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1 Introduction

A given forward-looking macroeconomic model may admit different classes of rational
expectations equilibria. Solutions can differ in terms of the set of state variables
that agents use when forming expectations. For example, standard linear stochastic
rational expectations models have solutions that depend only on the minimal set of
state variables, but may also have solutions that depend on extrinsic random variables
(i.e. sunspots). The existence of equilibria are well understood in linear models with
constant parameters; however, in a growing area of research that focuses on models
with changing parameters, these issues are re-emerging.1 In regime-switching models,
which constitute the focus of this paper, parameters evolve according to a finite state
Markov process. The non-linear structure of regime-switching rational expectations
models prevents a complete characterization of the full class of solutions. Two recent
papers by Davig and Leeper (2007) and Farmer, Waggoner and Zha (2007) each
focus on a particular class of equilibria in the context of a standard New Keynesian
model with a monetary policy rule whose coefficients are subject to occasional regime
change.

As a means of addressing issues of multiple equilibria in non-linear models, this
paper studies stability under adaptive learning of rational expectations equilibria in
regime-switching models. Our approach begins by generalizing and extending the
previous work on existence of equilibria in multivariate regime-switching models by
defining two classes of solutions. The distinguishing feature between the two classes
is whether the resulting equilibrium’s conditional distribution exhibits explicit depen-
dence on both current and lagged regimes. To fix terminology, we define the class
that restricts lagged regimes from entering the state vector as Regime-Dependent
Equilibria (RDE) and the other class, where lagged regimes enter the state vector,
as History-Dependent Equilibria (HDE). HDE generally admit sunspot shocks, re-
gardless of the parameterization of the model. Davig and Leeper (2007) introduce
a condition known as the Long Run Taylor Principle (LRTP) that ensures a unique
RDE, whereas Farmer, Waggoner and Zha (2007) expand on this work by constructing
an HDE that admits sunspot shocks even when the LRTP holds. Adapting the LRTP
condition to a general multivariate setting, we define the Conditionally Linear De-
terminacy Criterion (CLDC) as the condition guaranteeing the existence of a unique
RDE. This paper, importantly, establishes a connection between the learnability of
equilibria and the CLDC.

The results above distinguish regime-switching models from their constant pa-
rameter counterparts. In particular, conditions that establish uniqueness of equilibria

1Some examples of work in this area include Leeper and Zha (2003), Andolfatto and Gomme
(2003), Davig (2004), Zampolli (2006), Chung, Davig and Leeper (2007), Davig and Leeper (2007),
Farmer, Waggoner, and Zha (2006, 2007), and Svensson and Williams (2007). Brainard (1967) is an
early example of work on parameter instability.
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within a certain natural class may fail to preclude the existence of other types of equi-
libria. Following Lucas (1986), we maintain that stability under adaptive learning is
a useful metric for identifying empirically relevant equilibria.2 An equilibrium is plau-
sible or reasonable, if whenever rational expectations are replaced with a standard
adaptive learning rule, agents’ beliefs converge to the rational expectations equilib-
rium values. Based on this assumption, we assess whether regime-switching equilibria
are learnable.

Our viewpoint is informed by a large and growing literature that replaces rational
expectations with learning rules where agents are modeled as professional econometri-
cians, that is, they hold forecasting models that share a reduced-form with a rational
expectations equilibrium, and adjust the parameters of their model in light of new
data. The advantage to this approach is that it places economist and agent on equal
footing and avoids the cognitive dissonance inherent in rational expectations models.
This approach is particularly compelling in regime-switching models because of the
co-existence of equilibria in the regime and history dependent classes.

In this paper, we endow agents with a learning algorithm, similar in reduced-form
to the equilibria identified by Davig and Leeper (RDE) and Farmer, Waggoner and
Zha (HDE), and we study the stability of the associated equilibria. It is well known
that in models with multiple equilibria, different learning rules (each a priori plau-
sible) may lead to distinct stability outcomes.3 Sticking with the statistical learning
approach outlined above, two natural learning models emerge for history dependent
equilibria. These learning processes differ based on basic informational assumptions.
In the first formulation – “mean value learning” – agents know the lag structure of
the economy’s endogenous variables when estimating the conditional mean. The sec-
ond natural learning process – “VAR learning” – agents try also to uncover the lag
structure from the data by employing a (first order) vector autoregression (VAR(1))
model. Within a rational expectations equilibrium the two formulations are equiva-
lent, but out of equilibrium they lead to different conclusions about the learnability
of HDE.

Our primary result is that when the CLDC is satisfied (i.e. the Long-run Tay-
lor Principle in a New Keynesian model) there exists a unique Regime-dependent
Equilibrium and that equilibrium is stable under learning. Moreover, this condition
also governs the stability of HDE under mean value learning, that is, when agents
know the lag structure of the model, but estimate in real-time the mean. On the
other hand, in a univariate model and in a New Keynesian model, the HDE are not
attainable under VAR learning.

The results of this paper provide a clear illustration of the usefulness of expec-
tational stability as an equilibrium selection criterion. As the results of Davig and

2See, in addition, Evans (1986), Bray and Savin (1986), Marcet and Sargent (1989).
3See Lucas (1986), Woodford (1990).
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Leeper (2007) and Farmer, Waggoner, and Zha (2007) demonstrate, local determi-
nacy is not particularly useful in these settings for selecting equilibria and designing
policy. This paper shows that the CLDC ensures that a rational expectations equi-
librium can be attained as the limiting outcome of a reasonable learning process.
Moreover, if agents behave as econometricians and try to uncover the lag structure of
the endogenous state variables, then the CLDC guarantees the existence of a unique
stable equilibrium.

The paper is organized as follows : Section 2 introduces the framework of Davig
and Leeper (2007) and Farmer, Waggoner, and Zha (2007); Section 3 generalizes
the model and defines the classes of equilibria; Section 4 provides the main stability
analysis; Section 5 presents results for a univariate and a New Keynesian model; and,
Section 6 concludes.

2 A New Keynesian Model with Recurring Policy

Change

There is extensive empirical evidence of regime change in monetary policymaking.
For example, there is a breakpoint in the parameters of a Taylor-type nominal inter-
est rate rule in Clarida, Gali, and Gertler (1999), or shifting policymaker preferences
in Bernanke (2004) and Dennis (2006). These findings motivate models that build
regime-switching directly into rational expectations frameworks since whenever the
structural nature of monetary policymaking has changed in the past, then it is rea-
sonable that agents might anticipate future policy changes.

As an example, Davig and Leeper (2007) and Farmer, Waggoner, and Zha (2007)
construct rational expectations solutions to the standard New Keynesian model closed
with a nominal interest rate rule whose coefficients are subject to occasional regime
change. The New Keynesian model is given by (linearized) reduced-form equations
for inflation, π, and the output gap, x, such as

πt = βEtπt+1 + κxt + gt (1)

xt = Etxt+1 − σ−1 (it − Etπt+1) + ut (2)

which is closed with a nominal interest rate rule with time-varying parameters

it = αtπt + γtxt (3)

To capture recurrent regime change, Davig and Leeper (2007), assume that the
parameters αt, γt in (3) follow a two state Markov chain:

αt =

{
α1 for st = 1
α2 for st = 2
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and

γt =

{
γ1 for st = 1
γ2 for st = 2

The random variable st follows a finite-state Markov chain with transition probabili-
ties pij ≡ Pr [st = j|st−1 = i] for i, j = 1, 2.

The definition of a rational expectations equilibrium in regime-switching models
is analogous to the concept in constant parameter models. In particular, a rational
expectations equilibrium is any uniformly bounded solution to (1)-(3). Because the
Markov chain enters the model multiplicatively, the model is inherently non-linear,
preventing a characterization of all solutions to the model. Davig and Leeper (2007)
and Farmer, Waggoner, and Zha (2007) propose two classes of solutions. Farmer,
Waggoner, and Zha (2007) show that it is possible for there to exist a continuum of
solutions in one class even under conditions that guarantee uniqueness in the other
class. This raises the question of which equilibria are plausible. This provides one
motivation for studying adaptive learning as an equilibrium selection device.

3 Equilibria In Regime Switching Models

We focus on models whose reduced form consists of a system of non-linear expecta-
tional difference equations such as

yt = βtEtyt+1 + γtrt, (4)

rt = ρrt−1 + εt, (5)

where yt is an (n× 1) vector of random variables, βt and γt are conformable matrices
that follow an m state Markov process with (βt = βi, γt = γi) ⇔ st = i, i = 1, 2, ...,m,
and rt is a (k × 1) exogenous stationary VAR(1) process independent of sj for all j.
The stochastic matrix P governs the evolution of the state, st, and contains elements

pij ≡ Pr [st = j|st−1 = i] ,

for i, j ∈ {1, 2, ...,m}. P is taken to be recurrent and aperiodic, so that it has a
unique stationary distribution Π. For simplicity, βi is taken to be invertible for all
i. Davig and Leeper (2007) consider a version of this model in the context of a
univariate monetary model and a bivariate New Keynesian model. Most macroeco-
nomic models feature expectational structures similar to (4) – albeit with constant
parameters – making (4) a natural laboratory to study the existence and stability of
rational expectations equilibria in regime-switching models. In Section 5, we present
a univariate example and return to the New Keynesian example.
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A rational expectations equilibrium of the model is a solution to (4) that also satis-
fies a boundary condition. Often the definition of the boundary condition is somewhat
vague, given as “non-explosiveness” and justified by appealing to a transversality
condition, even though the usual transversality condition implies that solutions not
explode “too quickly.”4

We focus on processes satisfying the following property:

Definition. A stochastic process yt, with initial condition y0 is uniformly bounded
(almost everywhere) or UB if ∃M (y0) so that supt ||yt||∞ < M (y0), where || · ||∞ is
the L∞ or “essential supremum” norm.

With this definition available, we may define a rational expectations equilibrium:

Definition. A Rational Expectations Equilibrium is any UB stochastic process sat-
isfying (4).

While uniformly bounded (UB) may appear to be an a priori strong notion of
boundedness, it is common in the linear rational expectations literature. In linear
models with constant parameters, uniform boundedness is consistent with the usual
notion of model determinacy, such as in Blanchard and Kahn (1980). Also, UB
“bounds the paths” of all endogenous variables and is often desirable when using a
first-order approximation to a nonlinear model around a fixed point, such as a steady
state.

An important difference that arises in regime-switching rational expectations mod-
els, versus constant-parameter models, is that agents incorporate the probability of a
regime change into their expectations. The resulting non-linear structure prevents
characterizing the full class of rational expectations equilibria. However, several
classes naturally emerge, which we define as Regime-Dependent Equilibria (RDE),
Stacked System Equilibria, and History-Dependent Equilibria (HDE).

3.1 Regime-Dependent Equilibria

The first class focuses on state-contingent solutions that allow the current realization
of the regime, st, to enter the state vector, but are otherwise independent of its history.
The state vector also includes current realizations of the exogenous shocks, as well as
(possibly) sunspot variables. Formally, the definition for an RDE is as follows:

Definition. Let st be the Markov process governed by P and taking values in
{1, 2, ...,m}. Let yt be a solution to (4). Then yt is a Regime Dependent Equilib-

4As an alternative, sometimes the boundary condition requires the paths of variables in a rational
expectations equilibrium remain conditionally uniformly bounded, such as in Evans and McGough
(2005).
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rium (RDE) if it is uniformly bounded and there exist uniformly bounded stochastic
processes y1t, y2t, ..., ymt, with yit independent of st+j for all integers j, such that
yt = yit ⇔ st = i.

In an RDE, depending on the realization of st, yt takes on values from one of
m stochastic processes, with each process being independent of the Markov state.
Conditioning (4) on each regime leads to the following system

y1t = β1p11Ety1t+1 + β1p12Ety2t+1 + · · · + β1p1mEtymt+1 + γ1rt,

y2t = β2p21Ety1t+1 + β2p22Ety2t+1 + · · · + β2p2mEtymt+1 + γ2rt,
...

...
...

ymt = βmpm1Ety1t+1 + βmpm2Ety2t+1 + · · · + βmpmmEtymt+1 + γmrt,

which governs dynamics for yit for i = 1, 2, ...,m. We note that this is a linear system.

3.2 Stacked System Equilibria

The linear system above can be recast in the form of a ‘stacked system’, which has
a more compact representation. Stacked System Equilibria are rational expectations
solutions to the conditionally linear system, without the restriction of independence
from st+n for all n that is explicitly imposed on RDE.

Definition. The stacked system associated with the switching model (4) is the system
of multivariate linear expectational difference equations

ŷt = (⊕m
j=1βj)(P ⊗ In)Etŷt+1 + γrt (6)

where ŷt = [y′

1t, y
′

2t, ..., y
′

mt]
′ and γ′ = (γ′

1, . . . , γ
′

m)′.5

Definition. Let st be the Markov process governed by P and taking values in
{1, 2, ...,m}. Let yt be a solution to (4). Let ŷt be a uniformly bounded solution
to the Stacked System (6). Then yt is a Stacked System Equilibrium (SSE) of the
original model (4) if yt = ŷit ⇔ st = i.

The stacked system (6) is a multivariate linear rational expectations model. The
number and nature of solutions to (6) is well-known. We are particularly interested
in conditions under which there exists a unique UB solution to the stacked system, as
this condition will also govern the expectational stability of solutions to the economic
system (4). We summarize this in the following remark.

Remark. A necessary and sufficient condition for the existence of a unique uniformly
bounded solution to (6) is that the eigenvalues of (⊕m

j=1βj)(P ⊗ In) lie inside the unit

5Throughout, ⊕ denotes the direct sum operator.
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circle. In this case, we say that the Conditionally Linear Determinacy Condition
(CLDC) is satisfied.

The following proposition summarizes the relationship between solutions to the
stacked system (6), RDE, and UB solutions to (4).

Proposition 1 Let U be the collection of all UB solutions to (4). Let R,S denote
the collection of all Regime Dependent Equilibria and all UB solutions to the Stacked
System (6), respectively. The following relations among the sets of equilibria hold.

1. R ⊂ S ⊂ U .

2. If the CLDC holds, then R = S and R has one element.

3. If the CLDC does not hold, then R has a continuum of elements and R ( S

All proofs are contained in the Appendix.

In the context of monetary policy analysis, Davig and Leeper (2007) refer to
the CLDC as the Long Run Taylor Principle (LRTP). In this respect, Davig and
Leeper (2007) completely characterize the uniqueness conditions for RDE in standard
monetary models. Davig and Leeper, however, restrict attention to models with
positive feedback from monetary policy so that the eigenvalues of ⊕βj are positive.
The results in Proposition 1 establish that the necessary and sufficient condition for
existence of a unique RDE is the CLDC. Importantly, however, when the CLDC is not
satisfied there may exist other equilibria that are not independent of past realizations
of the Markov state. Below we call such equilibria History Dependent Equilibria.
Farmer, Waggoner, and Zha (2007) show that the CLDC does not imply uniqueness
in the economic model (4). In the next Section, we propose expectational stability as
a device for selecting equilibria when both RDE and HDE exist.

Subsequent sections show a close connection between the conditions for unique RDE
and E-stable rational expectations equilibria, and so the CLDC takes on added im-
portance below.

3.3 History Dependent Equilibria

Proposition 1 shows that the collection of uniformly bounded solutions to (4) super
cedes the set of regime dependent equilibria. This section characterizes another class
of equilibria to (4). This definition is related to the work of Farmer, Waggoner, and
Zha (2007) who illustrate that in a New Keynesian model, it is possible for there to ex-
ist sunspot equilibria even when the RDE is unique. In this case, conditions ensuring
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uniqueness within the class of RDE, such as the CLDC, does not ensure equilibrium
determinacy in the regime-switching rational expectations framework. The central el-
ement in Farmer, Waggoner, and Zha (2006, 2007) (FWZ), is they allow lagged states
to enter the state vector. That is, FWZ have agents conditioning their expectations
on an expanded state vector that includes st−1. For this reason, we call the class
of solutions History Dependent Equilibria (HDE). By assuming agents condition on
current and past realizations of the state variable st, this class of equilibria includes
solutions that depend on arbitrary sunspot variables.

Definition. Let st be the Markov process governed by P , taking values in {1, 2, ...,m}.
Let yt be a solution to (4). Then yt is a History Dependent Equilibrium (HDE) if it is
uniformly bounded and its distribution conditional on st differs from its distribution
conditional on st and st−1; that is, yt|st 6∼ yt|(st, st−1).

Remark. The definition of an HDE restricts solutions to the class of uniformly
bounded stochastic processes whose conditional density exhibits dependence on st and
st−1. Notice that if yt is an RDE then yt|st ∼ yt|(st, st−1). However, by Proposition 1
when the CLDC is not satisfied, then there may exist solutions to the stacked system
that are not RDE. In particular, when the matrix (⊕m

j=1βj)(P ⊗In) has ns eigenvalues
inside the unit circle then for each ns-dimensional martingale difference sequence ξt

there is a martingale difference sequence ξ̃t and an SSE ŷt with a representation given
by

ŷt = bŷt−1 + crt−1 + d(st−1, st)ξ̃t,

where d is any function of st−1 and st.

HDE solutions to the stacked system have constant parameters except for the
coefficient on the sunspot shock ξ̃t. It is natural to wonder whether there exist HDE
with time-varying coefficients on the lagged endogenous variable. To consider this,
we assume γt = 0 for all t, as the presence of exogenous shocks does not alter the
results and distracts from the presentation. Note that if ξt is any martingale difference
sequence, then yt = β−1

t−1yt−1 + ξt is a solution to (4). Farmer, Waggoner, and Zha
(2007) show that there exist multiple uniformly bounded HDE that have the following
representation

yt =

(
cst−1

v′

st−1
vst−1

vst
v′

st−1

)
yt−1 + vst

ξt, (7)

provided there exists c1, . . . , cm and v = (v′

1, . . . , v
′

m)′ 6= 0 so that |cj| ≤ 1 and c and
v solve [(

⊕m
j=1βj

)
−1

−
((
⊕m

j=1cj

)
P
)
⊗ In

]
v = 0. (8)

Here ξt is independent of st+n for all n. The condition (8) is essentially derived
from the method of undetermined coefficients. When (8) is satisfied, solutions to
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the representation (7) are solutions to (4).6 The construction of the autoregressive
parameter in the representation (7) is chosen so that, regardless of the history of
realizations of st, these parameters are bounded in matrix norm and, hence, the
solutions are uniformly bounded.

Farmer, Waggoner, and Zha (2007) write (7) in alternative form

yt = ηt (9)

where

ηt =

(
cst−1

v′

st−1
vst−1

vst
v′

st−1

)
ηt−1 + vst

ξt.

The stochastic properties of (9) are equivalent to (7); however, as we will see below,
during out of equilibrium learning dynamics, these two representations imply different
informational assumptions and distinct stability results. These observations lead to
two natural learning rules: a “mean value learning” formulation where agents use
a forecasting model consistent with (9) by conditioning on ηt and try to learn the
endogenous variable’s state-contingent constant term (which, in this case, is zero); and
a “VAR learning” formulation where agents estimate a forecasting model consistent
with (7) by conditioning on a state-contingent constant and on lagged y – in this case,
agents must also learn the endogenous variable’s lagged coefficients. Importantly,
under mean value learning, the lag structure is exogenous while it is determined
endogenously under VAR learning. This provides a crucial distinction for the stability
results presented below.

By defining HDE as rational expectations equilibria that exhibit conditional de-
pendence on both st and st−1, it is possible to identify a more general class of equilibria
than those represented by (9). Assume HDE take the form7

yt = B(st−1, st)yt−1 + C(st−1, st)ξt. (10)

where the coefficients must satisfy
(

In − βj

(
m∑

k=1

pjkBjk

))
B(i, j) = 0 (11)

(
In − βj

(
m∑

k=1

pjkBjk

))
C(i, j) = 0 (12)

Notice that provided non-zero B(i, j) satisfy (11), the C(i, j) are arbitrary. It is
straightforward to verify that (7) is a solution to (10).

6If one were to literally use the method of undetermined coefficients, the v in (8) would be yt.
However, if v is taken to be a vector of initial conditions chosen to lie on the stable manifold, and
if (8) is satisfied at t = 1, then it will be satisfied for all t.

7Adopting the earlier notation, since γt = 0 it follows that ξ̃t = ξt.
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4 Equilibrium Selection in Regime-Switching Mod-

els: Expectational Stability

Although rational expectations solutions to regime-switching models are of interest to
applied economists and policymakers, the technical details leave important practical
issues unsettled. First, as illustrated in the above section, the concepts of determi-
nacy and uniqueness of rational expectations equilibria in non-linear models are not
readily available. The RE hypothesis, in reduced-form models, is silent about which
class of equilibria is most reasonable. Second, by imposing rational expectations, the
modeler makes strong assumptions that require private-sector agents know the true
distribution generating the data, even though the model is self-referential. Applied
economists and professional forecasters typically formulate reduced-form models, in-
spired by rational expectations equilibria, that they estimate based on available data
and update as new data becomes available. It is reasonable to expect that private-
sector agents behave similarly.

A somewhat recent literature on adaptive learning in macroeconomics studies the
plausibility of rational expectations equilibria by insisting on logical consistency be-
tween professional forecasters (or econometricians) and private-sector agents. Rather
than rational expectations, this literature assumes that agents behave as econome-
tricians who formulate forecasting models and update the parameters of their model
in real-time. Because the data generating process depends on these recursively up-
dated forecasting models, the convergence to, and stability of, rational expectations
equilibria is a non-trivial problem. Woodford (1990), Marcet and Sargent (1989),
Evans and Honkapohja (2001), Bullard and Mitra (2002) argue that stability under
learning is a reasonable equilibrium selection mechanism. We adopt this viewpoint
and study the stability under learning of regime-switching rational expectations equi-
libria. Our primary result is that the condition governing uniqueness in the class of
regime dependent equilibria, namely, the CLDC, may also be the condition govern-
ing expectational stability. Crucially, though, this result depends on the assumed
information structure. Evans and Honkapohja (2008) argue that indeterminacy need
not concern policymakers when the fundamentals rational expectations equilibrium
is the only equilibrium stable under learning. Adapting this viewpoint to a regime-
switching framework suggests the CLDC, or the Long-run Taylor Principle of Davig
and Leeper (2007), can form a sensible policy prescription since it may select the
desired (unique) RDE.
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4.1 E-stability in Constant Parameter Models

To fix ideas, we review the expectational stability approach in a constant parameter
version of (4),

yt = βE∗

t yt+1 + γrt (13)

now written with a (possibly) boundedly rational expectations operator E∗. We first
consider the case where the model is determinate and then, below, we examine the
indeterminate case.

When the model is determinate, there exists a unique equilibrium that has the
form yt = brt. Agents hold a perceived law of motion (i.e. a forecasting model) whose
functional form is consistent with the equilibrium representation

yt = A + Brt. (14)

While there is no constant in the equilibrium representation yt = brt, it is standard
to allow agents to consider the possibility that there may be a constant term, i.e. to
learn the steady-state values of y as well.

The parameters A and B capture agents’ perceptions of the relationship between
y and r and may be estimated using, for example, recursive least squares. Let At and
Bt be the respective estimates using data up to time t. Agents form forecasts using
the perceived law of motion E∗

t yt+1 = At−1 + Bt−1ρrt. Plugging these forecasts into
(13) leads to the actual law of motion

yt = βAt−1 + (βBt−1ρ + γ)rt.

Here we assume that agents know the true process governing rt. The actual law of
motion illustrates the manner in which time t endogenous variables are determined
by perceptions (At−1, Bt−1) and realizations of rt. Given new data on yt agents then
update the forecasting model to obtain (At, Bt). The unique rational expectations
equilibrium yt = brt is stable under learning if (At, Bt) → (0, b) almost surely. Sta-
bility under learning is non-trivial precisely because of the self-referential nature of
rational expectations models. That is, the actual law of motion depends on the
perceptions At−1, Bt−1 and convergence is not obvious.

While assessing the asymptotic behavior of the non-linear stochastic process (At, Bt)
is quite difficult, it turns out that the technical requirements for convergence often
reduce to a fairly simple and intuitive condition known as E-stability, see Evans and
Honkapohja (2001). To illustrate, suppose agents hold generic beliefs (A,B). The
actual law of motion then defines a map T : Rn ⊕ Rn×k → Rn ⊕ Rn×k that takes
perceived coefficients to actual coefficients

T (A,B) = (βA, βBρ + γ).
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Notice that the fixed point of the T-map identifies the unique rational expectations
equilibrium of the model. The rational expectations equilibrium is said to be E-stable
if it is a locally asymptotically stable fixed point of the ordinary differential equation
(o.d.e.)

d(A,B)

dτ
= T (A,B) − (A,B). (15)

The E-stability Principle states that if agents use recursive least squares – or, similar
reasonable learning algorithms – then E-stable rational expectations equilibria are lo-
cally stable under learning.8 In this simple example, if (0, b) is a locally asymptotically
stable fixed point of (15) then (At, Bt) → (0, b) almost surely.

The economic intuition behind the E-stability principle is that reasonable learning
algorithms dictate that agents update their parameter estimates in the direction of
forecast errors. This is evident in (15), as T (A,B) − (A,B) is, in a sense, a forecast
error. If the resting point of the o.d.e. is stable then adjusting parameters in the
direction of the forecast error will lead the parameters toward the rational expecta-
tions equilibrium. Conveniently, conditions for local asymptotic stability are easily
computed by examining the eigenvalues of the Jacobian matrix DT . If all eigenvalues
of DT have real parts less than one then the rational expectations equilibrium is
E-stable. For the case at hand, the derivatives are given by β and ρ′ ⊗ β.9 Since the
model is determinate by assumption, the eigenvalues of β are inside the unit circle
and so the rational expectations equilibrium is stable under learning.

If the model is indeterminate then there exists a continuum of equilibria. To
analyze stability under learning, we must take a stand on the information available
to agents. To fix ideas and avoid unnecessary complications, assume that the model
(13) is univariate and non-stochastic (rt = 0). We first assume that agents engage in
“mean value learning,” that is, they have knowledge of the endogenous variable’s lag
structure, and thus have only the mean to estimate.10 Specifically, agents condition
on the extrinsic process ηt = β−1ηt−1 +ξt, where ξt is a martingale difference sequence
capturing fluctuations in forecast error. The extrinsic noise process ηt captures the
serial correlation that arises as a self-fulfilling outcome. By conditioning on ηt the
lag structure is imposed exogenously. Agents form expectations using a forecasting
model of the form

yt = A + Bηt.

Computing the T-map provides DTA = β,DTB = I, so that the sunspot equilibria
are E-stable provided the eigenvalues of β are less than −1.

8The connection between E-stability of a rational expectations equilibrium and its stability under
real time learning is quite deep: see Evans and Honkapohja (2001) for details.

9Here, and below, we exploit that when the T-map decouples, we can compute derivatives sepa-
rately. Also, recall that the eigenvalues of the Kronecker product are the products of the eigenvalues.

10This method of learning is closely related to common factor representations, see Evans and
McGough (2005) for details.
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Another natural learning process is “VAR learning” where agents estimate both
the mean and the lag structure of the endogenous variables. Specifically, agents
condition their forecast on the martingale difference sequence sunspot ξt, as well as a
constant and lagged y

yt = A + Byt−1 + Cξt.

The primary difference between VAR and mean value learning is that the latter
assumes agents identically coordinate on the serially correlated sunspot ηt, while
the former postulates that agents try to detect the appropriate lag structure from
the data. Under VAR learning, then, the lag structure is determined endogenously.
Computing the T-map provides the following derivatives

DTA = β (1 + b)

DTB = 2bB

DTC = βb.

Since b̄ = β−1 it follows that that DTB = 2. So if agents employ VAR learning, then
the sunspot equilibria are never stable.

This example illustrates that the stability of sunspot equilibria depends on agents’
conditioning set. By incorporating the serial correlation into ηt – which only arises
in the model because of self-fulfilling expectations – the agents can coordinate on a
sunspot equilibrium. If, however, they are trying to learn the mean and (endogenously
determined) lag structure, coordination via learning is not possible.

4.2 E-stability in Regime-Switching Models

We now consider the stability properties of regime-switching equilibria.

4.2.1 E-stability and the CLDC

This Section demonstrates that the CLDC governs E-stability of RDE. If the CLDC
is satisfied, then the unique RDE will have the following minimal state variable rep-
resentation

yt = B(st)rt. (16)

To solve for B(st) for st ∈ {1, 2, ...,m}, use the stacked system and set B = (B(1)′, ..., B(m)′)′,
which yields ŷt = Brt, where

vec(B) =
(
Inm − ρ′ ⊗

(
⊕m

j=1βj

)
(P ⊗ In)

)
−1

vec(γ).

It is worth remarking at this point that the class of RDE includes the MSV solution
to the regime-switching model, but is larger than the set of MSV solutions since the
RDE may also include a sunspot shock.
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Using the representation (16) as our guide to specifying a perceived law of motion,
we now turn to the stability of RDE under learning. Throughout, we assume that
agents observe the current state st and know the true transition probabilities. This is
consistent with the conventions of the adaptive learning literature that assumes agents
observe contemporaneous exogenous variables, but not current values of endogenous
variables.

Given that the CLDC is satisfied, the eigenvalues of
(
⊕m

j=1βj

)
(P ⊗ In) are inside

the unit circle. Agents have a perceived law of motion (PLM) of the following form,
which is consistent with the MSV solution,

yt = A(st) + B(st)rt (17)

where A(j) is (n× 1), and B(j) is (n× k). Notice that we assume that agents do not
know that in equilibrium the Ai = 0.11

Given the PLM in (17), expectations are state contingent, where st = j implies

Et [yt+1|st = j] = pj1A(1) + pj2A(2) + ... + pjmA(m) + (18)

(pj1B(1) + pj2B(2) + ... + pjmB(m)) ρrt. (19)

This produces a state-contingent ALM, or, equivalently, a state-contingent T-map

A(j) → βj (pj1A(1) + pj2A(2) + ... + pjmA(m))

B(j) → βj (pj1B(1) + pj2B(2) + ... + pjmB(m)) ρ + γj.

Conveniently, this state-contingent T-map may be stacked, and becomes the T-map
associated to the stacked system under the PLM ŷt = A + Brt, where, as before,
B = (B(1)′, ..., B(m)′)′, and also A = (A(1)′, ..., A(m)′)′. The T-map is given by

T (A,B)′ =
((
⊕m

j=1βj

)
(P ⊗ In) A,

(
⊕m

j=1βj

)
(P ⊗ In) Bρ + γ

)
,

and the RDE is a fixed point of T (A,B). Here T : R(nm×1) ⊕ R(nm×k) → R(nm×1) ⊕
R(nm×k).

The eigenvalues of the Jacobian matrices

DTA =
(
⊕m

j=1βj

)
(P ⊗ In)

DTB = ρ′ ⊗
[(
⊕m

j=1βj

)
(P ⊗ In)

]

govern E-stability. Thus, we obtain the following result:

11In the univariate case below, we consider real time learning based on an alternative perceived
law of motion of the following form

yt = A + Â(st − 1) + Brt + B̂(st − 1)rt,

where st acts as a dummy variable. While this formulation is more natural for real time learning,
the E-stability results are identical in both cases and so we focus on the more parsimonious (17).
As an additional alternative, agents can have a PLM with the same form as the stacked system.
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Proposition 2 If the eigenvalues of (⊕m
j=1βj)(P ⊗ In) are inside the unit circle (i.e.

the CLDC holds), then the unique RDE is E-stable.

This result states that an economy described by the main expectational difference
equation (4), with expectations formed using (18) and updated using least squares,
will converge to the unique RDE.

4.2.2 E-stability and Indeterminacy

Now we examine the stability of HDE, and again, for simplicity, and without loss of
generality, we set γt = 0. We begin by considering VAR learning. In this case, the
PLM takes the following form:

yt = A(st−1, st) + B(st−1, st)yt−1 + C(st−1, st)ξt (20)

where ξt is the m.d.s. sunspot variable independent of the Markov states. The PLM
makes clear the primary distinction of HDE from the class of RDE solutions, since
coefficients depend explicitly on st and st−1, whereas coefficients in the PLM for the
RDE only depend on st.

Taking expectations conditional on the PLM given by (20) and values of (st−1, st)
yields

Et(yt+1|st−1 = i, st = j) =
m∑

k=1

pjkA(j, k) +

(
m∑

k=1

pjkB(j, k)

)
(A(i, j) + B(i, j)yt−1 + C(i, j)ξt) .

The T-map is given by

A(i, j) → βj

[
m∑

k=1

pjkA(j, k) +

(
m∑

k=1

pjkB(j, k)

)
A(i, j)

]
, (21)

B(i, j) → βj

(
m∑

k=1

pjkB(j, k)

)
B(i, j), (22)

C(i, j) → βj

(
m∑

k=1

pjkB(j, k)

)
C(i, j). (23)

E-stability is determined by the Jacobian DT (Ā, B̄, C̄), where Ā, B̄, C̄ are the HDE
parameters found by solving (11)-(12). Given the complexity of the Jacobian, we
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are not able to obtain general E-stability results for HDE. The next Section presents
instability results for a univariate and New Keynesian example.

Now consider mean value learning. In this case, agents are assumed to under-
stand the endogenous lagged dependence in the model and only estimate the state-
dependent mean. Specifically, assume agents observe and understand the stochastic
structure of the extrinsic noise process, ηt, where

ηt = φ(st−1, st)ηt−1 + θ(st−1, st)ξt

for appropriately defined φ(i, j), θ(i, j). Then we take our agent’s forecasting model
as

yt = A(st−1, st) + Bηt

The corresponding T-map is

A(i, j) → βj

m∑

k=1

pjkA(j, k)

and T (B) = B.12

Proposition 3 Assume HDE exist. If there exists a unique E-stable RDE, then the
common factor representation of the HDE is E-stable.

We note that under mean value learning, the CLDC governs stability of HDE.

5 Examples

The previous section provided the conditions under which an equilibrium is learnable,
and demonstrated that in the case of RDE these conditions reduce to the CLDC,
the uniqueness condition within the class of RDE. In this Section we illustrate the
equilibrium selection results of this paper by examples. Using a simple univariate
model, we consider HDE, its properties, and real time learning of RDE. In a New
Keynesian example, we show that the HDE in an empirically realistic calibrated
version of the model are not stable under learning when agents use a VAR based
learning rule.

12The result T (B) = B is standard in models with sunspots and reflects the fact that multiples
of sunspots are also sunspots.
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5.1 Univariate Model: RDE and HDE

To provide a concrete illustration of the class of solutions, we consider the special
case where yt is univariate, st takes values in {1, 2}, and γt = 0. Then

yt = βtEtyt+1. (24)

Note that in this case, if there is a unique RDE, it is, trivially, yt = yit ⇔ st = i,
where yit = 0 for i = 1, 2.

To compute an HDE, recall that a rational expectations equilibrium is a process
yt such that

yt = β−1
t−1yt−1 + ξt (25)

where ξt is an m.d.s. that satisfies Et−1ξt = 0. Of particular interest is the case in
which “one regime is determinate and one regime is indeterminate,” or, formally, for
example, |β1| < 1 < β2. In this case, non-degeneracy requires that regimes are not
absorbing, so that p22 > 0. Define

ξt =






−β−1
1 yt−1 + δ11vt (st−1, st) = (1, 1)

P11

P12

β−1
1 yt−1 + δ12vt (st−1, st) = (1, 2)

−β−1
2 yt−1 + δ21vt (st−1, st) = (2, 1)

P21

P22

β−1
2 yt−1 + δ22vt (st−1, st) = (2, 2)

where δij ∈ R is arbitrary, and vt is any martingale difference sequence with uniformly
bounded support. The dynamics for yt follow

yt =






δ11vt (st−1, st) = (1, 1)
1

P12

β−1
1 yt−1 + δ12vt (st−1, st) = (1, 2)

δ21vt (st−1, st) = (2, 1)
1

P22

β−1
2 yt−1 + δ22vt (st−1, st) = (2, 2)

, (26)

Note that provided |β2P22| > 1, yt is UB. The process given by (26) is an HDE, since
dynamics explicitly depend on st and st−1. Notice that the indeterminacy of region
2 spills over across regimes so that there is sunspot dependence in both regimes. It
should be clear from this representation of an HDE that it is not possible to represent
this class of equilibria in terms of a stacked system. In an RDE, yt switches between
two stochastic processes that are independent of the underlying Markov state. In
an HDE the value of yt depends on the current state st and also explicitly on the
Markov state in the previous period. This dependence is self-fulfilling in the sense
that it exists only because agents expect it.

We now turn to the stability of the univariate HDE given in (26), and we consider
VAR learning. In this case, the parameters A,B,C in the PLM (20) are elements
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of the real line. Computing conditional forecasts using this PLM, we obtain the
following T-map for B:

B(i, j) −→ βj (Pj1B(j, 1) + Pj2B(j, 2)) B(i, j) (27)

Ignoring the boundedness requirement, a fixed point of this map identifies an HDE.
The only restrictions, then, are the following:

1 = β1 (P11B(1, 1) + P12B(1, 2)) = β2 (P21B(2, 1) + P22B(2, 2)) . (28)

In particular, there is a two dimensional continuum of coefficients on lagged y pro-
viding fixed points.

Farmer, Waggoner, and Zha (2006) focus on particular fixed points, given by

B(1, 1) = B(2, 1) = 0, B(1, 2) =
β−1

1

P12

, B(2, 2) =
β−1

2

P22

,

and d(i, j) = δij.

To analyze stability we compute the eigenvalues of DT . The first four equations
decouple, and, when evaluated at the fixed point, provide the following Jacobian:

DT =





1 0 0 0
0 1 β−1

1 β2P21/P12 β−1
1 β2P21/P22

0 0 1 0
0 0 P21/P22 2



 .

The Jacobian has an eigenvalue of 2, which implies that under VAR learning, HDE
are E-unstable.

This instability result for HDE generalizes a finding in the sunspots literature.
The instability of HDE arise here because of the difficulty in coordinating on a par-
ticular sunspot. In an HDE, agents’ expectations have the additional propagation
that arises through the lagged endogenous state variable. Out of equilibrium, if
agents’ hold beliefs close to the equilibrium, when agents’ extrapolate these beliefs
the actual parameters move further away from the equilibrium. Hence, because the
additional propagation only exists because of self-fulfilling expectations, they fail to
coordinate on these sunspot equilibria. If, however, this serial propagation is exoge-
nously imposed into agents’ information set via the sunspot, then the equilibria can
be stable.

5.2 Real Time Learning of RDE

The connection between E-stability and stability under real-time learning is made
in constant parameter models by Evans and Honkapohja (2001). However, it is not
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clear that the results in Evans and Honkapohja (2001) apply to the regime-switching
framework. To address this issue, we present a real time learning formulation of
regime dependent equilibria.

We again take yt to be univariate, and assume st takes values in {1, 2}, but now
we allow γt to be non-trivial. The model is given by

yt = βtEtyt+1 + γtrt. (29)

Assume (β1 ⊕ β2)P has eigenvalues inside the unit circle, so that there is a unique
RDE. To consider the stability under learning of this RDE, we provide agents with
the following forecasting model

yt = A + Âŝt + Brt + B̂ŝtrt,

where ŝt = st−1. To simplify notation, let θ =
(
A, Â, B, B̂

)
′

and X = (1, ŝt, rt, ŝtrt)
′.

Agents estimate θ by regressing yt on Xt. Letting θt be the time t estimate of θ, the
recursive formulation of this estimation procedure is given by

θt = θt−1 + t−1R−1
t Xt

(
yt − θ′t−1Xt

)
(30)

Rt = Rt−1 + t−1 (XtX
′

t − Rt−1) .

The matrix R consists of the sample second moments of the regressors. The agents use
these estimates, together with their forecasting model, to form expectations. These
expectations are embedded into the expectational difference equation to obtain the
actual law of motion and associated T-map, where the ALM may then be written
yt = T (θt−1)Xt. The T-map is given by

A → β1(A + Â(1 − P11))

Â → β2(A + ÂP22) − β1(A + Â(1 − P11))

B → β1(B + B̂(1 − P11))ρ

B̂ → β2(B + B̂P22)ρ − β1(B + B̂(1 − P11))ρ.

Imposing this into the algorithm (30) identifies a dynamic system that can be analyzed
using the theory of stochastic recursive algorithms. Letting θ∗ be the fixed point of
the T-map identifying an RDE, the learning question is, does θt converge to θ∗ almost
surely? We have the following proposition.

Proposition 4 If γt = 0, then, locally, θt → θ∗ almost surely.13

13As is standard in the learning literature, in order to apply the theory of stochastic recursive
algorithms requires imposing a “projection facility” on the recursive least squares algorithm. See
Evans and Honkapohja (2001) for details.
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The restriction γt is needed to simplify the proof, though we feel it is very likely
that the proposition holds for γt 6= 0. The difficulty raised by non-zero γ reflects the
fact that the state dynamics are no longer conditionally linear, a property that the
convergence theorems typically rely upon.

To illustrate this result for γ 6= 0, we use simulations. We parameterize the
model so that the CLDC is satisfied. This ensures the existence of a unique rational
expectations equilibrium that is also an RDE. We set β1 = 1/1.5, β2 = 2, p11 =
.95, p22 = .2, ρ = 0, γ1 = 1, γ2 = .5. For these parameter values the unique RDE
coefficients are A1 = A2 = 0, B1 = 1, B2 = .5. We draw initial conditions for θ
randomly and simulate the model for 5000 time periods. Figure 1 plots a typical
simulation. As the figure makes clear, the RDE is stable under least squares learning.

Figure 1: Real time learning of an RDE.
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5.3 A New Keynesian Model

Farmer, Waggoner, and Zha (2007) illustrate the CLDC is necessary for determinacy,
but not sufficient, and concludes that policymakers who focus on obeying the CLDC
may not bring about a unique equilibrium. In this section, we use the parameter
values from Farmer, Waggoner and Zha (2007) to construct a sunspot HDE. This
example is of particular interest because the parameter values resemble estimates
from Lubik and Schorfheide (2004), so are empirically plausible. The values reflect
one view of monetary policy, namely, that the Federal Reserve did not adhere to
the Taylor Principle during the 1970s, but did so subsequently. In this example, the
CLDC holds and the RDE is unique, yet sunspot HDE also exist. Thus, whether the
resulting HDE can arise in a setting where the CLDC holds and agents update their
expectations using a reasonable learning algorithm, such as recursive least squares, is
of particular interest.

The model, reproduced here for convenience, is given by

πt = βEtπt+1 + κxt + gt

xt = Etxt+1 − σ−1 (it − Etπt+1) + ut

it = αtπt + γtxt,

where

αt =

{
α1 for st = 1
α2 for st = 2

and

γt =

{
γ1 for st = 1
γ2 for st = 2

The random variable st follows a finite-state Markov chain with transition probabili-
ties pij ≡ Pr [st = j|st−1 = i] for i, j = 1, 2.

Parameters values are from Table 3 in Farmer, Waggoner, and Zha (2007) and are

β σ κ α1 γ1 α2 γ2 p11 p22

.9949 1.655 .675 .77 .17 2.19 .30 .8577 .99
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In this calibrated example, FWZ compute the HDE as14

c1 = 0.999795

c2 = .738137

v1 =

(
−.977509
−.210551

)

v2 =

(
−0.010062
0.0065658

)

where the reduced-form autocorrelation coefficients are computed by plugging into
(10). It is straightforward to verify that the resulting stochastic process is uniformly
bounded.

Under VAR learning, the PLM is given by (20), where Farmer, Waggoner, and
Zha (2007) provide values for the coefficients for the HDE. Evaluating the T-map
given by (21)− (23) at the above rational expectations parameter values leads to the
Jacobian of the T-map relevant for E-stability. Because the DTB block de-couples it
is sufficient to examine only this portion of the Jacobian

[
DT 1

B DT 2
B

DT 3
B DT 4

B

]

where DT 1
B, DT 4

B are given, respectively, by

[
p11B(1, 1)′ ⊗ β1 + I ⊗ β1 (p11B(1, 1) + p12B(1, 2)) p12B(1, 1)′ ⊗ β1

0 I ⊗ β2 (p21B(2, 1) + p22B(2, 2))

]

[
I ⊗ β1 (p11B(1, 1) + p1,2B(1, 2)) 0

p21B(2, 2)′ ⊗ β2 p22B(2, 2)′ ⊗ β2 + I ⊗ β2 (p21B(2, 1) + p22B(2, 2))

]
,

and

DT 2
B =

[
0 0

p21B(1, 2)′ ⊗ β2 p22B(1, 2)′ ⊗ β2

]

DT 3
B =

[
p11B(2, 1)′ ⊗ β1 p12B(2, 1)′ ⊗ β1

0 0

]

Evaluating this Jacobian leads to repeated eigenvalues of 2.6323, 2.0755, .6635, .4197, 0.
Therefore, the HDE are not E-stable based on VAR learning. However, we know from
above that since the CLDC is satisfied, the RDE are E-stable, and the HDE are stable
under mean value learning.

14See Farmer, Waggoner, and Zha (2007) for details on the numerical procedure for computing
these values.
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6 Conclusion

This paper studies the existence and stability of two classes of rational expectations
equilibria in a regime-switching rational expectations model under adaptive learning,
extending the literature on learning to a non-linear framework. Building on the work
of Davig and Leeper (2007) and Farmer, Waggoner, and Zha (2006, 2007), the two
classes are:

• Regime Dependent Equilibria: An RDE is a uniformly bounded process that
satisfies the regime-switching expectational difference equation and imposes the
restriction that agents do not condition their expectations on lagged regimes (i.e.
only the current regime enters the state vector).

• History Dependent Equilibria: An HDE is a process that satisfies the regime-
switching expectational difference equation, where agents condition expecta-
tions on current and lagged values of the regime (i.e. current and past regimes
enter the state vector).

The Conditionally Linear Determinacy Condition (CLDC), a generalization of
the Long Run Taylor Principle of Davig and Leeper (2007), ensures the existence
of a unique RDE that is also E-stable. When the CLDC is satisfied, there may
still exist sunspot equilibria as demonstrated by Farmer, Waggoner, and Zha (2007).
However, we demonstrate that in a univariate model and an empirically plausible New
Keynesian model that these HDE may not be learnable, depending on the conditioning
set imposed on boundedly rational agents.

Our results have implications for monetary policy design. As Farmer, Waggoner,
and Zha (2007) demonstrate, establishing determinacy conditions for monetary policy
across both class of equilibria may be elusive. These findings raise the question of
whether determinacy and uniqueness of equilibria are the appropriate metrics when
designing monetary policy. One reaction may be to abandon rule-based monetary
policy, such as a Taylor rule, and to further embrace policy as solving complicated
control problems. Instead, we argue that learnability is an important criterion for
models with multiple equilibria and monetary policy should be designed so that there
is a unique, expectationally-stable equilibrium. Our findings indicate that as long as
monetary policy follows the Long Run Taylor Principle (i.e. the CLDC holds), then
private agents that use adaptive learning to infer the mean and lag properties of the
data will converge on the unique RDE, which is free of sunspot shocks.
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7 Appendix

Proof of Proposition 1

To establish part (b.), let yit identify an RDE. Denote by ft the time t density
functions; for example, ft (y, s|st−1 = i, Ωt−1) is the joint density of yt and st con-
ditional on st−1 = i and on all other time t − 1 information, not including current
and past st−1, as captured by Ωt−1. Also, let f i

t (y|Ωt−1) be the density for yit con-
ditional on Ωt−1, and f (s|st−1 = i) be the conditional density of st given st−1 = i
(course, f (s = j|st−1 = i) = Pij). With this notation, we may compute expectations
as follows:

E(yt+1|st = i, Ωt) =

∫ ∫
yft+1 (y, s|st = i, Ωt) dsdy

=

∫ ∫
yft+1 (y|s, st = i, Ωt)f(s|st = i) dsdy

=

∫ ∫
yf s

t+1 (y|Ωt)f(s|st = i) dsdy

=
∑

j

PijEtyjt+1,

where the third equality precisely follows from the facts that yt = yit ⇔ st = i and
that yit is independent of st+n for all n. Now we may simply use this formula for the
expectations of yt to verify that the stacked system is satisfied.

The other parts of the proposition are established in the text in the Section on
HDE.

Proof of Proposition 4

Using the notation from the body of the paper, we may write the recursive algo-
rithm as

θt = θt−1 + t−1S−1
t−1Xt

(
yt − θ′t−1Xt

)

St = St−1 + t−1 (XtX
′

t − St−1) −
1

t2
t

t + 1
(XtX

′

t − St−1) ,

where Xt = (1, ŝt, rt, ŝtrt) and St−1 = Rt. If Xt could be written as a linear difference
equation in i.i.d. noise conditional on values of θ and S, we could immediately apply
the main results of the learning literature; however, Xt is not conditionally linear,
so we must work harder: we must verify conditions M in Chapter 7.3 of Evans and
Honkapohja (2001).

First, notice that the evolution of Xt is independent of θ and S, simplifying our
task. Let Qn(x, ·) be the distribution of Xt+n given that Xt = x. We must demon-
stration the following:

25



1. For all n,m there exists K so that
∫

(1 + ‖y‖m) Qn(x, dy) ≤ K (1 + ‖x‖m)

2. For all p there exist K and δ so that for all g ∈ Li(p), for all n and for all x1,x2,
we have
∣∣∣∣
∫

g(y)Qn(x1, dy) −

∫
g(y)Qn(x2, dy)

∣∣∣∣ ≤ Kρn‖x1 − x2‖(1 + ‖x1‖
p + ‖x2‖

p)

Here Li(p) is a space of functions from R2 to itself, defined in Evans and
Honkapohja (2001): it turns out, as will be seen shortly, the simplicity of our
set-up allows us to ignore the special properties of Li(p), so we may simply take
any g : R2 → R2.

3. For all q ≥ 1 there exist n, α < 1 and β so that for all x we have

∫
‖y‖Qn(x, dy) ≤ α‖x‖q + β.

The simplicity of our state dynamics allows these items to be easily demonstrated.
Indeed, Xt is uniformly bounded a.s. by some number M, so

∫
(1 + ‖y‖m) Qn(x, dy) ≤

1+Mm, thus demonstrating item 1. Item 2, which would be quite difficult to demon-
strate if γt 6= 0 follows here because there only two states: the left-hand-side is




(1, 0)P n

(
g1(x1)
g1(x2)

)

(0, 1)P n

(
g2(x1)
g2(x2)

)
,





which goes to zero exponentially because P is a stochastic matrix (here gi is the i− th
coordinate of g, and it is because there are only a finite number of states that we
do not have to worry about the special properties of g). Finally, item 3 follows in a
fashion similar to item one because Xt is uniformly bounded.

Because the Markovian state dynamics satisfy the correct conditions, we may
proceed as usual: stack the estimators S and θ into a matrix φ and write the recursive
system as

φt = φt−1 +
1

t
H(φt−1, Xt) +

1

t2
q(t, φt−1, Xt)). (31)

The linearity of the T-map makes it straight-forward to verify that this recursion
satisfies the necessary properties. Now set

h(φ) = lim
t

E (H(φ,Xt)) .

The possible convergence points of (31) are the locally asymptotically stable fixed
points of the differential equation φ̇ = h(φ). Computing h(φ) yields the decoupled
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system

dθ

dt
= S−1E(XtX

′

t)(T (θ) − θ)

dS

dt
= E(XtX

′

t) − S.

We conclude that locally asymptotic stability obtains provided the eigenvalues of DT
have negative real part. The proof is completed by noting that the eigenvalues of DT
are the eigenvalues of (β1 ⊕ β2)P .
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