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Abstract 
 
 This paper studies labor adjustment costs. Our focus is on inferring the structure 

of adjustment costs at the micro-level from aggregate observations of employment and 

hours growth.   We specify a dynamic optimization problem at the plant level, allowing 

for both convex and non-convex adjustment costs. We estimate the parameters of the 

adjustment process using an indirect inference procedure in which simulated moments 

are matched with data moments. For this study we use estimates of reduced-form 

adjustment functions obtained by the "gap methodology" reported in Caballero and Engel 

(1993) as data moments.  Contrary to evidence at the micro level in support of non-

convex adjustment costs, our findings indicate that piecewise quadratic adjustment costs 

are sufficient to match these aggregate moments. 
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1 Introduction

This paper studies labor adjustment costs. Our focus is on inferring the structure of

adjustment costs at the micro-level from aggregate observations of employment and

hours growth. In doing so, we consider models with both quadratic and non-convex

adjustment costs. We find that a model with piece-wise quadratic adjustment costs fits

the facts best.

The analysis of labor adjustment in Hamermesh (1989) and Caballero, Engel, and

Haltiwanger (1997) presents a serious challenge to the quadratic adjustment cost model

and supplies evidence in favor of non-convex adjustment costs at the plant level. Ca-

ballero and Engel (1993), hereafter CE, and Caballero, Engel, and Haltiwanger (1997),

hereafter CEH, go further and argue that aggregated employment growth is a nonlinear

function of employment gaps, defined as the difference between current and target em-

ployment. This conclusion is viewed as: (i) evidence against the quadratic adjustment

cost model and (ii) suggestive that plant-level non-convexities have aggregate implica-

tions.

Cooper and Willis (2003) challenges this conclusion by analyzing the implications of

a model of dynamic labor demand with quadratic adjustment costs. While this model

is unable to match the rich patterns of labor adjustment at the plant level, Cooper

and Willis (2003) find that it can produce a nonlinear relationship between aggregate

employment growth and employment gaps using the methodologies of CE and CEH.

Thus the findings of CE and CEH do not necessarily reflect aggregate effects of plant-

level non-convexities.

But, Cooper and Willis (2003) do not uncover the structural model that would

generate the CE findings. That is, their analysis does not answer the following question:

what plant-level labor adjustment costs underlie the results reported in CE? Do the

results in CE reflect the aggregate implications of non-convex adjustment costs at the

plant level?

Answering these questions is the goal of this paper. By doing so, we are taking

some leading “facts” about labor dynamics, neatly summarized by CE, and indirectly

inferring the underlying structure of adjustment costs. Thus our results are informative

about the nature of labor adjustment costs as well as the inferences one can draw from

the CE gap methodology.

In this analysis, we specify a dynamic optimization problem at the plant level allowing

quadratic, two types of non-convex (fixed and disruption), and piece-wise linear costs
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of adjusting labor. We use the reduced-form estimates of CE to estimate the structural

parameters of adjustment costs. Our main finding is that a piecewise quadratic

adjustment cost function fits the data best.1 Thus the aggregate evidence used in

CE is consistent with the implications of a model with piece-wise quadratic adjustment

costs without non-convexities.2

2 A Dynamic Optimization Framework

Our approach begins with the specification of a dynamic optimization problem at the

plant level. We introduce a variety of adjustment costs into our model.3 The optimal

decision rules are characterized and used to create a simulated data set which provides a

basis for estimation of structural parameters. As the estimation uses the gap approach

of CE and CEH, we display properties of these alternative models from that perspective.

Following the notation and presentation in CEH, the gap between the desired em-

ployment and the actual employment (in logs), at the start of period t for plant i is

defined in the following equation.4

zit ≡ ẽ∗it − ẽit−1 (1)

Here ẽ∗it is the target level of employment given the realization of all period t random

variables and ẽit−1 is the (log) level of employment at the start of period t prior to any

period t adjustments. Thus, zit is a gap between the target and actual employment

levels.5

A key is measuring the target level of employment, ẽ∗it. For the analysis of the models

in this section, we define that target as the level of employment that would be chosen

if all adjustment costs were removed for a single period. Following CE we term this the

frictionless target. We discuss how this is constructed for the different specifications

of adjustment costs.

1By piecewise quadratic we mean a quadratic form for adjustment costs in which the scalar parameter

depends on the sign of employment growth.
2The complementary analysis of plant-level data is reported in Cooper, Haltiwanger, and Willis

(2003).
3Hamermesh (1993) provides a detailed discussion of various models of labor adjustment.
4Whenever we refer to these gap measures and relate them to employment, all variables are in logs.

To distinguish logs from levels, we denote the log of employment by ẽit.
5This measure of the gap does not correspond to that in Section II of CE. We are careful in the

estimation phase to convert to the CE definitions but find the specification in (1) easier for the analysis.

See Cooper and Willis (2003) for further discussion of these measures.
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Given a measure of the employment target, the change in employment, ∆ẽit, for a

plant is expressed as a function of the employment gap, H(zit), where H(·) is the hazard

or adjustment rate function.6 In the following sections, we illustrate the mapping from

alternative specifications of adjustment costs to H(·).

2.1 Basic Optimization Problem

Letting A represent the profitability of a production unit (e.g. a plant or a firm), we

consider the following dynamic programming problem

V (A, e−1) = max
e,h

R(A, e, h) − ω(e, h) − C(e, e−1) + βEA′|AV (A′, e). (2)

Here h represents the input of hours per worker, e−1 is the inherited stock of workers

and e is the stock of current workers. Note the timing assumption of the model: workers

hired in a given period become productive immediately.

Let e = φe(A, e−1) and h = φh(A, e−1) be the policy functions. Since we observe

variations in employment and hours, these policy functions, which depend on the un-

derlying parameters of the functions in (2), provide the link between the model and the

data.

As the interesting aspect of this problem is the cost of labor adjustment, C(e, e−1),

we simplify the analysis and assume there are no adjustment costs for capital.7 As the

plant optimally chooses over the rental of capital, we specify a reduced expression of

current revenues (net of capital costs) given by R(A, e, h). For the case of a Cobb-

Douglas production function in which the labor input is simply the product eh, the

revenue function is

R(A, e, h) = A(eh)α

where the parameter α is determined by the shares of capital and labor in the production

function as well as the elasticity of demand.8

The function ω(e, h) represents total compensation to workers as a function of the

number of workers and their average hours. This compensation function is key for

6As in CEH, at this level of generality, we can not distinguish between a partial adjustment structure,

in which H(·) measures the rate of adjustment, and a non-convex environment, in which H(·) measures

the probability of full adjustment.
7CEH do not include capital in their formulation either though it could be implicit in their target

and hence in their gap measure. See Shapiro (1986) for a study which includes both capital and labor

adjustment.
8See the discussion in CE and Appendix A of Cooper and Willis (2001).
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generating movements in both hours and the number of workers. If compensation is

proportional to hours, employers will simply modify hours in reaction to shocks and avoid

costly adjustment in the number of workers. Thus the elasticity of the compensation

function with respect to hours interacts with the costs of adjusting workers to produce

the joint response of hours worked and employment to profitability shocks.

Our specification of the compensation function is adopted from CE. We assume

ω(e, h) = e
(

w0 + w1h
ζ
)

. (3)

This compensation function features a constant marginal wage elasticity of ζ − 1.

We study the policy functions and hazard functions for alternative specifications of

adjustment costs. We choose parameters for the adjustment costs which are reasonable

in light of other studies or evidence. As discussed in section 3.1, we calibrate the other

parameters of the dynamic programming problem in creating these simulations.

2.2 Quadratic Adjustment Costs

A quadratic specification is the traditional model of adjustment costs. With any con-

vex adjustment cost structure, adjustment will be partial, reflecting the increased cost

associated with rapid adjustment. The quadratic specification shares this property and

is more tractable, as seen in Sargent (1978).

We specify quadratic adjustment costs as

C(e, e−1) =







ν+

2

(

e−e−1

e−1

)2

e−1 if e > e−1

ν−

2

(

e−e−1

e−1

)2

e−1 if e ≤ e−1.
(4)

The costs of adjustment are assumed to be a quadratic function of the difference

between the stock of workers in the current period (e) and those from the previous

period. The plant pays the adjustment cost for net, not gross, hires. That is, if the

plant hires enough workers to offset those who quit, then there are no adjustment costs.

Here we have allowed the quadratic specification to be asymmetric.

Figure 1 shows the policy functions and hazard function for a parameterization in

which ν+ = ν− = 2.9 There are two policy functions shown in the top panel: one for

9This parameterization is purely for illustration though, as our estimates indicate, a value of ν = 2

is not unreasonable. All other paramters were set at values discribed below in Section 3.1 with the

addition of ρ = 0.95, σ = 0.022, and ζ = 1.9.
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Figure 1: φe(A, e−1) and H(z) with Quadratic Adjustment Costs
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a high profitability state and one for a low profitability state. The policy functions are

upward sloping in lagged employment and φe(A, e−1) is increasing in A.

For this model, the frictionless target, denoted e∗(A), is the solution to the optimiza-

tion problem when ν = 0 for a single period. Equivalently, e∗(A) solves e = φe(A, e) and

thus corresponds to the employment level where the employment policy function, given

A, crosses the 45o line.

The bottom panel of Figure 1 characterizes the adjustment rate function. The ad-

justment rate is essentially flat for all values of the employment gap, except in the

neighborhood of zero.10 In this region, the discrete nature of the solution method limits

the employment choices of plants when they are very close to their target level.11

2.3 Fixed Adjustment Costs

Alternatively, there may exist non-convex costs of adjusting the work force in the form

of a fixed adjustment cost. In terms of training new workers, it is certainly reasonable

that this process might entail increasing returns to scale: the resources devoted to a

training class may be largely independent of the size of that class. Further, the costs

of recruiting and interviewing may logically have a fixed cost component as well. As

discussed in Hamermesh and Pfann (1996) and understood by most economists, the

annual recruiting of new assistant professors entails a sizeable fixed cost stemming from

advertising, endless department meetings, expenses of attending the convention, etc.

Empirically, CEH stress upward sloping hazards and (see their Figure 1b-1d) a mode

of zero adjustment as well as one of full adjustment. These types of observations could

reflect non-convexities in the adjustment process of the form introduced here. Thus, we

add a fixed cost F to capture these effects. To match the observation of zero changes in

the number of workers at the plant level, we assume that this fixed cost is borne for net

adjustments in the work force.

Thus we consider a dynamic programming problem in which

V (A, e−1) = max [V a (A, e−1) , V n (A, e−1)] (5)

10The adjustment rate function, illustrated by the solid line in the bottom panel, is constructed

by dividing the employment gap distribution into small intervals and then connecting average values

from each interval. The exception is that in the neighborhood of an employment gap of zero, the flat

adjustment function line represents the average adjustment rates for observations where the gap is

between -0.014 and 0.014.
11As a robustness check of the estimation results, we double the number of points in the relevant

region of state space to ensure that the discrete nature of the solution method is not biasing the results.
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where V a (A, e−1) represents the value of adjusting employment and V n (A, e−1) repre-

sents the value of not adjusting employment. These are given by

V a (A, e−1) = max
h,e

R(A, e, h) − ω(e, h) − C(e, e−1) + βEA′|AV (A′, e) (6)

V n (A, e−1) = max
h

R(A, e−1, h) − ω(e−1, h) + βEA′|AV (A′, e−1). (7)

Note that non-adjustment implies that the plant hires enough workers to offset quits.

For this case, the cost of adjustment function is

C(e, e−1) =











F+ if e > e−1

F− if e < e−1

0 if e = e−1.

(8)

Figure 2 shows the policy and hazard functions for this specification where the fixed

cost is set at 1% of average profits.12 The policy functions indicate that there are two

regions: action and inaction. The inaction region is an interval of lagged employment in

which φe(A, e−1) = e−1. In this region, the adjustment of the labor input to variations in

the state vector arise through φh(A, e−1). Hours will decrease with lagged employment

and increase with the profitability shock.

As indicated in the figure, if there is adjustment, the level of employment chosen is

independent of lagged employment. In fact, for this model, when adjustment occurs,

the frictionless target is chosen: e = φe(A, e−1) = e∗(A).13 The frictionless level of

employment lies in the interval of inaction.

Note that there is a type of overshooting in this model. At the level of e−1 in which

the plant is indifferent between increasing employment and non-adjustment, the level of

employment chosen, if the plant adjusts, exceeds e−1. This makes intuitive sense: if the

plant is going to bear the fixed adjustment cost, the magnitude of adjustment must be

large enough to create a profit gain sufficient to offset the cost.

The bottom panel of Figure 2 shows the relationship between the adjustment rate

and the gap. Here we see there is substantial inaction (approximately 93%) for z ∈

[−0.08, 0.08]. The adjustment hazard is essentially 0 or 100%.14 In contrast to the

12Throughout the analysis, the fixed costs are set in proportion to average profits. This is without

loss of generality but gives these costs economic context and allows us to assess their magnitude.
13For this model, the frictionless target is the solution to the optimization problem underlying

V a (A, e−1).
14There are some values of z where the adjustment rate is between 0 and 100%. This reflects the fact

that z is not quite a sufficient statistic for the plant’s policy function.
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Figure 2: φe(A, e−1) and H(z) with Fixed Adjustment Costs
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adjustment hazards reported in Figures 1b-1d of CEH, there is no partial adjustment

for this case.

For the fixed adjustment cost model, there is a more natural definition of the gap

than the one specified above. To see this, suppose F + = F− = F and assume that F is

an i.i.d. random variable with a cdf given by G(F ). As in Rust (1987), the probability

of adjustment is given by

G(V a (A, e−1) − V n(A, e−1))

so that adjustment occurs iff the gains to adjustment exceed the realized cost F .15 So

(V a (A, e−1) − V n(A, e−1) is the natural measure of the gap for this problem.

Of course, this gap depends on the state vector (A, e−1). It is natural to ask how well

the actual gap using the frictionless target relates to this difference in values. For the

model specified so that the fixed costs are 1% of average profits, the correlation between

these variables is 0.97.16 Thus, in this case, the actual gap is a very good proxy for the

gap that actually determines the likelihood of adjustment.

2.4 Disruption Model

Another model of non-convex adjustment costs entails the disruption of production ac-

tivities. This specification appears in work on capital adjustment, as in Cooper, Halti-

wanger, and Power (1999) and Caballero and Engel (1999), where the introduction of

new capital requires the shut-down of a production process. For employment adjust-

ment, Cooper, Haltiwanger, and Willis (2003) find that this specification leads to a

better match of employment dynamics in plant-level data than a model containing fixed

or quadratic adjustment costs.

The dynamic programming problem for this case is characterized by equations (5),

(6), and (7) with the the cost of adjustment function specified as

C(e, e−1) =











(1 − λ+)R(A, e, h) if e > e−1

(1 − λ−)R(A, e, h) if e < e−1

0 if e = e−1.

(9)

The fraction of revenue lost in adjustment process is parameterized (λ+, λ−). This

may, as in the capital adjustment model, reflect the actual shut-down of the production

15If the adjustment costs are not iid, then the value functions need to be recomputed adding F as a

state variable, though the point of adjustment depending on the gap remains.
16This is the correlation between the differences in values and the absolute value of the gap.
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facility. More generally, these costs may reflect time lost due to training and reorgani-

zation of the labor force. This specification will also pick-up any loss in productivity

associated with labor adjustment.

In contrast to the model with fixed adjustment costs, the disruption cost varies with

the state of profitability at the plant. This creates an interesting dilemma. In periods

of high profitability, it becomes costly to adjust the labor force. But these are periods

when the addition of workers is most valuable. In periods of low profitability there is

no trade-off as adjustment costs are relatively low and the plant has a desire to reduce

the work force.

As seen in the policy functions in the top panel of Figure 3, this specification does give

rise to inactivity in employment adjustment similar to that in the fixed adjustment cost

model. The region of inaction is the interval of lagged employment in which φe(A, e−1) =

e−1. This figure is created assuming that λ+ = λ− = 0.98. With this specification, the

plant loses 2% of its revenues during an adjustment period. While this loss may seem

small, the inaction rate is 92% with this parameterization. The impact of changes in

cost is visible through differences in the size of the region of inaction. In the high shock

state (solid line), the high levels of productivity and desired employment will result in a

larger cost to be paid if plants choose to adjust employment than in the the low shock

state (dashed line). This results in a wider range of lagged employment values in the

high shock state over which the plant does not change employment (remaining on the

45 degree line) in comparison to the low shock state.

The bottom panel of Figure 3 shows the adjustment rate function. This panel is

similar to the adjustment rate function for the fixed cost case in Figure 2 in that the

adjustment rate is either 0 or almost 100%. The main difference is that with a disruption

cost there is some overshooting and undershooting of the frictionless target, depending

on the direction of adjustment. When plants increase employment in response to an

above-average shock, they undershoot the target in some cases because the frictionless

target is based on a momentary elimination of the disruption cost, where as in the model

plants pay a cost that is increasing in the level of employment they choose. Therefore,

they choose a slightly lower level of employment relative to the target, trading off some

production revenue in order to reduce the size of the disruption cost. Likewise, in

response to a below-average shock, plants that decrease employment will choose a lower

level of employment, or overshoot, relative to the frictionless target in order to reduce

the disruption cost.
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Figure 3: φe(A, e−1) and H(z) with Disruption Costs
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2.5 Piecewise Linear Model

One of the important features of non-convex adjustment costs is that they imply inac-

tivity in employment adjustment when the gains to changing the number of workers is

small. This is relevant since at the plant level there is indeed evidence of inaction. Here

we consider piecewise linear adjustment costs which can also produce inaction.

The cost of adjustment function is:

C(e, e−1) =

{

γ+∆ẽ if e > e−1

−γ−∆ẽ if e ≤ e−1.
(10)

For the purposes of estimation, this specification strikes a useful compromise between

the quadratic and fixed cost models. There is a basis for inaction due to the lack of

differentiability in the neighborhood of zero adjustment. Small adjustments will not

occur since the marginal cost of adjustment does not go to zero as the size of the

adjustment goes to zero. As in the quadratic adjustment case, there is a cost per worker

perhaps reflecting processing fees for applications and so forth. But, this specification

of adjustment costs implies that there is no partial adjustment. Since the marginal cost

of changing employment is constant, there is no basis for smoothing adjustment.

The optimal policy rules are determined by solving (2) using this specification of

C(e, e−1). The optimal policy is characterized by two boundaries: e−(A) and e+(A).

If e−1 ∈ [e−(A), e+(A)], then there is no adjustment. In the event of adjustment, the

optimal adjustment is to e−(A) if e−1 < e−(A) and to e+(A) if e−1 > e+(A).

We can study the optimal policy function for this type of adjustment cost. Assume

that γ+ = γ− = 0.4 which produces inaction at the plant level in 93% of the observa-

tions.17 Then (2) along with (10) can be solved using value function iteration and the

resulting policy functions evaluated.

The policy functions are shown in Figure 4 for two values of the profitability shocks.

There is no adjustment for values of e−1 in the interval where the employment policy

function coincides with the 45o line. Outside of that internal there are two targets: e−(A)

and e+(A). In contrast to the non-convex cases, there is no overshooting here. Further,

in contrast to the quadratic adjustment cost case, there is no partial adjustment.

The bottom panel of Figure 4 shows the adjustment rate as a function of the gap.

Recall that the target is defined as level of employment that would be chosen if all

adjustment costs were removed for a single period. For the piecewise linear adjustment

17This inaction rate is too high relative to observation: the parameterization is for illustration only.
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Figure 4: φe(A, e−1) and H(z) with Piecewise Linear Adjustment Costs
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cost model, the target is determined by solving (2) where the adjustment cost for the

current period is zero, but expectations are taken over a value function that incorporates

future adjustment costs.

In this figure, there is again a sizeable inaction region. In contrast to Figure 2,

however, the region in which adjustment occurs is characterized by an upward sloping

hazard function. This feature is similar to the adjustment rate function in Figure 1a of

CEH, which was estimated from plant-level manufacturing data.

The upward sloping nature of the adjustment rate function, however, is primarily a

result of using a target definition that is irrelevant for plants facing this particular form

of adjustment costs. With piecewise linear adjustment costs, the only circumstance in

which a plant would ever choose the target level is if the plant entered the period at the

target level.

Returning to the top panel of Figure 4, the target level would lie somewhere between

the two adjustment boundaries defined earlier. If adjustment occurs, the plant adjusts

directly to the relevant boundary threshold. In that sense, the adjustment rate is 100%

– there is no partial adjustment. As a result, plants in the extremes of the employment

distribution appear to be adjusting at higher rates in the bottom panel simply because

they require larger adjustment to reach the relevant boundary. In the adjustment rate

calculation, this translates into a higher adjustment rate because they are adjusting by a

larger fraction of the gap than a plant that lies closer to the optimal boundary threshold.

3 Estimation

Our primary goal is to estimate the adjustment costs for labor. In doing so, we consider

specifications which mix the extreme cases highlighted above:

C(e, e−1) =



















ν+

2

(

e−e−1

e−1

)2

e−1 + F+ + (1 − λ+)R(A, e, h) + γ+∆e if e > e−1

ν−

2

(

e−e−1

e−1

)2

e−1 + F− + (1 − λ−)R(A, e, h) − γ−∆e if e < e−1

0 if e = e−1.

(11)

The corresponding dynamic optimization problem combines this specification of ad-

justment costs with (2).

Our estimation strategy follows the indirect inference approach, as in Gourieroux

and Monfort (1996). In that approach, the researcher specifies an auxiliary model to

summarize key elements from the data. For expositional convenience, we will refer to the
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auxiliary model as a collection of moments from the data. The structural parameters are

then estimated by matching these moments from the simulated data as close as possible

to the data moments. We discuss the choice of moments in detail below. To estimate

the structural parameters using the indirect inference procedure, we solve the dynamic

programming problem given a specification of adjustment costs and given a vector of the

parameters we are estimating. We focus on estimating the parameters of the adjustment

cost function and set other parameters outside of the dynamic programming/estimation

loop. The next subsection discusses the parameterization and simulation of the problem.

3.1 Parameterization and Simulation

To solve the various dynamic programming problems specified above, we need to cali-

brate a number of parameters and specify function forms. We assume:

• a Cobb-Douglas production function in which hours and employees are perfectly

substitutable. Labor’s share is 0.65 and the markup is set at 25%.

• the discount factor (β) is set at 0.99 reflecting our use of quarterly data

• two parameters of the compensation function, w0 and w1, were chosen so that

steady state hours were 40 and that steady state employment at each plant was

600.18 The remaining parameter, ζ, is estimated.

• Following Cooper and Willis (2003), the profitability shock consists of two multi-

plicative exogenous components: an aggregate shock (Aagg) and an idiosyncratic

shock (Aidio). Both exogenous components follow independent log-normal AR(1)

processes. We assume that both processes have the same serial correlation, ρ,

and innovations with the same standard deviation, σ. These two parameters are

estimated in the indirect inference procedure.

After solving the dymanic programming problem, we then create simulated data. We

simulate four panel data sets each consisting of 1000 plants for 200 periods. For each

dataset, aggregate data series are created by summing employment data across plants

and averaging hours data across plants in each period. The use of multiple datasets

helps control for the exogenous choice of an initial distribution of “gaps” in the CE

estimation procedure described in the next subsection.

18This is the average number of workers per plant in the balanced panel that underlies CEH. This

figure comes from conversations with John Haltiwanger.
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3.2 The CE Methodology

Our indirect inference approach uses the findings reported in CE as characterizing key

moments of employment dynamics. We use these moments to infer the structural ad-

justment parameters. Thus it is important to understand the gap methodology.

CE consider the static optimization problem of a plant (firm) facing random walk

shocks to both productivity and demand.19 With this specification, they replace the

frictionless employment target with the state-contingent levels of employment from the

static optimization problem.20

Their estimation uses aggregate observations on net and gross flows for US manu-

facturing employment growth (denoted ∆Et+1) to estimate a hazard function from

∆Et+1 =

∫ ∞

−∞

(∆E∗
t+1 − z̃)Λ(z̃ − ∆E∗

t+1)ft(z̃)dz. (12)

Here z̃ represents the gap after the plant has been subjected to any idiosyncratic shocks.21

So ∆E∗
t+1 − z̃ is the size of the gap after any common shocks to the desired level of

employment.

Here the left-side is period t + 1 employment growth. This reflects two factors:

the fraction of plants adjusting and the magnitude of their adjustment. The function

Λ(z̃ − ∆E∗
t+1) is the aggregate hazard reflecting either the probability or the rate of

adjustment. The argument of this function is the size of the plant-specific gap after the

aggregate growth in the frictionless employment target, denoted ∆E∗
t+1, has taken place.

In a non-convex adjustment cost environment, the function Λ(z̃−∆E∗
t+1) represents the

fraction of plants that adjust by the amount of ∆E∗
t+1−z̃. In a quadratic adjustment cost

environment, all plants are adjusting by a fraction, Λ(z̃ − ∆E∗
t+1), of the total desired

adjustment, ∆E∗
t+1 − z̃. In either case, the final term in (12) is ft(z̃), the distribution of

the gap prior to the aggregate shock to the employment target.

Of course, ∆E∗
t+1 is not observable. CE create it from

∆E∗
t = ∆Et + κ∆Ht (13)

where ∆Et is observed aggregate employment growth and ∆Ht is observed aggregate

19Since they work with aggregated data, the distinction between a plant and a firm is irrelevant.
20They argue this is legitimate due to the random walk shocks. Cooper and Willis (2003) argue that

if shocks do not follow a random walk, then the static targets may not be proportional to the frictionless

targets so that this procedure may be problematic.
21Thus z̃ and the gap measure defined in (1) reflect the same concept measured at two different points

in time.

17



hours growth. CE show this relationship comes from the aggregation over plants’ static

optimization problems. The parameter κ is calibrated from the static optimization

problem of the plant.22

As CE do not have plant-level data, they can not directly measure the distribution

ft(z). This is created in their estimation by introducing plant-specific variations in z after

the common variations. In particular, following the common shocks to the employment

target, one-half of the plants have their gap increased (decreased) by an amount denoted

σI .
23 This parameter is estimated as well.

CE consider a quadratic specification for Λ(·)

Λ(z̃) = λ̃0 + λ̃2(z̃ − z0)
2 (14)

where z0 is a constant. To obtain parameter estimates, they use observations on employ-

ment and hours growth in (13) to calculate the growth rate of the employment target.

This measure is then used in (12) along with (14). CE find parameter values for the

hazard that minimize the sum of squared differences between the actual and predicted

employment growth.24

CE (Table 2, BLS) report the following estimates (standard errors in parentheses):

λ̃0 = 0.02 (0.01); λ̃2 = 0.53 ( 0.01); z0 = −0.82 (0.01) and σI = 0.059 (0.015). CE

conclude that a quadratic hazard specification fits the data better than the flat hazard.

3.3 Estimation Results

The estimation of the structural parameters, denoted θ, involves solving the following

minimization problem

£(θ) = min
θ

[Ψd − Ψs(θ)]′W [Ψd − Ψs(θ)]. (15)

where the vector Ψd represents the moments to be matched and W represents the weight-

ing matrix.

22Cooper and Willis (2003) provide a complete discussion of this derivation and its link to the ap-

proach of CEH which argues that κ represents the sensitivity of hours to the gap after all employment

adjustment.
23There is no direct counter-part of this shock in the dynamic optimization problem. It should not

be confused with the plant-specific component of the profitability shock. Still, we can introduce this as

noise in our simulation, following the procedure of CE.
24The procedure for the estimation is laid-out in section IV.2 of CE. Our estimation mimics their

procedure.
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Seven moments are chosen for the estimation procedure. The first four moments

are the results reported in CE corresponding to the following parameters of the hazard

function: (λ0, λ2, z0, σI). The fifth element in the vector of moments is the sum of squared

residuals (SSR) for aggregate employment in the CE procedure. The final two moments

are the serial correlation, ρE, and standard deviation, σE, of the log of manufacturing

employment from the BLS sample used in CE.

The CE hazard moments are chosen for two reasons. First, the results and conclu-

sions in CE are frequently taken as evidence of the aggregate importance of non-convex

adjustment at the micro-level. Thus these are “topical” moments. Second, in simula-

tion, these moments are informative for determining the underlying structural parame-

ters. Thus while Cooper and Willis (2003) point out that the results of CE can not be

directly used to evaluate any particular model of adjustment costs, these regression re-

sults are informative enough to be useful as a basis for structural estimation via indirect

inference.

The sum of squared residuals from the CE procedure is included to minimize the

SSR between actual and predicted aggregate employment growth in our simulated en-

vironment. The motivation for including this statistic comes from its prominent role in

CE. CE use this statistic not only to determine the best estimate for the parameters of

a given hazard model, but also to compare different hazard specifications. If we had the

true model, this sum of squared residuals should be 0. We include this moment in Ψd

so that our selection of structural parameters will, in part, minimize this goodness of fit

measure.25

The final two moments come from the aggregated BLS data for the 1972-86 period

used in CE. In particular, to capture the aggregate shock process, we include the serial

correlation and standard deviation of manufacturing employment at a quarterly fre-

quency. These moments help to determine the driving process as well as the elasticity

of compensation with respect to hours.

Based upon values from CE and BLS data, the vector of moments for estimation

is Ψd = (0.019, 0.53,−0.816, 0.059, 0, 0.96, 0.0607). The weighting matrix, W , is con-

structed as the inverse of a diagonal matrix consisting of the empirical variances of the

moments in Ψd. The standard errors for the serial correlation and standard deviation of

log employment are (0.042, 0.032). The standard errors for the CE hazard parameters

are as reported earlier. The standard error of BLS manufacturing employment growth,

25A similar approach of mixing moments and nonlinear least squares is presented in Adda and Cooper

(2000).
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0.019, is used as a measure of the standard error of the sum of squared residual.

The vector of structural parameters which we estimate is given by

θ = (ρ, σ, ζ, ν+, ν−, F+, F−, γ+, γ−, λ+, λ−).

The first two components characterize the process for both the aggregate and idiosyn-

cratic shocks.26 The third parameter, ζ, controls the sensitivity of wages to hours. The

last eight components are the parameters for the adjustment costs.27

We estimate θ by simulation. For a given vector of parameters, we solve our dynamic

optimization problem, and we simulate using the policy functions. We aggregate the data

and follow the CE procedure to estimate the parameters of the hazard function. We

also compute the other moments from the simulated data. Thus these moments depend

on the parameter vector: Ψs(θ).

Our main findings are reported in Tables 1 and 2. The first table reports structural

parameter estimates and standard errors for a number of specifications of adjustment

costs: quadratic, fixed, piece-wise linear, disruption and mixtures of quadratic with each

of the others.28 The second table reports the moments (i.e. the estimated hazards) for

each set of structural parameters.

A couple of points stand out. First, the best fit is obtained with a piece-wise quadratic

adjustment cost model. In particular, the parameter determining the cost of hiring,

ν+ = 2.77, is significantly larger than the parameter determining the cost of firing,

ν− = 1.14.29 Second, the estimated elasticity of the wage function, ζ = 2.03, is close to

the calibrated value of 1.9 used by CE.

The model with piece-wise linear adjustment costs also does well in terms of matching

the estimated hazard function but does relatively poorly in terms of fitting the employ-

ment series in the CE procedure. To be precise, the sum of squared residuals (SSR)

in the CE procedure is 0.0055 for the quadratic model. For the piece-wise linear cost

specification it is 50 percent larger, SSR = 0.0088. This contributes to the loss function,

£(θ), being more than 50 percent greater than for the quadratic model.

26Recall that for parsimony, we restrict the aggregate and idiosyncratic processes to have the same

values of ρ, σ.
27Throughout the fixed costs, {F +, F−}, are normalized to be expressed as a fraction of average

profits. These profit measures do not include adjustment costs.
28Standard errors are calculated as described by Gourieroux and Monfort (1996).
29Pfann and Palm (1993) also find evidence of asymmetry in their study of labor adjustment in the

Netherlands and the U.K. Interestingly, for production workers (as in our study), hiring costs are more

substantial than firing costs.
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The fixed adjustment cost model does the best in terms of fitting the employment

series with an SSR of 0.003. It does very poorly, however, in terms of matching the

estimated hazard function. Accordingly, this model has a very large value of £(θ).

The model with disruption costs, like the piece-wise linear model, is able to match

the parameters of estimated hazard function but has a relatively high value of the SSR

statistic. Note too that the estimates of (λ+, λ−) are both very close to one, indicating

very small disruption costs.

Thus, the feature distinguishing these specifications is their ability to match both

the hazard estimates from CE and aggregate employment growth. Evidently, the hazard

estimates from CE alone are not sufficient to distinguish the models of adjustment costs.

Once both the hazard and SSR measures are properly taken into account, the quadratic

adjustment cost model fits best.

The other specifications included in Tables 1 and 2 entail a mixing of adjustment

costs. None of these specifications leads to an significant improvement over the quadratic

adjustment cost model. In particular, the parameter estimates for the fixed costs and

piece-wise linear parameters are negligible. Thus again, the model which best fits the

CE reduced form estimates and SSR measure is a piecewise quadratic structure.

4 Conclusions

This paper provides a structural interpretation of the regression results reported in CE.

Those results, using the gap methodology, indicated that aggregate employment growth

depended on the cross sectional distribution of the employment gap. That analysis left

open an interpretation of the finding.

By using an indirect inference methodology, this paper finds that the results reported

in CE are consistent with a model in which there are asymmetric quadratic adjustment

costs at the individual plant level. Evidently, this adjustment cost structure is rich

enough to generate the nonlinearities reported by CE.

This conclusion may appear surprising since the CE evidence is usually viewed as

supporting some form of non-convex adjustment costs. Yet, as pointed out in Cooper

and Willis (2003), using the methodology of CE, even a quadratic adjustment cost model

can produce the nonlinearities that they uncover. This paper goes beyond that point by

finding the adjustment cost structure which generates the regression results of CE.

Note too that this conclusion is about the aggregate regression results reported by

CE. Our finding does not imply that non-convexities are not relevant at the plant level.
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Cooper, Haltiwanger, and Willis (2003) finds evidence of non-convex adjustment costs

(through disruption) using plant-level data. Instead, our results simply imply that

non-convexities at the plant level are not needed to explain the aggregate employment

dynamics examined by CE.

Finally, one concern with estimated models of adjustment costs is interpretation:

what is captured by this black box? One interpretation, following Hamermesh and

Pfann (1996) is that these adjustment costs represent search frictions.

Expanding the labor force requires the plant to post vacancies which are filled through

a matching process. A plant that posts ten vacancies may, in the first year, fill seven of

then. In the second year, two more may be filled. Of course the match rate is stochastic.

Intuitively, the model ought to deliver a partial adjustment type outcome.

This interpretation is also consistent with the asymmetry in the adjustment costs.

Clearly, there is no search friction associated with firing workers. Formalizing the search

structure and evaluating its implications from the perspective of labor adjustment costs

is an important extension of the model. This structure also suggests that current es-

timates of labor adjustment costs ought to include economy-wide variables, such as

unemployment rates and vacancies rates, insofar as these variables influence matching

probabilities.
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Table 1: Structural Parameter Estimates

Model Structural Parameters (std errors below)

ν+ ν− F+ F− γ+ γ− λ+ λ− ζ ρ σ

Quadratic 2.77 1.14 2.03 0.73 0.028

(0.59) (0.03) (0.15) (0.022) (0.003)

Fixed 0.0088 0.014 2.00 0.97 0.020

(0.017) (0.035) (0.43) (0.009) (0.002)

P-wise linear -0.028 0.295 2.36 0.84 0.033

(0.173) (0.108) (0.13) (0.014) (0.001)

Disruption 0.991 0.996 2.50 0.83 0.025

(0.036) (0.024) (0.17) (0.04) (0.003)

Quad./P-wise 2.77 1.14 0 0 2.03 0.73 0.028

(5.72) (0.12) (3.395) (3.548) (0.64) (0.17) (0.014)

Table 2: Moments

Reduced-Form Estimates

Model λ0 λ1 z0 σI SSR ρE σE £(θ)

CE results∗ 0.019 0.53 -0.816 0.059 0.0028 0.96 0.061 na

Quadratic 0.018 0.53 -0.81 0.069 0.0055 0.915 0.049 17.45

Fixed -0.010 0.44 -0.43 0.094 0.0030 0.994 0.049 1300.10

P-wise linear 0.019 0.52 -0.80 0.061 0.0088 0.954 0.057 28.96

Disruption 0.013 0.53 -0.81 0.105 0.0096 0.943 0.050 37.51

Quad./P-wise 0.018 0.53 -0.81 0.069 0.0055 0.915 0.049 17.45

∗Table 1, p. 375.
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