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Abstract 
 

A central challenge to monetary business-cycle theory is to find a solution to the 

problem of persistence and delay in the real effects of monetary shocks.  Previous 

research has identified separately specific factors and intermediate inputs as two 

promising mechanisms for generating the persistence and delay in a staggered price-

setting framework.  Models based on either of these two mechanisms have also been used 

in the design of optimal monetary policy.   

By examining a staggered price model that features both specific factors and 

intermediate inputs, the author finds an offsetting interaction between the two 

individually promising mechanisms, which leads to a cancellation of much of the impact 

of each in propagating monetary shocks.  This finding posits a challenge to the search for 

robust monetary transmission mechanism and design of optimal monetary policy.   

JEL classification:  E24; E32; E52 

Keywords:  Specific factors; Intermediate inputs; Strategic complementarities; 
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1. Introduction

The search for a monetary business-cycle theory that can account for the relationship be-

tween money and other economic activity has long been a challenge. In meeting the challenge,

considerable effort has been made in the past decade to develop optimization-based sticky

price models, such as those described in Goodfriend and King (1997). These models, however,

have encountered difficulties in explaining some of the empirical regularities concerning the

volatility and co-movement of nominal and real aggregates [e.g., King and Watson (1996)].

In an important analysis, Chari, Kehoe, and McGrattan (2000) stress a substantial difficulty

faced by optimization-based staggered price models in explaining the persistence (and delay)

in the response of real economic activity to nominal disturbances. Earlier studies suggested a

promise of staggered price-setting for generating persistence. Yet, these authors demonstrate

that, when the rules for setting prices are derived endogenously, staggered price mechanism, by

itself, cannot generate much persistence. The problem is that, endogenous price-setting, even

if in a staggered fashion, does not generate a long period of endogenous nominal inertia from a

short period of exogenous nominal price stickiness that is not too much greater than suggested

by the empirical evidence of Bils and Klenow (2004), Bils, Klenow, and Kryvtsov (2003), and

Klenow and Kryvtsov (2003). They argue that a central challenge to monetary business cycle

theory is to find a solution to the persistence problem, but conclude that “mechanisms to solve

the persistence problem must be found elsewhere.”

The failure of staggered price mechanism in generating persistence can be traced to the

lack of strategic complementarities between price-setter’s behavior in this class of models.

This manifests the potential importance of real features of the economy for propagation of

nominal shocks, a view that also has a tradition in the literature.1 The past decade has

indeed witnessed a surge in interest in incorporating various real features into a staggered

price-setting framework to enhance the model. Two real features relevant for many industries

in most modern economies, specific factor inputs and produced intermediate inputs, have

been separately identified as promising for generating strategic complementarities in pricing
1The use of the term “real features” is meant to be sentimental. It is referred to various market imperfections

that impede the response of marginal production cost to changes in output, which Ball and Romer (1990) call

“real rigidities”, as well as various supply-side features that allow a more elastic response of output to changes

in demand without much increase in marginal cost, which Dotsey and King (2001) call “real flexibilities”.
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and persistence in the real effects of nominal shocks.2 Models based on either of these two

mechanisms have also been used in the design of optimal monetary policy.3

Incidently, little work has been done to investigate jointly the two individually promising

mechanisms. By examining in this paper a staggered price model that features both specific

factors and intermediate inputs, I identify an offsetting interaction between the two mecha-

nisms, which leads to a cancelation of much of the impact of each in propagating monetary

shocks. This is perhaps surprising given that intermediate inputs have been found to be re-

inforcing with some other real features in the previous literature.4 To my knowledge, this

paper is the first to show a detrimental interaction between two separately helpful real fea-

tures for propagating nominal shocks. It posits a challenge to the search for robust monetary

transmission mechanism and design of optimal monetary policy.

To drive this point home, I construct a dynamic stochastic general equilibrium staggered

price model, featuring jointly specific factors and intermediate goods, with a constant elasticity

of substitution between these two sources of production inputs, as consistent with the empirical

evidence of Basu (1995) and Rotemberg and Woodford (1996, 1999). My primary objective is

to investigate the nature of the interaction between the two real features for the transmission

of nominal shocks. In carrying out this investigation, I first establish a closed-form equilibrium

relation to decompose analytically the roles of the two mechanisms and of their interaction in

generating strategic complementarities in pricing. I then discuss the intuition for a positive

relationship between the degree of strategic complementarities and the amount of persistence
2See, among others, Kimball (1995), Rotemberg (1996), Rotemberg and Woodford (1997), Gust (1997),

Ascari (2001), Bergin and Feenstra (2000, 2001), Edge (2002), Woodford (2003), and Huang and Liu (2001,

2002, 2003). The idea that factor specificities might be important for the real effects of nominal shocks can be

traced back at least to Blanchard and Fischer (1989, Chapter 8) and Ball and Romer (1990, 1991) [see, also,

Dixon and Rankin (1994) for an early survey]. The idea on the relevance of intermediate inputs for the real

effects of nominal shocks can be traced back to an even earlier date to Means (1935), Gordon (1981, 1990),

and Blanchard (1983, 1987), and has been revisited recently by Basu (1995), Clark (1999), Hanes (1999), and

Linnemann (2000).
3See Woodford (2003) and Huang and Liu (2004), among others.
4In particular, Bergin and Feenstra (2000) find a nonlinear interaction between intermediate inputs and

translog preferences that goes beyond the sum of the individual contributions of the two real features to generat-

ing persistence. Dotsey and King (2001) consider intermediate inputs together with variable capacity utilization

and labor supply variability along the employment margin (in addition to the hours-worked margin), and they

find that, not only the three real features separately contribute to generating persistence, but “their effects on

persistence are mutually reinforcing.”
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and delay in the real effect of a nominal shock. I later derive an analytical solution for aggre-

gate dynamics to formally establish this positive linkage. In particular, I obtain a necessary

and sufficient condition for the response of real aggregate output to be hump-shaped, solve

analytically for the timing of the peak, and characterize both the condition and the timing by

the degree of strategic complementarities along with parameters governing the shock process.

These analytical results imply that the presence of intermediate inputs significantly weakens

the impact of specific factors in propagating a nominal shock, while with the presence of specific

factors the use of intermediate inputs in production serves even to dampen the real effect of

the shock. This detrimental interaction between the two individually promising mechanisms

leads to a reduction in the degree of strategic complementarities in pricing and persistence in

the response of real aggregate output, and diminishes the possibility of a hump in the impulse

response function or shifts the timing of the hump to an earlier date. Numerical simulations

lead to similar conclusions drawn from analytical results.

To understand this negative interaction, note that the basic idea of introducing real features

of the economy to magnify the real effect of a nominal shock rests upon the intuition that these

features may serve to dampen the desired price responses to changes in aggregate demand

condition. Mechanisms that either impede the response of marginal cost to changes in output,

or allow a more elastic response of output to changes in demand without causing too much

variation in marginal cost, are potential candidates.

To see why specific factors are such a candidate, consider a nominal shock, such as a shock

to nominal money supply. Under staggered price-setting, the shock will cause a shift in factor

demand schedules and a change in real income, which will shift factor supply schedules. The

two schedule shifts reinforce to guide factor and good prices to adjust to the direction of the

shock. With factor specificities, the demand for a factor input that is specific to a firm depends

directly on the demand facing the firm for its output, and thus inversely on the relative price

of the output, which, given prices charged by other firms, is determined by the factor price

to the extent it accounts for the firm’s marginal cost.5 Thus, any change in the relative good

price due to a movement in the factor price would cause a counter-forcing shift in the factor

demand schedule, which would offset partially the shift induced by the shock when holding

constant the relative good price, resulting in smaller movements in the factor and good prices

in the first place. It is through this negative feedback between adjustments in factor prices and
5This is in contrast to the case with homogenous factor inputs, where the demand for a common factor input

depends on the demand for aggregate output, and thus is independent of any relative output price.
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adjustments in good prices that factor specificities serve to restrain these price adjustments to

magnify the real effect of the shock.

Intermediate inputs are also such a candidate. Since movements in factor prices lead to

changes in good prices only to the extent they result in variations in marginal cost, and since

variations in marginal cost resulting from given movements in factor prices are scaled down

by the presence of intermediate inputs, a greater share of intermediate inputs in production

implies smaller adjustments in good prices to given movements in factor prices. Further, a

given shift in factor demand or supply schedules has a smaller effect on factor prices, the

greater is the elasticity of factor demand, which I show is an increasing function of the share

of intermediate inputs.

These two individually promising mechanisms are, however, counter-forcing when in joint

presence. On the one hand, the presence of an intermediate input attenuates the feedback

restraint embodied in factor specificities through the two aforementioned channels that make

itself individually promising. First, with a larger share of intermediate inputs, given movements

in factor prices lead to smaller variations in marginal cost and smaller changes in good prices,

and thus the resulting counter-forcing shift in factor demand schedules, as induced by factor

specificities, is smaller. Second, a larger share of intermediate inputs gives rise to a greater

factor demand elasticity, and thus the offsetting effect on factor price adjustments of a given

counter-forcing shift in factor demand schedules is smaller. On the other hand, such attenuating

effect is generally strong that it dominates the individual promise of intermediate inputs and

thus, with the presence of specific factors in the first place, the use of intermediate inputs in

production serves even to dampen the real effect of a nominal shock.

The rest of the paper is organized as follows. Section 2 sets up the model and defines an

equilibrium. Section 3 presents the decomposition, provides some intuitions behind it, and uses

it to obtain analytical results and conduct numerical simulations to assess the consequence of

the offsetting interaction between specific factors and intermediate inputs for strategic comple-

mentarities and persistence. Section 4 further details the results, by first deriving an analytical

solution for equilibrium dynamics to establish analytical linkages between the degree of strate-

gic complementarities and the amount of persistence in output impulse response, the likelihood

of a hump on the impulse response, and the timing of the hump, and then conducting numerical

simulations to confirm the conclusions drawn from these analytical results. Section 5 concludes.

Most derivations and proofs are relegated to the Appendix.
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2. A Model of Specific Factors and Intermediate Inputs with Staggered Pricing

The model features a representative household and a continuum of firms indexed on the unit

interval [0, 1], each of which produces a differentiated good. At each date t, a representative

distributor combines all differentiated goods {Zi,t}i∈[0,1] into a composite good Zt such that

Zt = [
∫ 1
0 Z

(θ−1)/θ
i,t di]θ/(θ−1), where θ ∈ (1,∞) is the elasticity of substitution between the

individually differentiated goods. The distributor takes the prices {Pi,t}i∈[0,1] of the individual

goods as given and chooses the bundle of the goods to minimize the cost of fabricating a given

quantity of the composite good. It sells the composite good to the household or firms at its

unit cost P̄t = [
∫ 1
0 P 1−θ

i,t di]1/(1−θ). So it is assumed that the distributor cannot discriminate its

selling price between the household and the firms, or across different firms. The demand for a

type i good is given by

Zi,t =
(

Pi,t

P̄t

)−θ

Zt. (1)

Units of the composite good purchased by the household can either be consumed directly

or be converted using linear technologies into a continuum of types of investment goods, while

the firms purchase the composite good for use as an intermediate input in the production of

the differentiated goods.

2.1. Household

The household has a continuum of members, each of which possesses a differentiated labor

skill. In each period t, the household derives utility from its total consumption, while it cares

about the dis-utility of each of its members resulting from supplying to firms their differentiated

labor skills. The objective of the household is to maximize

Et

∞∑

s=0

βs

[
U(Ct+s) +

∫ 1

0
V (Lhi,t+s)di

]
, (2)

where Et is the conditional expectation operator and β ∈ (0, 1) is the household’s subjective

discount factor. The arguments Ct and Lhi,t denote respectively the household’s consumption

and quantity of labor of type i supplied in period t. The period-utility function, U , and the

period-disutility function, V , are strictly increasing and strictly decreasing, respectively, and

both are strictly concave and twice continuously differentiable.

At every date there is available for trade a complete set of one-period, state-contingent

nominal bonds, which the household can use to transfer its nominal wealth across dates and

states of the world. The no-arbitrage condition then implies the existence of a unique set of

stochastic discount factors, which can be used to determine at any date the nominal present

7



value of a nominal quantity in any future date and state. Denote by Dt,t+1 the stochastic

discount factor from date t + 1 to t. The nominal price at t of a one-period bond that pays

off one unit of nominal account in a particular state of the world at t + 1 is equal to Dt,t+1

times the probability that this particular state will indeed be realized at t + 1 conditional on

the information available at t. Other financial claims can similarly be priced. In particular, a

one-period bond issued at date t that pays off one unit of nominal account in all states of the

world at t + 1 has a nominal value at t of EtDt,t+1, and thus a gross nominal interest rate of

(EtDt,t+1)−1. In general, if the random quantity Bt represents the household’s holdings at t

of the one-period, state-contingent nominal bonds, then this portfolio has a nominal value at

t of Et(Dt,t+1Bt).

The household’s budget constraint in period t requires that its expenditures on consumption

and investment plus asset accumulation do not exceed its disposable income during the same

period, that is,

P̄tCt + P̄t

∫ 1

0
Ii,tdi + Et(Dt,t+1Bt)−Bt−1 ≤

∫ 1

0
Rk

i,tKhi,t−1di +
∫ 1

0
Wi,tLhi,tdi + Πt, (3)

where Ii,t and Khi,t−1 denote the quantity of investment good of type i that the household

obtains in period t and its stock of capital of type i as of date t− 1, Rk
i,t and Wi,t are nominal

rental rate on capital of type i and nominal wage rate paid to labor of type i in period t, and

Πt represents the household’s claim to firms’ profits in period t.

The household maximizes (2) subject to (3), a law of motion Ii,t = Khi,t − (1− δ)Khi,t−1,

for all i ∈ [0, 1], where δ ∈ [0, 1] is a depreciation rate common to all types of capital, and a

borrowing constraint Bt ≥ −B, for some large positive number B, which serves to prevent the

household from playing Ponzi schemes without bound. The household takes its initial capital

stocks {Khi,−1}i∈[0,1] and debt position B−1, as well as all prices, wages, and capital rental

rates as given in solving the utility-maximization problem.

2.2. Firms

A firm that produces a type i good has the following technology

Zi,t =
{

φ̃
1
e X

e−1
e

i,t + (1− φ̃)
1
e

[
α̃Kα

fi,t
L1−α

fi,t

] e−1
e

} e
e−1

− F, (4)

where Xi,t, Kfi,t, Lfi,t represent the firm’s inputs of the intermediate good, capital, and labor,

respectively, and F is a real fixed cost which is common to all firms. The parameter e ∈ [0,∞)

corresponds to the elasticity of substitution between the primary factors and the intermediate

input, φ̃ ∈ [0, 1) and α ∈ [0, 1) will help determine the share of material cost in the production
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of gross output and the share of capital cost in the value-added inputs, respectively, and α̃

is a constant given by α−α(1 − α)−(1−α). The specification in (4) implies a unit elasticity of

substitution between labor and capital, which is a common assumption in the literature.

All firms are input-price takers, but are imperfect competitors in output markets, where

they set prices for their products for N > 1 periods in a staggered fashion and supply at these

prices whatever quantities of the goods prescribed by the demand schedule (1). To be specific,

all firms are divided into N equally measured cohorts, where firms in cohort 1 set new prices

in periods 0, N, 2N, . . . , firms in cohort 2 set new prices in periods 1, N + 1, 2N + 1, . . . , and

so on. At each date t, if it is the time that a firm i can set a new price, then it chooses Pi,t for

its product for periods t through t + N − 1 to maximize

Et

N−1∑

s=0

Dt,t+s[(1 + τ)Pi,tZi,t+s −Q(Zi,t+s)− Tt], (5)

where Dt,t+s =
∏s

r=1 Dt+r−1,t+r denotes the s-period stochastic discount factor from date t+s

to t, for all s > 0, with Dt,t = 1, τ is a flat rate at which the firm’s output is subsidized, and

Tt is an indirect business tax common to all firms. Here Q(Zi,t) represents the total cost of i

at t for producing Zi,t, which can be obtained by choosing Xi,t, Kfi,t, and Lfi,t to minimize

P̄tXi,t + Rk
i,tKfi,t + Wi,tLfi,t, subject to (4), taking P̄t, Rk

i,t, and Wi,t as given. This total cost

is given by

Q(Zi,t) = Qi,t[Zi,t + F ], where Qi,t =
{

φ̃P̄ 1−e
t + (1− φ̃)

[
(Rk

i,t)
αW 1−α

i,t

]1−e
} 1

1−e

. (6)

The implied demands for the intermediate input, capital, and labor are, respectively,

Xi,t = φ̃

[
Qi,t

P̄t

]e

[Zi,t + F ], (7)

Kfi,t = α

[
Qi,t

Rk
i,t

][
1− φ̃

(
Qi,t

P̄t

)e−1
]

[Zi,t + F ], (8)

Lfi,t = (1− α)
[

Qi,t

Wi,t

][
1− φ̃

(
Qi,t

P̄t

)e−1
]

[Zi,t + F ]. (9)

We note that even if a firm cannot set a new price at a given date, it would still need to

solve the cost-minimization problem, and thus (6)-(9) must hold for all firms in all periods.

Taking the demand schedule (1) and the cost function (6) as given, the solution to the profit-

maximization problem (5) is obtained as

Pi,t = µ
Et

∑N−1
s=0 Dt,t+sP̄

θ
t+sZt+sQi,t+s

Et
∑N−1

s=0 Dt,t+sP̄ θ
t+sZt+s

, (10)
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where µ ≡ θ(θ−1)−1(1+τ)−1 is the steady-state effective markup of price over marginal cost.6

Equation (10) says that a firm’s optimal price is a markup over a weighted average of its

marginal costs during the periods in which its currently chosen price will remain in effect.

Using (7)-(10), it can be verified that, in steady state, the share of payment to intermediate

inputs in total production cost is equal to φ = φ̃µ1−e.

2.3. Market Clearing and Equilibrium

I have thus far assumed implicitly that a differentiated good is produced using a specific

type of capital and a specific type of labor (together with an intermediate input), and that

nevertheless there is neither monopoly power of the household nor monopsony power of the

firms in the factor markets.7 To help connecting with the literature, it would be helpful to allow

the specification of the model to be flexible enough to nest the scenarios with homogeneous

capital or\and labor as special cases. I therefore introduce two binary variables, ω1 and ω2,

each of which can take on values 0 and 1, corresponding respectively to the case without

and with capital specificities and the case without and with labor specificities.8 The market
6Allowing a production subsidy τ = (θ−1)−1 helps connect to the recent literature on monetary policy rules,

where a subsidy is often assumed to eliminate steady-state monopolistic distortions.
7One way to justify this assumption is to think of each point on the unit interval as consisting of a large

number of firms that use the same type of capital and labor to produce one type of good, and each member

unit in the household as consisting of a large number of investors and workers who supply the same type of

capital and labor. Since there is a large number of participants on both demand and supply sides in each of

the factor markets, it is not theoretically objectionable to rule out the possibility of any collective behaviors in

these marketplaces and assume that all factor prices are determined in a competitive fashion. An alternative

approach is to think of the economy as consisting of N divisions (say, equally divided on the unit interval), with

a large number of firms and household members in each division who supply goods (to the whole economy) and

factors (only to the local firms) that are homogenous within division but differentiated across divisions, and

with prices for goods being set in a staggered fashion across divisions. One can then argue that competition in

factor markets within division would eliminate any monopoly or monopsony power in these markets. One can

interpret the divisions as regions, cities, industries, sectors, etc.
8My consideration of the all-or-nothing extremes regarding factor specificities is only meant to be pathological.

A more realistic specification would be to allow for the possibility of conversions of different “types” of factors

subject to converting costs, where “types” may be identified by specialties, regions, or attachments to industries

or firms, so that factor prices may vary across suppliers-demanders for some periods following a shock, but have

a tendency to converge in the long run. Since it is mainly these short-run dynamics of factor prices that matter

for the determination of short-run responses of goods prices to shocks, which are what matter for the analysis

in this paper, my choice to consider the opposite extremes allows to capture effectively the essential ingredients

of factor specificities without an explicit discussion of the converting costs alluded to.
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clearing conditions for capital and labor in period t can then each be expressed compactly as

ω1Kfi,t + (1− ω1)
∫ 1

0
Kfi,tdi = ω1Khi,t−1 + (1− ω1)

∫ 1

0
Khi,t−1di, (11)

ω2Lfi,t + (1− ω2)
∫ 1

0
Lfi,tdi = ω2Lhi,t + (1− ω2)

∫ 1

0
Lhi,tdi, (12)

for all i ∈ [0, 1], where I have assumed that at any date capitals available for firms to rent are

accumulated by the household during the previous period. The market clearing condition for

the composite good is given by Ct +
∫ 1
0 Ii,tdi +

∫ 1
0 Xi,tdi = Zt, where the sum of the first two

terms on the left hand side corresponds to real GDP or real aggregate spending, Yt. The bond

market clearing condition is standard.

An equilibrium for this model economy consists of allocations Ct, Bi,t, Khi,t, and Lhi,t, for

the household, allocations Xi,t, Kfi,t, and Lfi,t, and prices Pi,t, for a firm i, for all i ∈ [0, 1],

together with stochastic discount factors Dt,t+1, prices P̄t, capital rental rates {Rk
i,t}i∈[0,1], and

wages rates {Wi,t}i∈[0,1], that satisfy the following conditions: (i) taking capital rental rates

and wage rates, as well as all prices but its own as given, each firm’s allocations and prices

solve its profit-maximization problem; (ii) taking capital rental rates and wage rates, as well

as all prices as given, the household’s allocations solve its utility-maximization problem; (iii)

markets for bonds, capital, labor, and the composite good clear; (iv) total production subsidy

is equal to total indirect business tax.

3. Analytics of Micro-Foundations

In this section, I derive an aggregate supply relation and use this relation to investigate

the micro-foundation underlying the roles of specific factors and intermediate inputs and, in

particular, of their interaction in generating strategic complementarities between the price-

setting decisions by firms that supply differentiated goods, and persistence in the real effects of

nominal disturbances. To help achieve analytical transparency, I follow a common approach to

approximate the equilibrium conditions by a log-linear system. In what follows, I use lowercase

letters to denote the log-deviations of corresponding level variables from their steady-state

values. To help obtain closed-form solutions, I shall assume until further notice that aggregate

capital is constant with no depreciation.

3.1. Aggregate Supply

Using log-linearized equilibrium conditions, I obtain (see the Appendix for details)

pt =
(

1− Γ
N

) N−1∑

s=0

Etp̄t+s +
(

Γ
N

) N−1∑

s=0

Etỹt+s, (13)
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where I have set β = 1 to simplify notations. Here, p̄t and ỹt correspond to the price level and

nominal aggregate spending, and pt denotes the price set at time t by a firm that can choose a

new price at t. Since firms are identified by the timing of their price-setting decisions, I have

dropped the index i in the expression of the individual prices. The parameter Γ is given by

Γ = (1−φ)
[
σ(1− α)

ξ + α
+

µ1−IF − φ

µ− φ

] [
1− α

ξ + α
+

e(µ− 1)φ
µ− φ

]−1
[
1 +

θµ−IF (1− φ)
1+ξ

α(1+ξ)ω1+ξ(1−α)ω2
− 1 + eφ

]−1

(14)

where IF is an indicator function that takes on the value of 1 if F > 0 and 0 if F = 0, and

σ = −CU ′′/U ′ and ξ = LV ′′/V ′ denote steady-state relative risk aversions in consumption and

hours worked, respectively. Clearly, Γ > 0 for all admissible values of the model’s parameters.

In what follows, I will only present the results for the case with no fixed cost since the results

for the case with fixed cost are strikingly similar.9

Equation (13) prescribes the optimal pricing behavior of a firm that can only reset its price

once every N periods. Could the firm reset its price at every date, it would prefer a “desired”

price p∗t at time t given by

p∗t = (1− Γ)p̄t + Γỹt. (15)

The fact that the firm can only change its price infrequently implies that the actual price it sets

for its entire contract duration will only approximate its desired price in each of the contract

periods on an average basis. This can be seen by combining (13) and (15), which yields

pt =
1
N

N−1∑

s=0

Etp
∗
t+s. (16)

Note that pt so chosen at time t must remain in effect for all periods from t through t+N − 1,

and it is in this sense that the mere existence of nominal price contracts by itself already

implies a certain degree of nominal price stickiness. Although I shall not attempt here to say

anything new about the underlying reasons for the existence of such contracts, but rather treat

their existence as a structural feature of the environment in which firms sell their products, it

is important to note, as many empirical studies indicate, that the length of nominal contracts

observed in actual economies on average is too short to, by itself, explain the persistent real

effects of nominal disturbances [e.g., Taylor (1999), Bils and Klenow (2004), Bils, Klenow, and

Kryvtsov (2003), and Klenow and Kryvtsov (2003)]. Thus a useful model must explain when

a firm may choose not to change its price by much even if it has the chance to adjust the price.
9These results are available upon request from the author.
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The answer to this question hinges upon the magnitude of (1− Γ), which determines how

a firm’s desired price, p∗t , depends upon the level of prices charged by other firms, p̄t, under

an arbitrarily specified stochastic process for the nominal spending, ỹt. Pricing decisions are

strategic complements (substitutes) if a firm’s desired price would vary in the same (opposite)

direction as does the level of prices charged by other firms.10 It can be seen from (15) that

strategic complementarities (substitutability) exist if and only if Γ < 1 (Γ > 1). To see

the significance of strategic complementarities for persistence in the real effects of nominal

disturbances, note that Γ measures the response of p∗t to variations in ỹt, given the response of

p̄t. If Γ < 1, then a one percent change in ỹt will induce a less than one percent change in p∗t ,

so long as the change in p̄t is less than one percent. Hence, a firm will price less aggressively if

other firms do. As all firms price less aggressively, the response of real output becomes more

persistent. Such a linkage between strategic complementarities and persistence will be made

more transparent in Section 4. The general conclusion is that, a smaller value of Γ implies a

greater degree of strategic complementarities between the price-setting decisions by firms and

a more persistent effect of nominal disturbances on real economic activity.

The question then is: How would the presence of specific factors and intermediate inputs

affect the magnitude of Γ? To answer this question, one can appeal to the right-hand side of

(14), which decomposes the effect on Γ of intermediate inputs into four multiplicative terms

and summarizes that of specific factors into the last one. Indeed, with homogeneous capital and

labor inputs (i.e., with ω1 = ω2 = 0), this last term is equal to 1. Since the first three terms are

each decreasing in φ, a larger share of intermediate inputs tends to lower Γ through lowering

these terms. This explains why a number of studies find that the presence of intermediate

inputs with factor homogeneity helps generate strategic complementarities and persistence.11

Similarly, since the last term is smaller than 1 if ω1 and ω2 are not both 0, the allowance

for factor specificities tends to lower Γ through factoring in this less-than-unit term. This

explains why several studies find that the presence of specific factors helps increase the degree

of strategic complementarities and persistence.12

10This notion of strategic complementarities (substitutability) is similar to that used in Woodford (2003). For

a more general characterization of strategic complementarities (substitutability) in a somewhat broader context,

see, among others, Haltiwanger and Waldman (1985), Cooper (1999), and the references cited therein.
11See, for example, Bergin and Feenstra (2000), Huang and Liu (2001, 2003), and Dotsey and King (2001).
12See Rotemberg and Woodford (1997), Gust (1997), Ascari (2001), Edge (2002), Woodford (2003), and

Huang and Liu (2003), among others.
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More importantly, the last term on the right-hand side of (14) captures the effect on Γ

of the interaction between specific factors and intermediate inputs. It shows that these two

individually promising mechanisms are counter-forcing when in joint presence. To see this,

note that this last term is an increasing function of φ. Thus, the presence of intermediate

inputs reduces the influence of factor specificities on Γ and thus on strategic complementarities

and persistence. This reduction is driven by two mutually reinforcing forces: the one in the

numerator, (1−φ), is at work regardless of the value of e, while the one in the denominator, φ, is

at work as long as e > 0, and this force is stronger, the greater is e. In fact, as I will show below,

such negative effect is so strong that it generally dominates the effects of intermediate inputs on

Γ as via the first three terms on the right-hand side of (14). As a consequence, with the presence

of specific factors in the first place, the use of intermediate inputs in production serves even

to increase the magnitude of Γ, and thus to decrease the degree of strategic complementarities

in pricing and dampen the real effect of nominal disturbances.

3.2. Some Intuitions

Before examining in more details the negative interaction between the two separably helpful

real features of the economy, I provide first some intuitions for why Γ can be decomposed into

the four terms as of the right-hand side of (14), which is the key to understanding why the two

mechanisms are individually helpful, but offsetting when in joint presence. To carry through

the intuitions in a transparent way without loss of insights, I shall base my discussions here

on the case with no capital or production subsidy. Setting α = τ = 0 (along with F = 0),

equation (14) simplifies to

Γ = (1− φ)
(

σ

ξ
+ 1

) [
1
ξ

+
eφ

φ + θ(1− φ)

]−1 [
1 +

θ(1− φ)
ξ−1 + eφ

]−1

, (17)

where I have set ω2 = 1 to capture labor specificities.

Recall that Γ determines a firm’s desired price response to variations in nominal spending,

given the price responses of other firms. It can be seen from rewriting (15) into p∗t − p̄t = Γyt,

where yt denotes changes in real GDP, that Γ also links the firm’s desired relative price change

to variations in real income, or real aggregate demand. As mentioned before, these variations

would lead to reinforcing shifts in the household’s labor supply schedule and the firm’s labor

demand schedule, causing the real wage faced by the firm to adjust in accordance with the last

three terms in (17).

To see that intermediate inputs are an individually promising mechanism, first note that

a movement in the real wage induces a change in the firm’s desired relative price only to the
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extent such movement causes a variation in the firm’s marginal cost. Since the variation in

marginal cost resulting from a given movement in the real wage is scaled down by the share

of intermediate inputs in production, a greater share of intermediate inputs implies a smaller

adjustment in the desired relative price to a given movement in the real wage. More specifically,

the desired relative price change is (1− φ) fraction of the real wage adjustment since, with φ

share of intermediate inputs in production, a one percent change in real wage results in only a

(1− φ) percent change in real marginal cost. This is why (1− φ) shows up as the first term in

(17), which illustrates the first channel by which intermediate inputs are individually helpful.

The second channel that makes intermediate inputs individually helpful has to do with

the fact that the real wage adjusts according to the middle two terms in (17), in addition to

the last term. As a matter of fact, these middle two terms characterize the equilibrium wage

adjustment for the case with labor homogeneity. Since a one percent change in real income

causes a σ/ξ percent shift in the labor supply schedule, σ/ξ shows up as one component of

the second term.13 Since a one percent change in real aggregate demand causes a one percent

shift in the labor demand schedule, 1 shows up as another component of the second term.14 In

sum, the term (σ/ξ + 1) summarizes the extents of the two schedule shifts.15 The next term

is the inverse of the sum of the absolute values of the elasticities of labor supply, 1/ξ, and of

labor demand, −eφ/[φ + θ(1 − φ)].16 This is an inverse relationship, since the more elastic
13Note that the relative risk aversion in consumption, σ, determines how fast the household’s marginal utility

of consumption falls (rises) as its income rises (falls), and the relative risk aversion in hours worked, ξ, determines

how rapidly its marginal dis-utility of working falls (rises) as its hours worked fall (rise). Therefore, σ/ξ measures

the desired change in the household’s labor supply with respect to a change in its real income at any given wage

rate. This can be seen more transparently from rewriting the log-linearized labor supply schedule (34) in the

Appendix as l = (1/ξ)(w − p̄)− (σ/ξ)y.
14This can be seen more transparently by combining (33), (35), (37), and (38) in the Appendix, while setting

α = τ = F = ω2 = 0, to derive the labor demand schedule l = −{eφ/[φ + θ(1 − φ)]}(w − p̄) + y, with the real

aggregate demand, y, rather than total sales, z, as a shift variable. Note that, with labor homogeneity, there is

only an economy-wide prevailing real wage, the change in which will cause a change in the difference between z

and y [this can be seen by combining (33) and (35), recognizing that all wi are equal to some economy-wide w].
15Note that this term is strictly decreasing in φ in the presence of a fixed cost, as is clear from (14).
16See Footnotes 13 and 14. To understand this expression for labor demand elasticity, note that, any variations

in the real wage would create an incentive for the firm to substitute between intermediate inputs and labor. By

definition, as long as both of these two factor inputs are used in production, a larger e implies that it is easier

to substitute between them. On the other hand, the larger is φ, the more important are materials relative to

labor in production, and thus the more sensitive is the demand for labor to variations in the real wage, as long

as there is some degree of substitutability between the two factors. This is why this labor demand elasticity is

increasing in e for φ > 0 and increasing in φ for e > 0. In contrast, it is decreasing in θ for e > 0 and φ ∈ (0, 1).
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the labor supply schedule or the labor demand schedule is, the smaller is the equilibrium wage

adjustment resulting from a given shift in either of these two schedules. Since the absolute

value of the labor demand elasticity is increasing in the share of intermediate inputs, a given

shift in the labor demand or supply schedule has a smaller effect on the real wage, the greater

is the share of intermediate inputs in production. This illustrates the second channel by which

intermediate inputs are individually helpful.

The mechanism that makes labor specificities an individually promising real feature has to

do with the fact that the real wage adjusts also according to the last term in (17), in addition

to the middle two terms. As is clear from the decomposition, this last term captures the

effect of labor specificities on the adjustment in the real wage faced by the firm. Since the

firm employs a specific type of labor, the demand for this labor input depends directly on the

demand facing the firm for its output, and thus inversely on the relative price of the output

which, given the prices charged by other firms, is determined by the real wage to the extent

it accounts for the firm’s marginal cost.17 Thus, any change in the relative price due to a

movement in the real wage would cause a counter-forcing shift in the labor demand schedule,

which would offset partially the shift induced by variations in real aggregate demand when

holding constant the relative price, resulting in smaller movements in the real wage and in

the relative price at the first place. It is through this negative feedback between adjustments

in the real wage and adjustments in the desired relative good price that labor specificities

serve to restrain the adjustments in the wage and the price to magnify the real effect of the

nominal disturbance. The larger is the price elasticity of demand for goods, θ, the greater is

This is so since a larger θ implies a greater elasticity of substitution between the individually differentiated

goods, and thus the firm can rely less on substitution between the composite intermediate input and labor while

more on substitution between the individual goods. As a consequence, when θ increases, the firm’s demand for

labor becomes less sensitive to variations in the real wage. This tension between these two dimensions of factor

substitutions exists if only if both intermediate inputs and labor are used in production and there is some degree

of substitutability between them. This is why θ enters this elasticity only if φ 6= 0 or 1 and e > 0.
17To see this more clearly, combine (33) and (43), while setting α = 0 and N = 1, to derive the desired relative

price response by a type i firm to changes in its real wage cost as p∗i − p̄ = (1− φ)(wi − p̄), and combine (33),

(37), and (38), while setting α = τ = F = 0 and ω2 = 1, to derive the schedule of demand for a type i labor as

li = −eφ(wi − p̄)− θ(p∗i − p̄) + z, with the total sales, z, as a shift variable. Note that, with labor specificities,

there is a prevailing real wage for each type of labor, and an individual change in one prevailing wage does not

affect the difference between z and y [again, this can be seen by combining (33) and (35), recognizing that wi

may be different from wj for i 6= j]. Also note that, in the case with homogenous labor input, the labor demand

schedule is dependent of the demand for aggregate output, but independent of any relative output price (see

Footnote 14).
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the counter-forcing shift resulting from a given change in the relative price; and, the greater

is the labor supply elasticity, ξ−1, the smaller is the offsetting effect of a given counter-forcing

shift on the adjustment in the real wage. This is why this last term is decreasing in θ but

increasing in ξ−1.18

More importantly, this very last term in (17) also captures the offsetting interaction between

the two individually promising mechanisms. On the one hand, the presence of intermediate

inputs attenuates the feedback restraint embodied in labor specificity and thus its impact on

the real wage adjustment. This is done through the two channels that make intermediate inputs

themselves individually promising. First, with φ share of intermediate inputs in production, a

one percent movement in the real wage leads to only a (1−φ) percent change in the firm’s real

marginal cost. Thus, the firm’s desired relative price change in response to a given movement

in the real wage is attenuated by a factor of φ, and so is the resulting counter-forcing shift in

the labor demand schedule as induced by labor specificity (see Footnote 17). This is why in this

last term, θ is multiplied by (1−φ). Second, given e > 0, a larger φ gives rise to a greater labor

demand elasticity, imputed to which a smaller offsetting effect on the real wage adjustment of

a given counter-forcing shift in the labor demand schedule (see Footnotes 14-17). This is why

in this last term, eφ is added to ξ−1. These two sources of attenuation reinforce to weaken the

power of labor specificities in generating strategic complementarities and persistence.19 On

the other hand, such negative interaction is so strong that its effect generally dominates the

effects of intermediate inputs on Γ as via the first three terms on the right-hand side of (17)

that capture their individual promise. As a result, with the presence of labor specificities in the

first place, the use of intermediate inputs in production serves even to increase the magnitude

of Γ, and thus to decrease the degree of strategic complementarities and persistence.
18This is to say, a greater labor supply elasticity reduces the contribution of labor specificities to lowering Γ.

If we set φ = 0 in (17), then Γ = (σ + ξ)/(1 + θξ), which is an increasing function of ξ−1 provided that θσ > 1.

This is in contrast to the case with labor homogeneity, where Γ is given by (σ + ξ), which is clearly decreasing

in ξ−1. Thus, in the absence of intermediate inputs in production, a higher elasticity of labor supply implies a

larger degree of persistence in the case with labor homogeneity, but a smaller degree of persistence in the case

with labor specificities. It can be shown that, in the case with intermediate inputs and labor homogeneity, Γ is

decreasing, invariant, or increasing with ξ−1, if (σe − 1)φ is less than, equal to, or larger than θ(1 − φ). Since

the use of intermediate inputs also reduces the contribution of labor specificities to lowering Γ, when both these

two real features are present, Γ, and thus the degree of persistence, become less sensitive to the magnitude of

labor supply elasticity, as will be illustrated by the results to be reported in the subsequent sections.
19It is worth noting that this last term in (17) is an increasing function of not only φ, but also e for any φ > 0.

This should be in contrast with the third term in (17), which is an decreasing function of e for any φ > 0.
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3.3. Analytical Result

In this section, I further illustrate the consequence of the negative interaction between

specific factors and intermediate inputs in the light of (14). The following proposition shows

that this interaction not only leads to a reduction in the influence of factor specificities on

strategic complementarities and persistence, but generally turns intermediate inputs into a

detrimental device. To help exposition, I present here the analytical result only for the case

with no capital, and leave the discussion on the quantitative implications of the more general

result for the case with capital to the next section.

Proposition 3.1: Set α = F = 0, and ω2 = 1. Fixed σ ≥ 0, ξ > 0, θ > 1. Then, for any

e > e ≡ µ[ξ2θ + ξ(1− µ)]−1, Γ(φ) is C1 on [0, 1), and there exist 0 < φ∗ < φ∗∗ < 1 such that

Γ′(φ) > 0 if φ ∈ [0, φ∗), “ = ” if φ = φ∗, “ < ” if φ ∈ (φ∗, 1), (18)

Γ(φ) > Γ(0) if φ ∈ (0, φ∗∗), “ = ” if φ = φ∗∗, “ < ” if φ ∈ (φ∗∗, 1), (19)

where Γ′(0) is defined as the right-hand derivative of Γ(φ) at φ = 0.

According to the proposition, under fairly general parameter restrictions, the presence of

intermediate inputs reduces the contribution of labor specificities to lowering Γ so significantly

that the effect more than offsets their contribution to lowering Γ under labor homogeneity in

a local and in a global sense with respect to the intermediate input share, unless the share

exceeds two successive threshold values, φ∗ and φ∗∗. The parameter values under which the

proposition holds largely cover their empirically plausible ranges. For example, the long-run

average markup of price over marginal cost is empirically small, suggesting a value of e close

to ξ−2θ−1.20 In the case with no production subsidy and a markup of 5%, corresponding to a

value of θ of 21, the proposition holds for all e > 0.0005 if ξ = 10, for all e > 0.002 if ξ = 5, and

for all e > 0.05 even if ξ is as small as 1 (corresponding to an hours-worked elasticity as large

as 1). Even for a markup as large as 11%, corresponding to a value of θ as small as 10, these

lower bounds on e are only increased by a factor of about 2, and thus stay small in general.

In the case with a production subsidy that eliminates steady-state monopolistic distortions,

these lower bounds on e are even smaller. According to the recent estimates by Basu (1995)

and Rotemberg and Woodford (1996, 1999), a value of e in the range of 0.36 and 0.69 can be

empirically plausible.
20While most studies have a markup of about 11%, the recent studies by Basu and Fernald (1997b, 2000)

suggest it can be as small as 5% once controlling for capacity utilization rates.
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3.4. Quantitative Implications

I turn now to assessing the quantitative implications of the more general result for the case

with capital. To save space, from now on and throughout the rest of the paper, I shall continue

to focus my discussion and analysis for the case with capital but without production subsidy.21

Figure 1 plots Γ against the share of intermediate inputs, φ, under factor specificities. In

generating the figure, α is set to 0.33, as is standard in the literature.22 The elasticity of

substitution between differentiated goods, θ, is set equal to 10, as in Chari et al. (2000). There

are four panels in the figure, each under a different combination of values for the relative risk

aversion in consumption, σ, and in hours worked, ξ. Though some studies suggest that the

value of σ can be as small as 0 or as large as 30, the general consensus is that it is between

1 and 10 [e.g., Prescott (1986), Mehra and Prescott (1985, 1988), and Kocherlakota (1996)].

The value of ξ is set in the range from 5 to 20, corresponding to intertemporal hours-worked

elasticity of 20% to 5%, as to be consistent with the empirical evidence.23 The consensus in

the literature about the value of e, the elasticity of substitution between primary factors and

intermediate inputs, is that it is between 0 and 1.24 For tractability, however, an extreme value

of e, either 0 or 1, is often assumed in the existing studies.25 I take here a diagnostic approach

and thus each panel displays Γ for five different values of e, ranging from 0 to 1.
21The results for the cases with production subsidy or\and without capital are qualitatively similar and

quantitatively more striking. These results are not reported here but available upon request from the author.
22In the light of the evidence that long-run profits are close to zero [e.g., Basu and Fernald (1997a)], α should

correspond closely to the share of cost of capital in total value added in the National Income and Product

Account (NIPA), with an implied value of about one third. For the case with a fixed cost in the production

function (4), and given the assumption that total production subsidy is equal to total lump-sum tax, α can be

formally calibrated to 0.33 using consistent NIPA data, by setting the steady-state ratio of fixed cost to gross

output equal to (θ− 1)−1 (so that steady-state profits are zero and there are no incentives for firms to enter or

exit industries in the long run).
23See, for example, Pencavel (1986), Altonji (1986), Ball (1990), and Card (1994). Similar results have been

obtained for greater labor supply elasticities, such as those suggested by MaCurdy (1983), Mulligan (1998),

Kimmel and Kniesner (1998), and Rupert, Rogerson, and Wright (2000). See Footnote 18.
24See, for example, the aforementioned estimates by Basu (1995) and Rotemberg and Woodford (1996, 1999).

In the case with µ > 1, restricting e to being less than 1 has a theoretical advantage in addition to its seeming

empirical merit: for any φ between 0 and 1, the corresponding φ̃ also lies between 0 and 1. If µ = 1, however,

then φ̃ = φ regardless of the value of e.
25For the Leontief specification (i.e., e = 0), see, for example, Rotemberg and Woodford (1995) and Woodford

(2003). For the Cobb-Douglas specification (i.e., e = 1), see, among others, Basu (1995), Bergin and Feenstra

(2000, 2001), Linnemann (2000), Hillberry and Hummels (2002), Ambler et al. (2002), Huang and Liu (2003),

and Yi (2003). Basu and Kimball (1997) consider both specifications.
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As can be seen from the figure, if e is set to 0, then Γ is almost invariant to changes in

φ, implying that the reduction in the impact of factor specificities on Γ due to the presence

of intermediate inputs is significant enough to essentially cancel out the impact of the latter

on Γ under factor homogeneity [see, also, Woodford (2003)]. In contrast, in all cases with

e > 0, as φ rises from 0, Γ keeps increasing until φ reaches a threshold value, φ∗, then Γ

starts to decrease, but will stay above its value at φ = 0 until φ reaches another threshold

value, φ∗∗. This implies that, locally for all φ ≤ φ∗ and globally for all φ ≤ φ∗∗, the presence of

intermediate inputs reduces the contribution of factor specificities to lowering Γ so significantly

that the effect more than offsets their contribution to lowering Γ under factor homogeneity. In

consequence, as φ rises from 0 to φ∗, the degree of strategic complementarities and persistence

will keep declining, and will then start to increase as φ rises further, but will continue to be

smaller than in the case without intermediate inputs, until φ rises above φ∗∗. This pattern of

Γ in varying with φ is consistent with what is suggested by Proposition 3.1.

Two observations at this point are worth mentioning. First, in all panels of the figure,

the threshold value φ∗ lies between 0.4 and 0.7 or in its close vicinity, which conforms to an

empirically reasonable range for the share of payment to intermediate inputs in total production

cost.26 The threshold value φ∗∗, on the other hand, lies far beyond this range and is often

close to 1. Second, when φ takes on values in this range, the magnitude of Γ is often several

times greater than its value at φ = 0 even for small or moderate e. In the lower-right panel,

for instance, the value of Γ is about 0.13 if φ = 0, while if φ takes on values in its empirically

plausible range Γ can be as large as 0.27 for e = 0.1, 0.34 for e = 0.2, 0.46 for e = 0.5, and

0.58 for e = 1.27 Recall that a value of e between 0.36 and 0.69 is empirically plausible in the
26With markup pricing, φ, which measures the cost share, equals the share of intermediate inputs in gross

output times the steady-state markup. Jorgenson, Gollop, and Fraumeni (1987) estimate the revenue share of

materials in total U.S. manufacturing output of at least 50 percent over the period 1947-1979. A similar figure

can be obtained using more recent data covering 1958-1996 for 459 4-digit SIC U.S. manufacturing industries

from the NBER Manufacturing Productivity Database (constructed by Eric J. Bartelsman, Randy A. Becker,

and Wayne B. Gray, 2000), with much of it derived from the U.S. Annual Survey of Manufacturing. Huang, Liu,

and Phaneuf (2004) using data in the 1998 Annual Input-Output Table of the Bureau of Economic Analysis

(BEA, 1998) estimate the ratio of “total intermediate” to “total industry output” for the manufacturing sector

of 0.6. Incidentally, Nevo (2001) finds the share of raw materials in the U.S. food industry (SIC 20) of also about

0.6, based on the Annual Survey of Manufacturers over the period 1988-1992. The recent historical study by

Hanes (1999) indicates that the input-output structure in U.S. economy was less sophisticated in the interwar

period than in the postwar period, suggesting a possibly smaller value of φ before World War II.
27A value of Γ in the range of 0.10 to 0.15 is required to generate substantial strategic complementarities to

explain roughly the observed degree of sluggishness of aggregate price adjustments in response to variations in
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light of the estimates by Basu (1995) and Rotemberg and Woodford (1996, 1999). Together,

these observations suggest that the consequence of the offsetting interaction between specific

factors and intermediate inputs for strategic complementarities and persistence is significant

for empirically plausible parameter values.

4. Implications for Macro-Dynamics

In this section, I solve analytically for equilibrium dynamics to make transparent how Γ

determines the response of real aggregate output to variations in nominal aggregate expenditure

or shocks in money supply. I then derive a necessary and sufficient condition for the response to

be hump-shaped, solve analytically for the timing of the peak, and characterize the condition

and the timing by Γ along with parameters governing a shock process. Together, these establish

the positive relationship between the degree of strategic complementarities in pricing and the

amount of persistence and delay in the real effect of a nominal shock. This relationship, when

coupled with those results derived in the previous section, indicates a potentially significant

consequence of the offsetting interaction between specific factors and intermediate inputs for

propagation of nominal shocks. Finally, I simulate the model to confirm conclusions drawn

from analytical results. In particular, I demonstrate, using impulse response functions, how the

interaction between the two individually promising features reduces the degree of persistence in

the response of real aggregate output, and diminishes the possibility of a hump in the impulse

response function or shifts the timing of the hump to an earlier date.

4.1. Impulse Response Functions: Closed-Form Solutions

I begin by deriving closed-form solutions for equilibrium dynamics. Substituting into (13)

the equation defining the price level, p̄t+s = 1
N

∑N−1
r=0 pt+s−r, for s = 0, . . . , N − 1, collecting

terms and rearranging, I obtain

pt =
1− Γ

N − 1 + Γ

N−1∑

s=−N+1

bsEtpt+s +
Γ

N − 1 + Γ

N−1∑

s=0

Etỹt+s, (20)

where bs equals (N − |s|)/N for s 6= 0 and 0 for s = 0.

To help sharpen the results, I will set N equal to 2 throughout this subsection, so that

there is a minimum amount of exogenous nominal stickiness. In accordance, (20) simplifies

to a second order difference equation in pt. Applying to it the standard methods for solving

nominal expenditure under the observed frequency of price adjustments in an economy such as that of the U.S.

See, for example, Rotemberg and Woodford (1997).
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linear difference equations and the law of iterated expectations, I obtain a recursion in pt,

pt = apt−1 +
2aΓ

1− Γ

∞∑

i=0

ai(Etỹt+i + Etỹt+i+1), (21)

where the autoregressive coefficient a is given by

a =
1−√Γ
1 +

√
Γ

. (22)

Denote by µt the growth rate in nominal aggregate spending ỹt. Combining (21) and its lagged

version with the relation ỹt = p̄t + yt, and using again the equation defining the price level, I

obtain a recursion in real GDP, yt, as

yt = ayt−1 +
1 + a

2
µt − aΓ

1− Γ

∞∑

i=0

ai[2
i∑

j=1

(Etµt+j + Et−1µt+j−1) + Etµt+i+1 + Et−1µt+i], (23)

with the understanding that
∑0

j=1(Etµt+j + Et−1µt+j−1) ≡ 0.

The autoregressive coefficient a in (23) is the key to determining how an initial response

of yt to an innovation in µt will evolve over time. As will become more clear below, a bigger

a implies a larger degree of persistence in output response and a greater possibility of a hump

in the impulse response function. In the light of (22), a is a monotone decreasing function of

Γ, and is smaller than 1 in absolute value for all Γ > 0. If Γ ≥ 1, then a ∈ (−1, 0], and there is

no endogenous persistence in output dynamics. If Γ < 1, then a ∈ (0, 1), and output response

is endogenously persistent. That is to say, persistence exists if and only if there are strategic

complementarities between the pricing decisions by firms. The smaller Γ is, the larger is a,

and the greater is the degree of persistence.

To make more transparent the dependance of output persistence on a and thus on Γ, I

proceed now to further simplify (23). To do so, I need to specify a nominal spending growth

rule. To choose a specification that has some empirical appeal, note that, under the quantity

theory of money with a constant velocity, growth in nominal expenditure corresponds to growth

in nominal money supply. Hence, I consider a stationary ARMA(1,1) specification to allow the

empirically observed high-order dynamics in the response of money growth to an exogenous

monetary policy shock, as in Edge (2000). Specifically, I consider the following process for µt,

µt = ρµt−1 + εt + ϕεt−1, (24)

where εt is a white noise process. I assume a zero steady-state growth in nominal expenditure,

corresponding to a zero steady-state inflation rate, so there is no constant term in (24). While
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stationarity of µt requires |ρ| < 1 so that the autoregressive component of (24) can have a

MA(∞) representation, invertibility of the moving average component of (24) requires |ϕ| < 1.

Under the specification in (24), and given that |a| < 1 and |ρ| < 1, I can solve from (23)

the MA(∞) representation for yt,

yt = ϕ0εt +
∞∑

i=1

(ϕ0a
i + ϕ1ai)εt−i, (25)

where the coefficients ϕ0, ϕ1, and ai are given by

ϕ0 =
(1− ρ)(1 + a)2 + (1− ϕ)(1− a2)

4(1− aρ)
,

ϕ1 =
(1− ρ)(ρ + ϕ)(1 + a)2

4(1− aρ)
, (26)

ai =
i−1∑

j=0

ai−j−1ρj , ∀i ≥ 1.

We note that if a 6= ρ, then ai = (ai − ρi)/(a − ρ) for all i ≥ 1. It can be verified that the

coefficients of the infinite-order moving average process (25) are absolutely summable, so the

infinite sequence in (25) generates a well-defined covariance-stationary process.

With (25), I can now derive analytically the impulse response function of real GDP following

an innovation in the growth rate of nominal expenditure. The effects of εt on yt+i are given by

∂yt

∂εt
= ϕ0,

∂yt+i

∂εt
= ϕ0a

i + ϕ1ai, ∀i ≥ 1. (27)

Thus, if a one percent shock occurs in εt, then there will be an immediate output response

yt = ϕ0 at time t, and subsequent responses yt+i = ϕ0a
i + ϕ1ai at time t + i, for all i ≥ 1.

How persistent the responses are depends on how large are the responses at time t + i relative

to the initial response at time t. This is the concept of dynamic contract multipliers, given by

∂yt+i/∂εt

∂yt/∂εt
= ai +

ϕ1

ϕ0
ai, ∀i ≥ 0, (28)

assuming ϕ0 6= 0, and with the understanding that a0 ≡ 0. Greater contract multipliers imply

more persistent output responses. It is worth noting that, both the actual impulse responses

(27) and the dynamic contract multipliers (28) depend only on i, the length of time separating

the shock (εt) and the observed value of the output response (yt+i). They do not depend on t;

that is, they do not depend on the date when the shock occurs or the dates of the observations

themselves.

With the closed-form solutions for output dynamics, I can now state the main results of

this subsection that the degree of persistence and the likelihood of a hump on the impulse
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response function of real GDP depend positively on a and thus negatively on Γ. Without loss

of generality, attention in the rest of this subsection will be restricted to the case in which

there is some degree of strategic complementarities and endogenous persistence, that is, to the

case with Γ ∈ (0, 1) [thus with a ∈ (0, 1)]. I consider (ρ, ϕ) ∈ [0, 1)2 in the light of the empirical

evidence provided in Edge (2000).

Proposition 4.1: The values of the actual impulse responses (27) and the dynamic contract

multipliers (28) are strictly positive and strictly increasing in a (thus strictly decreasing in Γ).

Proposition 4.1 says that the response of real GDP to a positive (negative) innovation

in the growth rate of nominal expenditure is positive (negative) on impact, as well as in all

periods following the innovation. Given that a ∈ (0, 1) and ρ ∈ [0, 1), (26) and (27) imply

that limi→∞(∂yt+i/∂εt) = 0, so that the effect will eventually die out. In fact, as will be

shown in the Appendix, once the response starts to level off or decline, it will keep declining

forever and, therefore, will approach zero monotonically from that point onward. Yet, the

proposition says that the effect will die out more gradually, the greater is a. Further, it does

not preclude the possibility that the response may first increase before starting to decrease; that

is, it does not rule out the possibility of a hump-shaped impulse response function. What the

above observations do suggest is that there can be at most one hump in the impulse response

function, the existence of which requires that the response in the immediate subsequent period

following the innovation is greater than the response on impact.

Inspecting (26) and (28) reveals that a hump is more likely to occur, the greater is a (or the

smaller is Γ). This is so since, first, as will be shown in the Appendix, (ϕ1/ϕ0)ai is increasing

in a (strictly increasing in a, unless ρ = ϕ = 0), and second, provided that a + ρ > 1, ai is

strictly increasing in i for small i. The following proposition characterizes the necessary and

sufficient condition for the existence of a hump in the impulse response function of real GDP.

Proposition 4.2: The impulse response function of real GDP is hump-shaped if and only if

Γ ≤
[
−(1− ρ)(2− ρ− ϕ) +

√
(1− ρ)2(2− ρ− ϕ)2 + 8(ρ + ϕ)(1− ρ)(1− ϕ)

4(1− ϕ)

]2

. (29)

As will be shown in the Appendix, (29) is the necessary and sufficient condition for the

inequality ∂yt+1/∂εt ≥ ∂yt/∂εt. As will also be shown there, there is generically no flat portion
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on the impulse response function of real GDP and, therefore, whenever this inequality holds

it holds mostly as a strict inequality, which, in light of the above discussions, is the necessary

and sufficient condition for the impulse response function to be hump-shaped.

Needless to say, a precondition for the possibility of a hump is for the upper bound in (29)

to be strictly positive.28 Whether or not this precondition holds depends upon the values of ρ

and ϕ. In the extreme case that ρ = ϕ = 0 (i.e., in the case that growth in nominal expenditure

follows a white noise process), the upper bound is zero and thus (29) will never be met and

a hump can never occur. But, as long as ρ and ϕ are not both 0, the upper bound is larger

than 0 and thus a hump is possible. In particular, there is the possibility of a hump if growth

in nominal expenditure follows a stationary AR(1) process [i.e., if ρ ∈ (0, 1) and ϕ = 0],29 an

invertible MA(1) process [i.e., if ρ = 0 and ϕ ∈ (0, 1)],30 or a stationary ARMA(1,1) process

with an invertible moving average component [i.e., if (ρ, ϕ) ∈ (0, 1)2]. In such a case, whether

a hump will actually occur depends upon how small is Γ (or how large is a).31

28It can be shown that for (ρ, ϕ) ∈ [0, 1)2 this upper bound always lies in [0,1).
29It is worth noting that neither the dynamic contract multipliers in (28) nor the upper bound in (29) are

monotone in ρ, which measures the degree of persistence in an AR(1) nominal expenditure growth. For instance,

it can be verified that (∂yt+1/∂εt)/(∂yt/∂εt) is strictly increasing in ρ for ρ ∈ (0, ρ∗), but is strictly decreasing

in ρ for ρ ∈ (ρ∗, 1), where ρ∗ = [2−
p

2(1− a)]/(1 + a) is strictly between 0 and 1 for all a ∈ (0, 1). It can also

be shown that the upper bound in (29) is small as is ρ close to either 0 or 1, but it is much larger for moderate

values of ρ. These observations suggest that a more persistent AR(1) nominal expenditure growth does not

necessarily imply a larger degree of output persistence, or a greater likelihood of a hump in the impulse response

function.
30It can be verified that both the dynamic contract multipliers in (28) and the upper bound in (29) are strictly

increasing in ϕ. Therefore, the bigger is the moving average coefficient in a MA(1) nominal expenditure growth

process, the larger is the degree of output persistence, and the greater is the likelihood of a hump in the impulse

response function.
31I focus here on output dynamics. As I show elsewhere, inflation dynamics are given by

πt = (1− ϕ0)εt +

∞X
i=1

h
ϕ0(1− a)ai−1 + ϕ1(ai−1 − ai) + (ρ + ϕ)ρi−1

i
εt−i.

The general result is that the impulse response function of inflation is always hump-shaped in such a Taylor-type

sticky-price (or sticky-wage) model, as long as Γ < 1. This is true even with a random-walk money process (i.e.,

even with ρ = ϕ = 0). This stands in contrast to results which would be obtained in a Calvo-type sticky-price

(or sticky-wage) model. For instance, with a random-walk money process, neither the impulse response function

of output nor the impulse response function of inflation can be hump-shaped in the latter model, regardless of

how small a Γ the model is embodied with. Interested readers are referred to Huang (2004) for details.
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Related to the possibility of a hump is the issue concerning the timing of the hump. The

following proposition shows that, when the impulse response function of real GDP is indeed

hump-shaped, the magnitude of a (and thus of Γ) may also affect when the hump is to occur.

Proposition 4.3: Suppose there is a hump in the impulse response function of real GDP

following an innovation in the growth rate of nominal expenditure at time t. The time at which

the hump occurs is t + 1 + [i∗], where

i∗ =





0.5, if ρ = 0,

a
1−a − ϕ0

ϕ1
a, if ρ > 0 and a = ρ,

log ϕ1+log(1−ρ)−log[(a−ρ)ϕ0+ϕ1]−log(1−a)
log a−log ρ , if ρ > 0 and a 6= ρ,

(30)

and [i∗] denotes the largest integer not exceeding i∗.

The assumption of a hump in the impulse response function of real GDP implies that i∗ in

(30) is well-defined and positive (see the Appendix). It can also be verified that i∗ is increasing

in a (and thus decreasing in Γ). Therefore, a greater a (or a smaller Γ) tends to induce a more

delayed peak in a hump-shaped impulse response function.

The results presented in this subsection so far have further detailed the messages conveyed

in Section 3. Since the degree of persistence, and the likelihood and timing of a hump are all

increasing in a and thus decreasing in Γ, the effect on Γ derived from the negative interaction

between specific factors and intermediate inputs has a negative consequence for propagation

of nominal shocks. To get a quantitative feel about this consequence, I plot in Figures 2-3 the

normalized impulse response of real GDP to a nominal expenditure growth shock [given by

the dynamic contract multipliers (28)] under factor specificities. The figures are generated for

the cases with AR(1) and ARMA(1,1) nominal expenditure growth processes, respectively. In

generating the figures, I have set σ = 1, ξ = 20, α = 0.33, and θ = 21, which are all empirically

plausible values. I consider each period in the model as corresponding to one quarter of a year,

and thus, with N = 2, the length of each price contract is equal to two quarters. Given the

quarterly frequency, I consider for the AR(1) process an autoregressive coefficient of ρ = 0.57,

as in Chari et al. (2000), and I add in a moving average component with a coefficient of

ϕ = 0.93 for the ARMA(1,1) process, as in Edge (2000). Displayed in each figure are four

panels, corresponding in a clockwise order to the cases with e = 0.1, e = 0.2, e = 0.5, and

e = 1. Five impulse response functions are plotted in each panel, corresponding to the cases
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with φ = 0 (solid line), φ = 0.3 (dashed line), φ = 0.5 (line with circles), φ = 0.7 (line with

stars), and φ = 0.9 (broken line with dots).

As these figures make clear, the consequence of the negative interaction between specific

factors and intermediate inputs is to reduce the degree of persistence in the response of real

GDP to a nominal expenditure growth shock (in both figures), diminish the likelihood of a

hump on the impulse response (Figure 2), and shift to an earlier date the timing of the peak

on a hump-shaped impulse response (Figure 3). Although I have only displayed the figures

for one set of empirically plausible parameter values (other than e and φ), similar results have

been obtained under other reasonable parameter values (not reported here).

4.2. Impulse Response Functions: Numerical Simulations

The assumption of a constant aggregate capital maintained thus far has allowed me to

obtain closed-form solutions to deliver the main messages of this paper in a highly transparent

way. As a robustness check to the main findings, I now relax this assumption and solve

numerically a fully specified monetary business cycle model with variable aggregate capital,

whereby money is introduced using the standard money-in-the-utility approach. Note that, up

to this point, I have not assumed any specific form of the utility function, because the analytical

results obtained so far do not hinge upon such a specification. To conduct numerical simulations

in this subsection, I do need to specify a functional representation for the household’s utility.

I assume that its period utility can be represented by the following parameterized function:

1
ν

log[bCν + (1− b)(M/P̄ )ν ] +
λ

η

∫ 1

0
(1− Lhi)

ηdi, (31)

where M/P̄ denotes its real money balances. Its budget constraint in period t is accordingly

modified as

P̄tCt + P̄t

∫ 1

0
Ii,t

[
1 +

ψ

2

(
Ii,t

Khi,t−1

)2
]

di + Et(Dt,t+1Bt)−Bt−1 + Mt −Mt−1

≤
∫ 1

0
Rk

i,tKhi,t−1di +
∫ 1

0
Wi,tLhi,tdi + Πt + TRt. (32)

Here 0.5ψIi,t(Ii,t/Khi,t−1)2 is a capital adjustment cost with a scale parameter ψ, and TRt is

a lump-sum transfer to the household. As are {Khi,−1}i∈[0,1] and B−1, the household’s initial

holdings of money, M−1, is taken as given.

An equilibrium can be defined similarly as in Section 2, with three modifications. First,

money market clears, while money growth follows a process such as the one specified in (24).

Second, the market clearing condition for the composite good now also takes into account of
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total capital adjustment cost. Third, total production subsidy plus lump-sum transfer is equal

to total indirect business tax plus newly created money.

To compute an equilibrium, I first substitute out a number of variables and reduce the

log-linearized equilibrium conditions to N +2 equations, including a pricing equation, N Euler

equations for capitals, and an Euler equation for money. Once I have these equations, I

compute a Markov equilibrium in which prices and allocations are functions of the state of the

economy. The state variables are lagged prices, the beginning-of-period capital stocks, and the

money growth rate. The decision variables are current prices, investments, and consumption.

The details of the computation procedure and the Matlab code are available upon request.

Figures 4-5 report the simulated impulse response of real GDP, normalized by its initial

response, to a money growth shock under factor specificities. The size of the shock is chosen so

that the money stock increases by one percent four quarters after the shock. In conducting the

simulations, I have set N = 4 (so the length of each price contract is equal to four quarters),

along with α = 0.33, β = 0.99, θ = 10, ν = −1.56, b = 0.94, δ = 0.02, and e = 1, which are

all widely used parameter values in the literature.32 Figure 4 is generated under an AR(1)

money growth process (ρ = 0.57) used in Chari et al. (2000), which is also in the line with

the evidence presented in King (1992), and Figure 5 is generated under an ARMA(1,1) money

growth process (ρ = 0.53 and ϕ = 0.93) used in Edge (2000). There are four panels in each

figure, corresponding in a clockwise order to the cases with the labor supply elasticity of 1, 0.5,

0.25, and 0.1. The labor supply elasticity is linked to (1−L)/L divided by (1−η). Thus these

cases correspond to the values of η of −1, −3, −7, and −19, respectively, given a steady-state

leisure-labor ratio of 2. There are five output responses in each panel, corresponding to the

cases with the intermediate input share of 0 (solid line), 0.2 (dashed line), 0.4 (line with circles),

0.6 (line with stars), and 0.8 (broken line with dots). In each case, the capital adjustment cost

parameter ψ is adjusted so that the initial response of total investment is as 2.3 times large as

that of real GDP, in accordance with the empirical evidence of Leeper, Sims, and Zha (1996).

Once again, as is evident from the figures, the consequence of the negative interaction

between specific factors and intermediate inputs is to reduce the degree of persistence in the

response of real GDP to a money growth shock, and to diminish the likelihood of a hump in the

impulse response function or shift to an earlier date the timing of the peak on a hump-shaped

impulse response. The results under other reasonable parameter values are similar, as I find in
32The values of ν and b can be drawn from the money demand literature. See Chari et al. (2000) for details.
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a sensitivity analysis (not reported here). In sum, the numerical simulations conducted here

conform to the basic findings elaborated by the analytical results obtained earlier.

5. Concluding Remarks

A central challenge to monetary business-cycle theory is to find a solution to the problem

of persistence and delay in the response of real economic activity to nominal disturbances. In

meeting this challenge, various real features of the economy have been proposed to enhance the

staggered price mechanism, which was found unable by itself to solve the persistence problem.

Two such features, specific factors and intermediate inputs, have been separately found helpful.

Models based on either of the two have also been used in the design of optimal monetary policy.

Yet these two individually promising mechanisms have not been investigated jointly.

The current paper represents some initial attempt in taking on this issue. I examine here

the interaction between specific factors and intermediate inputs in a staggered price-setting

framework that features jointly these two sources of production inputs. My main finding is on

an offsetting interaction between these two individually promising mechanisms, which leads to

a cancelation of much of the impact of each in propagating nominal shocks.

While this finding manifests a kind of challenge in search for robust monetary transmission

mechanism and design of optimal monetary policy, it can be viewed as a useful step along

the road. One natural extension is to examine the interaction of the two real features under

state-dependent pricing, instead of time-dependent pricing. Dotsey and King (2001, 2005)

demonstrate that these pricing rules may have different implications for different real features.

Although the nature of the interaction between these two sources of production inputs is

unlikely to change under state-dependent pricing, as the intuitions illustrated in Section 3

suggest, the quantitative implications of such negative interaction under a state-dependent

pricing rule is certainly an issue worth investigating.

More broadly speaking, issues concerning the robustness of mechanisms have only started

to receive attention [e.g., Dotsey and King (2001, 2005)]. As Basu (2005) observes, in attempts

to solve the persistent problem, “The standard paper in this literature takes a workhorse model,

and then adds to it a scattering of the mechanisms that have been proposed to enhance the

model,” while less attention has been paid to the interactions among the mechanisms. This

perhaps is harmless if the individual mechanisms are only independent or reinforcing. But this

paper shows that this is not always the case, and individually promising mechanisms can be

counter-forcing with a significant negative consequence. As Basu points out, an easy solution of

a set of robust mechanisms probably does not exist. Future research should both enhance our
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understanding and help our search for robust monetary transmission mechanism and design of

optimal monetary policy.

Appendix. Derivations and Proofs

Derivation of (13)-(14): Using the steady-state versions of (6) and (10), it is straightforward

to verify that the log-linear form of the marginal cost function is given by

qi,t = φp̄t + (1− φ)[αri,t + (1− α)wi,t], (33)

where recall that φ = φ̃µ1−e represents the share of payment to the intermediate input in total

production cost in the steady state. The log-linearized labor supply equation is

wi,t − p̄t = σyt + ξlhi,t, (34)

where I have replaced ct with yt on the right-hand side of (34) given that aggregate capital is

constant with no depreciation.

To log-linearize the market clearing conditions for goods, capital, and labor, I need to

first calibrate the fixed cost F . This can be done by setting steady-state profit equal to zero,

while using the steady-state pricing relation and the balanced-budget condition that aggregate

production subsidy is financed by aggregate indirect business tax. I also want to allow the

case with no fixed cost. This gives rise to a unified representation of F = (µIF − 1)Z. Then

using (1), (7)-(9), and the steady-state pricing relation, I obtain the log-linear forms of the

aforementioned market clearing conditions as, respectively,

zt =
µ− µIF φ

µ− φ
yt +

eµIF φ

µ− φ

∫ 1

0
(qi,t − p̄t)di, (35)

0 = ω1(qi,t − ri,t + gi,t) + (1− ω1)
∫ 1

0
(qi,t − ri,t + gi,t)di, (36)

lhi,t = ω2(qi,t − wi,t + gi,t) + (1− ω2)
∫ 1

0
(qi,t − wi,t + gi,t)di, (37)

where

gi,t =
(1− e)φ
1− φ

(qi,t − p̄t) + µ−IF [−θ(pi,t − p̄t) + zt], (38)

and I have used the long-linear form of the price index p̄t =
∫ 1
0 pi,tdi in simplifying (35). I have

also used the fact that, in the case with factor homogeneity, all household members are faced

with economy-wide factor prices and thus makes identical factor supply decisions.
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From (33)-(38), the real marginal cost facing firm i at t can be solved as

{(1 + ξ)− [α(1 + ξ)ω1 + ξ(1− α)ω2](1− eφ)} (qi,t − p̄t)

= (1− φ)
[
σ(1− α) + (ξ + α)

µ1−IF − φ

µ− φ

]
yt (39)

− (1− φ)[α(1 + ξ)ω1 + ξ(1− α)ω2]θµ−IF (pi,t − p̄t)

+
{

(1− φ)(ξ + α)
eφ

µ− φ
+ [α(1 + ξ)(1− ω1) + ξ(1− α)(1− ω2)](1− eφ)

} ∫ 1

0
(qi,t − p̄t)di.

Integrating (39) from 0 to 1 yields
∫ 1

0
(qi,t − p̄t)di = (1− φ)

[
σ(1− α)

ξ + α
+

µ1−IF − φ

µ− φ

] [
1− α

ξ + α
+

e(µ− 1)φ
µ− φ

]−1

yt. (40)

Substituting (40) back into (39) results in

qi,t − p̄t = (1− φ)
[
σ(1− α)

ξ + α
+

µ1−IF − φ

µ− φ

] [
1− α

ξ + α
+

e(µ− 1)φ
µ− φ

]−1

yt

− θµ−IF (1− φ)
1+ξ

α(1+ξ)ω1+ξ(1−α)ω2
− 1 + eφ

(pi,t − p̄t). (41)

Equation (41) relates a firm’s marginal cost to its relative price in addition to aggregate

output. This is so unless both capital and labor are homogenous inputs, then all firms face the

same marginal cost which is independent of firms’ relative prices but only of aggregate output.

Suppose at time t firm i can set a new price. This new price, pi,t, once set, will be in effect for

N periods. That is, pi,t+s = pi,t for s = 0, . . . , N − 1. I can therefore write (41) for the firm’s

entire price contract duration as

qi,t+s = (1− φ)
[
σ(1− α)

ξ + α
+

µ1−IF − φ

µ− φ

] [
1− α

ξ + α
+

e(µ− 1)φ
µ− φ

]−1

yt+s

+

[
1 +

θµ−IF (1− φ)
1+ξ

α(1+ξ)ω1+ξ(1−α)ω2
− 1 + eφ

]
p̄t+s (42)

− θµ−IF (1− φ)
1+ξ

α(1+ξ)ω1+ξ(1−α)ω2
− 1 + eφ

pi,t, for s = 0, . . . , N − 1.

Substituting (42) into the log-linear form of the optimal pricing rule (10),

pi,t =
1
N

N−1∑

s=0

Etqi,t+s, (43)

where I have set β = 1 for simplicity, and rearranging, give rise to equations (13) and (14),

where ỹt+s = p̄t+s + yt+s denotes nominal aggregate spending in period t+ s. Note that I have

dropped the individual firms’ index i on the left-hand side of (13) since firms are completely

identified by the time at which they can set a new price. QED
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Proof of Proposition 3.1: Consider the case with a production subsidy that eliminates

steady-state monopolistic distortions. In this case, Γ is given by

Γ(φ) = (σ + ξ)D(φ)−1(1− φ)(1 + ξeφ), (44)

where D(φ) ≡ 1 + ξθ + ξ(e − θ)φ, which is clearly positive for all φ ∈ [0, 1). Thus Γ(φ) is C1

on [0, 1). Its first order derivative is Γ′(φ) = (σ + ξ)D(φ)−2F(φ), where

F(φ) = ξ2e(θ − e)φ2 − 2ξe(1 + ξθ)φ + (ξ2θe− 1). (45)

Given that e > e, if e = θ, then F(φ) is a negatively-sloped straight line that crosses the φ-axis

strictly between 0 and 1. If e 6= θ, then F(φ) is a quadratic function, and there are two real

roots to the equation F(φ) = 0, one of which is always strictly between 0 and 1. In the case

that e > θ, F(φ) is strictly concave and the other root is smaller than 0; while in the case that

e < θ, F(φ) is strictly convex and the other root is greater than 1. These together show that

there exists φ∗ ∈ (0, 1) such that (18) holds.

I next use (44) to obtain Γ(φ)− Γ(0) = (σ + ξ)(1 + ξθ)−1D(φ)−1G(φ), where

G(φ) = −ξe(1 + ξθ)φ2 + (ξ2θe− 1)φ. (46)

Clearly, G(φ) is a strictly concave function. There are two real roots to the equation G(φ) = 0,

one of which is always 0 while the other of which is always smaller than 1. Given that e > e,

this second root is greater than 0. This combined with the previous paragraph implies that

there exists φ∗∗ ∈ (φ∗, 1) such that (19) holds.

The proof for the case with steady-state monopolistic distortions is much more involved,

and is thus omitted here but available upon request from the author. QED

Proof of Proposition 4.1: Given that a ∈ (0, 1) and (ρ, ϕ) ∈ [0, 1)2, it is clear from (26)

that ϕ0 and ai are strictly positive and ϕ1 is positive (strictly positive unless ρ = ϕ = 0). It is

also clear from the first two equations in (26) that

∂ϕ0

∂a
=

(1− ρ2) + a(1− ρ)[2(1 + ϕ)− a(1 + ρ)] + (1− ρϕ)(1− a)2

4(1− aρ)2
,

∂ϕ1

∂a
=

(1− ρ)(ρ + ϕ)(1 + a)[2 + ρ(1− a)]
4(1− aρ)2

, (47)

∂(ϕ1

ϕ0
)

∂a
=

2(1− ρ)(1− ϕ)(ρ + ϕ)
[(1− ρ)(1 + a) + (1− ϕ)(1− a)]2

.

It follows that ϕ0 is strictly increasing in a, and ϕ1 and ϕ1/ϕ0 are increasing in a (strictly

increasing in a unless ρ = ϕ = 0). Finally, the third equation in (26) reveals that a1 = 1 and

ai is strictly increasing in a for all i > 1. QED
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Proof of Proposition 4.2: I first show that, once the response of real GDP to an innovation

in the growth rate of nominal expenditure starts to level off or decline, it will keep declining

forever. Formally, I shall prove that, if, for some t ≥ 0 and some i ≥ 1, it is true that

∂yt+i−1

∂εt
≥ ∂yt+i

∂εt
, (48)

then it must be true for any j ≥ i that

∂yt+j

∂εt
>

∂yt+j+1

∂εt
. (49)

To prove (49) for all j ≥ i, it suffices to prove it for j = i. Using (27), I can write (48) as

ϕ0(1− a)ai−1 ≥ ϕ1(ai − ai−1), (50)

and write (49) for the case with j = i as

ϕ0(1− a)ai > ϕ1(ai+1 − ai). (51)

If ρ = 0, then from (26), (51) reduces to (aϕ0 +ϕ1)(1− a)ai−1 > 0, which clearly holds. I thus

only need to prove (51) for the case with ρ > 0. Using (26), (50) is equivalent to

[(a− ρ)ϕ0 + ϕ1] (1− a)ai−1 ≤ ϕ1(1− ρ)ρi−1, if a < ρ,

i ≥ 1
1− a

− ϕ0

ϕ1
a, if a = ρ, (52)

[(a− ρ)ϕ0 + ϕ1] (1− a)ai−1 ≥ ϕ1(1− ρ)ρi−1, if a > ρ,

and (51) is equivalent to

[(a− ρ)ϕ0 + ϕ1] (1− a)ai < ϕ1(1− ρ)ρi, if a < ρ,

i >
a

1− a
− ϕ0

ϕ1
a, if a = ρ, (53)

[(a− ρ)ϕ0 + ϕ1] (1− a)ai > ϕ1(1− ρ)ρi, if a > ρ.

Note that, since ρ > 0, we have ϕ1 > 0. It is then straightforward to show that each of the

three weak inequalities in (52) implies in order each of the three strict inequalities in (53).

The above result and the fact that the output response will die out eventually (see the

paragraph following Proposition 4.1) imply that, (i) there can be at most one hump on the

impulse response function, and (ii) the impulse response function is indeed hump-shaped if and

only if the response in the immediate subsequent period following the innovation is greater than
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the response on impact, that is, if and only if ∂yt+1/∂εt ≥ ∂yt/∂εt.33 In light of (26) and (28),

this necessary and sufficient condition for a hump is equivalent to

(1− ρ)(ρ + ϕ)(1 + a)
(1− ρ)(1 + a) + (1− ϕ)(1− a)

≥ 1− a, (54)

which, in light of (22), is equivalent to

2(1− ϕ)
√

Γ
2
+ (1− ρ)(2− ρ− ϕ)

√
Γ− (1− ρ)(ρ + ϕ) ≤ 0. (55)

Now view the left side of (55) as a function of
√

Γ, and denote it by J (
√

Γ). Note that this

is a strictly convex function, given that ϕ ∈ [0, 1). There exist two real roots to the equation

J (
√

Γ) = 0, the smaller of which is negative, while the larger of which is nonnegative and

equal to the nonnegative square root of the upper bound in (29). It follows that, (55) holds if

and only if (29) does. QED

Proof of Proposition 4.3: The hump shall occur at time t + i for some i ≥ 1 such that

∂yt+i−1

∂εt
≤ ∂yt+i

∂εt
>

∂yt+i+1

∂εt
, (56)

or, in light of (27), such that

ϕ0a
i−1 + ϕ1ai−1 ≤ ϕ0a

i + ϕ1ai > ϕ0a
i+1 + ϕ1ai+1. (57)

I now break into three cases.

Case 1 : ρ = 0

It is easy to verify that, for all i ≥ 1, the second inequality in (57) holds if and only if

(aϕ0 + ϕ1)(1 − a)ai > 0. This strict inequality always holds. Thus the hump can only occur

at time t + 1.

Case 2 : ρ > 0 and a = ρ

I derive from (57) the following two inequalities,

ϕ0a
i−1 + (i− 1)ϕ1a

i−2 ≤ ϕ0a
i + iϕ1a

i−1 > ϕ0a
i+1 + (i + 1)ϕ1a

i. (58)

Using (58) to solve for i, I obtain

i− 1 ≤ a

1− a
− ϕ0

ϕ1
a < i. (59)

33As will be shown in the proof of Proposition 4.3, there is generically no flat portion in the impulse response

function and, therefore, whenever this inequality holds it holds mostly as a strict inequality.
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Case 3 : ρ > 0 and a 6= ρ

I rewrite (57) into the following two inequalities,
(

ϕ0 +
ϕ1

a− ρ

)
ai−1 −

(
ϕ1

a− ρ

)
ρi−1 ≤

(
ϕ0 +

ϕ1

a− ρ

)
ai −

(
ϕ1

a− ρ

)
ρi

>

(
ϕ0 +

ϕ1

a− ρ

)
ai+1 −

(
ϕ1

a− ρ

)
ρi+1. (60)

Using (60) to solve for i, I obtain

i− 1 ≤ log ϕ1 + log(1− ρ)− log[(a− ρ)ϕ0 + ϕ1]− log(1− a)
log a− log ρ

< i. (61)

The assumption of a hump implies ϕ1/ϕ0 ≥ 1−a, which in turn implies (a−ρ)ϕ0 +ϕ1 > 0.

It can then be verified that the middle terms in (59) and (61) are well defined and positive.

Meanwhile, the fact that these middle terms are positive guarantees the existence of strictly

positive integers i that satisfy (59) and (61). Let i∗ be defined as in (30). Then the hump shall

occur at time t + i for i∗ < i ≤ 1 + i∗, that is, it shall occur at t + i = t + [1 + i∗] = t + 1 + [i∗].

Generically, i∗ so defined is not an integer, so there is generically no flat portion in the impulse

response function. This implies, as can be easily verified, that whenever the weak inequality

in (56) holds, it holds mostly as a strictly inequality. QED
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Figure 1. Γ as a function of φ: In each panel, the five curves, from bottom to top, correspond

in order to the cases with e = 0, 0.1, 0.2, 0.5, and 1, respectively.
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Figure 2. The normalized impulse response of real GDP (in quarters after a nominal

expenditure growth shock). Each panel plots five impulse response functions, corresponding

to the cases with φ = 0 (solid line), φ = 0.3 (dashed line), φ = 0.5 (line with circle),

φ = 0.7 (line with star), and φ = 0.9 (broken line with dot), respectively.

With an AR(1) nominal expenditure growth process (ρ = 0.57 and ϕ = 0).

(The length of each price contract is equal to two quarters.)
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Figure 3. The normalized impulse response of real GDP (in quarters after a nominal

expenditure growth shock). Each panel plots five impulse response functions, corresponding

to the cases with φ = 0 (solid line), φ = 0.3 (dashed line), φ = 0.5 (line with circle),

φ = 0.7 (line with star), and φ = 0.9 (broken line with dot), respectively.

With an ARMA(1,1) nominal expenditure growth process (ρ = 0.57 and ϕ = 0.93).

(The length of each price contract is equal to two quarters.)
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Figure 4. The normalized impulse response of real GDP (in quarters after a money growth

shock). Each panel plots five impulse response functions, corresponding to the cases with

φ = 0 (solid line), φ = 0.2 (dashed line), φ = 0.4 (line with circle),

φ = 0.6 (line with star), and φ = 0.8 (broken line with dot), respectively.

With an AR(1) money growth process (ρ = 0.57 and ϕ = 0).

(The length of each price contract is equal to four quarters.)
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Figure 5. The normalized impulse response of real GDP (in quarters after a money growth

shock). Each panel plots five impulse response functions, corresponding to the cases with

φ = 0 (solid line), φ = 0.2 (dashed line), φ = 0.4 (line with circle),

φ = 0.6 (line with star), and φ = 0.8 (broken line with dot), respectively.

With an ARMA(1,1) money growth process (ρ = 0.53 and ϕ = 0.93).

(The length of each price contract is equal to four quarters.)
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