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Abstract 

   Dynamic  stochastic general equilibrium  (DSGE) models have become a widely 

used  tool  for policymakers. This paper modifies  the global  identification  theory 

used for structural vectorautoregressions, and applies it to DSGE models. We use 

this theory to check whether a DSGE model structure allows for unique estimates 

of  structural  shocks  and  their  dynamic  effects.  The  potential  cost  of  a  lack  of 

identification for policy oriented models along that specific dimension is huge, as 

the  same  model  can  generate  a  number  of  contrasting  yet  theoretically  and 

empirically  justifiable  recommendations.  The  problem  and  methodology  are 

illustrated using a simple New Keynesian business cycle model. 
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Knowledge is useful if it helps to make the best decisions.

Jakob Marschak (1953)

1 Introduction

This paper contributes to the global aspect of dynamic stochastic general equilib-

rium (DSGE) model identification. The focus here is on the global identification

of structural shocks that drive the model dynamics. The question we ask is: given

the model structure, can we retrieve unique estimates of structural shocks and sys-

tem responses? It is an important question, because the shock estimates provide

interpretation of observed economic variables. Ultimately, it is also the shock es-

timates that explain model forecasts, and consequently policy recommendations.

The question is motivated by Fukač, Pagan, and Pavlov (2004), but its roots can

be found in Marschak’s (1953) discussion of usefulness of economic measure-

ments for policy and predictions. Marschak demonstrates that policy makers do

not necessarily need to know the complete deep structure of the economy in order

to make the best policy decisions. Even limited knowledge of the economic struc-

ture might be sufficient to make effective and welfare improving policy decisions.

In that spirit, this paper puts aside the question of deep structural identification

(e.g., identification of household risk aversion or labour supply elasticity), and

concentrates on the identification of structures that guarantee (in a probabilistic

sense) a unique explanation of observed data volatility.

Central banks invest a lot of resources into the development of DSGE models. One

of the main reasons for this is to be able to conduct coherent structural analysis

and forecasting. In addition, having a structural view on economic developments

is perceived to be key for credible communication of policy actions to the public.

In many ways, DSGE models are new to central bank environment. It is the

responsibility of model developers to guarantee the reliability of the information

DSGE models provide.

In summary, this paper shows how an existing methodology for structural vector
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autoregressions (SVAR) developed by Rubio-Ramirez, Waggoner, and Zha (2008)

(henceforth RWZ) can be adapted for the identification of invertible DSGE mod-

els. The paper deals with solved log-linear DSGE models in a state-space form.

The methodology proposed here consists of three steps. The first step is to invert

the state-space model into a structural VAR model, which is only possible when

the number of observable variables is equal to the number of shocks. We will

call this inverted state-space model the semi-structural model. The second step is

the application of RWZ’s SVAR identification theory, which provides a necessary

condition for global identification. The third step is to check whether the state-

space model is of a minimal realisation. While real economic systems may not

have this property, it is desirable for policy-oriented models because it guarantees

unique system initial and terminal conditions. If a system is minimal it means

that (i) all model variables can be uniquely recovered from observed data, and (ii)

unique structural shocks can be recovered from the model variables.

The remainder of the paper is structured as follows. Section two introduces the

problem of impulse response identification. Section three looks at the application

of the SVAR identification approach to DSGE models. Section four illustrates the

results with an example, and section five concludes.

2 The identification problem

A typical DSGE model is non-linear and has forward-looking expectations:

0 = Θ(Etxt+1,xt ,xt−1,ut), (1)

where xt ∈ Rr×1 is a vector of model variables; ut ∈ Rk×1 is a vector of structural

shocks, and k ≤ r. The shocks are uncorrelated, iid N(0,σ2
ui
) for i = 1, ...,k. Θ is

a non-linear vector function relating the endogenous and exogenous variables by

a set of deep-structural parameters θ . θ captures microeconomic characteristics

of the economic agents in the model (such as their time preferences, risk aversion,

frequency of price adjustment, retained earnings, tax rates or inflation target).
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We work with the (log)linearized form of model (1), and call this the structural

model:

B0xt = B1Etxt+1 +B2xt−1 +Fut . (2)

B0, B1, B2 ∈ Rr×r (r× r) and F ∈ Rr×k are full column rank matrices. The

elements of these matrices are functions of the deep-structural parameters θ .

For simplicity at this stage, all model variables are assumed to be measurable.

Solving the structural model for the rational expectations (e.g., by the method of

undetermined coefficients), we obtain what will be called here the semi-structural

model:1

G0xt = G1xt−1 +ut

G0 ∈ Rr×r defines the contemporaneous relations among the endogenous vari-

ables, and G1 ∈ Rr×r captures their dynamics. The elements of the Gs, which are

denoted as η , are functions of the deep-structural parameters θ : η = η(θ). Note

that the semi-structural model is in fact a structural vector autoregressive model

of a finite order.

The central question of this paper is: are there exclusion restrictions on G0 such

that impulse responses are identified? An impulse response is said to be identified

if η can be uniquely estimated from the data.2

First, we define the conditions for global and local identification:

Definition 1. The impulse responses of system (2) are globally identified if the

set of G0 and G1 elements η ∈ R is not observationally equivalent to another set

η̃ ∈ R. The two sets are observationally equivalent if L(η) = L(η̃), where L(.) is

a well behaved loss function.

Definition 2. The impulse responses of (2) are locally identified if there exists

some neighbourhood B in which the set of G0 and G1 elements η ∈ R is not

observationally equivalent to another set η̃ ∈ R∩B.

1We use the term “semi” in order to distinguish the model from an SVAR model.
2In this paper we only consider exclusionary restrictions. Other tractable restrictions (such as equal-
ity and linear restrictions) are left for further work.
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The goal of estimating DSGE models is to pin down the values of the deep struc-

tural parameters θ . Why, then, does it make sense to look at the identifiability of

η rather than θ? The answer is that it might be the case that η can be uniquely

estimated despite θ being unidentified. Uniqueness of the θ parameters is key for

policy experiments and welfare analysis, but identification of the θ parameters is

sufficient for economic forecasting.

Fukač, Pagan, and Pavlov (2007) discuss that question. The Fisher information

matrix for the set of deep structural parameters θ , is given by the variance of the

scores: E
[

∂L(θ)
∂θ

]2
, where L(.) is the likelihood function. By the chain rule the

likelihood gradient can be decomposed as

∂L(θ)
∂θ

=
∂L(θ)

∂η

∂η

∂θ
.

Thus the information for θ will be the Fisher information for η times the square

of ∂η

∂θ
. If the latter is singular then the information matrix for θ is also singular,

which indicates that some of the parameters in θ are not identified (see, e.g. Iskrev

2009). But note that the singularity may not appear for the information about η .

The identification problem for the semi-structural model is in principle the same

as for a structural VAR model. The major difference is that the DSGE model

often contains latent variables. As a result, the problem of invertibility arises for

the DSGE model. The invertibility property depends on the number of model

variables (how many of them we can statistically measure), and the number of

exogenous shocks. In the next section we will see that the dimension of shocks is

key for invertibility.

3 Identification methodology

Under certain circumstances DSGE and SVAR models are two sides of the same

coin. In this section we discuss these circumstances, and show how an existing

theory for SVAR models may be applied to (log)linear DSGE models. The section

is structured according to the steps involved in the methodology. First, the log-

linear model is inverted into an SVAR model. Next the identification of impulse

4



responses is checked, and consequently the identifiability of initial conditions is

checked.

When identifying the DSGE impulse responses, we distinguish between the iden-

tification of impulse response dynamics, and the identification of shocks and ini-

tial conditions. System dynamics after an impulse (speed and profile of conver-

gence) are determined by the size of the parameters in (4). But dynamics of ob-

served data are given by the system initial conditions x0 and the sequence of

shocks ut (their size and qualitative nature). The first of these issues is dealt with

by the methodology of RWZ, while the second sits within the concept of minimal

system realisation. But both are jointly important for forecasting models, as a

model forecast is an impulse response initiated from a proper initial condition.

3.1 Inverting a DSGE model

The model (2) has the minimum state variable (MSV) solution of the form

G0xt = G1xt−1 +Qut , (3)

where G0,G1 ∈ Rr×r, and Q ∈ Rr×k is a full column rank matrix. G0 = B0−
B1G−1

0 G1, G1 = B2, and Q = F .

We can put (3) into state-space form, and estimate it with the Kalman filter. The

MSV solution establishes the transition equation:

xt = Axt−1 +But . (4)

A = G−1
0 G1, and B = G−1

0 F . The map of the state (model endogenous) variables

to their observable counterparts establishes the measurement equation

yt = Cxt . (5)

yt ∈Rn×1 is the vector of observable variables. C ∈Rn×r, and r ≥ n. For simplic-

ity, no measurement errors are assumed in (5). However, the results hold under

measurement errors as well. Please note that that MSV form that constitutes the
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state equation does not guarantee the minimum realisation of a state-space system.

We will return to this topic.

The application of RWZ’s methodology requires model (4)-(5) to be written in

terms of observable variables yt and their own past values. The state-space model

has to be inverted. We will call the result the semi-structural model.3

In general, there are more state variables in DSGE models than we can actually

observe4. The first step in deriving the semi-structural forms is to substitute (4)

into (5), which gives us:

yt = Cxt−1 +Dut , (6)

where C = CA and D = CB. D might not be invertible (or left invertible), because

it does not necessary have a full column rank. Thus we impose the following

assumption.

Assumption 1. D is invertible, or at least left invertible, i.e. D+D = I.

This assumption restricts us to state-space models that have the same number of

shocks (structural and/or measurement errors) as observable variables, n = k.

Assumption 1 is used to solve (6) for ut = D+yt −D+Cxt−1. Plugging that into

(4) and re-arranging gives us xt = [I− (A−BD+C)L]−1BD+yt . By substituting

3In the engineering literature, where such inversion comes from, it is called the impulse response
function (see Ljung, 1999, Section 4.3). Villaverde et al. (2007) study the properties of such a
transformation for economic problems.

4This creates only a minor complication for the invertibility technique itself. If C is invertible
(k = n), then it is straightforward to solve for the semi-reduced form. From the state equation (4),
xt is solved and substituted into the measurement equation (5).

(I−AL)xt = But

(I−AL)C−1yt = But

B+C−1yt = B+AC−1yt−1 +ut

A0yt = A1yt−1 +ut

with A0 = B+C−1 and A1 = B+AC−1. If A is a stable matrix – which is almost always the case
as it comes from the rational expectations solution – the state-space model can be represented as a
structural VAR(1).
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this back into the measurement equation (6) we obtain an infinite order SVAR

representation of (4)-(5)

D+yt = D+C
∞

∑
j=0

(A−BD+C) jBD+yt− j−1 +ut . (7)

In summary, if the dimensions of xt , yt and ut are the same than the semi-structural

form is in fact a finite order SVAR model. If the dimension of xt is higher than

those of yt and ut , the semi-structural model corresponds to the infinite order

SVAR (7).

3.2 Impulse response identification

The heart of the impulse response identification lies in the theory of RWZ. In

this section we summarise the key features of their theory (for details see RWZ,

2008, Section II), and extend it to the case where SVAR representations have more

shocks than observable variables.

RWZ’s methodology requires (7) to be transposed such that individual equations

are in columns.

y′tA0 = y′tA+(L)+u′t , (8)

where yt = [yt−1yt−2...y−∞]′. A+(L)′ = [I− (A−BD+C)L]−1BD+ is an infinite

polynomial. A0 = (D+)′ = [(CG−1
0 F)−1]′ is an n× n matrix capturing the con-

temporaneous relationships among observed endogenous variables implied by the

theoretical model. Villaverde et al. (2007) show that if (A−BD+C) is stable then

yt is a bounded sequence.5

We depart from RWZ by ignoring assumption 1 for a moment and assume instead

that A0 is of dimension k×n. This is not an invertible matrix, but it has full row

rank so it is right invertible. A reduced form representation for this matrix can be

obtained by taking the Moore-Penrose pseudoinverse.6 If there are n observable
5See footnote 2 of this paper. If n = k = r and C is an identity matrix then (8) shrinks to SVAR(1),
which is the MSV solution (3).

6The key computational rules with the pseudoinverse operator are summarised in Appendix E.
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variables in the model then the full row rank assumption holds. The reduced form

is then

y′t = y′tB+u′t ,

where B = A+A+
0 is of dimension m×n, and u′t = ε ′t A

+
0 is a 1×n vector of reduced

structural shocks. Note that the dimension of shocks corresponds to the number

of yt . We have as many reduced form shocks as observable variables. E[utu′t ] =
E[A+′

0 εtε
′
t A

+
0 ] = (A0A′0)

+ = Σ, where Σ is an n×n variance-covariance matrix of

reduced form shocks.

The first key theorem in RWZ is about the observability equivalence.

Theorem 1 (Observability equivalence). Two sets of structural parameters in (7),

(A0,A+) and (Ã0, Ã+), are observationally equivalent if and only if there exists a

k× k orthogonal matrix P such that A0 = Ã0P and A+ = Ã+P.

Proof. See Appendix A.

In order to check identifiability of the structure (A0,A+) we need to be able to rep-

resent the parameter restrictions. Here we stick with the exclusionary restrictions

as studied by RWZ. For 1≤ j ≤ k and f (A0,A0) = [A0 A+]′ of dimension g×k,

where g = n+m, RWZ define matrix

M j( f (A0,A+)) =

[
Q j f (A0,A+)

I j 0

]

where I j is a j× j identity matrix, and 0 is a j× k− j zero matrix. The linear

restrictions can be represented by g× g matrices Q j for 1 ≤ j ≤ k. Each matrix

Q j has rank q j. The structural parameters (A0,A+) satisfy the restrictions if and

only if

Q j f (A0,A+)e j = 0,

where e j is the jth column of the k× k identity matrix Ik. The ordering of Q j is

such that

q1 ≥ q2 ≥ ...≥ qk.
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The ordering of restrictions is important for the identification check as it utilises

the recursive nature of the model. Shocks estimates are used as extra instrumen-

tal variables for identification. As discussed in RWZ, this is the major difference

from identifying a system of linear equations in classical econometrics. In SVAR

models residuals are allowed to be correlated whereas in the classical linear sys-

tem residuals are orthogonal.

Theorem 2 (The general rank condition). If (A0,A+) ∈ R and M j( f (A0,A+)) is

of rank k for all 1≤ j ≤ k, then the SVAR is globally identified at (A0,A+).

Proof. This theorem is adjusted Theorem 5 from RWZ. See Appendix B.

Finally, having defined the SVAR representation of the DSGE model (7), we can

apply theorem 2. Since A+ is an infinite order polynomial, f (A0,A+) is also

of infinite size. However, to apply the theorem we can focus on a finite order

model with j = 1. A′2 = D+C(A−BD+C)BD+, and because the matrices A′j =
D+C(A−BD+C) jBD+ for j > 1 are combinations of A2, the rank of A+ will be

equal to the rank of A2. Therefore it is sufficient to construct f (A0,A+) as

f (A0,A1,A2) =

 A0

A1

A2

=

 [(D+]′

[D+CBD+]′

[D+C(A−BD+C)BD+]′

 .

Given f (A0,A1,A2) we can form Q j to represent zero restrictions, and correspond-

ingly M j( f (A0,A+)) for all 1≤ j ≤ k.

Overall, the strength of theorem 2 is that it applies globally. The theorem gives

a necessary condition, but if the number of exclusionary restrictions is equal to

(n−1)/2, it also provides a sufficient condition.

3.3 Checking minimal system realisation

The condition of minimal realisation may appear restrictive, as one may believe

that we live in an uncontrollable world, but from the perspective of a decision-
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maker, it is appealing to work with the model structures that satisfy such a condi-

tion.7 We need a solid information ground to make best decisions. Unique initial

conditions, unobservable variables and structural shocks estimates provide such

a ground. Then there is only one degree of freedom to tell an economic story

based on the model. Its uniqueness guarantees that the model’s interpretation of

the past economic development will not dramatically change, and stays consistent

and credible over time. In the economics we often work with unobservable con-

cepts like real marginal costs, risk premiums, cost-push shocks or monetary policy

shocks. In order to use those concepts to interpret the dynamics of variables like

inflation or interest rate we need to know their reliable estimates.

Definition 3 (Observability). The state-space system {A,B,C,D} is called observ-

able if the observability matrix On(C,A) has rank n,

OT (C,A) =


C

CA
...

CAT−1

 .

If the system is observable, then we can always solve for the initial state x0 from a

given set of shocks ut (typically assumed to be zero) and observables yt , for t ≥ 0.

Definition 4 (Controllability). The state-space system {A,B,C,D} is called con-

trollable if the controllability matrix Cn(B,A) has rank n,

CT (B,A) =
[
B AB . . . AT−1B

]
.

7In contrast to the electrical engineering literature where the control theory originated, economics
introduces concepts for which economists do not have measurable counterparts. Even though it is a
well known feature of dynamic systems, it seems that the minimal system property is often omitted
in many economic applications. One can often see DGSE models with twice as many model
endogenous variables than observed time series on which to estimate the model. Unique estimation
of unobservable endogenous variables is part of the identification problem we are interested in.
Having properly identified initial conditions for all endogenous variables (both observable and
unobservable) is necessary for unique forecasts.
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If the system is controllable then for any initial state it is possible to design a

unique set of shocks that will lead to a desired trajectory of states xt .

Theorem 3 (System minimal realisation). The system {A,B,C,D} is minimal if it

is observable and controllable.

Proof. See Kalman (1962) for the proof.

In engineering literature the problem of minimal realisation is described as: given

some data about linear time invariant system, find a state space description of

minimal size that describes the given data (e.g. De Schutter 2000, p.332). In the

economics, we have The following theorem states how the minimal realisation

problem is related to the initial condition identification.

Theorem 4. If the order of the state-space system is minimal then we can uniquely

recover the structural shocks {ut}T
t=1 and state variables {xt}T

t=0.

Proof. The problem can be broken up into two parts. First, if we know {yt}T
t=1 can

we get a unique x0, that is a unique {xt}T
t=0 that leads to x0? This is equivalent to

checking the observability condition. Second, knowing x0 and {xt}T
t=1, can we get

a unique sequence of exogenous shocks {ut}T
t=1 that explains such a trajectory?

This is equivalent to checking the controllability condition.

Looking at the first problem, we solve the following system of equations:

y1 = Cx0 +Du1

y2 = CAx0 +CBu1 +Du2

y3 = CA2x0 +CABu1 +CBu2 +Du3
...

yT = CAT−1x0 +CAT−2Bu1 + ...+CBuT−1 +DuT
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In matrix form

y1

y2

y3
...

yT


−



D 0 0 0 . . . 0

CB D 0 0 . . . 0

CAB CB D 0 . . . 0
...

...
...

...
... 0

CAT−2B CAT−3B CAT−4B . . . CB D





u1

u2

u3
...

uT


=



C

CA

CA2

...

CAT−1


x0

(9)

If the matrix on the right-hand side of equation (9) (the observability matrix) is

left-invertible (i.e. it has full column rank), then the system can be uniquely solved

for x0.

Looking at the second problem, we know x0 and solve the system for the unique

realisation of {ut}T
t=1:

x1 = Ax0 +Bu1

x2 = A2x0 +ABu1 +Bu2

x3 = A3x0 +A2Bu1 +ABu2 +Bu3
...

xT = AT x0 +AT−1Bu1 + ...+ABuT−1 +BuT



x1

x2

x3
...

xT


−



A

A2

A3

...

AT


x0 =



B 0 0 . . . 0

AB B 0 . . . 0

A2B AB B . . . 0
...

...
...

...
...

AT−1B AT−2B AT−3B . . . B





u1

u2

u3
...

uT


(10)

The solution is unique if the matrix on the right-hand side is invertible. It is

invertible if the controllability matrix CT (B,A) has full column rank. Thus if

the state-space model is minimal we get a unique trajectory for both {xt}T
t=0 and

{ut}T
t=1
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4 An illustration

In this section we will illustrate the use of the identification methodology on a

simplified version of the closed economy New Keynesian business cycle model.

The New Keynesian model can be summarised by the following three equations:

πt = βEtπt+1 +
(ϕ +ν)(1−ζ β )(1−ζ )

ζ
ξt +uS,t , (11)

ξt = Etξt+1 +
1
ϕ

[rt−Et(πt+1)]+uD,t , (12)

rt = φrrt−1 +(1−φr)(φππt +φξ ξt)+ur,t . (13)

The Phillips curve (11) is firms’ linearized pricing rule, where πt is the aggre-

gate price level inflation rate. The IS curve (12) is households’ linearized Euler

equation capturing the output ξt . The nominal side of the economy is controlled

by the central bank’s interest rate rule (13), where rt is the nominal interest rate

set in period t, and uS,t , uD,t , and ur,t are the supply (cost-push) shock, demand

shock, and monetary-policy shock, respectively. All shocks are iid N(0,σ2
ui
) for

all i = {S,D,r}. The model’s deep structural parameters (earlier denoted as θs)

are 0 < β < 1, ν > 0, ϕ > 0, ζ > 0, 0≤ φr < 1, and φπ and φξ are such that there

exists a unique and stable equilibrium.

We can immediately see that the parameters ν and ζ cannot be identified, as ζ

comes from a quadratic equation. Following the discussion in section 2, this is

not disturbing because unique values of the deep structural parameters are not very

important here. It is their product (ϕ+ν)(1−ζ β )(1−ζ )
ζ

that determines the impulse

response function that we are interested in.

Solving the model for rational expectations, we end up with the law of motion for

ξt , πt , and rt . We look for the MSV representation such that we can construct A0

and A+ for the identification methodology. The MSV representation of (11)-(13)

is8

A0yt = A1yt−1 +ut ,

8A derivation is outlined in Appendix C.
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where yt =
[

πt ξt rt

]′
, ut =

[
uD,t uS,t ur,t

]′
, and

A′0 =

 a0,11 0 a0,31

a0,12 a0,22 a0,32

a0,13 a0,23 a0,33

 , A′1 =

 0 0 0

0 0 0

0 0 a1,33

 .

We now need to determine whether the structure of A0 and A1 is such that the

value of the semi-structural parameters a0,i j and a1,i j for all i, j = 1,2,3 can be

uniquely pinned down by the data.

4.1 The same number of endogenous variables, observables,
and shocks

Let us start with the simplest case where all model variables are assumed to be

observed and the number of shocks are equal to the number of observables, i.e.

n = k = r = 3. This is the simplest case, because C is an identity matrix and the

MSV solution directly yields an SVAR(1) model. No DSGE model invertibility is

required and thus we have a straightforward application of RWZ’s theory.

First, we form the transformation f (A′0,A
′
1) by stacking A′0 and A′1

f (A′0,A
′
1) =

(
A′0
A′1

)
.

Note that the matrices A0 and A1 are transposed, and individual equations are

captured in columns.

Second, we re-order the equations by the descending number of exclusionary re-

strictions as required by theorem 2. We swap the IS curve with the Phillips curve

as the IS curve has four exclusionary restrictions while the Phillips curve has only
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three. By swapping the second column of f (.) with the first one, we get

f (A′0,A
′
1) =



0 a0,11 a0,31

a0,22 a0,12 a0,32

a0,23 a0,13 a0,33

0 0 0

0 0 0

0 0 a1,33


Third, we represent the zero restrictions in f (A′0,A

′
1) by Q j matrices that form the

nullspace with f (A′0,A
′
1). Each Q j captures the exclusionary restrictions in the j’s

column of f (A′0,A
′
1). For the first column, the IS curve, we have Q1

Q1 =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

For the second and third column, the Phillips curve and the policy rule respec-

tively, we form

Q2 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, Q3 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0


.

The fourth and final step is to construct the matrices M j( f (A′0,A
′
1)) from theorem

2 for all j = 1,2,3. Skipping the zero rows, we get

M1 =

 0 a0,21 a0,31

0 0 a1,33

1 0 0

 ,M2 =

 0 0 a1,33

1 0 0

0 1 0

 ,M3 =

 1 0 0

0 1 0

0 0 1

 .
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Again, each M j represents individual model equation that are ordered as the columns

in f (.). The rank of M j can be interpreted in a partial way. If rank(M j) = n, one

concludes that the shock associated with the jth equation is identified. Clearly,

rank(M j) = 3 for all j here, and thus we can conclude that the semi-structural

model is identified. Note that the identification comes from the lagged interest

rate rt−1 in the policy rule. If φr = 0 then the model does not produce enough in-

struments to identify the Phillips curve and the rank condition would be violated,

rank(M2) = 2.

4.2 More endogeneous variables than observables and shocks

Now let us look at the case where the number of observable variables is less than

the number of model variables. This will require the DSGE model to be inverted,

and we will show that the location of structural shocks matters for identification

in such cases.

Let us reduce the number of shocks and observable variables.9 The shocks and

observables are carefully chosen in the examples below in order to serve the illus-

tration purposes best.

4.2.1 No monetary policy shock: σ2
uR

= 0

The output ξ (or output gap) is stochastic but unobservable in this economy. We

only observe the interest rate and inflation. We also assume that the model devel-

oper, in order to keep the number of shocks equal to the number of observables,

assumes that there is no policy error in setting the interest rate according to (13),

σ2
uR

= 0. Thus the observed volatility of the interest rate will be due to supply and

demand shocks.

First, we have to invert the DSGE model into an SVAR. Because now n = k < r,
9This exercise is equivalent to compounding the shocks, so that their number is reduced to n in the
measurement equation (6).
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the SVAR will be of infinite order. Setting C =

(
0 1 0

0 0 1

)
and F=

(
1 0

0 1

)
,

and substituting them into (8), we obtain A0 and A+ such that

f (A′0,A
′
1) =


+ +

+ +

0 0

+ +

 .

For j > 1 A j = 0. For interested readers, the detailed derivation is in Appendix C.

Having f (A′0,A
′
1) one proceeds in exactly the same way as before, by constructing

Q j and then M j( f (A0,A1)) for j = 1,2, which gives

M1 =

 0 0

0 0

1 0

 , M2 =


0 0

0 0

1 0

0 1

 .

We find that rank(M1) = 1 and thus the supply shock uS,t associated with the

Phillips curve is not identified.

4.2.2 No demand shock: σ2
uD

= 0

In this example we still do not observe the output ξt but the IS curve is now

a deterministic relation, σ2
uD

= 0. Instead the interest rate rule will be subject to

stochastic errors. Because we have n = k = 2 and r = 3, the inverted DSGE model

will again be of infinite order.

Following the four-step procedure above, the f (A′0,A
′
1) representation is

f (A′0,A
′
1) =


+ +

+ +

0 0

0 +

 .
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Correspondingly, M j( f (A0,A1)) for j = 1,2 turns out to be

M1 =

 0 0

0 +

1 0

 , M2 =


0 0

0 0

1 0

0 1

 .

The location of shocks matters. Because rank(M1) = rank(M1) = 2 both supply

and policy shocks can be identified from the data and thus the impulse response

of observable variables to structural shocks can also be uniquely informed by the

data. Changing the assumption about the shocks results in their identifiability.

4.3 Implications for forecasting models

This paper has been motivated by the need for applied models to be identified.

Therefore it is natural to ask what it means practically when a model does not have

identified impulse responses? In table 1 we report two different sets of parameter

estimates of (11)-(13). φr is restricted to zero and thus the model is not identified.

Estimating such a model on US of inflation and interest rate data gives the two

sets of maximum likelihood estimates, both consistent with the same value of the

likelihood function of 63.31. Abstracting from the economic interpretation of the

estimates per se, there is no way to distinguish which set of estimates is preferred

by the data. Thus, the model provides two different recommendations for setting

the policy instrument as can be seen in figures 1 and 2.

Figure 1 shows the historical shock decompositions of the US inflation and interest

rate under parameterization 1 from table 1. The dashed and dotted lines plot the

contribution of supply and policy shocks respectively, to the development of the

inflation rate (in the top panel), and interest rate (bottom panel). Summing up the

shock contributions gives the value of the observed series. In the right panels of

figure 1 we show the forecasts from 2001:Q4 onwards where inflation gradually

returns to its steady state value. As a result of such sluggish price adjustment, the

model recommends only a gradual increase in the policy rate. Starting from about
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70 bp below its neutral levels the model recommends approximately three 25bp

hikes for the interest rate to return the economy to the steady state.

Table 1: Alternative parametrizations implying the same likelihood

Parametrization 1 Parametrization 2

β 0.99 0.99

φ 0.87 3.72

κ 0.65 6.14

θπ 2.68 1.85

θξ 1.05 0

σuS 0.46 0.76

σur 0.95 0.56

Likelihood 63.31 63.31
The parameters values are estimates from the New Keynesian model using US inflation and 3M
T-bills data from 1982:q1 to 2001:q4. The different values were obtained by providing different
initial conditions for the estimation algorithm, κ = (ϕ+ν)(1−ζ β )(1−ζ )

ζ
.

Before drawing any conclusions from this, we should bear in mind that both pa-

rameterizations 1 and 2 are associated with the same data likelihood. Inspecting

the same graphs in figure 2, prices seem to be much more flexible under param-

eterization 2. They are predicted to rise back to their steady state values in about

one quarter. Monetary policy must follow and close its expansionary stance very

quickly in order to avoid causing inflationary pressures in the future. The model

recommends a hike of about 40 bp in one quarter to offset that. This is quite a dif-

ference in comparison to the three 25bp increases of interest rates recommended

before.

This is a simple illustration of risks associated with unidentified models. In large

models with more complex policy transmission mechanisms, we may end up with

even more contradictory policy prescriptions – under one parameterization the

policy rate might be perceived as too loose and under another too tight. The

policy errors might be qualitatively different.10

10This was the experience for instance in developing KITT, the Reserve Bank of New Zealand
forecasting model (see Beneš, et al. 2009).
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Models are often estimated by Bayesian methods that downplay the problem of

structural identification. However, the modeller is still interested in updating pri-

ors by data information. If the model structure is such that it prevents data from

speaking, one has to rely on the priors. The question is are the priors strong

enough, or do we only have them in order to be able to run something appearing

like estimation? If the prior is not strong then posterior estimates suffer exactly

the same problem illustrated in figures 1 and 2.
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Figure 1: Forecast with model Parametrization 1
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Figure 2: Forecast with model Parametrization 2
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5 Conclusion

This paper has shown that the SVAR identification methodology developed by

Rubio-Ramirez, Waggoner and Zha (2008) can be applied to DSGE models with

unobservable variables. We used the RWZ methodology to determine whether the

model’s semi-structural form is globally identifiable, with the aim of estimating

unique impulse responses. If there is no other observationally equivalent set of

structural shocks that would explain the data, the model is said to have unique

(identified) impulse responses. The methodology consists of a few matrix oper-

ations and evaluations and is straightforward to apply, particularly to large scale

models. Because no evaluation of likelihood functions is involved the methodol-

ogy is computationally cheap. It takes only seconds to evaluate the objectives. It

can also provide useful information for DSGE model developers. There are many

types of structural shocks that can be used to make the dynamic model stochastic

and economic theory does not always provide guidance which to choose. Thus

shock identifiability may serve as one criteria for a discriminating among them.

This paper only scratches the surface of the DSGE model identification problem.

Rothenberg (1971) sets general conditions for structural model identfiability, but

there is still a lack of techniques that allow these conditions to be evaluated in

practice. We leave the question of global identification of deep structural param-

eters and the problem of identifiability of DSGE models containing unit roots for

the future research.
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A Proof of Theorem 1

Proof. If A0 = Ã0P and A+ = Ã+P, then

B = A+A+
0 = Ã0PP−1Ã+

0 = Ã+Ã+
0 = B̃

Σ = (A0A′0)
+ = (Ã0PP′Ã′0)

+ = (Ã0Ã′0)
+ = Σ̃.

If they are observationally equivalent then A+A+
0 = Ã+Ã+

0 and (A0A′0)
+ =(Ã0Ã′0)

+.

From the latter it follows that

(A0A′0)
+ = (Ã0Ã′0)

+

A+′
0 A+

0 = Ã+′
0 Ã+

0

A′0A+′
0 A+

0 = A′0Ã+′
0 Ã+

0

A+
0 = A′0Ã+′

0 Ã+
0

A′0(A0A′0)
−1 = (Ã+

0 A0)′Ã+
0

A′0 = (Ã+
0 A0)′(Ã+

0 A0)A′0
(A0A′0)

′[(A0A′0)
′]−1 = (Ã+

0 A0)′(Ã+
0 A0)(A0A′0)

′[(A0A′0)
′]−1

I = (Ã+
0 A0)′(Ã+

0 A0).

Therefore P = Ã+
0 A0 is orthogonal and Ã0P = A0. That is

P = Ã+
0 A0

Ã0P = Ã0Ã+
0 A0

Ã0P = Ã0Ã′0(Ã0Ã′0)
−1A0

Ã0P = A0.

Using this result for A+A+
0 = Ã+Ã+

0 , we obtain

A+A+
0 = Ã+Ã+

0

A+A′0(A0A′0)
−1 = Ã+Ã+

0

A+A′0 = Ã+Ã+
0 A0A′0

A+(A0A′0)
′ = Ã+Ã+

0 A0(A0A′0)
′

A+(A0A′0)
′[(A0A′0)

′]−1 = Ã+Ã+
0 A0(A0A′0)

′[(A0A′0)
′]−1

A+ = Ã+Ã+
0 A0

A+ = Ã+P.
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B Proof of Theorem 2

Proof. With a minor modification, the proof is the same as in RWZ (2007, p.15).

Let q j = Pe j − p j je j, where P = Ã+
0 A0 is a k× k orthogonal matrix, p j is the

first column of P with non-zero off-diagonal elements, e j is the jth column of

an identity matrix Ik. To prove the theorem it is sufficient to show that the rank

of M j( f (A0,A0)) is strictly less than k. Since q j 6= 0, it suffices to show that

M j( f (A0,A+))q j = 0. Because both (A0,A+) and (A0P,A+P) are in R, by con-

struction of Q j it holds that Q j f (A0,A+)q j = 0. Thus the upper block of M j( f (A0,A+))
is zero. The lower block [I 0]q j is also equal to zero, because I is a j× j and

first j elements of e j are zero.
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C Solution to examples in Section 4

Case 1: r = n = k

The matrix form of model (11)-(13) is

x′tB0 = xt−1C +(Etxt+1)′D+u′t ,

where xt = [πt ξt rt ], B0, C, and D are 3× 3 matrices of the semi-structural

form parameters, and ut is iid N(0,1).

The MSV solution to the model is

x′tA0 = xt−1A1 +u′t ,

where

B0−CA−1
0 D = A0,

A1 = C.

Now, the task is to characterize the structure of A0. We know that

B0 =

 + 0 +

+ + +

0 + +

 ,D =

 + + 0

0 + 0

0 0 0

 ,C =

 0 0 0

0 0 0

0 0 +

 .

Let A−1
0 =

 a∗0,11 a∗0,12 a∗0,13

a∗0,21 a∗0,22 a∗0,23

a∗0,31 a∗0,32 a∗0,33

 and substitute into the MSV solution to get

an idea of what the structure of A0 looks like. We can then apply the counting rule

from RWZ’s paper. We get + 0 +

+ + +

0 + +

−
 0 0 0

0 0 0

+ + +


 + + 0

0 + 0

0 0 0

= A0,
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and from there A0 =

 + 0 +

+ + +

+ + +

.

Now we can apply theorem 2 to check the general rank condition.

f (A0,A1) =

(
A0

A1

)
=



+ 0 +

+ + +

+ + +

0 0 0

0 0 0

0 0 +


=



0 + +

+ + +

+ + +

0 0 0

0 0 0

0 0 +



Q1 =


1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



Q2 =


0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


Now we have to check the rank condition:

M1

(
A0

A1

)
=

 Q1 (
A0

A1
)

1 0 0

=


0 + +

0 0 0

0 0 0

0 0 +

1 0 0


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M2

(
A0

A1

)
=


Q1 (

A0

A1
)

1 0 0

0 1 0

=



0 0 0

0 0 0

0 0 0

0 0 +

1 0 0

0 1 0


We can see that rank(M1) = 3 and rank(M2) = 3, and thus we can conclude that

the model is globally identified.

Case 2: n = k < r

A.) No monetary policy shock: σ2
uR

= 0

In this exercise we assume that the output gap ξ is unobservable, and that there is

no monetary policy shock uR,t . The structural model when solved then takes the

form

A0xt = A1xt−1 +Fut .

A0 =

 + 0 +

+ + +

+ + +

, A1 =

 0 0 0

0 0 0

0 0 +

, F =

 0 0

1 0

0 1

.

yt = Cxt

= CA−1
0 A1xt−1 +CA−1

0 Fut

= Cxt−1 +Dut

C =

(
1 0 0

0 0 1

)
, C =

(
0 0 +

0 0 +

)
, D =

(
+ +

+ +

)
.

Solving for an SVAR representation of the DSGE model we get

A0yt = A1yt−1 +ut
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A0 = D+ =

(
+ +

+ +

)
, A1 = D+CBD+ =

(
0 +

0 +

)
.

f (A′0,A
′
1) =


+ +

+ +

0 0

+ +

 Q1 =
(

0 0 1 0
)

, Q2 =
(

0 0 1 0
)

.

M1 =

(
0 0

1 0

)
, M2 =

 0 0

1 0

0 1

.

We can see that rank(M1) = 1 and rank(M2) = 2. Thus, the model is not identified.

B.) No demand shock: σ2
uD

= 0

We assume the same setting as in Case 2 A, with the only difference being that

there is no demand shock in the IS curve uD,t , but there is a monetary policy shock,

uR,t .

F =

 1 0

0 1

0 0

, C =

(
0 0 +

0 0 +

)
, B =

 + +

+ +

+ +

.

Similarly to above, A0 =

(
+ +

+ +

)
, A1 =

(
0 0

0 +

)
.

f (A′0,A
′
1) =


+ +

+ +

0 0

0 +

, Q1 =

(
0 0 1 0

0 0 0 1

)
, Q2 =

(
0 0 1 0

0 0 0 0

)
.

Thus M1 =

 0 0

0 +

1 0

, and M2 =


0 0

0 0

1 0

0 1

. We can immediately see that

rank(M1) = 2 and rank(M2) = 2. The model is identified.

30



D Matrix pseudoinverse

Definition 5 (Matrix pseudoinverse). For a matrix A whose elements are real num-

bers, its pseudoinverse A+ is a unique transformation, which meets the following

criteria:

AA+A = A;

A+AA+ = A+;

(AA+)′ = AA+;

(A+A)′ = A+A;

Some useful properties are:

• Pseudoinversion is reversible: (A+)+ = A;

• (A′)+ = (A+)′;

• A+ = A+A+′A′;

• A+ = A′A+′A+;

• If A is of full column rank then A+ = (A′A)+A′, and A+A = I; A+ is left

inverse of A;

• If A is of full row rank then A+ = A′(AA′)+, and AA+ = I; A+ is right inverse

of A;

• If A is square, non-singular matrix then A+ = A−1.
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