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1. INTRODUCTION

Forecast evaluation in economics often involves a comparison of a parsimonious null model to a

larger alternative model that nests the parsimonious model.  Such comparisons are common in both asset

pricing and macroeconomic applications.  In asset pricing applications, the parsimonious benchmark

model usually is one that posits that an expected return is constant.  The larger alternative model attempts

to use time varying variables to predict returns.  If the asset in question is equities, for example, a possible

predictor is the dividend-price ratio.  In macroeconomic applications, the parsimonious model might be a

univariate autoregression for the variable to be predicted.  The larger alternative model might be a

bivariate or multivariate vector autoregression (VAR) that includes lags of some variables in addition to

lags of the variable to be predicted.  If the variable to be predicted is inflation, for example, the VAR

might be bivariate and include lags of the output gap along with lags of inflation.

 Perhaps the most commonly used statistic for comparisons of predictions from nested models is

mean squared prediction error (MSPE).  A closely related measure also in widespread use is correlation

between the parsimonious model’s prediction error and larger model’s forecasts (encompassing).  In this

paper we explore the behavior of standard normal inference for MSPE and encompassing statistics in

comparisons of nested models.  

Our starting point relates to an observation made in our earlier work (Clark and West (2005)):

under the null that the additional parameters in the alternative model do not help prediction, the MSPE of

the parsimonious model should be smaller than that of the alternative.  This is true even though the null

states that with parameters set at their population values, the larger model reduces to the parsimonious

model, implying that the two models have equal MSPE when parameters are set at population values. 

The intuition for the smaller MSPE for the parsimonious model is that the parsimonious model gains

efficiency by setting to zero parameters that are zero in population, while the alternative introduces noise

into the forecasting process that will, in finite samples, inflate its MSPE.  Our earlier paper (Clark and

West (2005)) assumed that the parsimonious model is a random walk.  The present paper allows a general
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parametric specification for the parsimonious model.   This complicates the asymptotic theory, though in

the end our recommendation for applied researchers is a straightforward generalization of our

recommendation in Clark and West (2005).

Specifically, we recommend that the point estimate of the difference between the MSPEs of the

two models be adjusted for the noise associated with the larger model’s forecast.  We describe a simple

method to do so.  We suggest as well that standard procedures (Diebold and Mariano (1995), West

(1996)) be used to compute a standard error for the MSPE difference adjusted for such noise.  As in Clark

and West (2005), we call the resulting statistic MSPE-adjusted.

In contrast to the simple Clark and West (2005) environment, under our preferred set of technical

conditions the MSPE-adjusted statistic is not asymptotically normal.  But we refer to the quantiles of a

certain non-standard distribution studied in Clark and McCracken (2001, 2005a) to argue that standard

normal critical values will yield actual sizes close to, but a little less than, nominal size, for samples

sufficiently large.  The Clark and McCracken (2001, 2005a) asymptotics and simulation quantiles indicate

that under certain circumstances, tests using the 10 percent normal critical value (1.282, for one-sided

tests) will have actual size between 5 and 10 percent, while those using the 5 percent normal critical value

(1.645, for one sided tests) will yield actual size between 1 and 5 percent.  The circumstances under

which this applies are: (1)one step ahead conditionally homoskedastic forecast errors, or (2)multistep

and/or conditionally heteroskedastic forecast errors when the larger model relies on exactly one more

parameter than the smaller model.  The second condition may seem special, but many asset pricing

applications in fact involve MSPE comparisons in which the larger model includes just one more

parameter.1  And even if these circumstances do not apply, simulations suggest that the normal

approximation will work reasonably well.  But, formally, comparing standard normal critical values

against Clark and McCracken's quantiles requires the conditions just noted.

Our simulations show that these quantiles are applicable with samples of size typically available. 

We complete  48 sets of simulations on one step ahead forecasts, with the sets of simulations varying
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largely in terms of sample size, but as well in terms of DGP.  In these simulations, use of the .10 normal

critical value of 1.282 resulted in 44 tests with actual size between .05 and .10, and 4 tests with size

slightly larger than .10.   The four tests with size that fall above the .10 upper bound predicted by our

theory all involve relatively small sample sizes.  The median size across the 48 sets is about 0.08.  

Forecasts generated using rolling regressions generally yielded more accurately sized tests than those

using recursive regressions.  Comparable results apply when we use the .05 normal critical value of

1.645: 44 tests have actual size between .01 and .05, while 4 with small sample sizes were slightly

oversized.  The median size is about .04.  These results are consistent with the simulations in Clark and

McCracken (2001, 2005a).

We focus on MSPE because empirical practice of applied researchers indicates that MSPE or root

MSPE are objects of great interest.2  All simulations also looked at standard normal inference for the raw

(unadjusted) difference in MSPEs.  We call this “MSPE-normal” in our tables.  Consistent with the

asymptotic theory and simulations in McCracken (2004) and Clark and McCracken (2001, 2005a),

MSPE-normal performed abysmally.  For the one-step ahead forecasts and nominal .10 tests, the median

size across 48 sets of simulations was less than 0.01, for example. 

The widespread use of MSPE might be ill advised if related moments lead easily to reliable

discrimination between nested models.  Our simulations therefore also examine an encompassing statistic

proposed by Chong and Hendry (1986) (“CH”,in our tables) and a certain statistic for nested models

proposed by Chao, Corradi and Swanson (2001) (“CCS”, in our tables).   Asymptotic normality of CH

follows from conditions and arguments such as those in West (1996); see Chao et al. (2001) for

conditions under which CCS has a standard limiting distribution.  We find that CH performs more poorly

than MSPE-adjusted.  In almost all of the 48 simulations, this statistic is more undersized than

MSPE-adjusted; the median size is about 0.06. CCS performs a little better than does MSPE-adjusted.  Its

median size is 0.11.  In terms of size adjusted power, MSPE-adjusted and CH perform better than CCS

and MSPE-normal.  For raw (unadjusted) power, MSPE-adjusted performs better than any of the other
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statistics.

We also briefly consider tests relating to multistep forecasts.  CH and CCS are asymptotically

normal or chi-squared under suitable conditions.  As noted above, the quantiles from Clark and

McCracken (2001, 2005a) can be used to rationalize use of standard normal critical values for

MSPE-adjusted, and multistep forecasts, when the larger model relies on exactly one more parameter than

the smaller model.  We apply standard normal inference to MSPE-adjusted using one DGP that conforms

to the requirement of a single extra parameter in the larger model, and one that does not.  There is little

apparent difference in performance of MSPE-adjusted across the two DGPs.  On balance, MSPE-adjusted

performs a little better than CH and CCS, a lot better than MSPE-normal.   The performance of CH and

MSPE-normal improves, that of CCS  and MSPE-adjusted degrades. 

Of course, one might use simulation-based methods to conduct inference on MSPE-adjusted, or,

for that matter, MSPE-normal.  One such method would be a bootstrap, applied in forecasting contexts by

Mark (1995), Kilian (1999), Clark and West (2005), and Clark and McCracken (2005a).  This prior work

has shown a bootstrap to be reliable (at least with models reasonably close to being correctly

specified)–reliable enough that, in the interest of brevity, we omit bootstrap results from this paper. 

Another method, which we do include in this paper, is to simulate the non–standard limiting distributions

of the tests, as in Clark and McCracken (2005a). We find that such a simulation–based method results in

modest improvements in size relative to MSPE-adjusted (median size across 48 sets of simulations =

0.11).

We interpret these results as supporting the use of MSPE-adjusted, with standard normal critical

values, in forecast comparisons of nested models.  MSPE-adjusted allows inference just about as accurate

as the other tests we investigate, with power that is as good or better, and with ease of interpretation that

empirical researchers find appealing.

Readers uninterested in theoretical or simulation details need only read section 2, which outlines

computation of MSPE-adjusted in what we hope is a self-contained way.   Section 3 describes the setup
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and computation of point estimates.  Section 4 describes the theory underlying inference about

MSPE-adjusted.  Section 5 describes construction of test statistics.  Section 6 presents simulation results. 

Section 7 presents an empirical example.  Section 8 concludes.  An Appendix available on request from

the authors includes some results omitted from the submitted paper to save space.

2. MSPE-ADJUSTED

We present our recommended procedure using what we hope is self-explanatory notation.  Exact

definitions are in subsequent sections.

Model 1 is the parsimonious model.  Model 2 is the larger model that nests model 1–that is,

model 2 reduces to model 1 if some model 2 parameters are set to zero.  The researcher is interested in 

step ahead forecasts.  The period t forecasts of yt+  from the two models are denoted 
^y1t,t+  and 

^y2t,t+ , with

corresponding period t+  forecast errors yt+ -
^y1t,t+  and yt+ -

^y2t,t+ .  The sample mean squared prediction

error are 
^2

1 and 
^2

2, computed as sample averages of (yt+ -
^y1t,t+ )

2
 and (yt+ -

^y2t,t+ )
2
.  Define a term “adj.”

(as in “adjustment”) as the sample average of (
^y1t,t+ -

^y2t,t+ )
2
.  Define 

^2
2-adj. as the difference between 

^2
2

and the “adj.” term just defined.  Let P be the number of predictions used in computing these averages. 

Thus,
^2

1=P-1 (yt+ -
^y1t,t+ )

2
,

^2
2=P-1 (yt+ -

^y2t,t+ )
2
,

^2
2-adj. = P-1 (yt+ -

^y2t,t+ )
2
 - P-1 (

^y1t,t+ -
^y2t,t+ )

2
.

The null hypothesis is equal MSPE.  The alternative is that model 2 has a smaller MSPE than

model 1.  We propose testing the null by examining not 
^2

1-
^2

2 but 
^2

1-(
^2

2-adj.), rejecting if this difference

is sufficiently positive.  Note that (
^2

2-adj.)<
^2

2, so the “adj.” term adjusts for the upward bias in MSPE

produced by estimation of parameters that are zero under the null.

Perhaps the computationally most convenient way to proceed is to define

(2.1)
^ft+  = (yt+ -

^y1t,t+ )
2
 - [(yt+ -

^y2t,t+ )
2
 - (

^y1t,t+ -
^y2t,t+ )

2
].

Now,
^2

1-(
^2

2-adj.) is simply the sample average of 
^ft+ .  So test for equal MSPE by regressing 

^ft+  on a

constant and using the resulting t-statistic for a zero coefficient.  Reject if this statistic is greater than
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+1.282 (for a one sided .10 test) or +1.645 (for a one sided .05 test).   For one step ahead forecast errors,

the usual least squares standard error can be used.  For autocorrelated forecast errors, an autocorrelation

consistent standard error should be used.

3. ENVIRONMENT

Let model 1 be the parsimonious model, model 2 the larger model.  Sometimes we will refer to

model 1 as the null model, model 2 as the alternative model.  For simplicity we assume the models are

linear and are estimated by least squares.  Computation of test statistics for nonlinear parametric models is

straightforward, though certain of our asymptotic results may not generalize, as noted below.  Let yt be a

scalar random variable whose prediction is of interest.  The parsimonious model uses a vector X1t to

predict yt.  The alternative uses a vector X2t, with the elements of X1t a strict subset of the elements of X2t:

(3.1) Model 1:   yt = X1t
*
1 + e1t, Ee1tX1t=0,

(3.2) Model 2:   yt = X1t
*
 + Zt

*
 + e2t X2t

*
2 + e2t, X2t (X1t , Zt ) , *

2 =(
*

,
*

) , Ee2tX2t=0.

In (3.1) and (3.2), E(yt|X1t) = X1t
*
1 and E(yt|X2t) = X2t

*
2.  Of course, 

*
= *

1 if EX1tZt =0, or if, as

discussed below, 
*
=0.  In (3.1) and (3.2), the unobservable regression disturbances e1t and e2t may be

serially correlated.  That is, we allow setups where overlapping data are used in forming multistep

predictions, in which case the disturbances follow an MA process of whose order is one less than the

forecast horizon.  As well, the disturbances may be heteroskedastic conditional on the right hand side

variables.  Our dating presumes that X1t and X2t are observed prior to yt and so can be used to predict yt.

For example, if the parsimonious model is an AR(1),  X1t is bivariate with X1t=(1, yt-1) .

As is indicated in (3.2), model 2 nests model 1 in the sense that when 
*
=0, model 2 reduces to

model 1.  So under the null,

(3.3)
*
=0, *

2 =( *
1  0 ), X1t

*
1=X2t

*
2, e1t=e2t et,
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The commonly examined implications of (3.3) include:

(3.4) Ee2
1t-Ee2

2t=0, (equal MSPE)

(3.5) Ee1t(X2t
*
2)=0, (Chong-Hendry form of forecast encompassing)

(3.6) Ee1tZt =0. (Chao, Corradi and Swanson test).

Under the alternative, the additional variables used by model 2 provide additional predictive

ability (
*

0):

(3.7)
*

0, Ee2
1t-Ee2

2t>0, Ee1t(X2t
*
2)>0, -Ee1t(X1t

*
1- X2t

*
2)>0, Ee1tZt 0.

That Ee2
1t-Ee2

2t is positive, and that Ee1tZt  is nonzero, when 
*

0, is evident.  That the correlation between

e1t and X2t
*
2 is positive is most easily seen in the special case in which EX1tZt =0 (i.e., X1t and Zt are

orthogonal).  For in this case, *
1=

*
, and a little algebra establishes that Ee1t(X2t

*
2) = E(Zt

*
)
2
, which is

positive.   More generally, if we let 
~Zt denote the residual of the projection of Zt onto X1t,

~Zt = Zt-E(Zt|Xt),

then Ee1t(X2t
*
2) = E(

~Zt
*
)
2
>0.  (To prevent confusion, we repeat that when 

*
0, then, in general, the

model 2 coefficient vector on X1t is not *
1.)  Since Ee1t(X1t

*
1)=0 even under the alternative, it also

follows that -Ee1t(X1t
*
1- X2t

*
2)>0.

One uses out of sample prediction errors to form sample analogues of the moments in (3.4), (3.5)

and (3.6).  To state precisely how one might do so requires some extra notation.3  Assume for simplicity

that forecasts are one step ahead, with obvious generalization to multistep forecasts.  Let the total sample

size be T+1.  The last P observations of this sample are used for forecast evaluation.  The first R

observations are used to construct an initial set of regression estimates that are then used for the first

prediction.  We have R+P=T+1.  Schematically:
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R observations P observations  

(3.8) |__________________________|_______________________|

1 R T+1=R+P

Let
^

1t and 
^

2t denote least squares estimates that rely on data from period t or earlier.  We distinguish

two schemes for using data to construct the regression estimates, because asymptotic and finite sample

results differ for the two.  In the recursive scheme, the size of the sample used to estimate  grows as one

makes predictions for successive observations.  One first estimates *
1 and *

2 with data from 1 to R and

uses the estimate to predict observation R+1 (recall that we are assuming one step ahead predictions, for

simplicity); one then estimates *
1 and *

2 with data from 1 to R+1, with the new estimate used to predict

observation R+2; ....; finally, one estimates *
1 and *

2  with data from 1 to T, with the final estimate used

to predict observation T+1.  In the rolling scheme, the sequence of regression estimates is always

generated from a sample of size R.   The first estimates of *
1 and *

2 are obtained with a sample running

from 1 to R, the next with a sample running from 2 to R+1, ..., the final with a sample running from

T-R+1 to T.  Examples of applications using each of these schemes include Campbell and Thompson

(2005) and Faust et al. (2005) (recursive) and Cooper et al. (2005) and Ang et al. (2004) (rolling).   The

rolling scheme is relatively attractive when one wishes to guard against moment or parameter drift that is

difficult to model explicitly.

It may help to illustrate with a simple example.  Suppose model 1 is a univariate zero mean

AR(1): X1t=yt-1, yt=
*
1yt-1+e1t.  Then the sequence of P estimates of *

1 are generated as follows for t=R, ...

, T:

(3.9) recursive: 
^

1t=[ s
t
=1(y2

s-1)]-1 [ s
t
=1ys-1ys];

rolling:
^

1t=[ s
t
=t-R+1(y2

s-1)]-1 [ s
t
=t-R+1 ys-1ys].

In each case, the one step ahead prediction error is 
^e1t+1 yt+1-yt

^
1t yt+1-X1t+1

^
1t.  (Note the dating: X1t+1,

not X1t.)
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More generally, write the predictions and prediction errors as

(3.10)
^y1t+1 X1t+1

^
1t,

^e1t+1 yt+1-
^y1t+1,

^y2t+1 X2t+1
^

2t,
^e2t+1 yt+1-

^y2t+1.

(In the notation of section 2, 
^y1t+1=

^y1t,t+1 and 
^y2t+1=

^y2t,t+1, a simplification of subscripts afforded by our

expositional decision to focus in this section on one step ahead forecasts.) Then sample analogues that

may be used to test (3.4) to (3.6), together with the acronyms that are used to reference these in the table

are:

(3.11) P-1
t
T

=R
^e2

1t+1 - P-1
t
T

=R
^e2

2t+1
^2

1-
^2

2, (MSPE-normal)

(3.12) P-1
t
T

=R
^e1t+1(X2t+1

^
2t) (CH)

(3.13) P-1
t
T

=R
^e1t+1Zt+1 . (CCS).

CH may be clearer if we explicitly note that in the notation of (3.10), CH is  P-1
t
T

=R
^e1t+1

^y2t+1.

The introduction remarked that under the null, we expect the sample MSPE from the

parsimonious model to be smaller than that from the alternative model.  To illustrate that result, and to

motivate that “MSPE-adjusted” statistic that we propose, observe that algebraic manipulations yield

^e2
1t+1 - 

^e2
2t+1 = -2

^e1t+1(
^y1t+1-

^y2t+1) - (
^y1t+1-

^y2t+1)
2

Thus MSPE-normal may be written

(3.14)
^2

1-
^2

2 P-1
t
T

=R
^e2

1t+1 - P-1
t
T

=R
^e2

2t+1 = -2P-1
t
T

=R
^e1t+1(

^y1t+1-
^y2t+1)  - P-1

t
T

=R(
^y1t+1-

^y2t+1)
2
.

Under the null, e1t is uncorrelated with both X1t and X2t.   It seems reasonable to expect, then, that

P-1
t
T

=R
^e1t+1(

^y1t+1-
^y2t+1)  0 (though as discussed below not all seemingly reasonable asymptotic

approximations imply that a large sample average of 
^e1t+1(

^y1t+1-
^y2t+1) will be zero).  Since 

-P-1
t
T

=R(
^y1t+1-

^y2t+1)
2

<0, we expect the sample MSPE from the parsimonious model to be less than that of

the alternative model.  The obvious adjustment to properly center the statistic so that it will, under the
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null, have approximate mean zero, is to adjust for the negative term -P-1
t
T

=R(
^y1t+1-

^y2t+1)
2

.  As in Clark

and West (2005), we call this MSPE-adjusted:

(3.15) P-1
t
T

=R
^e2

1t+1 - [P-1
t
T

=R
^e2

2t+1-P-1
t
T

=R(
^y1t+1-

^y2t+1)
2

]
^2

1-(
^2

2-adj.). (MSPE-adjusted)

We see from (3.14) that MSPE-adjusted is

(3.16)
^2

1-(
^2

2-adj.)  = -2P-1
t
T

=R
^e1t+1(

^y1t+1-
^y2t+1).

Thus, under the alternative we expect MSPE-adjusted to be positive, since, as stated in (3.7), under the

alternative -Ee1t(X1t
*
1- X2t

*
2)>0.  Hence we use one tailed tests in our simulations and empirical

examples.  

We shall compare, via simulations, the performance of MSPE-normal (3.11), Chong-Hendry

(3.12), Chao et al. (3.13), and MSPE-adjusted (3.15).  For each statistic, we rely on heteroskedasticity 

and autocorrelation consistent variance-covariance matrices.  For CH and CCS, we adjust these variance

covariance matrices for the reliance of predictions on estimated regression parameters as recommended

by West and McCracken (1998) and Chao et al. (2001).  We then compute t-statistics (MSPE-normal,

CH, MSPE-adjusted) or chi-squared statistics (CCS) and use standard critical values.  Some details are

presented in a subsequent section.  We wish to discuss here theoretical appropriateness of use of standard

critical values.   Unless otherwise stated, we maintain stationarity and moment conditions of the sort

spelled out in detail in West (1996) or Giacomini and White (2004).

For all four statistics, standard critical values are appropriate when P/R 0 under an asymptotic

approximation in which R , P  (West (1996), McCracken (2004), Clark and McCracken (2001,

2005a)).   In many applications P is small relative to R but not so small as to make P/R  0 obviously

attractive, an inference supported by simulation results reported below.

So we consider the complications that result if the P/R 0 condition seems unappealing.  Let us

take each of our four statistics in turn, with the discussion of MSPE-adjusted sufficiently involved that we
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put it in a separate section.  Throughout we rule out P/R 0, assume P , and maintain stationarity and

moment conditions of the sort spelled out in detail in West (1996) or Giacomini and White (2004).  We

do not attempt to maintain a uniform set of conditions for asymptotic analysis.  In particular, as will be

clear, we will freely move between approximations that result when R  as P  and those that result

when R is held fixed as P , opportunistically relying on whichever seems to give better guidance to our

finite sample results.  Approximations for R  are available for both rolling and recursive schemes, while

R fixed requires the rolling scheme. 

•MSPE-normal: To our knowledge there is no appealing set of conditions under which the t-statistics

computed using MSPE-normal are asymptotically normal.  The presence of the negative term

-P-1
t
T

=R(
^y1t+1-

^y2t+1)
2
 causes this statistic to be miscentered.  We use standard critical values in part

because some practitioners have used such values (e.g., Goyal and Welch (2003)), in part to contrast this

t-statistic to that of other statistics.  McCracken (2004) derives a non-standard distribution that results

under an R  approximation.  We shall find it useful to interpret certain simulation results for MSPE with

an R fixed approximation.

•CH: Conditions that establish asymptotic normality, once one adjusts for sampling error in estimation of

regression parameters used to make predictions, may be found in West (1996), West and McCracken

(1998) and West (2005).   These conditions include R .  For the rolling scheme, one must divide the

usual t-statistic by a certain function of R and P to produce an asymptotically normal test statistic.  This

function is spelled out in a subsequent section.  For the recursive scheme, CH requires *
1 0 for

asymptotic normality. 

•CCS: See Chao et al. (2001) for conditions that establish asymptotic normality.   These conditions

include R .  One has to adjust for sampling error in estimation of regression parameters used to make

predictions, as described in Chao et al. (2001).

4. INFERENCE ON MSPE-ADJUSTED
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With a little algebra, it can be established that

(4.1) MSPE-adjusted = 2P-1
t
T

=R
^e1t+1(

^e1t+1-
^e2t+1).

Harvey et al. (1998) propounded testing Ee1t(e1t-e2t)=0, arguing that this is an attractive implication of

encompassing.  Thus one can interpret us as proposing that a comparison of MSPEs be transformed into

an encompassing test, though our preferred interpretation is that we are executing a comparison of MSPEs

after adjusting for the upward bias in the MSPE of the larger model.4

In analysis of (4.1), for the most part we follow Clark and McCracken (2001, 2005a).  These

papers require that the estimator of regression parameters be nonlinear least squares (ordinary least

squares of course a special case).  They also require that multistep forecasts be made with what is called

the “direct” rather than “iterated” method. (To illustrate these terms, consider the univariate example of 

forecasting yt+  using yt.  The “direct” method estimates yt+  = yt  + ut+  by least squares, uses yt
^

t to

forecast, and computes a sample average of (yt+ -yt
^

t)
2
.  The “iterated” method estimates yt+1 = yt  + et+1,

uses yt(
^

t)  to forecast, and computes a sample average of [yt+ -yt(
^

t) ]
2
.5)

When (4.1)  is divided by the usual asymptotic standard error, Clark and McCracken call the

result “Enc-t.”   Their results for Enc-t include the following.  When R , P , with R/P approaching a

finite nonzero constant,  Enc-t is Op(1), with a non-standard limiting distribution.  This result applies for

both one step ahead and multistep ahead forecasts, and for conditionally heteroskedastic as well as

conditionally homoskedastic forecast errors.

For one step ahead forecasts in conditionally homoskedastic environments, Clark and McCracken

write the limiting distribution of Enc-t as functionals of Brownian motion that do not depend on the

specifics of the DGP.  The functionals do depend on: (a)the difference between the dimension of X2t and

X1t (i.e., the dimension of Zt in (3.2)), (b)the large sample limit of P/R; (c)whether the rolling or recursive

scheme is used.  In an unpublished appendix to Clark and McCracken (2001) that may be found on

Clark’s web page (<www.kc.frb.org/Econres/staff/tec.htm>), quantiles are given for 1 dimension of
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Zt 20 and for 20 different limiting values of P/R (specifically,  P/R = 0.1, 0.2, 0.4, 0.6, 0.8., 1.0, 1.2, 1.4,

1.6, 1.8., 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 20.0), with separate tables for rolling and recursive

sampling schemes.  Upon inspection of 400 sets of quantiles (one set for each value of the dimension of Zt

and each limiting value of P/R), one sees that apart from a couple of exceptions, and for both rolling and

recursive schemes,

(4.2) .90 quantile  1.282  .95 quantile

Recall that for one-tailed tests using standard normal critical values, the .90 quantile is 1.282.  The

implication is that for P and R sufficiently large–again, the Clark and McCracken (2001) asymptotics

require R  and P –for one step ahead predictions in conditionally homoskedastic environments,

standard normal inference on MSPE-adjusted will lead to nominal .10 tests that have actual size

somewhere between .05 and .10.

We are confident that this implication is one that can be relied on in practice.  We stress,

however, that we have no formal proof of the claim, nor do we even assert that the italicized assertion is

literally true: we consider the implication safe to assume in practice even as we note below a couple of

cases in which the .90 quantile is (slightly) above 1.282, and acknowledge that subsequent research might

reveal additional cases.

Let us elaborate.   We have not formally proved that the .90 and .95 quantiles of Clark and

McCracken’s (2001) distribution obey (4.2).  Rather, our observation is that the numerically computed

quantiles obey (4.2).  Also, while we have confidence in the code that computed the quantiles, we have

not “proved” that the code used to generate the critical values is correct in any formal sense.  Nor do we

claim that sufficiently many simulations were done that there is near certainty that all the many digits in

the tables are all correct.  Indeed, so many simulations were done that with high probability some of the

digits in some of the entries will be slightly off.  Now, of the 400 sets of tabulated values, all 400 obey

both inequalities in (4.2) for the recursive scheme, all 400 obey the upper inequality in (4.2) for the



14

rolling scheme but “only” 396 of the 400 obey the lower inequality for the rolling scheme.  The statement

above that (4.2) holds “apart from a couple of exceptions” reflects the fact that in four cases the .90

quantile is 1.29, barely above the 1.282 value stated in the inequality.6  Some other values are quite near

1.282, and it is possible that more extensive simulations intended to generate more accurate estimates of

the quantiles would push some other values slightly above 1.282.  It is our view that these or other

possible corrections to the exact values in the Clark and McCracken’s (2001) table are very unlikely to

undermine the practical relevance of interpreting a 1.282 critical value as defining a test of size

somewhere between .05 and .10.

As well, it is possible that the critical values for values of P/R not tabulated strongly violate the

inequalities. For example, consider the .90 and .95 quantiles for P/R=1.0 and P/R=1.2, dimension of Zt

=4 (as in one of our DGPs used in the simulation and in our empirical example), rolling scheme.  These

are:

.90 quantile .95 quantile

P/R=1.0 1.10 1.46

P/R=1.2 1.10 1.47

It is possible that for some value of P/R lying between 1.0 and 1.2, the .90 quantile shoots well above

1.282, or the 0.95 value drops well below.  But while there is some minor wiggling up and down as one

varies P/R across the 20 values stated above, there are no dramatic movements.  So we consider it

unlikely that critical values of P/R intermediate between tabulated ones will have markedly different

critical values. 

We therefore proceed on the understanding that use of a 1.282 critical value defines a test whose

size is somewhere between .05 and.10, when the dimension of Zt  20 and for P/R 20.0.  It might be of

interest to note when the .90 quantile is closer rather than farther from 1.282, to guide when inference is

likely to be relatively accurate.  As a rule, the .90 quantile is relatively near to 1.282, and thus tests using

1.282 as the critical value are likely to have size relatively near .10, under one or more of the following
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circumstances:

•P/R near 0 (recall that as P/R 0, MSPE-adjusted becomes asymptotically, normal, so the .90 quantile

approaches 1.282 as P/R 0);

•larger dimensions of Zt;

•rolling rather than recursive;

•for rolling, for P/R>1.  (The quantiles for rolling are broadly U-shaped in P/R, initially falling as P/R

increases from 0.1 but then rising as P/R approaches 20.0.  The terminal (P/R=20.0) values generally are

below but near the initial (P/R=0.1) values.  For the recursive scheme, the quantiles broadly fall as P/R

increases, with terminal values below those for the rolling scheme.)

Recall that the .95 quantile for a normal distribution is 1.645.  We note that inspection of the

Clark and McCracken (2001) tables also reveals that apart from a handful of cases

(4.3) .95 quantile.  1.645  .99 quantile.

The upper inequality in (4.3) holds for all tabulated entries.  The lower inequality is violated by 1

(recursive) or 14 (rolling) entries in which the .95 quantile is 1.65 or 1.66.  Thus for one step ahead

forecasts, tests using a critical value of 1.645 will define a test of size between .01 and .05

(approximately), for P and R sufficiently large.  We focus on the 1.282 critical value in part because our

sense is that practical implications of .10 and .05 rejections are more similar than those of .05 and .01

rejections, but mostly because it seems that tests of size .05 to .10 are of more interest to applied

researchers than tests of size .01 to .05.  Of course, others might have a different view, in which case use

of a 1.645 critical value will be of interest.

While one step ahead forecasts of conditionally homoskedastic errors are perhaps the leading

example in practice, much finance data displays heteroskedasticity.  And multistep predictions are

common.  Clark and McCracken (2005a) establish that when the dimension of Zt is 1, the quantiles

discussed above are still applicable even in the presence of conditional heteroskedasticity, and for multi-
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as well as one step ahead forecasts.

This leaves open inference when the dimension of Zt is more than 1, and there are conditionally

heteroskedastic and/or multistep forecasts.  For the rolling scheme, we tentatively offer an interpretation

of use of standard critical values.  This argument follows Clark and West (2005), who in turn follow

Giacomini and White (2004).  We do not present a formal argument for using standard critical values with

the recursive scheme outside the environment of the previous paragraph.  For what it is worth, the

simulations below suggest the normal approximation can work okay for the recursive scheme even

outside this environment, though we have no evidence or argument that these simulations are

representative.

For the rolling scheme, consider an asymptotic approximation in which R is held fixed, and P .

Giacomini and White (2004) show that under suitable conditions,
^e1t+1(

^y1t+1-
^y2t+1) is a well behaved

random variable.  These “suitable conditions” relax some of the Clark and McCracken (2001, 2005a)

restrictions: general nonlinear parametric models and estimators are allowed,, and multistep forecasts may

be made with the iterated as well as the direct method.  The result is that 
^e1t+1(

^y1t+1-
^y2t+1) obeys the usual

law of large numbers and central limit theorem as P :

(4.4) -2P-1
t
T

=R
^e1t+1(

^y1t+1-
^y2t+1) p -2E^e1t+1(

^y1t+1-
^y2t+1),

 -2P-½[ t
T

=R
^e1t+1(

^y1t+1-
^y2t+1) - E^e1t+1(

^y1t+1-
^y2t+1)] A N(0,V),

V = 4 × long run variance of
^e1t+1(

^y1t+1-
^y2t+1).

The long run variance figures into V even for one step ahead forecast errors.7

Consider first the Clark and West (2005) environment in which *
1=0 (i.e., the null model is that

yt+1 is a martingale difference and so one always predicts that yt+1 will be zero), and the rolling scheme is

used for prediction.  Then 
^e1t+1=e1t+1,

^y1t+1=0 and MSPE adjusted = -2P-1
t
T

=Re1t+1
^y2t+1.  Since we take R

as fixed, e1t+1
^y2t+1 is a stationary random variable.  In this special case, the expectation of MSPE-adjusted

is zero.  Standard normal inference will yield accurately sized tests for P sufficiently large.
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With R fixed, this result clearly may not hold when the null model relies on estimated parameters. 

We have 
^e1t+1(

^y1t+1-
^y2t+1)= et+1(

^y1t+1-
^y2t+1) + X1t+1 ( *

1-
^

1t)(
^y1t+1-

^y2t+1).  The first term has expectation

zero, but the second term, in general, does not.  Thus in (4.4), the value of E^e1t+1(
^y1t+1-

^y2t+1) in general is

non zero.  So under the null given in (3.3), as well as under the alternative given in (3.7), MSPE-adjusted

will converge in probability to a nonzero value as P  with R fixed.

In light of the asymptotic result (4.4), there is, however, a straightforward interpretation of the

usual t-statistic, in terms of confidence interval coverage.   A p-value of (say) .15 means that an 85

percent confidence interval around the estimate of E^e1t+1(
^y1t+1-

^y2t+1) contains zero.  Suppose that our

simulations cause us to report that (say) 18.4 percent of our t-statistics were above 1.282.  Then had we

constructed 90 percent confidence intervals, 81.6 percent of them would include zero.

While this is the only formally established interpretation we can offer to application of our tests

when the dimension of Zt is more than 1, and there are conditionally heteroskedastic and/or multistep

forecasts, we leave the door open to interpreting those simulations as hypothesis tests.  We find that the

simulated critical values are not too far from standard normal critical values (though we recognize the

possibility that there may be DGPs for which the critical values are quite distant from normal ones).  As

well, observe in (4.4) that the value of E^e1t+1(
^y1t+1-

^y2t+1) depends not only on the DGP but also on the

fixed value of R.   Larger values of R imply smaller absolute values of E^e1t+1(
^y1t+1-

^y2t+1); for R arbitrarily

large, E^e1t+1(
^y1t+1-

^y2t+1) will be arbitrarily near zero.  So for R reasonably large, we expect standard

normal critical values to be reasonably accurate, for any DGP.

Earlier, we observed that an approximation in which P/R  0 is not obviously appealing.  The

approximation that we have just discussed, which holds R fixed as P , thereby implying R/P  0, also

may not be obviously appealing.  Nonetheless, our simulation evidence finds that the R fixed

approximation works better than the P/R  0 approximation, in the following sense: the R fixed

approximation rationalizes the behavior of MSPE-adjusted (approximately normal) and MSPE-normal

(not normal) for large but empirically relevant values of P/R (say, P/R 2); the P/R  0 approximation
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rationalizes the behavior of MSPE-normal (theoretically approximately normal) only for small and

empirically uncommon values of P/R (say, P/R .10).

For MSPE-adjusted, how about if one considers the recursive scheme, for multistep forecasts

and/or forecasts that are conditionally heteroskedastic and the dimension of Zt is greater than 1?  Here we

return to the R  and P  asymptotics of Clark and McCracken (2001, 2005a).  As stated above, the

limiting distribution depends on data-specific parameters.  So Clark and McCracken (2005a) propose

constructing critical values via simulations of the asymptotic distribution, with certain parameters of the

distribution chosen to match certain moments of the actual data.  Our simulations also consider this

statistic, which we call  “MSPE-adjusted, simulation critical values.” This is abbreviated in our tables as

“MSPE-adj. simul cvs.”8

5. TEST STATISTICS

Our simulations allow for possibly multiperiod predictions.  These are constructed from

regressions  using overlapping data, as described in the next section.  With a prediction horizon of 1, let

^e1t+  and 
^e2t+  be the multistep forecast errors.  For MSPE-normal, CH, CCS, or MSPE-adjusted, let 

^ft+  be

an observation on the object of interest, with sample average f.  For example, for MSPE-normal, 

^ft+  = 
^e2

1t+ -
^e2

2t+ , f = (P- +1)-1
t
T

=R+ -1

^e2
1t+  - (P- +1)-1

t
T

=R+ -1

^e2
2t+  (P- +1)-1

t
T

=R+ -1

^ft+ .

For CH, recursive scheme, and MSPE-normal and MSPE-adjusted rolling and recursive schemes, our test

statistic is

(5.1) Pf / [estimator of long run variance of 
^ft+ -f]½.

For rolling regressions, CH was adjusted for uncertainty due to estimation of regression

parameters as suggested in West and McCracken (1998).   Let  =1-(P2
/3R2

) if P R, =(2R/3P) if P>R.

Let f be the sample value of CH, f = P-1
t
T

=R
^e1t+ (X2t+1

^
2t).   Then for such f, scaling the denominator of

the usual t-statistic (5.1)  by  produces an asymptotically normal test statistic:
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(5.2) Pf / [  × estimator of long run variance of 
^ft+ -f]½.

CCS was adjusted for uncertainty due to estimation of regression parameters as described in Chao

et al. (2001).

In estimation of the long run variance, for one step ahead predictions we used the sample variance

(MSPE-normal, MSPE-adjusted and CH) or the usual heteroskedasticity consistent estimator (CCS).   For

multistep predictions of horizon , we used Newey and West (1987) with a bandwidth of 1.5 .

For MSPE-adjusted, with simulation critical values, we followed the procedure described in Clark

and McCracken (2005a).

6. SIMULATION EVIDENCE

We use Monte Carlo simulations of simple bivariate data-generating processes to evaluate 

finite-sample size and power.  We use two baseline DGPs, both of which incorporate features common in

applications in which forecasts from estimated nested models are compared.  In one DGP, which is

motivated by asset pricing applications, the variance of the predictand yt is very high relative to the

variance of the alternative model’s additional predictors Zt, and those additional predictors are highly

persistent.  In the second baseline DGP, which is motivated by macro applications, the parsimonious

models’s regression vector X1t includes lags of the predictand yt; the alternative model’s Zt contains lags

of an additional, persistent variable.  We compare the tests listed in the previous section, for both the

rolling and recursive estimation schemes.

6.1  Experimental design

The first DGP, meant to reflect asset pricing applications, takes a basic form widely used in

studies of the properties of predictive regressions (see, for example Nelson and Kim (1993), Stambaugh

(1999), Campbell (2001) and Tauchen (2001)): 
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(6.1) yt = 0.5 + 
*zt-1+e1t, X1t=1, X2t=(1, zt-1) , zt = 0.15 + 0.95zt-1 + vt,

Et -1e1t=0, Et-1vt=0, var(e1t)=18.0, var(vt)=0.025, corr(e1t,vt)=-0.75;

*
=0 in experiments evaluating size, 

*
=0.35 in experiments evaluating power.

DGP 1 is calibrated roughly to monthly excess returns in the S&P500 (yt)  and the dividend price ratio

(zt).

While we focus on results for data generated from homoskedastic draws from the normal

distribution, we extend DGP 1 to consider data with conditional heteroskedasticity – a feature often

thought to characterize financial data. Select size results are reported for experiments in which et follows

a GARCH(1,1) process, parameterized according to estimates for excess returns in the S&P500:

(6.2) e1t = ht t, t~i.i.d. N(0,18), ht = 0.05+ 0.85ht-1 + 0.1(e2
1t-1/18).

Select results are also reported for experiments in which there is conditional heteroskedasticity in et, of a 

multiplicative form: 

(6.3) e1t = ht t, t~i.i.d. N(0,18), ht = (zt-1-Ezt)
2
/ 2

z.

Note that both of these heteroskedasticity designs are parameterized so as to keep the unconditional mean

and variance of yt the same as in the homoskedastic case. 

We consider forecasts for various horizons, following the common approach of using overlapping

data to make a -step ahead forecast of yt+ ,t = yt+ +yt+ -1+...+yt+1.  (In this notation, yt+1,1 = yt+1).  The

forecasts are constructed from least squares regressions of the following forms:

(6.4) yt+ ,t  = *
1 + e1t+ X1t

*
1 + e1t+ , (null model)

yt+ ,t  = 
*
 + 

*zt + e2t+ X2t
*
2 + e2t+ . (alternative model)

The second DGP is motivated by recent work on the predictive content of factor indexes of
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economic activity for output growth (examples include Stock and Watson (2002, 2004), Marcellino et al.

(2003) and Shintani (2005)). The DGP is based on models estimated with quarterly data for 1967-2004 on

GDP growth and the Federal Reserve Bank of Chicago’s factor index of economic activity. For DGP 2, yt

corresponds to growth in GDP, and zt corresponds to the Chicago Fed’s factor index. The data generating

process takes the following form:

(6.5) yt = 2.237 + .261yt-1 + *
1zt-1 + *

2zt-2 + *
3zt-3 + *

4zt-4 + e1t,

zt = .804zt-1 -.221zt-2 + .226zt-3 -.205zt-4 + vt,

var(e1t ) = 10.505, var(vt ) = .366, cov(e1t,vt ) = 1.036,

*
i = 0, i = 1,..., 4, in size experiments;

*
1 = 3.363, *

2= -.633, *
3= -.377, *

4 = -.529 in power experiments.

The forecasting models for the -step ahead forecast of yt+ ,t = yt+ +yt+ -1+...+yt+1 are

(6.6) yt+ ,t  = *
11 + *

12yt + e1t+ X1t
*
1 + e1t+ , (null model)

yt+ ,t  = *
1 + *

2yt + *
1zt + *

2zt-1 + *
3zt-2 + *

4zt-3 + e2t+

X1t
*
 + Zt

*
+ e2t+ . X2t

*
2 + e2t+ . (alternative model)

To match the variety of settings that appear in empirical work, we consider a range of R and P

values, with P both large and small relative to R. For the pseudo-macro DGP 2, we have in mind quarterly

data, and consider R = 80, 120 and P = 40, 80, 120, 160.  The comparable values for the pseudo-asset

pricing DGP 1 are R = 120, 240 and P = 120, 240, 360, 720.  For the given setting of R, a total of R + 160

(or R + 720 in our analysis of “monthly” data) are generated. The initial observations on y and z are

generated by a draw from a normal distribution whose variance-covariance matrix matches the

unconditional variance covariance matrix implied by the DGP.   One-step ahead predictions are formed

for observations t = R+1 through R+160 (or R+720), using models estimated with observations t-R
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through t-1 (rolling) or observations 1 through t-1 (recursive).  For each value of P, one step ahead

predictions are evaluated from R+1 through R+P.  For multistep predictions of horizon , predictions are

evaluated from R+  through R+P, with the total number of predictions being P-  +1. The number of

simulations is 10,000.

Throughout, we present results for CH,  MSPE-normal and MSPE-adjusted where “rejection” is

defined as: the t-statistic is greater than +1.282.  For CCS, we refer to the .90 quantiles of a 
2
(1) (DGP 1)

or
2
(4) (DGP 2) distribution.  For CH and CCS, this defines a test of nominal size .10.  The critical

values in McCracken (2004) indicate that for MSPE-normal and conditionally homoskedastic

disturbances, this defines a test of nominal size below 0.10, typically well below 0.10.  Interpretation for

MSPE-adjusted was presented above and will be reviewed below.  For MSPE-adj. simul. cvs., we define

rejection as: the t-statistic is above the .90 quantile in the simulated distribution.  This defines a test of

nominal size .10.   An Appendix available on request from the authors contains results when we use a

standard .05 cutoff (e.g., t-statistic cutoff of +1.645).  We summarize below some results from that

Appendix.

6.2 Simulation Results: One Step Ahead Forecasts

In this section, we consider one step ahead forecasts.   As discussed above, for MSPE-adjusted,

our rejection rule defines a test of size between .05 to .10, where the size depends on the sampling

scheme, dimension of Zt and P/R.

Tables 1 and 2 present results for MSPE-adjusted and MSPE-normal.  Table 1 considers 

conditionally homoskedastic disturbances, while Table 2 allows conditional heteroskedasticity for DGP 1. 

Table 1 contains results for DGP 1, R=120 and R=240 and for DGP 2, R=80 and R=120.   In Table 2,

results for DGP 1, R=120 are presented.

In both tables, and for both DGPs in Table 1, the results for MSPE-adjusted are in good

conformity with the asymptotic analysis presented above.  Most notably, actual sizes generally fall

between .05 and .10.  The only exceptions are in Table 2, panels A2 and B2 for smaller sample sizes of
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P=120 and P=240.  As well sizes tend to be relatively close to .10 in ways that are consistent with that

analysis.  In Table 1, sizes are closer to .10 than to .05 for rolling rather than recursive and for larger

rather than smaller dimension of Zt (DGP 2 rather than DGP 1).  A tendency for size to first fall and then

rise with P/R is seen in about half the entries (panels A2, A3 and B3 in Table 1, panel A1 in Table 2). 

Our findings are consistent with Clark and McCracken’s (2001, 2005a) results for their Enc-t statistic.9

As in Clark and McCracken (2001, 2005a), Clark and West (2005) and Corradi and Swanson

(2005), MSPE-normal is seriously undersized.  In Table 1, the median size is .006 in DGP 1 and .003 in

DGP 2.  Performance degrades (becomes more undersized) for larger P and for smaller R.   This reflects

the fact that MSPE normal has a negative mean and median.  Recall that the numerator of the MSPE

normal statistic is the difference in MSPEs, 
^2

1-
^2

2, while the numerator in the MSPE adjusted statistic is

^2
1-(

^2
2-adj.)

^2
1-(

^2
2 - P-1

t
T

=R[
^y1t+1-

^y2t+1]
2

).  (See (3.15).)  To illustrate the mean and median bias in

MSPE normal, consider DGP 1, with conditionally homoskedastic disturbances, R=120 and P=720 (Table

1, panel 1A).  Across 10,000 simulations, the mean and median value of 
^2

1-
^2

2 is -0.24, while the mean

and median values of 
^2

1-(
^2

2-adj.) are 0.01 and -0.02 (not reported in the table).  (To scale these figures, it

may be helpful to recall that the population MSPE is 18.0.)  Across simulations, the implied mean value

of the squared difference in fitted values P-1
t
T

=R(
^y1t+1-

^y2t+1)
2
 is 0 .25 (=0.01-(-0.24)).

Thus, the behavior of MSPE-normal is consistent with the test statistic being dominated by the

squared differences in fitted values (the term -P-1
t
T

=R (
^y1t+1-

^y2t+1)
2
 on the r.h.s. of (3.14)).   Since this term

is negative, and since we are using one-tailed tests that only reject when the test statistic is sufficiently

positive, the test is undersized.  Given R, the expectation of (
^y1t+1-

^y2t+1)
2
 is fixed, say 

^y(R).  If we hold R

fixed, as in asymptotics proposed by Giacomini and White (2004) , then as P gets bigger a law of large

numbers makes -P-1
t
T

=R(
^y1t+1-

^y2t+1)
2
 collapse on -

^y(R).  This makes the probability of a negative test

statistic larger and larger.  As R gets bigger (given P)
^y(R) moves towards zero (since as R ,

^y1t+1-
^y2t+1

p 0), thus explaining the improved size with bigger R.

Since we have argued that there is no good reason to use asymptotic normal critical values with
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MSPE-normal, it is perhaps no surprise that MSPE-adjusted does much better than MSPE-normal.  But

the performance of MSPE-adjusted, while not matching up to the ideal standard of empirical sizes of

exactly .10, does credibly against other competitors.  Table 3 presents results for CH, CCS and

MSPE-adj. simul. cvs for the recursive scheme.  Results for MSPE-adjusted are repeated from Tables 1

and 2, to facilitate comparison.  We report the recursive scheme in detail to be conservative; results for

the rolling scheme, which are reported in the Appendix, are slightly more supportive for MSPE-adjusted,

as one might guess by comparing panels A and B in Table 1. 

We see in Table 3, panels A1, A2, B1 and B2, that in DGP 1 the Chong-Hendry test statistic is

also undersized, though not as seriously as is MSPE-normal.  CH is better sized in DGP 2 (panels A3 and

A4).   The CCS statistic is a bit oversized in DGP B (panels A3 and A4),  but is very nicely sized in DGP

A, even in conditionally heteroskedastic DGPs (panels 1 and B2) .  MSPE with simulation-based critical

values is slightly oversized in all DGPs, especially in the presence of multiplicative conditional

heteroskedasticity (panels B1 and B2).

The most glaring discrepancy between our asymptotics and finite sample performance is for CH. 

We therefore experimented with some larger sample sizes to see what sizes were required to have the

asymptotic approximation for CH work tolerably well.  We set P/R = 1 and experimented with

increasingly larger values of P, using DGP 1.  Results, with value of P (=value of R) in parentheses, and

with the results for P=120 and P=240 repeated from Table 3: .040 (120), .050 (240), .078 (1000), .092

(3000).   At this point we stopped.  It is clear that very large sample sizes are required for the asymptotic

approximation to work reasonably well.  We do not know why CH requires unusually large samples.

For the rolling scheme, performance for CCS and MSPE-adj. simul. cvs was qualitatively similar;

performance for CH degraded substantially.  (Details are in the appendix.)  Perhaps a good summary

statistic to compare the five test statistics (the four in Table 3, and MSPE-normal) is the median empirical

size.  Across all 48 DGPs–the 24 given in Table 3, and the 24 additional ones for the rolling

scheme–median empirical sizes were: MPSE-adjusted: .08; MSPE-normal: .01; CH: .05; CCS: .11;
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MSPE-adj. simul. cvs: .11.  

Figures 1 and 2 present smoothed density estimates of the test statistics.  In Figure 1, results

correspond to values for DGP 1 in Table 1, panel B2, and Table 3, panel A2, for P=120, 240 and 720. 

(P=360 was omitted from the figure for legibility.)  Figure 2 presents comparable figures for the rolling

scheme.  In Figure 2, results for MSPE-adjusted and MSPE normal correspond to values reported in

Table 1, panel A2; results for CH and CCS are reported in the Appendix.  While results in Table 3 for

CCS rely on chi-squared statistics, we plot the square root of that statistic in the Figures.

That MSPE-adjusted, MSPE and CH are undersized in both Figures is clear: our one-tailed tests,

which reject only if the t-statistic is greater than 1.282,  will clearly reject less than 10 percent of the time

given the leftward shift in the distributions.10  In either figure, a comparison of panels C and D reveals

clearly that MSPE-adjusted will be better sized than MSPE-normal, because of the sharper leftward shift

in MSPE-normal.   The distribution of MSPE-normal is piling up on what we called 
^y(R) as P increases. 

For MSPE-adjusted, Figure 2D shows that for the rolling scheme, undersizing diminishes as P increases,

consistent with the quantiles in Clark and McCracken (2001).  The poor performance of CH under the

rolling scheme is clearly reflected in the densities in Figure 2A.  Finally, panel B in both figures

illustrates the good performance of CCS.

Results for tests using a critical value of +1.645 are presented in the not for publication

Appendix.  They tell the same story.  For MSPE-adjusted, of 48 sets of simulations, 44 had size between

0.01 and 0.05, with 4 (all involving multiplicative conditional heteroskedasticity) slightly greater than

0.05.  The median size was 0.04.  Median sizes for other test statistics were:  MSPE-normal: 0.00; CH:

0.03; CCS: 0.05; MSPE-adj. simul. cvs..: 0.06.

Table 4 presents results on size-adjusted power, for one step ahead forecasts, and for the

conditionally homoskedastic data generating processes also used in Table 1.  As explained in the notes to

the tables, the entry “MSPE-adjusted” applies to both the “MSPE-adjusted” and “MSPE-adj. simul. cvs”

entries in Table 1 because size adjusted power is identical for the two.
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In DGP 1, size adjusted power is best for MSPE-adjusted, worst for CCS, with MSPE-normal and

CH in the middle.  In DGP 2, power is best for MSPE-adjusted, worst for CH, with MSPE-normal and

CCS falling in the middle.

In practice, unadjusted power may be more relevant than size adjusted power.  The size

adjustment involves computing critical values by Monte Carlo methods.  If a researcher completed such

an exercise, the researcher would likely use the simulation rather than asymptotic critical values.  Table 5

presents unadjusted power - that is, power that results if one uses the asymptotic normal critical value of

1.282 (or, for CCS, 2.71 for DGP 1 or 7.78 for DGP 2).  MSPE-adjusted, with simulation critical values,

has modestly better power than MSPE adjusted.  The other three tests have distinctly poorer power.

Inspection of the numbers in Panels A and B of Table 5 indicates that for DGP 1, even the best

unadjusted power may not be very good.  The very largest figure in the table is 0.394 (panel B, P=720,

MSPE-adj. simul. cvs).  This essentially reflects the fact that there is not much predictability in asset

prices.  In our calibration, the MSPE of the alternative model is about 5% lower than that of the null

model (i.e., the R2
 in the alternative model is about .05).  With such a small amount of predictability, it

will take many, many observations to have high probability of rejecting the null.

In any event, we conclude that of the four statistics that do not require simulations to compute

critical values, MSPE-adjusted has the best power.

6.3 Simulation Results: Multistep Ahead Forecasts

Table 6 presents results for multistep horizons.  The DGPs are as in Table 1  (conditionally

homoskedastic disturbances).  The forecast horizon  is set to 12 in our pseudo-asset pricing DGP 1,

consistent with a one year horizon for monthly data; the horizon  is set to 4 in our pseudo-macro  DGP 2

to match a one year horizon for quarterly data.  Since the dimension of Zt is 1 in DGP 1, for large enough

P and R, the size of tests of MSPE-adjusted will fall between .05 and .10.  Since the dimension of Zt is 4

in DGP 2, we cannot make such a statement.

But in practice, there are no qualitative differences between the simulation results for the two
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DGPs.  All the statistics have difficulty when P is relatively small.  This likely reflects the fact that our

smallest values of P include fewer than 10 nonoverlapping sets of forecasts (though, as explained above,

we do use all 109 (=120-12+1, DGP 1) or 37 (=40-4+1, DGP 2) forecasts in computing the statistics). 

With so few observations, estimation of the variance-covariance matrix is difficult.  It seems that these

difficulties inflate the test statistics. For MSPE-normal, and for small P, this results in modest rather than

serious undersizing (e.g., size of .061 in panel A, versus the.012 figure in panel A of Table 1): the

inflation from mis-estimation of the covariance matrix partially offsets the miscentering that results from

failure to account for noise in the alternative model’s forecasts.  A similar phenomenon explains the

relatively good size of CH for small P.  As P increases, size improves.  It seems that MSPE-adjusted is

the most reliable statistic.  

That MSPE-adjusted performs better than MSPE-normal once P is large enough to permit

reasonably accurate estimation of the relevant standard error again reflects better centering of

MSPE-adjusted.   For DGP 1, R=120, P=720, for example, across the 10,000 simulations we have: mean

of numerator of t-statistic for MSPE-normal = mean of 
^2

1-
^2

2 = -35.8; mean of numerator of t-statistic for

MSPE-adjusted = mean of 
^2

1-(
^2

2-adj.) = -1.8.  (To scale these figures, note that the variance of the

MA(11) forecast error is 11×18=196.) 

7. EMPIRICAL EXAMPLE

To illustrate our approach, we apply the MSPE-adjusted, MSPE-normal, CH, and CCS tests to

one month ahead forecasts of excess stock returns and one quarter ahead forecasts of GDP growth.  In the

stock return application, the null model posits that the excess return on the S&P 500 is unpredictable

around a time invariant mean.  The alternative model, widely used in studies of the predictability of stock

returns (references in addition to those already cited include Fama and French (1988) and Pesaran and

Timmermann (1995)), relates the excess return to a constant and the dividend-price ratio.  We calculated

the excess return and dividend-price ratio following the conventions of Pesaran and Timmermann (1995),
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using end-of-month stock prices taken from the Federal Reserve Board of Governors’ FAME database,

monthly dividends from Global Insight’s S&P databank, and the one-month Fama/French interest rate

series from Kenneth French’s website.  The initial sample runs from January 1954 through December

1963, so R=120 months.  Predictions run from January 1964 through December 2004, so the number of

predictions is P = 492.  Although not reported in the interest of brevity, full sample estimates of our

excess return models are comparable to those reported in the literature:  a (weakly) significantly negative

coefficient on the dividend-price ratio and a small adjusted R-squared.

In the GDP growth application, the null model is an AR(1) (including a constant).  The

alternative model, drawn from recent studies of the predictive content of factor indexes of the business

cycle cited in the previous section, relates U.S. GDP growth to a constant, one lag of GDP growth, and

four lags of the Chicago Fed’s national activity index.  The  GDP data were obtained from the Board of

Governors’ FAME database; the factor index (a quarterly average of the underlying monthly series) was

taken from the Chicago Fed’s web site.  The initial sample runs from 1968:Q2 through 1984:Q4, so R=67

quarters.  Predictions run from 1985:Q1 through 2004:Q4, so the number of predictions is P = 80. Full

sample estimates of the competing forecasting models indicate the activity index has significant

explanatory power for GDP growth (with higher index values predicting higher GDP growth).

Table 7 contains our results.  The table reflects the common difficulty of beating, in MSPE,

parsimonious null models.  In the stock return application, the MSPE of the model with the

dividend-price ratio (
^2

2=19.57 for rolling, 19.14 for recursive) is above the MSPE of the model with just

a constant (
^2

1=18.92 for rolling, 18.91 for recursive), for both rolling and recursive regressions.  In the

GDP growth example, the MSPE of the model with the activity index (
^2

2=3.93 for rolling, 3.67 for

recursive) is slightly above the MSPE of the AR(1) model (
^2

1=3.89) in the rolling regression, slightly

below in the recursive regression (
^2

1=3.80).  Accordingly, without even calculating standard errors, we

know that with the possible exception of the GDP growth example, recursive, use of the simple MSPE

test with standard normal critical values (“MSPE-normal”) with a one tailed test will fail to reject the null
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model.  We see in Panel B2, column (7) that even for GDP growth, recursive, the MSPE-normal test also

fails to reject.

We have given analytical and simulation evidence that MSPE-normal is seriously undersized. 

For the stock return data, rolling, using either asymptotic normal or critical values from the Clark and

McCracken (2001) table on the web, we continue to fail to reject the null even after adjustment (t-statistic

is 0.04).  For recursive, the t-statistic of 1.17 is below the 1.282 normal critical value but above the .90

quantile tabulated by Clark and McCracken (2001).  Hence there is some statistical evidence against the

null of no stock return predictability.   For GDP growth, though, the adjustment leads to t-statistics of

2.07 for both rolling and recursive forecasts, allowing rejection at a significance level between 0.01 and

0.05 (see equation (4.3)).   Reference to the relevant Clark and McCracken quantiles also indicates

rejection at significance level between 0.01 and 0.05.  As well, for the recursive scheme, comparing the

MSPE-normal test against asymptotic critical values simulated with the method of Clark and McCracken

(2005a) does lead to a (weak) rejection of the null AR(1) model.

The results for our adjusted MSPE test highlight the potential for noise associated with the

additional parameters of the alternative model to create an upward shift in the model’s MSPE large

enough that the null model has a lower MSPE even when the alternative model is true.  The estimated

adjustments in column (5) of Table 7 correspond to the term P-1
t
T

=R(
^y1t+1-

^y2t+1)
2
.  The adjustment is .67 or

.68 for stock return forecasts (corresponding to about 3 to 4 percent of the alternative model’s MSPE) and

1.01 to 1.09 for GDP growth forecasts (or roughly 25 percent).  In the case of stock returns, the

adjustment gives the alternative model a small advantage over the null model, but the adjustment is not

large enough to cause the null model to be rejected.  For GDP growth, though, the adjustment is large

enough to not only give the alternative model an advantage over the null model, but also to cause the null

model to be soundly rejected:  the MSPE-adjusted test rejects the null model when compared against both

standard normal and Clark and McCracken (2005a) simulated critical values.

Thus, while the unadjusted MSPE test would seem to support the null models of stock returns and
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GDP growth, our MSPE-adjusted test, which adjusts for the additional parameter noise in the alternative

model, provides some evidence–more so for GDP growth than stock returns–in favor of alternative

models.  That is, in rolling regressions (panel A) the univariate autoregressive model for GDP growth has

a lower MSPE than does the bivariate model that includes the factor index.  Nonetheless, after accounting

for estimation noise in the bivariate model, there is strong evidence that a factor index of economic

activity has additional predictive content for growth.  Such a result underscores the practical relevance of

our MSPE-adjusted statistic in MSPE comparisons of nested models.

8. CONCLUSIONS

Forecast evaluation often compares the mean squared prediction error of a parsimonious null

model that is nested in a larger, and less parsimonious, model.  Under the null that parsimonious null

model generates the data, the larger model introduces noise into its forecasts by attempting to estimate

parameters whose population values are zero.  This implies that the mean squared prediction error from

the parsimonious model is expected to be smaller than that of the larger model.

We describe how to adust mean squared errors to account for this noise, producing what we call

MSPE-adjusted.  We recommend then constructing the usual t-statistics and rejection regions to test

whether the adjusted difference in mean squared errors is zero.  We refer to the quantiles of the

nonstandard distribution tabulated in Clark and McCracken (2001, 2005a) to argue that this will result in

a modestly undersized tests: one-sided tests using 1.282 as the critical value will, in large samples, have

actual size somewhere between .05 and .10; one sided tests using 1.645 will have size between .01 and

.05.  Simulations support our recommended procedure.
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1. Recent examples include Lettau and Ludvigson (2001), Guo (2002), Goyal and Welch (2003),  Ang et

al. (2004), and Campbell and Thompson (2005). 

2. References in addition to those already given include Lettau and Ludvigson (2001), Stock and Watson

(2002, 2003, 2004), Goyal and Welch (2003), Marcellino et al. (2003), Diebold and Li (2004),

Orphanides and van Norden (2005), Rapach and Weber (2004), Clark and McCracken (2005b) and

Shintani (2005).

3.  The prose in the following two paragraphs is a lightly edited version of a passage in West (2005).

4. Our preferred interpretation permits us to distinguish between tests of Ee1t(e1t-e2t)=0 in nested and

nonnested models.  We are about to argue that in nested models, conventional standard errors yield an

asymptotic normal approximation that is accurate for practical purposes.  West’s (2001) simulations

illustrate that in nonnested models, conventional standard errors can lead to seriously misleading

inference.

5. Of course, if the AR(1) model for yt is correct, then =  and ut+ =et+ + et+ -1+...+
-1et+1; the two

forecasts may differ, even in a large sample, if the AR(1) model is incorrect.  See Ing (2003) and

Marcellino et al. (2004) for theoretical and empirical comparison of direct and iterated methods.

6. The values of P/R and the dimension of Zt for these four cases happen to be (1)5.0, 20; (2)7.0, 18;

(3)7.0, 19; (4)7.0, 20.

7. Giacomini and White (2004) propose what they call an unconditional test of the equality of the raw

MSPE difference.  They similarly state that the long run variance must be computed even for one step

ahead forecasts.  Their analysis of the raw MSPE difference departs from ours in that they seem to

maintain the assumption that the raw MSPE difference is centered at zero, while we conclude that the

difference is shifted downwards, see the discussion below (3.14).

8. What we call “MSPE-adjusted, simulations cvs” is called “Enc-t” in Clark and McCracken (2001,

2005a).

9. The occasional oversizing Clark and McCracken (2001, 2005a) find arises when data-determined lag

selection yields significantly misspecified null forecasting models.

10. West and McCracken (1998) also found poor finite sample performance for CH, with larger

distortions occurring for larger P.  But in West and McCracken (1998), CH was oversized.  The figure

helps explain why we instead find CH undersized.  West and McCracken (1998) used two tailed tests, we

use one tailed tests.  It is clear from the figure that with two tailed tests, CH is increasingly oversized as P
increases.

FOOTNOTES
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Table 1

Empirical Size:  1-Step Ahead Forecasts

A. Rolling Regressions

1.  DGP 1, R=120 2.  DGP 1, R=240
P=120 P=240 P=360 P=720 P=120 P=240 P=360 P=720

MSPE-adjusted 0.072 0.073 0.074 0.091 0.073 0.069 0.066 0.074

MSPE-normal 0.012 0.003 0.001 0.000 0.031 0.013 0.006 0.002

3.  DGP 2, R=80 4.  DGP 2, R=120
P=40 P=80 P=120 P=160 P=40 P=80 P=120 P=160

MSPE-adjusted 0.094 0.086 0.079 0.083 0.091 0.082 0.078 0.076

MSPE-normal 0.015 0.003 0.001 0.000 0.026 0.008 0.003 0.001

B. Recursive Regressions

1.  DGP 1, R=120 2.  DGP 1, R=240
P=120 P=240 P=360 P=720 P=120 P=240 P=360 P=720

MSPE-adjusted 0.070 0.067 0.059 0.054 0.075 0.066 0.062 0.058

MSPE-normal 0.024 0.015 0.008 0.003 0.034 0.021 0.015 0.008

3.  DGP 2, R=80 4.  DGP 2, R=120
P=40 P=80 P=120 P=160 P=40 P=80 P=120 P=160

MSPE-adjusted 0.090 0.081 0.076 0.079 0.093 0.082 0.078 0.073

MSPE-normal 0.019 0.008 0.004 0.002 0.030 0.012 0.008 0.006

Notes:

1.  In DGP 1, the predictand yt+1 is i.i.d. normal around a nonzero mean; the alternative model’s predictor

zt follows an AR(1) with parameter 0.95.  In DGP 2, yt+1 follows an AR(1) with parameters given in(6.5);

the alternative model includes lags of an AR(4) variable zt along with the lag of yt, again with parameters

given in (6.5).  In each simulation, and for each DGP, one step ahead forecasts of yt+1 are formed from

each of the two models, using least squares regressions. 

2. R is the size of the rolling regression sample (panel A), or the smallest regression sample (panel B).  P
is the number of out-of-sample predictions.

3. MSPE–normal is the difference in mean squared prediction errors, see (3.11); MSPE–adjusted adjusts

the difference in mean squared prediction errors to account for the additional predictors in the alternative

models, see (3.15).  t-statistics are computed by dividing the point estimate by its standard deviation.

4. The number of simulations is 10,000.  The table reports the fraction of simulations in which each test

statistics was greater than 1.282, which is the standard normal critical value for a one-sided test at the

10% level.  For example, panel A1, P=120, MSPE-adjusted, 717 test statistics were greater than 1.282. 

After rounding, this led to the figure of .072 given in the table.

5. For large P and R, MSPE-adjusted has size between .05 and .10, while MSPE-normal has size below

.10.



Table 2

Empirical Size:  DGP 1 with Heteroskedasticity

1-Step Ahead Forecasts, R = 120

A. Rolling Regressions

1.  GARCH 2. Multiplicative
P=120 P=240 P=360 P=720 P=120 P=240 P=360 P=720

MSPE-adjusted 0.080 0.076 0.082 0.083 0.119 0.103 0.091 0.081

MSPE-normal 0.017 0.003 0.001 0.000 0.019 0.004 0.002 0.000

B. Recursive Regressions

1.  GARCH 2. Multiplicative
P=120 P=240 P=360 P=720 P=120 P=240 P=360 P=720

MSPE-adjusted 0.082 0.072 0.065 0.058 0.114 0.095 0.081 0.069

MSPE-normal 0.029 0.013 0.008 0.004 0.033 0.015 0.012 0.004

Notes:

1.  See the notes to Table 1. 

2.  Panel A, the predictand yt+1 is a GARCH process, with the parameterization given in equation (6.2). 

In panel B, the predictand yt+1 has conditional heteroskedasticity of the form given in equation (6.3), in

which the conditional variance at t is a function of z2
t-1.



Table 3

Empirical Size: Other Test Statistics, Recursive Regressions, 1 Step Ahead Forecasts

A.Conditionally homoskedastic disturbances

1.  DGP 1, R=120 2.  DGP 1, R=240
P=120 P=240 P=360 P=720 P=120 P=240 P=360 P=720

MSPE-adjusted 0.070 0.067 0.059 0.054 0.075 0.066 0.062 0.058

CH 0.040 0.039 0.032 0.028 0.058 0.050 0.041 0.038

CCS 0.097 0.101 0.100 0.097 0.106 0.102 0.097 0.095

MSPE-adj.:simul. cvs 0.125 0.114 0.111 0.105 0.117 0.114 0.106 0.105

3.  DGP 2, R=80 4.  DGP 2, R=120
P=40 P=80 P=120 P=160 P=40 P=80 P=120 P=160

MSPE-adjusted 0.090 0.081 0.076 0.079 0.093 0.082 0.078 0.073

CH 0.085 0.085 0.078 0.078 0.093 0.089 0.085 0.083

CCS 0.147 0.120 0.112 0.105 0.144 0.114 0.107 0.102

MSPE-adj.:simul. cvs 0.109 0.107 0.105 0.107 0.111 0.105 0.101 0.101

B. Conditionally heteroskedastic disturbances, DGP 1, R=120

1. GARCH 2.  Multiplicative
P=120 P=240 P=360 P=720 P=120 P=240 P=360 P=720

MSPE-adjusted 0.082 0.072 0.065 0.058 0.114 0.095 0.081 0.069

CH 0.050 0.038 0.034 0.031 0.078 0.063 0.053 0.045

CCS 0.111 0.103 0.104 0.101 0.096 0.092 0.092 0.090

MSPE-adj.:simul. cvs 0.129 0.120 0.112 0.107 0.172 0.153 0.135 0.123

Notes:

1. See notes to Table 1.  The values for MSPE-adjusted are repeated from Tables 1 and 2.

2. CH is the Chong-Hendry (1986) forecast encompassing statistic, see (3.12); CCS is the Chao et al.

(2001) statistic testing whether model 1 forecasts are uncorrelated with the additional predictors in model

2, see (3.13); MSPE-adj. simul. cvs uses simulations of the non-standard limiting distribution in Clark

and McCracken (2005a) to compute critical values for the MSPE-adjusted statistic.  For large P and R, all

three statistics have nominal size .10.



Table 4

Size-Adjusted Power:  1-Step Ahead Recursive Forecasts

Size = 10%

A.  DGP 1, R=120 B.  DGP 1, R=240
P=120 P=240 P=360 P=720 P=120 P=240 P=360 P=720

MSPE-adjusted 0.181 0.226 0.265 0.355 0.197 0.239 0.284 0.382

MSPE-normal 0.172 0.203 0.232 0.315 0.183 0.220 0.253 0.328

CH 0.167 0.197 0.210 0.236 0.132 0.152 0.161 0.174

CCS 0.058 0.057 0.055 0.057 0.058 0.052 0.053 0.059

C.  DGP 2, R=80 D.  DGP 2, R=120
P=40 P=80 P=120 P=160 P=40 P=80 P=120 P=160

MSPE-adjusted 0.974 0.999 1.000 1.000 0.975 1.000 1.000 1.000

MSPE-normal 0.850 0.981 0.998 1.000 0.834 0.976 0.997 1.000

CH 0.497 0.714 0.852 0.915 0.485 0.725 0.855 0.925

CCS 0.591 0.925 0.992 0.999 0.582 0.924 0.992 0.999

Notes:

1. In panels A and B, the DGP is defined in equation 6.1, with the nonzero value of 
*
 given in that

equation.  In panels C and D, the DGP is defined in (6.5), with nonzero values of *
i given in (6.5).

In each simulation, one step ahead forecasts of yt+1 are formed from rolling estimates of a regression of yt
on X1t and on X2t, for X1t and X2t defined in (6.4) and (6.6).

2. Power is calculated by comparing the test statistics against simulation critical values, calculated as the

90th percentile of the distributions of the statistics in the corresponding size experiment reported in Table

1.  Because “MSPE-adjusted” and “MSPE-adj. simul. cvs” use the same test statistic, size adjusted power

is identical for the two.



Table 5

Unadjusted Power:  1-Step Ahead Recursive Forecasts

A.  DGP 1, R=120 B.  DGP 1, R=240
P=120 P=240 P=360 P=720 P=120 P=240 P=360 P=720

MSPE-adjusted 0.140 0.162 0.189 0.260 0.154 0.178 0.202 0.284

MSPE-normal 0.050 0.039 0.030 0.030 0.073 0.062 0.058 0.057

CH 0.068 0.073 0.075 0.076 0.076 0.071 0.069 0.080

CCS 0.056 0.058 0.055 0.054 0.061 0.054 0.051 0.056

MSPE-adj.:simul. cvs 0.215 0.252 0.282 0.366 0.220 0.267 0.297 0.394

C.  DGP 2, R=80 D.  DGP 2, R=120
P=40 P=80 P=120 P=160 P=40 P=80 P=120 P=160

MSPE-adjusted 0.969 0.999 1.000 1.000 0.972 1.000 1.000 1.000

MSPE-normal 0.575 0.823 0.935 0.980 0.617 0.848 0.944 0.983

CH 0.451 0.676 0.813 0.894 0.466 0.699 0.832 0.907

CCS 0.677 0.940 0.993 0.999 0.672 0.935 0.993 0.999

MSPE-adj.:simul. cvs 0.976 1.000 1.000 1.000 0.979 1.000 1.000 1.000

Notes:

1. This table differs from Table 4 in that power is computed using critical values also used in Tables 1 to

3.



Table 6

Empirical Size:  Year-Ahead Forecasts

A. Rolling Regressions

1.  DGP 1, R=120:  horizon=12 2.  DGP 1, R=240:  horizon=12
P=120 P=240 P=360 P=720 P=120 P=240 P=360 P=720

MSPE-adjusted 0.184 0.144 0.131 0.118 0.180 0.133 0.122 0.110

MSPE-normal 0.061 0.019 0.007 0.001 0.099 0.039 0.019 0.005

CH 0.108 0.078 0.052 0.023 0.134 0.091 0.066 0.038

CCS 0.201 0.169 0.167 0.168 0.205 0.175 0.158 0.153

MSPE-adj.:simul. cvs 0.238 0.195 0.175 0.148 0.228 0.185 0.173 0.155

3.  DGP 2, R=80:  horizon=4 4.  DGP 2, R=120:  horizon=4
P=40 P=80 P=120 P=160 P=40 P=80 P=120 P=160

MSPE-adjusted 0.156 0.118 0.106 0.105 0.148 0.117 0.104 0.095

MSPE-normal 0.057 0.017 0.006 0.003 0.067 0.026 0.013 0.007

CH 0.157 0.119 0.089 0.076 0.161 0.133 0.113 0.098

CCS 0.281 0.172 0.137 0.126 0.288 0.165 0.133 0.116

MSPE-adj.:simul. cvs 0.196 0.166 0.140 0.140 0.189 0.155 0.147 0.137

B. Recursive Regressions

1.  DGP 1, R=120:  horizon=12 2.  DGP 1, R=240:  horizon=12
P=120 P=240 P=360 P=720 P=120 P=240 P=360 P=720

MSPE-adjusted 0.177 0.136 0.115 0.091 0.176 0.133 0.111 0.092

MSPE-normal 0.077 0.039 0.021 0.008 0.103 0.055 0.037 0.017

CH 0.113 0.080 0.062 0.048 0.139 0.100 0.080 0.066

CCS 0.191 0.155 0.153 0.142 0.208 0.170 0.152 0.141

MSPE-adj.:simul. cvs 0.226 0.190 0.163 0.141 0.218 0.178 0.158 0.142

3.  DGP 2, R=80:  horizon=4 4.  DGP 2, R=120:  horizon=4
P=40 P=80 P=120 P=160 P=40 P=80 P=120 P=160

MSPE-adjusted 0.153 0.114 0.103 0.098 0.148 0.115 0.103 0.094

MSPE-normal 0.062 0.024 0.015 0.010 0.072 0.037 0.024 0.015

CH 0.159 0.133 0.117 0.115 0.163 0.136 0.126 0.120

CCS 0.282 0.164 0.125 0.113 0.288 0.163 0.129 0.112

MSPE-adj.:simul. cvs 0.185 0.158 0.141 0.136 0.183 0.154 0.145 0.132

Notes:

1. See notes to Table 1.

2. For horizon , let yt+ ,t = yt+ +yt+ -1+...+yt+1 be the sum of the dependent variable over the next  periods.  Using

overlapping observations, predictions are made using least squares regressions of yt+ ,t on X1t and on X2t.  For given

P, the number of predictions made is P- +1.



Table 7

Forecasts of Monthly Excess Stock Returns and Quarterly GDP Growth

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

A. Rolling Regressions

prediction MSPE- MSPE-

predictand sample
^ 2

1
^ 2

2  adj.
^ 2

2-adj. normal adj.    CH CCS

(1)excess stock Jan. 1964- 18.92 19.57 0.67 18.90 -0.66 0.01

return  Dec. 2004 (0.33) (0.32)

-2.00 0.04 -2.13 1.28

(2)GDP growth 1985:Q1- 3.89 3.93 1.09 2.84 -0.04 1.04

  2004:Q4  (0.49) (0.50)

-0.09* 2.07**

B. Recursive Regressions

(1)excess stock Jan. 1964- 18.91 19.14 0.68 18.46 -0.23 0.45

return  Dec. 2004 (0.38) (0.38)

-0.63 1.17* 0.18 0.14

(2)GDP growth 1985:Q1- 3.80 3.67 1.01 2.66 0.12 1.14

  2004:Q4 (0.49) (0.54)

0.25* 2.07**

Notes:

1. In column (3), 
^ 2

1 is the out of sample MSPE of the parsimonious model.  For excess stock returns (return on S and

P 500, less one month bond yield), the parsimonious model posits returns to be unpredictable around a time invariant

mean.  For GDP growth, the parsimonious model is a univariate AR(1).

2. In column (4), 
^ 2

2 is the out of sample MSPE of an alternative larger model.  For stock returns, the larger model

includes a lag of the dividend-price ratio.  For GDP growth, the larger model includes four lags of the Federal

Reserve Bank of Chicago’s factor index.

3. All forecasts are one step ahead.  The start dates are January 1954 (stock returns) and 1968:Q2 (GDP growth). R
is 120 months (stock returns) or 67 quarters (GDP growth).  The number of predictions P is 492 (stock returns) or 80

(GDP growth).

3. In column (5), “adj.” is the adjustment term P-1
t
T

=R (
^y1t+1-

^y2t+1)
2
, where 

^y1t+1-
^y2t+1 is the difference between

forecasts of the two models.  In column (6), “
^ 2

-adj.” is the difference between column (4) and column (5).  

4. For each predictand, column (7) presents a point estimate of the difference in MSPEs (i.e., the difference between

columns (3) and (4)), an asymptotic standard error in parentheses, and a t-statistic in italics.  Column (8) does the

same, but relying on the difference between columns (3) and (6).  Figures may not add, due to rounding.

5. Column (9) presents the t-statistic for the Chong-Hendry statistic (3.12), column (10) the 
2
(1) (stock return) or

2
(4) (GDP growth) statistics for the Chao et al. statistic (3.13).

6.  ** denotes test statistics significant at the 5 percent level according to both standard normal and Clark and

McCracken’s (2005a) asymptotic critical values; * denotes a test statistic significant at the 10 percent level

according to Clark and McCracken (2005a).



Figure 1: Null Densities of Simulated Tests, Recursive Scheme

R=240, P Varying, DGP 1

A.  CH
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B.  CCS
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Figure 2: Null Densities of Simulated Tests, Rolling Scheme

R=240, P Varying, DGP 1

A.  CH
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