖkj"hk"
. 

Note that the out-of-sample R-squared is simply one minus this ratio. Therefore, when this ratio 

is above one, i.e. when the lasso model generates a higher error variance than the constant model, 

the out-of-sample R-squared will be negative. 

           Table V shows that the out-of-sample forecasting power, for eight-week ahead returns and 

changes, of the in-sample forward selected model is generally poor, as measured by the MSE 

ratio.  Of the 16 cases considered (eight forecasting variables for the two- and seven-variable 

model versions), the constant model outperforms the lasso model 12 times.  In the cases of 

xomRet and bpRet, the two-factor lasso model barely ekes out an outperformance with an MSE 

ratio of just below one.  Only for changes in oil realized volatility is there strong evidence that 

the forward selected variables outperform the constant model in an out-of-sample setting.  This 

outperformance is not surprising because volatility is known to be stationary, and therefore 

changes in volatility are mean-reverting.  This is exactly what the analysis picks out.  In all other 
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cases, the out-of-sample forecasting power of our model, which includes traditional and text-

based forecasting variables, and which suffers from lookahead bias, is extremely poor. 

4.2. Ability of a time-varying variable set to forecast out-of-sample 

             One problem with the approach in the prior section is that the two or seven variables 

chosen by the in-sample model selection are fixed over time for all out-of-sample forecasting 

windows.  However, it is likely that the usefulness of forecasting variables ebbs and flows over 

time.  To allow for this possibility, we run univariate regressions of each dependent variable 

(eight-week ahead changes or returns) on each forecasting variable in rolling five-year training 

windows.  Within each training window, we then rank each forecasting variable (for each 

dependent variable) based on its standalone R-squared.  We classify our forecasting variables 

into two groups: the text group contains our text-based measures and the baseline group contains 

all the other forecasting variables, including the SDF variables (both the rolling and the growing 

version), as well as the OVX_CL1 variable. 

           With the R-squared rank of each of the text and baseline variables in hand, we then form 

three candidate forecasting models: the first contains only the baseline variable with the highest 

R-squared in the training window (we refer to this as the 1-0 model); the second contains only 

the text variable with the highest training window R-squared (the 0-1 model); and the third 

contains both the top baseline and text variables (the 1-1 model).  For each of the three models, 

we estimate a lasso regression in the training window, as described in the previous section.  We 

then use the coefficient estimates from the lasso and the last observation of the forecasting 

variables in the training window, to make one eight-week ahead out-of-sample forecast.  We then 

march forward by one week, re-estimate the training window, and make a new eight-week ahead 

forecast. 
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           We also explore a variation of the above in which we choose 2 baseline variables (the 2-0 

moodel), or 2 text variables (the 0-2 model), or the two top baseline and text variables (the 2-2 

model), where all variables are ranked by their training window R-squareds within their peer 

variable set (i.e., text relative to text, and baseline relative to baseline).  This variation of the 

approach allows for the possibility that more than one forecasting variable from each set may be 

useful. 

          Unlike our prior methodology, which uses the variable set from the in-sample forward 

selection model, these approaches are truly out-of-sample.  They do not use any forward 

information to select the forecasting variables.  Furthermore, they allow for the set of forecasting 

variable to vary over time.  For each of our eight-week ahead dependent variables, Figure A.2 in 

the Appendix shows which forecasting variable is chosen at each point in our data sample in the 

1-1 model.  Two features are notable.  First, there is some persistence in which variable is chosen 

over time, though this is not surprising given our use of overlapping five-year training windows.  

Second, despite this persistence there is as a large amount of time series variation in the selected 

baseline and text variables.  This suggests that allowing for time variation in the forecast variable 

set may be useful. 

           Unfortunately, as Table VI shows, it is not.  The top panel of the table shows the 

performance of 0-1 and 1-1 models as measured by the MSE ratio relative to the constant model 

(evaluated as described in the prior section).  As the left columns in the top panel show, the MSE 

ratio is above one in 14 of the 16 cases.  Only for the 0-1 model for eight-week ahead production 

changes and for the 1-1 model for changes in realized oil volatility are the MSE ratios less than 

one.  As the bottom panel of the table shows, when we move the 0-2 and 2-2 models the 

performance is even worse, as 15 out of 16 cases have above one MSE ratios. 
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           We also test the incremental value of our text measures in out-of-sample forecasting 

relative to using the traditional forecasting variables only. The two rightmost columns of Table 

VI show the ratio of the MSE of models 0-1 (text only) and 1-1 (baseline and text) respectively, 

relative to model 1-0 (baseline only).  The results are now more positive.  In many cases, we find 

that the MSE ratio of the models that include the text measures are lower than the MSE ratios of 

the baseline-only models.  This is true also for the two variable variation as shown in the bottom 

panel of the table.  Apparently, adding text-based information to traditional forecasters of energy 

market outcomes is useful, though not in general sufficiently useful to outperform the forecast 

coming from the constant model. 

4.3. Data mining for out-of-sample forecasting 

             Thus far, we have attempted to devise a transparent and systematic methodology that 

identifies a subset of successful out-of-sample forecasters from a large pool of potential 

forecasters. Our lack of success suggests that it is very difficult to select, in real-time, a model 

that beats the random walk for out-of-sample forecasting of oil market outcomes.  But are there 

any combinations of forecasting variables that appear to have successful out-of-sample 

performance?  To address this question we undertake a brute-force search over all possible 

forecasting combinations.  Of course, whether this set of variables – data-mined to work for a 

particular sample – will continue to work in the future is a question that will only be answered by 

the passage of time. 

           To conduct a brute-force data mining exercise to find out-of-sample predictability in our 

data, for every dependent variable we check all combinations of any two forecasting variables.  

As can be seen from the rows and columns of Figure 5, there are 39 forecasting variables in our 

study, and therefore there are Ü392 á = 741 potential models.  For each candidate model, we run a 
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lasso in five-year training windows using the methodology already described.  We then make an 

out-of-sample forecast, move the window forward for one week, and repeat.  Table VII reports 

the number of successful two variables combinations, which we define to be those that generate 

an MSE ratio relative to the constant model of less than one.  For futures returns, there are 16 

such pairs out of 741 possibilities.  The other dependent variables are associated with a larger 

number of successful forecasting models, ranging from 23 for changes in WTI prices to a high of 

213 for changes in realized oil volatility.  The mean MSE ratio of successful models ranges from 

0.9925 for ExxonMobil and Shell returns to 0.9123 for changes in realized oil volatility.  Not 

surprisingly, changes in realized oil volatility are associated with the greatest number of 

successful forecasting combinations and low MSE ratios, whereas future returns are associated 

with fewer successful models that also have higher MSE ratios. 

          Figure 5 summarizes the successful forecasting models.  In total, there are 554 successful 

models (shown in Table VII) which are associated with 1,108 selected variables.  Figure 5 shows 

that 408 of these variables are text variables, and 700 are baseline variables.  The most frequently 

appearing forecasting variables in the successful models are OVX_CL1, SDF_growing, and 

SDF_rolling, all of which represent different sets of risk premia estimates for energy markets.  

Of the text variables, the most frequently selected ones are sEp (the sentiment of stories related 

to the topic of exploration and production), sCo (company sentiment), and fBbl (the topical 

frequency of physical crude oil related articles).   In Table A.V of the Online Appendix, we list 

all 554 successful variable pairs, with an MSE ratio of less than one, as well as the associated 

MSE ratio. 

         The takeaway from this analysis is twofold.  First, it is straightforward to find evidence of 

out-of-sample predictability in the energy space, if one simply searches all the possible models.  
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Out of a total of 741 × 8 = 5,928 potential models, we find 554 with sub-one MSE ratios.  

Selectively reporting on just several of these would give the impression of readily identifiable 

out-of-sample forecasting performance.  The second takeaway is the more sobering finding that 

we could not identify any systematic algorithm for finding such successful forecasting pairs on 

an ex-ante basis.  Two open questions therefore remain.  First, does such a systematic algorithm 

exist?  (Brute force methods don’t count.)  And second, will any of the 554 identified successful 

out-of-sample models continue to outperform in the future? 

5. Conclusions 

Energy forecasting is a challenging task. There are only a few time series that can be 

forecasted, and panel approaches are not applicable.  Furthermore, the time period for which data 

are available is relatively short, and even if it weren’t, regime shifts would undermine the 

usefulness of much of the earlier data.  Traditional in-sample approaches suffer from an implicit 

variable selection bias, although researchers typically do not formally adjust for this.  In our 

work, we add text-based measures to the list of standard forecasting variables to consider, and 

we formally model the variable selection problem, control for selection bias in our R-squared 

evaluation and in our standard errors.  With these adjustments, we still find systematic patterns 

of in-sample predictability.  Many of the successful in-sample forecasting variables derive from 

measures based on the text of TR news articles about the energy space.  This is one of the novel 

findings of our paper. 

           Despite successful in-sample forecasting results, we find it difficult to identify a 

transparent and systematic strategy for finding forecasting variables that lead to out-of-sample 

performance that is better than a rolling mean of the dependent variable.  When we data mine, 

we identify many successful out-of-sample forecasting models. What is unclear is whether a 
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systematic variable selection method exists that will identify successful out-of-sample 

forecasting models without engaging in data mining.  Furthermore, we do not know how many 

of our 554 successful out-of-sample models will remain so in the future.  Answering these two 

questions should be a focus of future research in this area, which can take the results reported 

here as a point of departure. 
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Table I 
Data Definitions Summary 

Topic is one of company (Co), global oil market (Gom), environment, (Env), energy/power generation 
(Epg), crude oil physical (Bbl), refining and petrochemicals (Rpg), or exploration and production (Ep). 

 
 

Variable Definition 
FutRet8 WTI front-month futures cumulative weekly returns (in %) starting in week t through week 

t+8 
DSpot8 Percent change in the WTI spot price from week t to t+8 
DOilVol8 Level difference in the rolling 30-day realized volatility of WTI physical futures 1-month 

nearby contract between weeks t+8 and t  
xomRet8 Exxon Mobil stock returns (in %) from week t to week t+8 
bpRet8 British Petrol stock returns from week t to week t+8 
rdsaRet8 Royal Dutch Shell class A stock returns from week t to week t+8 
DInv8 Percent change in U.S. crude inventories including SPR (EOP, mil. bbl) from week t to week 

t+8 
DProd8 Average weekly percent change in U.S. crude oil field production (mil. bbl/day) from week t 

to week t+8 
OilVol Rolling 30-day realized volatility of WTI physical futures 1-month nearby contract 
VIX CBOE market volatility index 
DFX Percent change in the nominal broad dollar index - goods only (Jan 1997 = 100) 

relative to 4 weeks ago 
tnote_10y 10-year treasury note yield at constant maturity (EOP, % p.a.) 
sp500Ret Standard and Poor’s 500 stock returns relative to 4 weeks ago 
basis WTI physical annualized 3-month to 1-month basis (when positive curve is upward sloping, 

capturing contango) 
WIPImom Month-over-month growth rate of Baumeister and Hamilton’s (2019) monthly World 

Industrial Production Index 
trend Weekly linear time trend 
vix_spx The difference between CBOE market volatility index and the 30-day volatility of Standard 

and Poor’s 500 index  
ovx_cl1 The difference between CBOE crude oil volatility index and the 30-day volatility of WTI crude 

oil prices 
sdf_fullSample Risk premium calculated from annual covariance with full-sample stochastic discount factor  
f[Topic] Average frequency of articles over the previous 4 weeks in Topic 
s[Topic] Average sentiment over the previous 4 weeks due to Topic 
artcount Average number of articles in the energy corpus over the past 4 weeks 
entropy Average measure of article unusualness over the past 4 weeks 
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Table II 
Descriptive Statistics 

 
Data summary using weekly observations from April 1998 to March 2020. The variables labeled t8 show eight-week 
changes (the t8 is suppressed in other tables).  The other non-text series are observed weekly, some as changes and some 
as levels, and the text variables are four-week averages of weekly observations.  The data are observed on Tuesday for 
non-price series, and on Thursday for price-based series.  For each variable, the table shows the mean, standard 
deviation, median, and the 5th and 95th percentiles. N is the number of observations in the sample. Variable definitions 
are presented in Table I. The text measures, which except entropy are standardized to mean zero and unit variance in the 
regressions, are not standardized here. 
VARIABLES mean sd p5 p50 p95 N 
FutRet_t8 1.349 13.78 -22.71 2.512 21.49 1,139 
DSpot_t8 0.637 14.80 -25.91 2.876 20.31 1,077 
DOilVol_t8 0.203 14.40 -22.72 -0.550 23.36 1,077 
xomRet_t8 0.203 7.612 -11.87 0.545 11.52 1,099 
bpRet_t8 -0.295 9.944 -15.24 0.359 13.00 1,099 
rdsaRet_t8 -0.351 9.420 -14.83 0.548 12.47 1,074 
DInv_t8 0.137 1.742 -2.596 0.145 2.966 1,139 
DProd_t8 0.271 2.618 -2.388 0.190 3.438 1,139 
OilVol 35.82 15.95 17.50 32.52 66.49 1,136 
VIX 20.05 8.826 11.21 17.97 35.79 1,146 
DVIX 0.134 5.739 -6.200 -0.440 8.070 1,141 
DFX 0.0544 1.507 -2.269 -0.0220 2.424 1,141 
tnote_10y 3.567 1.327 1.700 3.580 5.850 1,147 
sp500Ret 0.308 4.707 -7.545 1.007 6.077 1,141 
WIPImom 0.2089 0.6022 -0.674 0.2604 1.0027 1,143 
basis 0.0751 0.319 -0.256 0.0465 0.473 1,136 
trend 574 331.3 58 574 1,090 1,147 
vix_spx 3.235 4.566 -4.415 3.620 9.478 1,146 
ovx_cl1 1.82 8.400 -14.778 3.070 12.642 673 
sdf_fullSample 0.041 0.030 0.007 0.033 0.093 1,039 
PCAsent -0 1.503 -2.179 0.278 2.183 1,143 
PCAfreq 0 1.776 -2.159 -0.766 2.940 1,143 
PCAall 0 2.443 -2.950 -1.065 3.744 1,143 
artcount 332.4 113.5 173.3 358.0 517.8 1,143 
entropy 2.150 0.116 1.949 2.170 2.305 1,143 
sCo -0.00119 0.000341 -0.00181 -0.00110 -0.000772 1,143 
fCo 0.127 0.0468 0.0757 0.120 0.219 1,143 
sGom -0.00471 0.00178 -0.00796 -0.00436 -0.00239 1,143 
fGom 0.346 0.103 0.213 0.333 0.507 1,143 
sEnv -0.000561 0.000324 -0.00114 -0.000561 -0.000151 1,143 
fEnv 0.0318 0.0172 0.00841 0.0333 0.0581 1,143 
sEpg -0.00564 0.00135 -0.00777 -0.00550 -0.00354 1,143 
fEpg 0.355 0.0539 0.260 0.369 0.429 1,143 
sBbl -0.000429 0.000225 -0.000932 -0.000357 -0.000198 1,143 
fBbl 0.0387 0.0158 0.0197 0.0345 0.0670 1,143 
sRpg -0.000341 0.000104 -0.000560 -0.000328 -0.000195 1,143 
fRpg 0.0203 0.00433 0.0148 0.0194 0.0292 1,143 
sEp -0.000472 0.000192 -0.000751 -0.000447 -0.000234 1,143 
fEp 0.0358 0.0115 0.0212 0.0340 0.0550 1,143 
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Table III 
Sample Sentences 

This table shows headlines associated with the episodes marked with stars in Panels A and B of Figure 2.  
Each episode is labeled with its respective time frame.  Articles for each episode must belong 
predominantly (WU,X > 0.8) to the episode’s topical category.  For each event, the headlines of the five 
most negative sentiment articles are chosen from the candidate set, which consists of articles with an 
entropy higher than 2 and with a total number of words higher than 100.  The Sentiment and Entropy 
columns correspond to article sentiment and entropy respectively. 

Sentiment Entropy Date Headline 
Co: UK fuel protests from 2000-08-23 to 2000-09-20 

-0.115 2.298 9/12/2000 UK's Blair to hold urgent talks over fuel crisis 
-0.092 2.361 9/12/2000 EU asks Belgium for information on trucks protest 
-0.072 2.395 9/13/2000 UPDATE 1-UK business says fuel crisis hurting 
-0.069 2.347 9/13/2000 Fuel crisis costs UK firms 250 mln stg a day -LCC 
-0.068 2.447 9/19/2000 EU govts to hold crisis talks far from Brussels 

Gom: Failed Venezuelan coup from 2002-03-27 to 2002-04-24 
-0.132 2.483 4/12/2002 Venezuela PDVSA staff say oil exports being restored 
-0.128 2.476 4/12/2002 Venezuela PDVSA staff say oil exports being restored 
-0.111 2.44 4/11/2002 U.S. concerned about Venezuela, urges moderation 
-0.102 2.403 4/5/2002 UPDATE 1-Oil protest grips Venezuela, disruptions reported 
-0.097 2.504 4/12/2002 IPE Brent lower as Venezuela supply concerns ease 

Env: Volkswagen emissions scandal from 2015-09-16 to 2015-10-14 
-0.107 2.347 9/24/2015 Nidera says suffers significant loss from biofuels fraud 
-0.09 2.364 9/23/2015 BRIEF-Fitch places Volkswagen AG on Rating Watch Negative 
-0.09 2.312 10/2/2015 UPDATE 1-VW faces French inquiry for 'aggravated deception' in emissions scandal 

-0.071 2.391 9/20/2015 UPDATE 1-Volkswagen orders investigation into breach of US environment rules 
-0.063 2.431 9/21/2015 UPDATE 1-Volkswagen shares plunge on U.S. emissions scandal  

Epg: Post-bankruptcy Enron hearings from 2002-01-16 to 2002-02-13 
-0.131 2.372 2/12/2002 Calif senate panel seeks contempt citation vs. Enron 
-0.123 2.33 2/6/2002 Enron skips Calif. hearing, may face contempt charges 
-0.114 2.333 2/4/2002 UPDATE 1-Global Crossing says panel to probe accounting 
-0.108 2.312 2/8/2002 Court seen for Enron bigwigs as Congress probes 
-0.095 2.34 1/23/2002 Calif. court orders Enron to save documents 

Bbl: Hurricane Katrina from 2005-08-24 to 2005-09-21 
-0.075 2.367 9/12/2005 UPDATE 1-FEMA chief Brown resigns in wake of Katrina 
-0.059 2.342 9/12/2005 FEMA revises Brown's bio after exaggeration charges 
-0.057 2.268 9/2/2005 Bush signs $10.5 bln spending bill for Katrina 
-0.055 2.331 9/13/2005 U.S. lawmaker won't reopen bankruptcy for Katrina 
-0.055 2.349 8/31/2005 UPDATE 1-Bush says will take years to recover from Katrina 

Ep: BP oil spill aftermath from 2010-05-05 to 2010-06-02 
-0.078 2.12 5/6/2010 UPDATE 1-Pioneer Drilling Q1 loss wider than expected 
-0.072 2.488 6/1/2010 UPDTAE 1-Goldman removes Halliburton from conviction buy list 
-0.061 2.367 5/27/2010 UPDATE 1-Carrefour, unions reach Belgian restructuring deal 
-0.058 2.583 6/1/2010 Transocean, Halliburton credit default swaps surge 
-0.057 2.32 5/13/2010 UPDATE 1-Transocean seeks to limit spill liability 
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Table IV 
Stepwise Forward Selection at the Eight-Week Horizon 

The table shows the regression results for all 8 dependent variables at the eight-week horizon using stepwise forward selection to choose 7 of all the variables described in Table I, 
except ovx_cl1 and sdf_fullSample. Only predictors that were chosen by at least one model are included in this table. Coefficients are standardized.  Superscripts before 
coefficients indicate order in forward selection (1=chosen first).  The p-values in parentheses are obtained using Monte Carlo simulations that use an AR8 process to simulate the 
LHS variable, as well as forward selection to produce both adjusted R2 and t-statistic simulations. The p-values refer to the minimum of the fraction of simulated t-statistics less 
than the empirical t-statistic, and 1 minus the fraction of simulated t-statistics less than the empirical t-statistic, where the comparison is relative to the order in which the variables 
were chosen. The bootstrap was repeated 1,000 times. The table also reports the mean of simulated adjusted R2 resulting from the same bootstrap, as well as the corresponding 
CDF percentage, computed as the percent of adjusted R2 simulations less than the empirical adjusted R2. Statistically significance shown in bold. 

Predictors 
FutRet Dspot DOilVol xomRet bpRet rdsaRet DInv DProd 

coef pval coef pval coef pval coef pval coef pval coef pval coef pval coef pval 
DSpot 

    
2-0.33 0.00 

  
40.11 0.16 

      

DOilVol 4-0.16 0.06 
            

50.08 0.26 
OilVol 30.18 0.13 

  
1-0.71 0.00 

          

DInv 10.10 0.39 
    

70.10 0.01 
  

60.12 0.05 
  

2-0.15 0.04 
DProd 

            
1-0.15 0.22 

  

tnote_10y 
      

3-0.16 0.03 7-0.13 0.00 
      

DFX 50.15 0.02 
    

40.15 0.06 30.16 0.05 
      

sp500Ret 
  

50.14 0.07 
  

1-0.37 0.00 1-0.34 0.00 
    

7-0.07 0.13 
basis 60.14 0.03 30.27 0.00 

            

WIPImom 20.27 0.00 40.18 0.05 
  

50.12 0.09 
  

10.19 0.10 
    

PCAsent 
    

7-0.12 0.01 
          

artcount 
            

2-0.26 0.01 6-0.07 0.31 
entropy 

  
70.10 0.07 4-0.34 0.00 

      
5-0.16 0.03 

  

fCo 
    

6-0.17 0.00 
          

sGom 
      

20.10 0.32 60.13 0.02 
      

fGom 
    

50.16 0.03 
    

5-0.12 0.17 
    

sEnv 70.10 0.02 60.13 0.08 
      

30.25 0.01 
    

sBbl 
              

3-0.19 0.01 
fBbl 

  
2-0.18 0.17 

      
4-0.21 0.01 

    

sRpc 
      

60.11 0.05 
        

fRpc 
  

10.18 0.18 
        

3-0.22 0.00 4-0.14 0.02 
sEp 

        
2-0.37 0.01 7-0.11 0.03 7-0.10 0.05 1-0.27 0.00 

fEp 
        

5-0.31 0.04 
      

vix 
    

30.33 0.00 
    

20.15 0.19 40.15 0.07 
  

vix_spx 
            

60.11 0.09 
  

Observations 1110   1063   1063   1075   1075   1050   1119   1119   
R2 / R2 adjusted 0.155 / 0.149 0.176 / 0.171 0.369 / 0.365 0.254 / 0.249 0.236 / 0.231 0.132 / 0.126 0.154 / 0.149 0.169 / 0.164 
Mean of sim. Adj. R2 0.071  0.086  0.062  0.058  0.053  0.062  0.066  0.049  
CDF (%) 99.6   99.7   100   100   100   99.6   100   100   
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Table V 
Out-of-Sample Test of the In-Sample Forward Selected Models  

with the Constant Model as Benchmark 
 
The table displays MSE ratios of the in-sample based Forward Selection model against the benchmark 
Constant model. The in-sample Forward Selection provides 7 or 2 top predictors sequentially for each 
predicted variable. During this process, the lagged variables are regressed out to control for 
autocorrelation and are added back in the prediction phase. The RHS independent variables of the two 
models are thus the lagged predicted variable along with forward selected 7 or 2 top candidates, which are 
labeled as FW7 and FW2 respectively in the 1st column. Each of the remaining columns corresponds to a 
predicted variable and entries show the MSE ratios relative to the constant models. The out-of-sample 
prediction is handled weekly, by first re-evaluating the factor loadings based on a Lasso regression on a 
rolling 5-year lookback window, and forecasting eight-week ahead thereafter. The penalty parameter in 
the Lasso regressions are determined by a grid search algorithm with 10 cross validation using mean 
squared errors as the criterion. Since the regression lagged the explanatory variables by eight weeks, those 
predictor series in the last eight-week window in the lookback window are excluded from the coefficient 
updating practice by definition. Furthermore, the forecast is only founded on the last observation in the 
window instead of that eight-week window to ensure genuine out-of-sample prediction. The constant 
models take the average in the lookback window as the prediction. MSE of each tested model and the 
constant model is calculated after all the predictions are accomplished. The MSE ratios are produced by 
dividing the MSE of the forecasting model and that of the constant model. Boldface indicates better 
performance than the benchmark model. 
 

  MSE Ratios relative to Constant Models 

Model FutRet xomRet bpRet rdsaRet DSpot DOilVol DInv DProd 

FW2 1.139 0.999 0.995 1.055 1.077 0.856 1.008 1.021 

FW7 1.299 1.025 1.047 1.097 1.190 0.867 1.114 1.089 
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Table VI 
Forecast Accuracy of Out-of-Sample 1-1 and 2-2 R2 Selected 

 Lasso Updating model 
 

The table displays the MSE ratio of the out-of-sample 1-1 and 2-2 Lasso updating model against 
benchmark models. The model selects n-n predictor pairs weekly (n=1 or 2 according to specification) 
from the base and text variable pool separately with the top n R2 in the univariate OLS regression based 
on a 5-year lookback window. The univariate OLS regression takes the predicted variable as LHS and a 
lagged base or text candidate as RHS. There are two benchmark models: the Constant model and the 
Baseline model, with specification annotated in the table as 0	base	+	0	text		or	n	base	+	0	text		respectively. 
Alternative models are the Text model and the Full model, with specifications as	0	base	+	n	text		or	n	base	+	n	
text.	The model then update the coefficients of the predictors with Lasso regression on a rolling 5-year 
lookback window and predicts eight-week ahead using the last observation in the window. The MSE for a 
model are produced once all the weekly forecasts are accomplished. After the MSE calculations, the MSE 
ratio is determined by dividing the MSE of an alternative model on that of a benchmark model. Boldface 
indicates better performance of the alternative than the benchmark. 
	

Panel A: Full Model specification: 1 base + 1 text 
  (1) (2) 

Benchmark  
Model 

Constant 
0	base	+	0	text 

Baseline 
1	base	+	0	text 

 
Alternative  

Model 
Text 

0	base	+	1	text 
Full 

	1	base	+	1	text 
Text 

0	base	+	1	text 
Full 

1	base	+	1	text 
 

 
MSE Ratios Relative to Benchmark Models  

FutRet 1.115 1.179 0.945 0.998  

xomRet 1.047 1.109 0.936 0.992  

bpRet 1.136 1.238 1.049 1.143  

rdsaRet 1.092 1.084 1.016 1.009  

DSpot 1.079 1.108 0.972 0.999  

DOilVol 1.061 0.970 1.103 1.009  

DInv 1.182 1.226 1.000 1.037  

DProd 0.986 1.039 0.912 0.961  

Panel B: Full Model specification: 2 base + 2 text 
  (1) (2) 

Benchmark  
Model 

Constant 
0	base	+	0	text 

Baseline 
2	base	+	0	text 

 
Alternative  

Model 
Text 

0	base	+	2	text 
Full 

	2	base	+	2	text 
Text 

0	base	+	2	text 
Full 

2	base	+	2	text 
 

 
MSE Ratios Relative to Benchmark Models  

FutRet 1.082 1.210 0.895 1.000  

xomRet 1.054 1.100 0.943 0.984  

bpRet 1.069 1.270 0.926 1.100  
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rdsaRet 1.112 1.109 1.022 1.019  

DSpot 1.109 1.191 0.917 0.984  

DOilVol 1.118 0.988 1.184 1.047  

DInv 1.154 1.225 0.967 1.026  

DProd 1.024 1.108 0.932 1.009  
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Table VII 
Summary Statistics of the MSE ratios of the Successful Candidates 

in the Out-of-Sample Fixed Model 
 
This table shows the summary statistics of the distribution of the MSE ratios of the winning models 
against the constant model in the out-of-sample fixed model. There are 8 rows with each corresponding to 
a predicted variable. The columns indicates the 5, 25, 50 (median), 75, 95 percentiles, mean, and standard 
deviations of the victorious MSE ratios in the out-of-sample fixed model forecast accuracy test; the 
column labeled N reports the total number of the desired (i.e. wining) models in each practice. The fixed 
model selects a pair of variable and sticks to them through the whole sample. The predictions are made 
weekly by updating the coefficients using a rolling 5-year lookback Lasso regression, and the MSE is 
calculated once all forecasts are done. The MSE ratios divides the MSE of the fixed model by that of the 
constant model, which predicts weekly as the average of predicted value in a rolling 5-year lookback 
window. A model is considered advantageous if the MSE ratio is less than 1. For each predicted variable, 
there are 741 fixed models at disposal (all the non-overlapping combinations of the 39 variables with 19 
base and 20 text ones). 

 

Predicted 
Variables 

Summary Statistics of MSE ratios for Successful Models 
p5 p25 p50 p75 p95 mean std N 

FutRet 0.9510 0.9861 0.9917 0.9968 0.9996 0.9863 0.0167 16 

xomRet 0.9798 0.9898 0.9952 0.9977 0.9994 0.9925 0.0083 65 

bpRet 0.9776 0.9884 0.9940 0.9968 0.9995 0.9918 0.0067 31 

rdsaRet 0.9803 0.9874 0.9951 0.9983 0.9991 0.9925 0.0067 52 

DSpot 0.9645 0.9831 0.9885 0.9938 0.9966 0.9856 0.0131 23 

DOilVol 0.6726 0.9248 0.9587 0.9859 0.9968 0.9123 0.1117 213 

DInv 0.9589 0.9825 0.9901 0.9956 0.9991 0.9869 0.0119 74 

DProd 0.9406 0.9530 0.9697 0.9952 0.9987 0.9716 0.0211 80 
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Figure 1. Word cloud plots for energy topics. This figure shows the word clouds of the energy topics 
extracted from the energy corpus using the Louvain clustering algorithm. Larger font indicates words that 
occur more frequently in a given cluster. 



44 
 

 
 

 
 
 
 

 



45 
 

 
 
 

 
 

 



46 
 

 
 
Figure 2: NLP measures over time. This figure shows the time series plots of all the textual series in 
this paper. All series start from April 1998 and end in March 2020. We display the 4-week averages of 
topical frequencies in Panel A, and 4-week averages of topical sentiments in Panel B. The stars in Panels 
A and B mark the events detailed in Table III. The stars are positioned on the ending date of the time-
period associated with the Table III episodes. In addition, Panel C shows 4-week averages of the article 
counts, the unusualness (entropy) and the first principal components of normalized 4-week average 
textual measures. 
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Figure 3. Monte Carlo simulations of adjusted R2 for the eight-week oil futures returns and eight-
week difference in oil volatility models. The bootstrap uses forward selection to choose 7 variables after 
all variables have been de-trended, the lagged dependent variable has been regressed out of all variables, 
and the lagged dependent variable dropped from consideration. The forward selection process includes all 
variables listed in Table I as candidate variables, in addition to the [vix_spx] risk premium. After this 
adjustment, RHS variables are used as they are in the simulation, while the LHS is simulated using an 
AR8 process. The figure shows the p-value, which is the percent of simulated adjusted R2 less than the 
empirical adjusted R2. The difference shown in the legend refers to the difference between the empirical 
adjusted R2 and the mean of adjusted R2 simulations. The appendix presents a detailed overview of the 
bootstrap process. 
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Figure 4. Monte Carlo simulations of t-statistics for the 7 variables chosen via forward selection for 
the eight-week oil futures returns and eight-week difference in oil volatility models. Following the 
same bootstrap process outlined in the Appendix and used to produce Figure 3, we keep track of the t-
statistics for the simulated regression results. The p-value is computed as the minimum of the percent of 
simulated t-statistics less than the empirical t-statistic, and 1 minus the percent of simulated t-statistics 
less than the empirical t-statistic. In computing the p-values, we preserve the order of variables chosen in 
the empirical and bootstrap processes, and compare the t-statistics in that order. The empirical t-statistics 
of the variables chosen via forward selection, in the order in which they were chosen, as listed in the notes 
below the figures. The p-values presented in Table IV are derived from this process for all variables. 
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Figure 5. Number of times that all possible 2-variable models outperform the constant model for 
out-of-sample forecasting. The figure shows the winning counts of the 2-variable fixed models against 
the constant model under MSE criterion in the prediction of the dependent variables. Each cell represents 
the number of left-hand side variables for which the corresponding fixed model, consisting of an 
explanatory variable from the indicated row and column of the matrix, beats the constant model. Darker 
color indicates greater number.  The 2-variable fixed model fixes 2 predictors ex-ante and forecasts eight-
week ahead weekly based on the update coefficients by applying Lasso regression on a 5-yr lookback 
window. All the possible combinations of 19 baseline and 20 textual variables are considered, rendering a 
model pool with 741 candidates for each predicted variable. The left and top edges display variable names 
starting by the 20 textual variables and then the 19 baseline variables. The matrix is symmetric and has 
zero diagonal by construction. The bottom and right edges show the sum of the labeling column or row 
respectively, and each number denotes the total time a variable enters the desired fixed models. Two 
boxes between the matrix and the color bar reveal the aggregated entry counts of textual and baseline 
variables accordingly. 
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Appendix 

5.1. Bootstrap analysis 

              For our in-sample analysis, we need to control for two deviations from standard 

econometric assumptions.  First, we are likely to have serial correlation in the residuals of our 

time-series regressions because of the use of overlapping observations.  Furthermore, we employ 

forward selection for choosing a parsimonious set of in-sample regressors.  Both of these 

considerations may introduce upward bias in the R-squareds, and downward bias in the standard 

errors. To control for both of these sources of finite sample bias, we bootstrap the data and 

construct bootstrapped distributions for our t-statistics and R-squareds. 

Before we begin the bootstrap, we detrend all dependent and forecasting variables.  For 

each dependent variable, we then residualize all series by regressing out the four-week version of 

the lagged dependent variable.  Our in-sample analysis assumes the following specification for 

the detrended and residualized series: 

01:134 = 61
(8): + ;1:134, (3) 

where 61
(8), : ∈ >8 , M is the number of chosen explanatory variables, and the time index t is in 

weeks.  We assume the 61
(8)’s are chosen from the larger set 61 of ? > A variables using the 

forward selection algorithm.  Under the null we assume that : = 0 for all subsets of M variables.  

To match the empirical properties of the data, we estimate an B>(C) model for the dependent 

variable as follows: 

01:134 = DE01FE:1FE34 +⋯+ DH01FH,1FH34 + I1:134. (4) 

We run the analysis with C = ℎ , i.e. eight lags for eight-week ahead forecasts, and four lags for 

four-week ahead forecasts.  We estimate the above model to get the empirical  DKE, … , DKH  and the 
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innovation variance MNOP (I); these are the parameters that describe the behavior of the actual 

data.  We then use this to calculate a single run of the simulation as follows: 

1. Set 0E:4,… , 0H:H34 = 0 

2. Draw IH3E:H3E34 from a normal distribution with mean zero and variance  MNOP (I). 

3. Use the above relationship to generate the next element 0H3E:H3E34 in (4). 

4. Run the model for 100 steps as a burn-in period. 

5. On the 101st step of the model, collect the 0 variables until we match the number of 

empirical observations. 

6. Run the forward selection algorithm using the simulated 0’s and the detrended and 

residualized 6’s.  This selects a subset 6(8) of explanatory variables. 

7. Keep track of the adjusted R-squared of this simulation run. 

8. Keep track of the standard (no adjustments) OLS t-statistic for each of the variables that 

are selected by the forward-selection algorithm.  In every simulated path this will result 

in M t-statistics, {R̂E, … , R̂8}.  Here R̂E correspond to the t-statistic of the first variable 

chosen by the forward selection algorithm, R̂U is the t-statistics of the second chosen 

variable, and so on.  We refer to these as the ordered t-statistics. 

We repeat this procedure 1,000 times to generate a distribution for the observed R-squareds and 

the observed t-statistics.  The simulated R-squareds and ordered t-statistics adjust for overlapping 

observations and variable selection under the null hypothesis of no relationship between the 

dependent and the independent variables. 

We evaluate the adjusted R-squared for a given dependent variable via the percentage of 

simulated adjusted R-squareds that are lower.  Since this is a one-sided test, a value of above 

95% indicates significance at the 5% level.  For p-values of the coefficient estimates in the actual 
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regression, we compare the t-statistic of the nth chosen variable in the forward selection method 

to the nth ordered t-statistic distribution under the null hypothesis.  We report the outcome of the 

two-sided test min	(X̂, 1 − X̂) where  X̂ is the number of simulated t-statistics for the nth chosen 

variable that are less than the t-statistic for the actual nth chosen variable.  For purposes of this 

test, all t-statistics are calculated using standard OLS assumptions of independence and 

homoscedasticity.  The simulated t-statistic distributions will reflect all of the OLS biases. 
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Mining for Oil Forecasts: Supplementary Appendix 
 

Charles W. Calomiris, Nida Çakır Melek, and Harry Mamaysky1 

December 2020 

 

This Online Appendix contains details on our futures return calculation as well as additional 

appendix figures and tables referred to in the main body of the paper. 

1. Construction of cumulative weekly futures returns 

If on a given Friday, the front-month futures contract will not expire before the next Friday, the 

weekly return is defined as 

!(# + 1) =
(1(# + 1) − 	(1(#)

(1(#)
	 

where F1(t+1) is the price of the front-month futures in one week's time and F1(t) is the price of 

the same futures today. If on a given Friday, the front-month futures will expire before the next 

Friday, we switch to the second-month futures contract and define the weekly return as 

!(# + 1) =	
(1(# + 1) − (2(#)

(2(#)
 

where F2(t) is the price of the second-month futures contract today. Then, we obtain n-week ahead 

weekly cumulative returns as   

	,1 + !(# + 1)- × 	,1 + !(# + 2)- ×⋯× ,1 + !(# + 0 + 1)- × 100. 

                                                
1Office of the Comptroller of the Currency, charles.calomiris@occ.treas.gov, Federal Reserve Bank of 
Kansas City, nida.cakirmelek@kc.frb.org, and Columbia Business School, hm2646@columbia.edu, 
respectively.  The views expressed herein are solely those of the authors and do not necessarily reflect the 
views of the Office of the Comptroller of the Currency, the U.S. Government, the Federal Reserve Bank of 
Kansas City, or the Federal Reserve System.    
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Constructing weekly returns series 

We use weekly (Friday, end-of-period (EOP)) values for the front-month and second-month 

contracts. To figure out when the front-month expires and the second-month becomes the front-

month, we follow the following steps.  

 

 

1. Find range of dates for Fridays with a new contract 

The CME Group describes termination of trading for these contracts as 

“Trading terminates 3 business day prior to the twenty-fifth calendar day of the month prior to 

the contract month. If the twenty-fifth calendar day is not a business day, trading terminates 3 

business days prior to the business day preceding the twenty-fifth calendar day.”2 Based on 

this information, we can find Fridays signaling the start of a new contract. 

 

Assume 25th falls on a Trading 
ends 

Trading ends 
(assuming 1-day 

holiday) 

Friday with 
new contract  

Friday with 
 new contract  

(if 1-day holiday) 
Saturday 21st (Tues.) 20th (Mon.) 24th  - 
Sunday  20th (Tues.) 19th (Mon.) 23rd - 
Monday 20th (Wed.) 19th (Tues.) 22nd - 
Tuesday 20th (Thurs.) 19th (Wed.) 21st - 
Wednesday 20th (Fri.) 19th (Thurs.) 27th 20th 
Thursday 22nd (Mon.) 19th (Fri.) 26th - 
Friday  22nd (Tues.) 21st (Mon.)  25th - 

 
2. Single-out market holidays that might fall on Friday 20th - Wednesday 25th of a month 

                                                
2 For more information, see https://www.cmegroup.com/trading/energy/crude-oil/light-sweet-
crude_contract_specifications.html  
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Based on the first step, the only time a holiday would change the Friday on which the front-

month contract rolls over is when the 25th falls on a Wednesday. Thus, we need to inspect 

observations falling on the 27th to see if there’s a holiday that would lead to the 20th being the 

Friday with the new contract.  

We want to see if a holiday fell on Friday 20th – Wednesday 25th of a month for 1998-2020. 

 

 

Holiday3 
Check 

based on 
timing? 

When would it need to fall for the new 
contract to begin on the 20th as opposed to 

the 27th? 
New Years Day N  - 
Martin Luther King, Jr. 
Day 

Y Always on a Monday, would need to fall on 
Monday 23rd, but the latest it’s fallen on is 
Monday 21st 
Friday 27th still when new contract begins  

Washington’s Birthday Y Always on a Monday, would need to fall on 
Monday 23rd, but the latest it’s fallen on is 
Monday 21st  
Friday 27th still when new contract begins  

Good Friday Y  Always on a Friday, would need to fall on 
Friday 20th, which it doesn’t for 1998-2019 
Friday 27th still when new contract begins  

Memorial Day Y Always on a Monday, would need to fall on 
Monday 23rd, but the earliest it’s fallen on is 
Monday 25th 
Friday 27th still when new contract begins 

Independence Day N - 
Labor Day N  - 
Thanksgiving Day Y  Always on a Thursday, more than 3 business 

days before the 25th of a month, therefore we 
do not need to consider this holiday’s effect 
if the 25th fell on a Wednesday  

Christmas  Y Always on the 25th, would need to fall on a 
Wednesday for the new contract to start on 
Friday 20th as opposed to Friday 27th. This 
was the case in 2002 and 2013, and will be 
the case in 2019. Thus, in December of 2002 

                                                
3 Refers to NYSE holidays: https://www.nyse.com/markets/hours-calendars.  
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and 2013, the new contract will begin on 
Friday 20th instead of the 27th  

 
3. Construct dummy for when to calculate returns using F2, based on steps 1 and 2 

Using step one, create a dummy that equals to 1 if the day is between 21 and 27, inclusive; 

zero otherwise. 

Using step two: 

If day = 27, month = 12, and (year = 2002 or 2013), change dummy back to 0 

If day = 20, month = 12, and (year = 2002 or 2013), change dummy to 1 

Using this dummy, we can compute returns using F1 and F2 such that, if dummy = 0, 

!3 = 	
(13 − (1345

(1345
; 

and if dummy = 1,  

!3 = 	
(23 − (2345

(2345
, 

all in one series. Here, F1 refers only to the front-month series (CL1), and F2 only to the 

second-month series (CL2), unlike in the definition section where we change notation when 

referring to the same series in equation above.  

To fill in missing Friday observations, we rely on Monday prices. If Monday prices are 

missing, we use Tuesday prices. We only have to go as far ahead as Tuesday to eliminate all 

missing observations. We adapt the methodology above to Monday and Tuesday prices, with 

the additional layer of accounting for leap years in step 1.  
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2. Figures and Tables 

 

 
 
 
Figure A.1. Clustered Correlation Plot of all Independent Variable Series. All the series are 
detrended before covariance calculation. The clustering adopts hierarchy method, implemented by Python 
scipy.clustering.hierarchy method. This plot shows the covariance clusters of the independent variable 
series constructed every Fridays. The color bar on the right indicates the magnitude and sign of the value. 
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Figure A.2a. Time series plots of selected baseline variables in OOS 1-1 Lasso Model. Selected base 
variables in the Out-of-sample R2 based 5-year Lasso updating model. This figure shows the time 
variation of the base variable composing the selected prediction model for FutRet, xomRet, bpRet, and 
rdsaRet in the whole data period. Y-axis lists the variables that at least enter the prediction model once 
during the whole selection process; x-axis denotes the time of each forecast point. A blue block indicates 
the corresponding variable is selected in that prediction window. 
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Figure A.2b. Time series plots of selected baseline variables in OOS 1-1 Lasso Model. Selected base 
variables in the Out-of-sample R2 based 5-year Lasso updating model. This figure shows the time 
variation of the base variable composing the selected prediction model for DSpot, DOilVol, DInv, and 
DProd in the whole data period. Y-axis lists the variables that at least enter the prediction model once 
during the whole selection process; x-axis denotes the time of each forecast point. A blue block indicates 
the corresponding variable is selected in that prediction window. 
 
 
 
 
 



8 
 

 
Figure A.2c. Time series plots of selected textual variables in OOS 1-1 Lasso Model. Selected text 
variables in the Out-of-sample R2 based 5-year Lasso updating model. This figure shows the time 
variation of the text variable composing the selected prediction model for FutRet, xomRet, bpRet, and 
rdsaRet in the whole data period. Y-axis lists the variables that at least enter the prediction model once 
during the whole selection process; x-axis denotes the time of each forecast point. A blue block indicates 
the corresponding variable is selected in that prediction window. 
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Figure A.2d. Time series plots of selected textual variables in OOS 1-1 Lasso Model. Selected text 
variables in the Out-of-sample R2 based 5-year Lasso updating model. This figure shows the time 
variation of the text variable composing the selected prediction model for DSpot, DOilVol, DInv, and 
DProd in the whole data period. Y-axis lists the variables that at least enter the prediction model once 
during the whole selection process; x-axis denotes the time of each forecast point. A blue block indicates 
the corresponding variable is selected in that prediction window. 
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Figure A.3. Total counting of the stable models and the involved variables in the stability test in the 
3-year Stability Shrinkage Model. The figure shows the total counting of the a model being regarded as 
stable during the stability screening that marches through the whole sample. Each week in the stability 
shrinkage model, all the possible combinations of 19 baseline and 20 textual variables are considered, 
rendering a model pool with 741 candidates per predicted variable. The left and top edges display variable 
names starting by the 20 textual variables and then the 19 baseline variables. The matrix is symmetric and 
has zero diagonal by definition of the modeling. Each block represents the time that the corresponding 
model passes the stability check. Darker color indicates greater number. The bottom and right edges show 
the sum of the labeling column or row respectively. The number denotes the total time a variable enters 
the desired models. Two boxes between the matrix and the color bar reveal the aggregated entrance 
counting of textual and baseline variables accordingly. 
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Table A.I 
Word List of Louvain Clustered Topics 

This table shows the top 20 tokens by frequency in each topical group. 
Topic Word List 
global oil market (gom) oil (4,136,780), barrel (1,226,580), brent (526,719), refin (411,872), 

crude.oil (409,276), opec (394,754), petroleum (293,525), heat (291,997), 
diesel (276,319), barg (194,018), ipe (175,841), distil (167,863), tanker 
(142,160), sulphur (140,039), gallon (136,243), eia (127,622), nwe (70,962), 
ara (62,293), energi.inform.administr (55,927), bunker (47,736) 

energy/power generation 
(epg) 

gas (2,082,748), energi (1,385,165), coal (510,535), outag (409,463), 
nuclear (381,919), electr (326,305), generat (225,899), equiti (184,324), 
mine (178,868), lead (165,664), lng (162,184), addit (142,116), reactor 
(125,164), renew (120,903), solar (101,509), case (91,068), miner (90,722), 
grid (79,484), hydro (69,220), power.generat (53,787) 

company (co) fuel (1,483,081), bp (369,851), shell (369,655), vitol (237,656), mrpl 
(220,506), hsfo (158,878), glencor (144,515), exxon (136,651), mop 
(121,139), hin.leong (113,240), ceypetco (102,883), chevron (96,915), bpcl 
(95,996), petrochina (93,576), bapco (92,908), essar (90,448), blend 
(88,597), pertamina (84,403), trafigura (83,198), forti (81,329) 

crude oil physical (bbl) pipelin (409,704), wti (321,512), lls (169,911), wts (117,949), gulf.coast 
(68,858), cush (53,943), west.texa.intermedi (35,191), bakken (31,987), 
heavi.louisiana.sweet (22,581), enbridg (18,568), midstream (17,634), 
permian (13,138), sunoco (12,958), heavi.crude (9,681), lighter (8,541), 
heavi.oil (8,333), eagl.ford (8,053), suncor.energi (7,419), 
occident.petroleum (5,411), permian.basin (5,366) 

Environment (env) emiss (189,038), carbon (176,792), climat (105,968), environ (61,429), 
green (49,666), climat.chang (46,992), pollut (45,532), biofuel (32,514), 
carbon.dioxid (24,075), epa (22,403), biodiesel (19,407), global.warm 
(19,067), fossil (18,012), valv (10,182), kyoto.protocol (9,235), 
environment.protect.agenc (8,036), methan (7,179), emiss.trade.scheme 
(6,951), alki (6,204), air.pollut (4,723) 

exploration & production 
(ep) 

explor (148,206), drill (137,958), offshor (123,543), rig (94,639), shale 
(58,500), gulf.mexico (52,649), spill (46,891), royal.dutch.shell (37,685), 
onshor (28,528), pemex (26,894), explor.product (23,701), upstream 
(23,476), downstream (21,409), baker.hugh (17,968), deepwat (17,860), 
extract (17,115), halliburton (11,329), texaco (10,093), frack (9,383), 
transocean (9,373) 

refining & petrochemicals 
(rpc) 

reform (110,766), petrochem (88,297), cement (22,637), lpg (20,345), 
feedstock (18,355), propan (18,259), crude.distil.unit (12,005), netback 
(7,888), butan (7,407), liquefi.petroleum.gas (6,682), octan (6,045), 
fluid.catalyt.cracker (5,842), ethan (5,737), visbreak (5,079), olefin (4,370), 
oxygen (3,418), benzen (2,738), tertiari (2,081), polym (2,075), urea (1,830) 
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Table A.II 
Comparison of Topic Composition based on Louvain Clustering and Latent 

Dirichlet Allocation 
 

This table displays the comparison of topic modeling on the energy corpus using LDA and Louvain 
Clustering methods.  
Panels A displays the document topic distribution of each Louvain topics. The probability distribution of 
a certain topic is calculated by 

∑ 9:;<

∑ ∑ 9:;;=   
, where ? = 1,2, … ,7 indicates different topics, B	 = 	1,2, … , 	CD 

labels 	CD	different words within topic ?, and EDF represents the total occurrence of word ij in the whole 
corpus. Boldface indicates probability densities that are greater than 5%.  
Panel B displays the highest cosine similarity between a Louvain topic and the LDA topics within each 

trials of the LDA analysis. The cosine similarity is calculated by 
G:
H∗J;

KLMN(G:)∗KLMN,J;-
, where OD, ? = 1,2, … ,7 

is the probability distribution vector of a Louvain topic, and PF, B	 = 	1,2, … ,7 is the probability 
distribution vector of a LDA topic in a certain trial. Each column corresponds to a Louvain topic, and 
each row per trial. The variation of cosine similarity results from the indeterminacy of the LDA outcomes, 
which allocate topics differently across trails. Cosine similarities greater than 80% are in boldface. 
 

Panel A: Document Topic Distribution of Louvain Topics 
Topic Co Gom Env Epg Bbl Rpc Ep  

Distribution 0.1911 0.3913 0.0331 0.2832 0.0489 0.0136 0.0388  

 
 

Panel B: Greatest Cosine Similarities between Louvain & LDA Topics (10 trials) 

                    Topic 
   Trials 

Co Gom Env Epg Bbl Rpc Ep 
 

 
Trial 1 0.9037 0.9795 0.7078 0.7967 0.2610 0.1783 0.3354  

Trial 2 0.7970 0.9864 0.5505 0.8744 0.2835 0.1346 0.4524  

Trial 3 0.8952 0.9934 0.3637 0.8036 0.3697 0.1704 0.2601  

Trial 4 0.8756 0.9876 0.1281 0.9299 0.6520 0.2642 0.4190  

Trial 5 0.8769 0.9318 0.5228 0.8331 0.5097 0.0731 0.1024  

Trial 6 0.9401 0.9719 0.6575 0.8346 0.3739 0.2868 0.1160  

Trial 7 0.9019 0.9765 0.3547 0.8148 0.3310 0.0847 0.0815  

Trial 8 0.9084 0.9774 0.5595 0.8242 0.3597 0.0506 0.1227  

Trial 9 0.9014 0.9919 0.3500 0.8397 0.5550 0.0828 0.3745  

Trial 10 0.8808 0.9894 0.3921 0.8042 0.2374 0.1094 0.1218  

Average 0.8881 0.9786 0.4587 0.8355 0.3933 0.1435 0.2386  
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Table A.III 
Stepwise Forward Selection at the eight-week Horizon with Risk Premium Measures 

 
The tables below show stepwise forward selection results per dependent variable from Table IV in the Baseline column, with the addition of each 
risk measure (vix, vix_spx, ovx_cl1, and  sdf) independently after the 7 variables were selected by forward selection. If one of vix and vix_spx 
was picked up by forward selection, we leave the regression as is (which explains why in some cases the Baseline and one of the vix or vix_spx 
columns match), and move on to add ovx_spx and  sdf_fullSample separately since neither was a candidate variable in forward selection. We 
report Heteroskedasticity and Autocorrelation Consistent (HAC) standard errors. 
 

Table 5.1 Predicting eight--weeks ahead Oil Futures Returns  Table 5.2 Predicting eight--weeks ahead Spot Price Changes 
Predictors Baseline vix vix_spx ovx_cl1  sdf  Predictors Baseline vix vix_spx ovx_cl1  sdf 
(Intercept) -0.04 -0.04 -0.05 0.25 -0.15  (Intercept) -0.04 -0.01 -0.02 0.08 -0.35 
DInv 1.3 1.36 * 1.31 0.69 1.43  fRpc 3.18 ** 3.22 ** 3.15 *** 2.39 3.31 *** 
WIPImom 6.26 *** 6.52 *** 6.25 *** 6.56 ** 6.09 ***  fBbl -2.68 * -2.70 * -2.71 ** -4.06 * -2.80 * 
OilVol 0.17 * 0.11 0.17 * -0.01 0.15  basis 12.70 *** 12.42 *** 12.63 *** 11.46 *** 12.86 *** 
DOilVol -0.20 * -0.20 * -0.21 * -0.27 * -0.22 **  WIPImom 4.39 ** 4.52 ** 4.25 ** 5.63 *** 4.26 ** 
DFX 1.28 * 1.13 * 1.27 * 1.08 0.98  sp500Ret 0.43 0.45 * 0.45 0.54 0.53 * 
basis 6.2 6.46 * 6.15 * 10.66 * 6.88 *  sEnv 2.52 2.61 2.49 3.11 2.36 
sEnv 1.78 2.22 1.76 2.08 1.73  entropy 30.84 30.16 30.47 36.76 * 36.95 * 
vix 

 
0.19 

   
 vix 

 
0.03 

   

vix_spx 
  

0.04 
  

 vix_spx 
  

0.11 
  

ovx_cl1 
   

-0.34 * 
 

 ovx_cl1 
   

-0.27 * 
 

 
sdf_fullSample 

    
11.73 

 
 
sdf_fullSample 

    
9.27 

Observations 1110 1111 1111 663 1013  Observations 1063 1072 1072 644 979 
R2 / R2 
adjusted 

0.155 / 
0.149 

0.164 / 
0.158 

0.156 / 
0.150 

0.180 / 
0.170 

0.160 / 
0.153  

R2 / R2 
adjusted 

0.176 / 
0.171 

0.176 / 
0.170 

0.177 / 
0.170 

0.221 / 
0.211 

0.204 / 
0.198 

* p<0.05   ** p<0.01   *** p<0.001  * p<0.05   ** p<0.01   *** p<0.001 
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Table 5.3 Predicting eight--weeks ahead Oil Volatility  Table 5.4 Predicting eight-weeks ahead Exxon Stock Returns 
Predictors Baseline vix vix_spx ovx_cl1  sdf  Predictors Baseline vix vix_spx ovx_cl1  sdf 
(Intercept) 0.04 0.04 0.02 0.68 0.35  (Intercept) 0.03 0.03 0.03 -0.39 0.1 

OilVol -0.61 *** -0.61 *** -0.62 *** -0.27 *** -0.57 *** 
 

sp500Ret -0.54 *** -0.48 
*** -0.55 *** -0.69 *** -0.54 

*** 
DSpot -0.45 *** -0.45 *** -0.44 *** -0.48 *** -0.43 ***  sGom 1.34 1.33 1.38 2.48 1.25 
vix 0.56 *** 0.56 *** 0.56 *** 0.21 0.58 ***  tnote_10y -1.97 *** -1.86 ** -2.08 *** -1.91 * -1.81 ** 

entropy -96.78 ** -96.78 ** -96.69 ** -90.63 ** -109.54 
**  

DFX 0.71 * 0.72 * 0.71 * 0.4 0.65 

fGom 6.66 ** 6.66 ** 6.56 ** 6.51 5.25 *  WIPImom 1.5 1.73 1.68 1.65 * 1.71 * 
fCo -2.96 -2.96 -2.94 -3.08 -3.49  sRpc 0.87 0.97 0.93 -0.48 0.78 
PCAsent -2.34 * -2.34 * -2.39 * -2.05 -3.04 *  DInv 0.72 * 0.71 0.69 0.62 0.6 
vix_spx 

  
-0.04 

  
 vix 

 
0.06 

   

ovx_cl1 
   

0.67 *** 
 

 vix_spx 
  

-0.09 
  

 
sdf_fullSample 

    
-46.58 * 

 
ovx_cl1 

   
-0.03 

 

       
 
sdf_fullSample 

    
1.65 

Observations 1063 1063 1066 644 974  Observations 1075 1093 1093 642 995 
R2 / R2 
adjusted 

0.369 / 
0.365 

0.369 / 
0.365 

0.368 / 
0.363 

0.463 / 
0.457 

0.372 / 
0.367  

R2 / R2 
adjusted 

0.254 / 
0.249 

0.253 / 
0.247 

0.253 / 
0.248 

0.280 / 
0.271 

0.241 / 
0.234 

* p<0.05   ** p<0.01   *** p<0.001  * p<0.05   ** p<0.01   *** p<0.001 
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Table 5.5 Predicting eight--weeks ahead BP Stock Returns  Table 5.6 Predicting eight--weeks ahead Royal Dutch Shell Stock Returns 
Predictors Baseline vix vix_spx ovx_cl1  sdf  Predictors Baseline vix vix_spx ovx_cl1  sdf 
(Intercept) 0.02 0.02 0.02 -0.42 0  (Intercept) 0.1 0.1 0.03 -0.32 0.01 

sp500Ret -0.65 *** -0.59 
*** -0.66 *** -0.85 *** -0.64 

***  
WIPImom 3.04 ** 3.04 ** 3.07 ** 3.42 ** 3.17 ** 

sEp -3.73 *** -3.72 
*** -3.69 *** -4.47 *** -3.60 ** 

 
vix 0.17 ** 0.17 ** 0.16 ** 0.19 * 0.13 * 

DFX 1.00 * 0.99 * 0.99 * 0.86 0.93 *  sEnv 3.01 ** 3.01 ** 2.92 ** 3.27 ** 2.68 ** 
DSpot 0.09 0.1 0.09 0.23 ** 0.1  fBbl -2.04 * -2.04 * -2.03 * -1.95 -2.08 
fEp -3.30 * -3.39 * -3.27 * -3.63 * -3.12  fGom -3.39 -3.39 -3.21 -6.76 * -2.31 
sGom 2.27 * 2.39 * 2.32 * 2.19 1.94  DInv 1.06 * 1.06 * 1.07 * 0.66 0.89 
tnote_10y -2.07 * -1.90 * -2.11 * -2 -1.58  sEp -1.05 * -1.05 * -1.09 * -1.05 * -1.06 * 
vix 

 
0.07 

   
 vix_spx 

  
-0.02 

  

vix_spx 
  

-0.06 
  

 ovx_cl1 
   

-0.04 
 

ovx_cl1 
   

0.05 
 

 
 
sdf_fullSample 

    
10.78 

 
sdf_fullSample 

    
14.26 

       
Observations 1075 1075 1075 642 980  Observations 1050 1050 1071 636 976 
R2 / R2 
adjusted 

0.236 / 
0.231 

0.238 / 
0.232 

0.237 / 
0.231 

0.297 / 
0.289 

0.228 / 
0.221  

R2 / R2 
adjusted 

0.132 / 
0.126 

0.132 / 
0.126 

0.129 / 
0.123 

0.157 / 
0.147 

0.131 / 
0.123 

* p<0.05   ** p<0.01   *** p<0.001  * p<0.05   ** p<0.01   *** p<0.001 
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Table 5.7 Predicting eight--weeks ahead Oil Inventory Changes  Table 5.8 Predicting eight--weeks ahead Oil Production Changes 
Predictors Baseline vix vix_spx ovx_cl1  sdf  Predictors Baseline vix vix_spx ovx_cl1  sdf 
(Intercept) -0.01 -0.01 -0.01 -0.04 0.01  (Intercept) 0.01 0.01 0.01 0.03 0.02 
DProd -0.12 *** -0.12 *** -0.12 *** -0.14 ** -0.12 **  sEp -0.71 * -0.72 * -0.71 * -0.46 -0.69 * 
artcount -0.93 *** -0.93 *** -0.93 *** -0.63 -0.80 **  DInv -0.36 ** -0.35 ** -0.35 ** -0.34 -0.34 * 
fRpc -0.43 *** -0.43 *** -0.43 *** -0.24 -0.45 **  sBbl -0.54 ** -0.54 ** -0.54 ** -0.39 * -0.60 ** 
vix 0.03 * 0.03 * 0.03 * 0.05 *** 0.03  fRpc -0.43 ** -0.44 ** -0.46 ** -0.35 -0.50 * 
entropy -5.43 * -5.43 * -5.43 * -7.54 * -5.37  DOilVol 0.02 0.02 0.02 0.02 0.03 
vix_spx 0.04 * 0.04 * 0.04 * 0.05 * 0.04 *  artcount -0.39 -0.29 -0.39 -0.17 -0.28 
sEp -0.18 -0.18 -0.18 -0.18 -0.16  sp500Ret -0.04 -0.05 -0.04 -0.05 -0.03 
ovx_cl1 

   
-0.01 

 
 vix 

 
-0.02 

   

 
sdf_fullSample 

    
3.98 

 
vix_spx 

  
0.03 

  

       ovx_cl1 
   

-0.02 
 

       
 
sdf_fullSample 

    
5.32 

Observations 1119 1119 1119 663 920  Observations 1119 1127 1127 662 915 
R2 / R2 
adjusted 

0.154 / 
0.149 

0.154 / 
0.149 

0.154 / 
0.149 

0.173 / 
0.163 

0.140 / 
0.132  

R2 / R2 
adjusted 

0.169 / 
0.164 

0.171 / 
0.165 

0.170 / 
0.164 

0.136 / 
0.125 

0.171 / 
0.164 

* p<0.05   ** p<0.01   *** p<0.001  * p<0.05   ** p<0.01   *** p<0.001 
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Table A.IV 
Stepwise forward selection at the four-week horizon 

The table shows the regression results for all 8 dependent variables at the four-week horizon using stepwise forward selection to choose 7 of all the variables described in Table I, 
except ovx_cl1 and sdf_fullSample. Only predictors that were chosen by at least one model are included in this table. Coefficients are standardized.  Superscripts before 
coefficients indicate order in forward selection (1=chosen first).  The p-values in parentheses are obtained using Monte Carlo simulations that use an AR8 process to simulate the 
LHS variable, as well as forward selection to produce both adjusted R2 and t-statistic simulations. The p-values refer to the minimum of the fraction of simulated t-statistics less 
than the empirical t-statistic, and 1 minus the fraction of simulated t-statistics less than the empirical t-statistic, where the comparison is relative to the order in which the variables 
were chosen. The bootstrap was repeated 1,000 times. The table also reports the mean of simulated adjusted R2 resulting from the same bootstrap, as well as the corresponding 
CDF percentage, computed as the percent of adjusted R2 simulations less than the empirical adjusted R2. Statistically significance shown in bold. 

Predictors 
FutRet Dspot DOilVol xomRet bpRet rdsaRet DInv DProd 

coef pval coef pval coef pval coef pval coef pval coef pval coef pval coef pval 
DSpot     2-0.31 0.00       5-0.09 0.21   
DOilVol 5-0.15 0.00 5-0.15 0.01     5-0.08 0.13       
OilVol   60.18 0.00 1-0.61 0.00   40.15 0.00 70.11 0.01     
DInv 40.09 0.13     70.07 0.04       2-0.16 0.01 
DProd       40.08 0.14     1-0.19 0.02   
tnote_10y       3-0.15 0.01 3-0.12 0.03 5-0.12 0.02     
DFX 20.17 0.01           6-0.06 0.39   
sp500Ret       1-0.37 0.00 1-0.29 0.00     6-0.10 0.01 
basis 70.14 0.00 20.15 0.07             
WIPImom_4wk 10.34 0.00 10.29 0.00 3-0.27 0.00 20.32 0.00 20.31 0.00 10.39 0.00 3-0.08 0.30   
PCAall             4-0.12 0.17   
PCAsent     4-0.22 0.00           
artcount     70.11 0.00       2-0.22 0.00   
entropy     6-0.11 0.01           
sGom 6-0.15 0.00         60.12 0.01     
fGom         7-0.08 0.04       
sEnv         60.09 0.08       
fEnv           4-0.17 0.01     
sBbl             7-0.05 0.36 3-0.12 0.06 
fBbl   4-0.14 0.02       3-0.17 0.01     
sRpc       60.08 0.06         
fRpc   30.15 0.03           4-0.10 0.06 
sEp               1-0.36 0.00 
fEp               5-0.14 0.20 
vix 30.12 0.06 7-0.12 0.01 50.19 0.00     20.15 0.08   7-0.08 0.03 
vix_spx       5-0.08 0.12         
Observations 1114 1068 1068 1079 1079 1055 1123 1123 
R2 / R2 adjusted 0.182 / 0.177 0.164 / 0.158 0.328 / 0.323 0.247 / 0.242 0.199 / 0.194 0.176 / 0.171 0.090 / 0.084 0.126 / 0.121 
Mean of sim. Adj. R2 0.0367 0.0414 0.0325 0.033 0.033 0.0348 0.0395 0.0299 
CDF (%) 100 100 100 100 100 100 99.6 100 
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Table A.V 
Winning Models in the Out-of-Sample Fixed Model Analysis 

 
  

Panel A: Predicted Variable: FutRet 
Model MSE Ratio 

ovx_cl1, sEnv 0.9390 
ovx_cl1, OilVol 0.9550 
ovx_cl1, fEnv 0.9711 

sEnv, sCo 0.9857 
 sdf_growing, ovx_cl1 0.9862 

ovx_cl1, fBbl 0.9869 
ovx_cl1, DProd 0.9896 

ovx_cl1, fCo 0.9911 
ovx_cl1, PCAfreq 0.9924 

sCo, sGom 0.9952 
ovx_cl1, sent 0.9960 
ovx_cl1, fEpg 0.9963 

fGom, sCo 0.9984 
ovx_cl1, fEp 0.9993 
sCo, PCAfreq 0.9995 
ovx_cl1, fGom 0.9999 

Total Counts: 16 
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Table A.V—Continued 
Panel B: Predicted Variable: xomRet 

Model MSE Ratio Model MSE Ratio 
sp500Ret, ovx_cl1 0.9545 xomRet, sent 0.9952 

sp500Ret, WIPImom 0.9655  sdf_growing, DProd 0.9956 
 sdf_growing, basis 0.9731  sdf_rolling, entropy 0.9958 

ovx_cl1, basis 0.9797  sdf_rolling, fEnv 0.9958 
sp500Ret, basis 0.9805 fCo, fRpc 0.9965 

 sdf_growing, sp500Ret 0.9817  sdf_growing, ovx_cl1 0.9967 
FutRet, sp500Ret 0.9821 ovx_cl1, PCAall 0.9968 
sp500Ret, DSpot 0.9836 ovx_cl1, entropy 0.9969 

sp500Ret,  sdf_rolling 0.9846 DOilVol, WIPImom 0.9969 
DProd, WIPImom 0.9859 fRpc, sGom 0.9969 
WIPImom, DSpot 0.9866 entropy, fRpc 0.9970 

xomRet, WIPImom 0.9875 ovx_cl1, OilVol 0.9972 
sp500Ret, xomRet 0.9877 sp500Ret, entropy 0.9973 
 sdf_rolling, DSpot 0.9880 sp500Ret, DOilVol 0.9974 

 sdf_growing, WIPImom 0.9892 ovx_cl1, sEp 0.9974 
ovx_cl1, fEnv 0.9895 sp500Ret, fCo 0.9976 

 sdf_rolling, fRpc 0.9898 bpRet, ovx_cl1 0.9977 
 sdf_rolling, fGom 0.9907 ovx_cl1, sEnv 0.9980 

DProd, basis 0.9909  sdf_growing, fRpc 0.9981 
sp500Ret, artcount 0.9909  sdf_growing, DSpot 0.9983 
 sdf_rolling, DProd 0.9909 basis, sEnv 0.9986 
 sdf_rolling, sGom 0.9921  sdf_rolling, fEpg 0.9986 
FutRet,  sdf_rolling 0.9922  sdf_rolling, ovx_cl1 0.9986 

 sdf_rolling, WIPImom 0.9923  sdf_growing, DOilVol 0.9987 
basis, DSpot 0.9924 ovx_cl1, sGom 0.9992 

FutRet, WIPImom 0.9927  sdf_rolling, artcount 0.9992 
FutRet, basis 0.9941 ovx_cl1, sent 0.9992 
xomRet, basis 0.9944 WIPImom, basis 0.9993 

sp500Ret, DProd 0.9944 ovx_cl1, DProd 0.9993 
ovx_cl1, WIPImom 0.9945  sdf_growing, fEpg 0.9994 

 sdf_rolling, DOilVol 0.9948 sEp, sGom 0.9996 

 sdf_rolling, fCo 0.9952 
xomRet, ovx_cl1 0.9998 

DFX, ovx_cl1 0.99995 
Total Counts: 65 
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Table A.V—Continued 
Panel C: Predicted Variable: bpRet 

Model MSE Ratio 
rdsaRet, sEp 0.9760 

bpRet, rdsaRet 0.9763 
sp500Ret, sEp 0.9789 

DProd, sEp 0.9828 
PCAfreq, sEpg 0.9836 

basis, sEp 0.9858 
sp500Ret, rdsaRet 0.9866 

DProd, rdsaRet 0.9883 
ovx_cl1, OilVol 0.9886 

sEp, fRpc 0.9893 
basis, rdsaRet 0.9904 
rdsaRet, fBbl 0.9908 

xomRet, rdsaRet 0.9917 
sEp, fBbl 0.9932 

rdsaRet, fEnv 0.9939 
fEnv, fRpc 0.9940 
fGom, fBbl 0.9941 
bpRet, sEp 0.9946 

FutRet, rdsaRet 0.9947 
sp500Ret, fRpc 0.9948 
ovx_cl1, fEnv 0.9949 
tnote_10y, sEp 0.9960 

FutRet, sEp 0.9968 
WIPImom, rdsaRet 0.9969 

sp500Ret, basis 0.9975 
rdsaRet, sBbl 0.9978 

sRpc, sEp 0.9987 
basis, fRpc 0.9989 

sp500Ret, DProd 0.9992 
WIPImom, sEp 0.9997 

sEnv, fRpc 0.99995 
Total Counts: 31 
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Table A.V—Continued 
Panel D: Predicted Variable: rdsaRet 

Model MSE Ratio Model MSE Ratio 
sp500Ret, ovx_cl1 0.9751 sp500Ret, sRpc 0.9952 

 sdf_growing, ovx_cl1 0.9776 sRpc, sEp 0.9954 
sp500Ret, WIPImom 0.9780 sp500Ret, basis 0.9960 
 sdf_rolling, entropy 0.9822 fBbl, fCo 0.9964 

 sdf_growing, WIPImom 0.9824 DProd, WIPImom 0.9967 
sp500Ret, sEp 0.9834 WIPImom, fCo 0.9968 

 sdf_growing, basis 0.9835 fBbl, entropy 0.9969 
 sdf_growing, DInv 0.9838 sp500Ret,  sdf_rolling 0.9973 

 sdf_growing, DOilVol 0.9842  sdf_growing, sEpg 0.9977 
 sdf_growing, fCo 0.9843 WIPImom, sEp 0.9980 

sp500Ret, fBbl 0.9851 basis, fBbl 0.9981 
 sdf_growing, sEp 0.9853 sEp, sGom 0.9982 

sp500Ret, DInv 0.9854 sBbl, entropy 0.9983 
sp500Ret, DProd 0.9880 FutRet, sp500Ret 0.9984 
 sdf_rolling, fCo 0.9886 sEp, sBbl 0.9985 

ovx_cl1, sEp 0.9894 bpRet, ovx_cl1 0.9985 
 sdf_growing, sp500Ret 0.9901  sdf_growing, fBbl 0.9985 

ovx_cl1, PCAfreq 0.9907 DInv, sBbl 0.9986 
sEpg, entropy 0.9908  sdf_rolling, fGom 0.9987 

sp500Ret, sGom 0.9917 basis, DInv 0.9989 
sp500Ret, entropy 0.9930 sp500Ret, fEnv 0.9990 

DInv, fBbl 0.9937 WIPImom, entropy 0.9990 
 sdf_growing, DProd 0.9938 ovx_cl1, entropy 0.9991 

sEp, fBbl 0.9946  sdf_growing, sBbl 0.9992 
DProd, sEp 0.9947 WIPImom, basis 0.9995 

 sdf_rolling, DInv 0.9950 fEpg, fBbl 0.9997 
Total Counts: 52 
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Table A.V—Continued 
Panel E: Predicted Variable: DSpot 

Model MSE Ratio 
ovx_cl1, sEnv 0.9381 
ovx_cl1, fEnv 0.9636 

ovx_cl1, OilVol 0.9722 
ovx_cl1, WIPImom 0.9788 

ovx_cl1, fBbl 0.9801 
 sdf_growing, ovx_cl1 0.9819 

ovx_cl1, DProd 0.9843 
sEnv, sCo 0.9854 

ovx_cl1, fCo 0.9867 
tnote_10y, ovx_cl1 0.9870 

ovx_cl1, sent 0.9875 
ovx_cl1, PCAfreq 0.9885 

ovx_cl1, sEp 0.9887 
ovx_cl1, artcount 0.9908 
ovx_cl1, fGom 0.9917 

sCo, sGom 0.9917 
ovx_cl1, fEpg 0.9931 

vix_spx, ovx_cl1 0.9944 
sEnv, fEnv 0.9961 

ovx_cl1, entropy 0.9966 
sBbl, sCo 0.9966 

fGom, sEnv 0.9966 
sp500Ret, ovx_cl1 0.9988 

Total Counts: 23 
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Table A.V—Continued 
Panel F: Predicted Variable: DOilVol 

Model MSE Ratio Model MSE Ratio Model MSE Ratio 
ovx_cl1, DSpot 0.6435 FutRet, rdsaRet 0.9311 OilVol, fEnv 0.9809 
FutRet, ovx_cl1 0.6463 DSpot, PCAfreq 0.9313 rdsaRet, sRpc 0.9811 
ovx_cl1, rdsaRet 0.6493 DSpot, fEpg 0.9315  sdf_growing, OilVol 0.9815 
xomRet, ovx_cl1 0.6626 DSpot, sEnv 0.9315 vix_spx, DProd 0.9816 
bpRet, ovx_cl1 0.6651 FutRet, sent 0.9316 DOilVol, xomRet 0.9818 
ovx_cl1, fEp 0.6688 FutRet, entropy 0.9328 rdsaRet, sCo 0.9820 
ovx_cl1, sEp 0.6693 FutRet, fGom 0.9331 rdsaRet, PCAall 0.9821 

ovx_cl1, WIPImom 0.6699 FutRet, fEpg 0.9332 vix_spx, fGom 0.9824 
ovx_cl1, basis 0.6708 FutRet, PCAfreq 0.9332 vix_spx, fEpg 0.9826 

ovx_cl1, artcount 0.6710 FutRet, sEnv 0.9342 vix_spx, sGom 0.9833 
sp500Ret, ovx_cl1 0.6716 DFX, DSpot 0.9343 OilVol, fGom 0.9837 

ovx_cl1, DProd 0.6733 DSpot, DInv 0.9351 xomRet, sEp 0.9840 
DFX, ovx_cl1 0.6746 WIPImom, DSpot 0.9355 WIPImom, rdsaRet 0.9850 
ovx_cl1, sRpc 0.6746 FutRet, bpRet 0.9360 rdsaRet, fEpg 0.9852 
ovx_cl1, fCo 0.6754 rdsaRet, OilVol 0.9362 sp500Ret, vix_spx 0.9853 

ovx_cl1, OilVol 0.6776 FutRet, sCo 0.9366 bpRet, rdsaRet 0.9855 
ovx_cl1, DInv 0.6780 FutRet, DInv 0.9370 xomRet, DProd 0.9856 

tnote_10y, ovx_cl1 0.6783 FutRet, WIPImom 0.9372 DFX, vix_spx 0.9859 
ovx_cl1, sBbl 0.6789  sdf_growing, DSpot 0.9372 xomRet, fGom 0.9861 

ovx_cl1, sGom 0.6794 DSpot, fBbl 0.9392 OilVol, artcount 0.9861 
vix_spx, ovx_cl1 0.6800 FutRet, PCAsent 0.9395 bpRet, DOilVol 0.9864 
ovx_cl1, PCAfreq 0.6831 FutRet, DFX 0.9415 rdsaRet, entropy 0.9866 

ovx_cl1, fEnv 0.6841 DSpot, fEp 0.9422 vix_spx, fBbl 0.9867 
ovx_cl1, PCAsent 0.6851 DSpot, artcount 0.9422 rdsaRet, artcount 0.9869 

 sdf_growing, ovx_cl1 0.6851 FutRet, fBbl 0.9432 rdsaRet, PCAsent 0.9875 
ovx_cl1, PCAall 0.6859 FutRet,  sdf_growing 0.9441 rdsaRet, sEnv 0.9875 

ovx_cl1, sent 0.6859 DSpot, sBbl 0.9445 bpRet, sGom 0.9875 
DOilVol, ovx_cl1 0.6868 FutRet, sBbl 0.9454 xomRet, sEnv 0.9878 

ovx_cl1, sEnv 0.6879 FutRet, artcount 0.9464 OilVol, fCo 0.9878 
ovx_cl1, fEpg 0.6884 FutRet, DSpot 0.9476 rdsaRet, fEp 0.9880 
ovx_cl1, sEpg 0.6924 FutRet, fEp 0.9500 vix_spx, PCAall 0.9888 
ovx_cl1, sCo 0.6927 xomRet, OilVol 0.9507 vix_spx, DInv 0.9891 

ovx_cl1, entropy 0.6936 vix_spx, rdsaRet 0.9515 basis, OilVol 0.9902 
 sdf_rolling, ovx_cl1 0.6984 bpRet, OilVol 0.9566 xomRet, fEnv 0.9904 

ovx_cl1, fBbl 0.7023  sdf_rolling, DSpot 0.9567 bpRet, fGom 0.9906 
ovx_cl1, fGom 0.7047 tnote_10y, DSpot 0.9587 rdsaRet, PCAfreq 0.9907 
ovx_cl1, fRpc 0.7058 WIPImom, OilVol 0.9600 rdsaRet, sEpg 0.9909 
trend, ovx_cl1 0.7387 rdsaRet, sGom 0.9612 vix_spx, sent 0.9909 
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Table A.V—Continued 
Panel F: Predicted Variable: DOilVol - Continued 

Model MSE Ratio Model MSE Ratio Model MSE Ratio 
DSpot, OilVol 0.8451 DFX, OilVol 0.9621 OilVol, fBbl 0.9911 
FutRet, OilVol 0.8642 DOilVol, rdsaRet 0.9631 vix_spx, sRpc 0.9914 

DOilVol, DSpot 0.8795 FutRet,  
sdf_rolling 0.9636 vix_spx, WIPImom 0.9915 

FutRet, DOilVol 0.8876 FutRet, tnote_10y 0.9660 xomRet, PCAall 0.9922 
vix_spx, DSpot 0.8975 sp500Ret, OilVol 0.9661 vix_spx, sEp 0.9922 
FutRet, vix_spx 0.9041 DSpot, fCo 0.9661 bpRet, sEp 0.9922 

basis, DSpot 0.9179 DSpot, sEpg 0.9669 vix_spx, sCo 0.9926 
DProd, DSpot 0.9187 vix_spx, xomRet 0.9679 vix_spx, entropy 0.9928 
FutRet, basis 0.9212 trend, DSpot 0.9689 bpRet, DProd 0.9932 
DSpot, sEp 0.9218 DInv, OilVol 0.9690 vix_spx, sEnv 0.9933 

DSpot, sGom 0.9218 rdsaRet, fGom 0.9697 OilVol, sGom 0.9937 
FutRet, DProd 0.9229 OilVol, sEp 0.9699 vix_spx, PCAsent 0.9940 
xomRet, DSpot 0.9234 xomRet, rdsaRet 0.9714 vix_spx, fEnv 0.9941 

DSpot, fEnv 0.9242 DProd, OilVol 0.9714 DOilVol, vix_spx 0.9947 
DSpot, PCAall 0.9243 rdsaRet, sEp 0.9721 xomRet, fEp 0.9949 
FutRet, fEnv 0.9248 FutRet, sEpg 0.9726 xomRet, sRpc 0.9955 
FutRet, sGom 0.9249 FutRet, fCo 0.9737 xomRet, fEpg 0.9960 
DSpot, fRpc 0.9258 bpRet, vix_spx 0.9742  sdf_growing, rdsaRet 0.9960 
DSpot, sRpc 0.9260 FutRet, trend 0.9744 bpRet, basis 0.9961 
FutRet, sEp 0.9266 OilVol, sBbl 0.9748 xomRet, fRpc 0.9964 

rdsaRet, DSpot 0.9266 basis, rdsaRet 0.9753 vix_spx, fEp 0.9965 
DSpot, sent 0.9267 rdsaRet, fEnv 0.9756 bpRet, sEnv 0.9966 
DSpot, sCo 0.9273 rdsaRet, fBbl 0.9772 xomRet, WIPImom 0.9972 

vix_spx, OilVol 0.9275 vix_spx, basis 0.9776 xomRet, entropy 0.9974 
FutRet, sRpc 0.9279 DProd, rdsaRet 0.9777 xomRet, artcount 0.9974 

sp500Ret, DSpot 0.9280 rdsaRet, fRpc 0.9782 vix_spx, artcount 0.9982 
DSpot, fGom 0.9282 OilVol, sRpc 0.9783 bpRet, sRpc 0.9987 

FutRet, PCAall 0.9284 rdsaRet, sent 0.9795 xomRet, PCAsent 0.9987 
DSpot, entropy 0.9290 OilVol, sEnv 0.9795  sdf_growing, vix_spx 0.9991 
FutRet, fRpc 0.9294 xomRet, sGom 0.9800 sp500Ret, rdsaRet 0.9994 

FutRet, 
sp500Ret 0.9300 rdsaRet, DInv 0.9803 xomRet, DInv 0.9996 

DSpot, PCAsent 0.9305 xomRet, basis 0.9807 vix_spx, fRpc 0.9998 
bpRet, DSpot 0.9305 OilVol, fEpg 0.9809 bpRet, fEnv 0.99998 

Total Counts: 213 
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Table A.V—Continued 
Panel G: Predicted Variable: DInv 

Model MSE Ratio Model MSE Ratio 
DInv, sCo 0.9542 DInv, fEnv 0.9902 

PCAsent, fEp 0.9561 fBbl, fEnv 0.9902 
tnote_10y, sCo 0.9563  sdf_growing, WIPImom 0.9905 
tnote_10y, DInv 0.9577 sCo, fRpc 0.9913 

PCAall, fEp 0.9596 WIPImom, DInv 0.9917 
 sdf_growing, sCo 0.9611 sCo, fCo 0.9927 

fGom, entropy 0.9631 sp500Ret, sCo 0.9928 
basis, DInv 0.9636 DInv, artcount 0.9932 

 sdf_growing, DInv 0.9640 sp500Ret, tnote_10y 0.9936 
WIPImom, sCo 0.9717  sdf_growing, fEp 0.9939 

 sdf_growing, sEp 0.9774 tnote_10y, PCAall 0.9939 
sEnv, sCo 0.9802 sCo, fBbl 0.9939 
DFX, sCo 0.9811 sCo, PCAfreq 0.9945 

DOilVol, sCo 0.9814 DProd, fBbl 0.9950 
basis, sCo 0.9815 DFX, DProd 0.9951 

 sdf_growing, fCo 0.9816 vix_spx, DInv 0.9952 
DInv, fEp 0.9816 DFX, PCAall 0.9955 

PCAall, fBbl 0.9819 basis, fEnv 0.9955 
DProd, sCo 0.9824 basis, PCAfreq 0.9956 
DInv, fEpg 0.9827 sEp, fBbl 0.9959 
sCo, fEp 0.9847  sdf_growing, artcount 0.9959 

vix_spx, sCo 0.9847  sdf_growing, sBbl 0.9960 
tnote_10y, fBbl 0.9850 tnote_10y, sBbl 0.9961 

DFX, sEnv 0.9852 DInv, PCAall 0.9964 
DFX, tnote_10y 0.9856 DProd, PCAall 0.9966 
tnote_10y, sEnv 0.9856 PCAsent, fBbl 0.9969 
DInv, entropy 0.9861 sEnv, PCAall 0.9970 

sCo, fEnv 0.9862 tnote_10y, sent 0.9976 
DInv, PCAfreq 0.9865  sdf_growing, PCAsent 0.9977 
DProd, DInv 0.9869 DFX, fEnv 0.9981 

DFX, PCAsent 0.9876 basis, fEp 0.9982 
tnote_10y, WIPImom 0.9880 DProd, PCAsent 0.9982 

tnote_10y, DProd 0.9884  sdf_growing, fEpg 0.9990 
DFX, fBbl 0.9884 DFX, fEp 0.9992 
DInv, sEnv 0.9890 vix_spx, basis 0.9993 
DInv, sEpg 0.9897  sdf_growing, tnote_10y 0.9993 

DProd, basis 0.9900 sEnv, fBbl 0.9993 
Total Counts: 74 
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Table A.V—Continued 
Panel H: Predicted Variable: DProd 

Model MSE 
Ratio Model MSE 

Ratio Model MSE 
Ratio 

 sdf_growing, sBbl 0.9168  sdf_growing, fEnv 0.9587 sBbl, fCo 0.9877 
 sdf_growing, ovx_cl1 0.9289  sdf_rolling, artcount 0.9607 fGom, entropy 0.9902 
 sdf_growing, DProd 0.9353  sdf_rolling, sEnv 0.9615 sBbl, PCAfreq 0.9925 
 sdf_growing, fGom 0.9378  sdf_growing, DFX 0.9631 fGom, sEpg 0.9935 
 sdf_rolling, ovx_cl1 0.9407  sdf_rolling, fEpg 0.9633 fEpg, entropy 0.9940 

 sdf_growing, vix_spx 0.9424  sdf_growing, sEpg 0.9634 artcount, sBbl 0.9952 

 sdf_growing, basis 0.9430  sdf_rolling, 
tnote_10y 0.9635 fBbl, fRpc 0.9953 

 sdf_growing, entropy 0.9475  sdf_rolling, sEpg 0.9635 basis, sEpg 0.9957 
 sdf_rolling, fGom 0.9482  sdf_growing, fRpc 0.9646 fEnv, sEpg 0.9957 

 sdf_growing, sGom 0.9494  sdf_rolling, fCo 0.9649 sBbl, fBbl 0.9960 

 sdf_rolling, basis 0.9494  sdf_growing, 
PCAall 0.9653 WIPImom, sEpg 0.9960 

 sdf_rolling, entropy 0.9495  sdf_rolling, fEnv 0.9670  sdf_rolling, WIPImom 0.9963 

 sdf_growing, DInv 0.9507  sdf_growing, 
PCAfreq 0.9690 DOilVol, sBbl 0.9963 

 sdf_growing, sEnv 0.9510 DFX,  sdf_rolling 0.9704 basis, fGom 0.9966 
 sdf_growing, sCo 0.9511  sdf_rolling, PCAall 0.9720 sBbl, fEnv 0.9968 
 sdf_growing, fCo 0.9512  sdf_rolling, fRpc 0.9729 sEnv, sEpg 0.9976 

 sdf_growing,  
sdf_rolling 0.9521  sdf_growing, DSpot 0.9734 DInv, sEpg 0.9976 

 sdf_growing, artcount 0.9523 basis, sBbl 0.9737  sdf_growing, fBbl 0.9978 
 sdf_rolling, sCo 0.9524  sdf_growing, trend 0.9774  sdf_rolling, fEp 0.9978 

 sdf_rolling, vix_spx 0.9528  sdf_growing, 
sp500Ret 0.9790 DSpot, sBbl 0.9978 

 sdf_rolling, sGom 0.9530 trend,  sdf_rolling 0.9804 tnote_10y, basis 0.9985 
 sdf_growing, fEpg 0.9531  sdf_rolling, DSpot 0.9834 PCAsent, sBbl 0.9987 

 sdf_growing, tnote_10y 0.9536 sBbl, fRpc 0.9835 sp500Ret, sBbl 0.9988 
 sdf_rolling, sBbl 0.9555  sdf_growing, sRpc 0.9843 sBbl, sCo 0.9995 

 sdf_rolling, DProd 0.9580 sp500Ret,  
sdf_rolling 0.9851 tnote_10y, sBbl 0.9998 

 sdf_rolling, DInv 0.9584  sdf_rolling, sRpc 0.9852 
DFX, sBbl 0.99998 

 sdf_rolling, PCAfreq 0.9586 vix_spx, sBbl 0.9869 
Total Counts: 80 

 
 
 
 
 

 
 



27 
 

Table A.VI 
Out-of-Sample Stability Shrinkage Model 

Prediction Accuracy and Statistics on Model Composition  
 
This table shows the MSE ratios of the stability shrinkage model against the constant model, and reports 
some inspective statistics on the performance of the model. For each week, the model takes stable 
predictor pairs from 741 candidate models which consists of all the possible combinations of 2 in the 
whole variable pool (19 base and 20 text variables make 39 in total), and predicts 8 weeks ahead by 
updating the coefficients based on a Lasso regression on a rolling 5-year lookback window. A pair of 
predictors is considered stable if the weekly 5-year lookback Lasso updated coefficients of the pairing 
model stay nonzero or never switch signs in a checking window. Here, 1-, 2-, 3-, 4-, and 5-year checking 
window are examined and reported. The start dates of different specifications are included in each Panel’s 
subtitles. The constant model takes the average value of a predicted variable in the rolling 5-year 
lookback window as the prediction. The MSE of a stable or constant model is calculated once all the 
predictions are in place, and the MSE ratios are produced by dividing the MSE of a stable model by that 
of the constant model. There are nine columns and four rows in each Panel; the last 8 columns correspond 
to the predicted variables respectively, and each row denotes a model or a statistics. The n-year Stable 
Model predicts by taking average of the predictions of the stable models, and skip if none of them exists. 
The Constant Filled Model forecasts in the same manner but fills in the prediction of constant model 
where the stable pairs are missing. The Out-of-sample R2 of both models are reported and Boldface 
indicates better performance than the constant model. Stable/Const Preds denotes the total number of 
weeks where there is a valid stable model prediction or a valid constant model prediction. Mean weekly % 
of Stable Model displays the average weekly proportion of stable model in the whole model pool.  
 

Panel A: One year Stability Shrinkage window (post 2004-04-30) 

Model/Statistics FutRet xomRet bpRet rdsaRet DSpot DOilVol DInv DProd 

1-year Stable Model 1.035 0.994 1.017 1.029 1.042 0.978 0.980 1.044 

Const Fillin Model 1.034 0.994 1.017 1.028 1.042 0.978 0.980 1.040 

Stable/Const Pred 813/823 774/797 797/797 776/784 792/792 792/792 823/823 741/823 

Model Proportion 0.091 0.045 0.067 0.066 0.103 0.060 0.035 0.016 

Panel B: Two year Stability Shrinkage window (post 2005-04-29) 

Model/Statistics FutRet xomRet bpRet rdsaRet DSpot DOilVol DInv DProd 

2-year Stable Model 1.016 1.017 1.052 1.018 1.045 0.933 0.962 1.045 

Const Fillin Model 1.014 1.014 1.052 1.015 1.040 0.934 0.965 1.037 

Stable/Const Pred 648/771 615/748 748/748 652/734 657/746 744/746 695/771 404/771 

Model Proportion 0.054 0.021 0.028 0.029 0.061 0.036 0.014 0.007 

 
 

 (Continued) 
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Table A.VI-Continued 
Panel C: Three year Stability Shrinkage window (post 2006-04-28) 

Model/Statistics FutRet xomRet bpRet rdsaRet DSpot DOilVol DInv DProd 
3-year Stable 

Model 1.047 1.017 1.045 1.020 1.040 0.940 1.034 1.085 

Const Fillin Model 1.021 1.012 1.026 1.014 1.023 0.940 1.018 1.017 

Stable/Const Pred 383/719 380/697 500/697 453/685 376/697 689/697 411/719 170/719 

Model Proportion 0.041 0.012 0.016 0.015 0.049 0.022 0.006 0.005 

Panel D: Four year Stability Shrinkage window (post 2007-04-27) 

Model/Statistics FutRet xomRet bpRet rdsaRet DSpot DOilVol DInv DProd 
4-year Stable 

Model 1.023 1.003 1.040 1.047 1.035 0.927 1.090 1.158 

Const Fillin Model 1.005 1.002 1.018 1.027 1.014 0.939 1.021 1.003 

Stable/Const Pred 199/667 162/646 289/646 269/638 199/646 588/646 152/667 66/667 

Model Proportion 0.027 0.007 0.007 0.007 0.031 0.014 0.003 0.003 

Panel E: Five year Stability Shrinkage window (post 2008-04-26) 

Model/Statistics FutRet xomRet bpRet rdsaRet DSpot DOilVol DInv DProd 
5-year Stable 

Model 0.919 1.093 1.125 1.021 0.989 0.879 1.194 N/A 

Const Fillin Model 0.992 1.008 1.016 1.009 0.998 0.915 1.018 1.000 

Stable/Const Pred 43/615 29/595 61/595 79/588 32/595 466/595 35/615 0/615 

Model Proportion 0.003 0.003 0.004 0.002 0.003 0.009 0.001 0.000 
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Table A.VII 
Reuters Topic Codes for Oil Related Article Detection 

 
The table below shows the 98 Reuters Topic Codes we use in the article selection phase in the textual 
analysis. We construct the list manually by checking whether the definition of each code is relevant to the 
oil market. The article selection is then accomplished by examining if any topic code assigned to a certain 
article is contained in the following list. 
 

NRG   HOIL   RENE 
CO2 

 
JET 

 
RENQ 

COA 
 

PWR 
 

RENF 
COAPWR 

 
COAPWR 

 
ASIAE 

NGS 
 

GASPWR 
 

NASIAE 
PETC 

 
NUCPWR 

 
SEASIE 

GASPWR 
 

OILPWR 
 

PACE 
LNG 

 
RNWPWR 

 
SASIAE 

NGL 
 

RNW 
 

AMERSE 
SHL 

 
BIOPWR 

 
CAMERE 

PLAS 
 

GEOPWR 
 

NAMERE 
CRU 

 
HYDPWR 

 
ERCOT1 

PROD 
 

SOLPWR 
 

FRCC1 
OPEC 

 
TWPWR 

 
MRO1 

AMCRU 
 

WINPWR 
 

NPCC1 
ASCRU 

 
BIOF 

 
RFC1 

EMACRU 
 

BIODSL 
 

SERC1 
RUSCRU 

 
BIOETH 

 
SPP1 

CANCRU 
 

BIOMS 
 

WECC1 
LATCRU 

 
BIOCEL 

 
PADD1 

USCRU 
 

REF 
 

PADD3 
AUSCRU 

 
PPL 

 
PADD2 

NASCRU 
 

PWRL 
 

PADD4 
SEACRU 

 
ENER 

 
PADD5 

AFRCRU 
 

COAM 
 

SAMERE 
MECRU 

 
OILG 

 
EMEAE 

NSCRU 
 

OILI 
 

CEEUE 
RFO 

 
EXPL 

 
FSUE 

MOG 
 

REFI 
 

NWEE 
LPG1 

 
ENEQ 

 
MEASTE 

DISTLL 
 

DRIL 
 

OAFRE 
NAP 

 
OGTR 

 
MEDNAE 

BUN   OILQ     
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