
Structural Macro-Econometric 
Modelling in a Policy 
Environment 
 
Martin Fukac and Adrian Pagan 

February 2010 

RWP 10-08 



 

 

Structural Macro‐Econometric Modelling in a Policy Environment 

 

 

Martin Fukac1 and Adrian Pagan2 

February 2010 

RWP 10‐08 

 

 

Abstract: In this paper we review the evolution of macroeconomic modelling in a 

policy  environment  that  took  place  over  the  past  sixty  years. We  identify  and 

characterise four generations of macro models. Particular attention is paid to the 

fourth generation  ‐‐ dynamic  stochastic general equilibrium models. We discuss 

some of the problems in how these models are implemented and quantified. 

 

Key words and phrases: history of macroeconomic modeling, policy oriented 

models, structural model evaluation, DSGE models 

JEL: B16, C50 

                                                            
1 Federal Reserve Bank of Kansas City, Economic Research Department, 1 Memorial Drive, Kansas City,  

Missouri 64198. E‐mail: Martin.Fukac@kc.frb.org, phone: +1 816‐881‐2449. 

2 University of New South Wales, and School of Economics and Finance, Queensland University of 
Technology, 804 ‐ Gardens Point Campus, Brisbane, Australia; Phone: +61 7 3138 5293; fax: +61 7 3138 
1500; E‐mail: a.pagan @ qut.edu.au 



1 Introduction

Since the basic ideas of structural macro-econometric modelling were laid
out by the Cowles Commission there has been substantial effort invested in
turning their vision into a practical and relevant tool. Research and develop-
ment has proceeded across a broad front but basically can be characterized
as responses to four issues.

1. The design of models to be used in a policy environment.

2. Estimation of the parameters in these models.

3. Match of these models to the data i.e. how to evaluate their ability to
adequately represent the outcomes from an actual economy.

4. Prediction and policy analysis with the models.

Econometric texts and articles typically deal with the last three topics while
the first tends to be neglected. Consequently this chapter will focus upon
how the design of models in use has evolved over the past sixty years. It is
impossible though to ignore questions of estimation and data matching, as
often these are driven by the design of the models, so that we will need to
spend some time on the second and third of the issues.

Model design has evolved in a number of ways. At a primal level it is due
to the fact that the academic miniature model upon which they are based,
and which aims to capture the essential forces at work in the economy, has
changed over time. We can distinguish five of these miniature models:

1. Ramsey model - Ramsey (1928)

2. IS-LM, AD-AS models - Hicks(1938).

3. Solow-Swan Model - Solow (1956), Swan (1956)

4. Stochastic Ramsey Model (Real Business Cycle Model/ Dynamic Stochas-
tic General Equilibrium -DSGE- models) - King et al (1988)

5. New Keynesian models- Clarida et al. (1999)

Essentially, these models were meant to provide a high-level interpretation of
macro-economic outcomes. Mostly they were too simple for detailed policy
work and so needed to be adapted for use. They can provide some broad
intellectual foundations but need to be augmented for practical use. The
adaptions have led to four generations of models which loosely relate to the
miniature models given above.
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Co-existing with these interpretative models have been summative models
that aim to fit a given set of data very closely and which employ various
statistical approaches to do this e.g. Vector Autoregressions (VARs). Mostly
these models are used for forecasting. Sometimes the summative and inter-
pretative models have been identical but increasingly there has been a divorce
between them, resulting in a multiplicity of models in any policy institution
today. To some extent this reflects developments in computer hardware and
software, since the cost of maintaining a variety of models has shrunk quite
dramatically in the past few decades. The greater range of models also means
that how we are to judge or evaluate a given model will differ depending upon
what it seeks to achieve. Consequently, this often accounts for why propo-
nents of a particular representative of each of the classes are reluctant to
evaluate their models with criteria that might be appropriate for another of
the classes.

The four generations of models we will distinguish in the succeeding sections
are often represented as being vastly different. Sometimes the differences
that are stressed are superficial, reflecting characteristics such as size and
underlying motivation. It would be unfortunate if this attitude prevailed as
it obscures the fact that each generation has drawn features from previous
generations as well as adding new ones. Evolution rather than revolution is
a better description of the process describing the move from one generation
to another. To see this it will help to structure the discussion according to
how each generation has dealt with five fundamental questions:

1. How should the dynamics evident in the macro-economy be incorpo-
rated into models? Specifically are these to be external (imposed ) or
internal (model consistent)?

2. How does one incorporate expectations and what horizon do they refer
to?

3. Do stocks and flows need to be integrated? If so, is this best done
by having an equilibrium viewpoint in which all economic variables
gravitate to a steady state point or growth path?

4. Are we to use theoretical ideas in a loose or tight way?

5. How are nominal rather than real quantities to be determined?

The sections that follow outline the essential characteristics of each of the
four generations by focussing on the questions just raised. This enables one
to see more clearly what is common and what is different between them.
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2 First Generation (1G) Models

These are the models of the 1950s and 1960s. If one had to associate a single
name with them it would be Klein. If one had to associate a single institution
it would be the University of Pennsylvania. A very large number of modellers
in many countries went to the latter and were supervised by the former.

The miniature model that underlies representatives of this generation was ef-
fectively that associated with the IS/LM framework. Accordingly, the mod-
elling perspective was largely about the determination of demand. Adaption
of the miniature model to policy use involved disaggregation of the compo-
nents of the national income identity. Such a disaggregation inevitably led
to these models becoming large.

Dynamics in the models were of two types. One alternative was to allow for a
dynamic relation between yt and xt by making yt a function of {xt−j}pj=1. If p
was large, as might be the case for the effect of output (xt) upon investment
(yt), then some restrictions were imposed upon the shape of the lagged effects
of a change in xt upon yt. A popular version of this was termed “Almon
lags” - Almon (1965). But mostly dynamics were imposed using a different
strategy - that associated with the Partial Adjustment Model (PAM). With
real variables in logs (some nominal variables such as interest rates were
however left in levels form) this had the structure1

∆zt = α(z∗t − zt−1),

where z∗t was some target for zt which was made observable by relating it
to a function of xt. The specification of the function linking z∗t and xt was
generally loosely derived from theoretical ideas. As an example, targeted
consumption c∗t was related to income (yt) and other things expected to
influence consumption, such as interest rates (rt). Thus

c∗t = ayt + brt.

In these models there was often an awareness of the importance of expecta-
tions in macroeconomics, reflecting their long history in macro-economic dis-
cussion. To model these expectations, one assumed they could be measured
as a combination of the past history of a small set of variables (generally)

1 In many of the early models variables were expressed in terms of their levels and it was
only later that log quantities were used more extensively.
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present in the model, with the weights attached to those variables being es-
timated directly using the observations on the variables expectations were
being formed about.

Because the supply side in these models was mostly ignored, there was not
a great deal of attention paid to stocks and flows. Wallis (1995), in an excel-
lent review of these and the 2G models discussed later, notes that there was
an implicit assumption underlying them that variables evolved deterministi-
cally over longer periods of time, although there wasn’t any discussion about
whether such paths were consistent and their relative magnitudes didn’t seem
to play a major role in model construction and design.

To build a link between the real and nominal sides of the economy modellers
generally viewed prices as a mark up over (mostly) wages, and the mark-up
was often influenced by business conditions. A dynamic account of wages
was provided by the Phillips curve. Later versions just assumed that the
Phillips curve applied to inflation itself and so had the form

πt = α1πt−1 + δut + εt,

where πt was price inflation and ut was the unemployment rate. There was
a lot of debate about whether there was a trade-off between inflation and
unemployment i.e. was δ 6= 0, α1 < 1? Sometimes one saw this relation
augmented as:

πt = α1πt−1 + δ(ut − u) + γ2(pt−1 − ulct−1) + εt,

where pt was the log of the price level and ulct was unit labour cost. Without
some modification like this there was no guarantee that the level of prices
and wages would remain related.

Estimation of these models was mostly done with single equation methods
and so evaluation largely involved applying a range of specification tests to
the individual equations. These equations could be represented as

yt = φ1yt−1 + φ2zt + φ3zt−1 + εt,

where zt might be endogenous variables and εt was an “error term”. Tests
therefore considered the residuals ε̂t as a way of gaining information about
specification problems with this equation. Although useful, this evaluation
process didn’t tell one much about the fit of the complete model, which was
a key item of interest if the model is to be used for forecasting. For that it
needs to be recognized that zt is not given but also needs to be solved for.
System and single equation performance might therefore be very different.

4



Once a complete system was found one could find a numerical value for
what one would expect zt to be from the model (given some exogenous vari-
ables) either analytically or by simulation methods (when the system was
non-linear). The software developed to do so was an important innovation
of this generation of models. Chris Higgins, one of Klein’s students, and
later Secretary of the Australian Treasury, felt that any assurance on system
performance required that modellers should “simulate early and simulate of-
ten”. For that, computer power and good software were needed. It was also
clear that, in multi-step forecasts, you had to allow for the fact that both
yt−1 and zt−1 needed to be generated by the model. Hence dynamic simula-
tion methods arose, although it is unclear if these provided any useful extra
information about model specification over that available from the static
simulations, since the residuals from dynamic simulations are just transfor-
mations of the ε̂t

2. Perhaps the major information gained from a dynamic
simulation of the effects following from a change in an exogenous variable
was what happened as the policy horizon grew. If the change was transitory
i.e. lasted for only a single period, then one would expect the effects to die
out. In contrast, if it was permanent, one would expect stabilization of the
system at some new level. It was easy to check that this held if one only has
a single equation e.g in the PAM scheme −1 < α < 0 was needed. Thus each
of the individual equations could be checked for stability. But this did not
guarantee system stability because, inter alia, zt might depend upon yt−1,
thereby making the stability condition much more complex. An advantage
of a dynamic simulation was that it could provide the requisite information
regarding the presence or absence of stability relatively cheaply and easily.

3 Second Generation (2G) Models

These began to emerge in the early 1970s and stayed around for ten to twenty
years. Partly stimulated by inflation, and partly by the oil price shocks of
the early 1970s, the miniature model that became their centrepiece was the
AS/AD model – which recognised the need for a supply side model. When
adapted for use this involved introducing a production function to place a
constraint on aggregate supply, particularly over longer horizons. A leading
light in the development of these models was John Helliwell with his RDX2
model of the Canadian economy Helliwell et al. (1971), but others emerged
such as the Fed-MIT-Penn (FMP) model (Brayton and Mauskopf, 1985)
which was also called MPS, see Gramlich (2004).

2 Wallis (1995) has a good discussion of these issues.
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These models retained much of the structure of the previous generation in
that demand was captured by dis-aggregated equations stemming from the
national income identity. Now these were supplemented with equations which
introduced much stronger supply side features. There was also some move-
ment towards deriving the relationships as the consequence of optimization
problems solved by agents - in particular the consumption decision and the
choice of factors of production were often described in this way. Thus for
consumption an inter-temporal dimension was introduced through the use
of life-cycle ideas. These implied that consumption depended on financial
wealth (yt) and current labour income (wt) i.e. c∗t = ayt + bwt. Dynamics
were again introduced through a distributed lag on the static relationships
determining the desired levels z∗t . The advance on previous work was the use
of an error correction form,

∆zt = δ∆z∗t + α(zt−1 − z∗t−1).

As Wallis (1995) observes the ECM originated in Phillips’ control work of
the 1950s and was applied by Sargan (1964) when modelling inflation, but
its widespread use began with Davidson et al (1978).

Now, with the introduction of a production function, and household’s deci-
sions coming loosely from a life cycle perspective, the presence of household
wealth and the capital stock meant that there were dynamics present in the
model which stemmed from depreciation and savings. Consequently, dynamic
stability of the complete system became a pressing issue. Gramlich (1974)
comments on his work with the MPS model that “...the aspect of the model
that still recalls frustration was that whenever we ran dynamic full-model
simulations, the simulations would blow up”. Once again one needed to keep
an eye on system performance when modifying the individual equations. It
might be a necessary condition that the individual equations of the system
were satisfactory, but it was not a sufficient one.

Like the previous generation of models there was considerable diversity within
this class and it grew larger over time. Often this diversity was the result of
a slow absorption into practical models of new features that were becoming
important in academic research. For example, since many of these models
had an array of financial assets - certainly a long and a short rate - rational (or
model consistent) expectations were increasingly introduced into the financial
markets represented in them. By the end of the era of 2G models, this
development was widely accepted. But, when determining real quantities,
expectations were still mainly formulated in an ad hoc way. One reason for
this was the size of the models. The U.K. models were almost certainly
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the most advanced in making expectations model-consistent. By 1985 this
work had produced a number of models, such as the London Business School
and National Institute models, which had implemented solutions - see the
review in Wallis and Whitley (1991). A significant factor in this movement
was the influence of the Macro-Economic Modelling Bureau at the University
of Warwick (see Wallis, 1995).

Dynamics in prices were again operationalized through the Phillips curve,
but with some modifications. Now either a wage or price Phillips curve had
the form

πt = α1πt−1 + δ(ut − u) + εt,

where u was the NAIRU, and, often, α1 = 1. The NAIRU was a prescribed
value and it became the object of attention. Naturally questions arose of
whether one could get convergence back to it once a policy changed. In
models with rational expectations dynamic stability questions such as these
assume great importance. If expectations are to be model consistent, then
one needed the model to converge to some quantity. Of course one might
circumvent this process by simply making the model converge to some pre-
specified terminal conditions, but that did not seem entirely satisfactory. By
the mid 1980s however it appeared that many of the models had been de-
signed (at least in the U.K.) to exhibit dynamic stability and would converge
to a steady state (or an equilibrium deterministic path).

4 Third Generation (3G) Models

4.1 Structure and Features

Third generation (3G) models reversed what had been the common approach
to model design by first constructing a steady state model (more often a
steady state deterministic growth path, or balanced growth path) and then
later asking if extra dynamics needed to be grafted on to it in order to broadly
represent the data. Since one of the problems with 2G models was getting
stocks to change in such a way as to eventually exhibit constant ratios to
flows, it was much more likely that there would be stock-flow consistency
if decisions about expenditure items came from well-defined optimization
choices for households and firms, and if rules were implemented to describe
the policy decisions of monetary and fiscal authorities. In relation to the
latter external debt was taken to be a fixed proportion of GDP and fiscal
policy was varied to attain this. Monetary authorities needed to respond
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vigorously enough to expected inflation - ultimately more than one-to-one to
movements in inflation.

There are many versions of 3G models, with an early one being an Australian
model by Murphy (1988) and a multi-country model (MSG) by McKibbin and
Sachs (McKibbin, 1988, and McKibbin and Sachs, 1989). Murphy’s model
was more fully described in Powell and Murphy (1995). 3G models became
dominant in the 1990s, being used at the Reserve Bank of New Zealand (FPS,
Black et al 1997), the Federal Reserve (FRB-US, Brayton and Tinsley, 1996)
and, more recently, the Bank of Japan (JEM). Probably the most influential
of these was QPM (Quarterly Projection Model) built at the Bank of Canada
in the early to mid 1990s, and described in a series of papers (e.g., Black et
al, 1994, Coletti et al, 1997). Its steady state model (QPS) was basically
an adaption of the Ramsey model for policy use. To this point in time
the latter miniature model had played a major role in theoretical economics
but a rather more limited one in applied macroeconomics. An important
variation on Ramsey was the use of an overlapping generations perspective
that modified the discount rate by the probability of dying, as advocated in
Blanchard (1985) and Yaari (1965).

As a simple example of the change in emphasis between 2G and 3G mod-
els, take the determination of equilibrium consumption. It was still the case
that consumption ultimately depends on financial wealth and labour income,
but now the coefficients attached to these were explicitly recognized to be
functions of a deeper set of parameters - the steady state real rate of return,
utility function parameters and the discount factor. Because these parame-
ters also affect other decisions made by agents, one cannot easily vary any
given relationship, such as between consumption and wealth, without being
forced to account for the impact on other variables of such a decision.

Thus a steady state model was at the core of 3G models. How was it to be
used? In a strict steady state (SSS) dynamics have ceased and values of the
variables consistent with these equations will be constant (more generally one
could allow for a constant steady state growth path, but we will leave this
qualification for later sections). But the model generating the steady state
has embedded in it intrinsic dynamics that describe the transition from one
steady state position to another. These dynamics come from the fact that the
capital stock depreciates and assets accumulate. Consequently, solving the
model produces a transitional steady state solution for the model variables
i.e. these variables will vary over time due to the fact that movements from
one point to another are not instantaneous. In addition to this feature, in 3G
models some variables were taken to be exogenous i.e. treated as determined
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outside the model economy. Since it is unlikely that these will be at their
steady state values over any period of time, the endogenous variable solutions
using either the pure or transitional steady state model will need to reflect
the time- variation of these exogenous variables. One might refer to the latter
values as the short-run steady state (SRSS) solutions.

In adapting the steady state model for use, it was necessary to recognize that
the intrinsic dynamics were rarely sufficient to track the movements of vari-
ables in actual economies. Thus it became necessary to augment the intrinsic
dynamics. Generally this involved a second stage optimization. The model
with the augmented dynamics constituted QPM. The intrinsic dynamics in
QPS might therefore be called the first stage dynamics while the extra dy-
namics introduced into QPM could be labeled the second stage dynamics.
To implement this second stage one might have simply specified an ECM re-
lating zt to the SRSS values z∗t and, in some 3G models, this was how it was
done e.g. Murphy(1988). But in QPM the extra dynamics were introduced
in a quasi-theoretical way by choosing zt to minimize the objective function

1

2

∞∑
j=0

βjEt{(zt+j − z∗t+j)2 + φ(∆zt+j − E(∆zt+j))
2},

where Et(.) is the expected value conditional upon the information available
at t. Setting E(∆zt+j) = 0 would produce an optimal rule for determining zt
(the Euler equation) of

(1 + φ+ βφ)zt + βφEtzt+1 − z∗t = 0

and an ultimate solution for zt of the form

zt = λzt−1 +
λ

(1− φ)
Et

∞∑
j=0

(βλ)jz∗t+j,

where λ depends on β and φ. Thus zt can be constructed by weighting to-
gether past and future expected values of zt and z∗t . Because expectations in
3G models were effectively of the perfect foresight variety model-consistent
expectations would mean that Etz

∗
t+j = z∗t+j. But, in the practice, the ex-

pectations were taken to be modelled as a function of the steady state model
solution, a finite number of lagged values of zt, and the solution for z∗t+j from
QPM itself. The weights attached to these components were prescribed by
the modellers.

Nickell (1985) and Rotemberg (1982) noted that the quadratic optimization
scheme described above would result in an ECM connecting zt and z∗t , when
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z∗t was a scalar and followed an autoregressive process. Hence, effectively
QPM was imposing a set of ECM equations that determined the outcomes
for zt by reference to the short-run steady state values z∗t .

As in 2G models nominal quantities were handled by making prices a mark-
up on marginal costs and then structuring the relation to handle dynamics
and expectations. As marginal costs were primarily wages, a Cobb-Douglas
production function and perfect competition meant that the wage share in
GDP ( or real unit labour costs) was a constant in equilibrium. With these
ideas, and expectations handled as described above, one might think of the
3G Phillips curve as effectively having the form

πt = α1Etπt−1 + (1− α1)Etπt+1 + δ∆mct + ω(pt−1 −mct−1),

where mct was the log of nominal marginal cost and mct−1− pt−1 was lagged
real unit labour costs. Thus inflation was determined from past inflation,
future expectations of inflation, current growth in nominal costs and the
extent to which real unit labour costs were not constant.

4.2 Estimation and Evaluation

There was little formal estimation of the parameters of these models. Ratios
such as consumption to income were often the main source of information
used in setting values. When it was necessary to specify parameters deter-
mining dynamic responses there seems to have been significant interaction
between modellers, policy advisers and policy makers over whether the out-
comes from the model with particular parameter values accorded with their
views. Sometimes this involved studying the speed of adjustment after a
shock while at other times estimates of quantities such as the sacrifice ratio
would help in deciding on the balance between future and backward looking
expectations (α1 in the Phillips curve). Consequently, data did play some
role in quantifying parameters, for example in QPM, but it was only used
informally via the experience that had accumulated of the Canadian econ-
omy. Conceptually, one might think of this process as involving the use of
a criterion function to match data (generally filtered) with simulated output
from the models. The criterion function could also be used to discriminate
between different sets of parameter values. The exception to this strategy
was when standard estimation methods were applied to the ECMs used in
quantifying the second stage dynamics.

Evaluation of these models was rarely done. Indeed there was even an hos-
tility towards data - see Colletti et al. (1997, p 14), where they say about
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modelling in the Bank of Canada:

“There had been a systematic tendency to overfitting equations and too lit-
tle attention paid to capturing the underlying economics. It was concluded
that the model should focus on capturing the fundamental economics neces-
sary to describe how the macro economy functions and, in particular, how
policy works, and that it should be calibrated to reflect staff judgement on
appropriate properties rather than estimated by econometric techniques”.

Leaving this debate aside, given the way the models were used it would have
been very difficult to perform a satisfactory evaluation of them. The reason
was the method of producing a series on the short-run steady state path z∗t .
The description given above was in fact too simplified. An implication of that
account was that the steady state solutions for the logs of the endogenous
variables would be constructed from the exogenous variables by using a set of
weights that are functions of the model parameters and that the latter would
be assumed to be invariant over time. Such a scenario would generally imply
constancy in a number of ratios. For example, the investment to capital stock
ratio would be a constant since, in steady state, it equals a parameter - the
depreciation rate of capital. But, after examining the data, it was evident
that these ratios were rarely constant, and often wandered far away from
any fixed point. So, although one did need to assume some fixed values for
the steady state ratios (equivalently the model parameters), it also became
necessary to make some allowance for the substantial time variation seen
in ratios over any given data period. Failure to do so would constitute a
gross mis-match of the data and model predictions. Consequently, a strategy
evolved to deal with this problem. It firstly involved smoothing the observed
ratios with some filter to produce an adjusted ratio that changed slowly.
Secondly, this adjusted ratio was forced to converge to whatever long-run
ratio was pre-specified in the steady state model. Essentially this strategy
meant that the steady state model parameters were allowed to vary smoothly
over time with the restriction that they converged to a set of final steady state
choices.3

Cast in terms of our discussion above, the time variation in z∗t comes not
only from exogenous variables, transition paths etc., but can also occur due
to time-varying model parameters. Without this latter source of variation
a comparison on how well z∗t (the model SRSS) tracks zt (the data) would
seem a useful diagnostic for how well the two paths match, but, if one can
vary the parameters of the model in a complex way so as to get a better

3 Some parameters were held constant since not all ratios exhibited a substantial degree
of time variation.
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fit to the data, such a comparative exercise becomes meaningless. Thus one
cannot satisfactorily evaluate the success of the static model constructed in
the first stage of a 3G modelling exercise.4

Turning to the second-stage of 3G model construction, if a series on z∗t was
available one might think about checking the dynamic representation chosen
in that stage. But here resort was often made to polynomial adjustment
schemes that introduced much higher order lags than the first order of the
stylized ECM connecting zt and z∗t described above. In doing that one could
almost be certain of getting a good fit to any historical series on zt. For 3G
models therefore the only satisfactory evaluation method probably resided in
whether their clients were happy with the information provided.

In the description above attention was centered upon the “gap” between zt
and z∗t and it therefore become natural to convert all the variables in the
model to “gap” format, particularly when the model was used in forecasting
mode. This enabled one to improve forecasting performance by augmenting
the equations for zt with variables that were zero in the steady state. Hence,
in the case where zt was the log of the price level, one could add on an output
gap to the equation that came from the second stage optimization. Over time
this emphasis on “gaps” gave rise to the miniature models known as New
Keynesian, and today these small models are often used for policy analysis
and some forecasting e.g. Berg et al (2006). In some ways the philosophy
underlying 3G models had much in common with that stream of Computable
General Equilibrium (CGE) modelling stemming from Johansen (1960). In
that literature models were log-linearized around some “steady state” values
and the computation of these steady states (often termed the benchmark
data set) involved substantial manipulation of data on input-output tables
etc. Of course the CGE models were not in “real time” and so transition
paths were essentially irrelevant. It was simply assumed that enough time
had elapsed for a new steady state to be attained once a policy change was
made.

Another feature of 3G models was that shocks became the focus of atten-
tion. In the academic literature shocks had become a dominant feature of
models and, with the advent of policy rules, one could no longer think about

4 In more technical terms, if there is such great variation in the time history of the ratio
that it needs to be described as an I(1) process, then the methods used were essentially
eliminating a unit root in the observed ratio through a filtering operation such as the
Hodrick-Prescott filter. Of course if the model predicts that the ratio is I(0), and the
data that it is I(1), it might be thought that some modification of the steady state
model is needed. Simply ignoring the mis-match by eliminating the I(1) behaviour via
filtering seems unsatisfactory.
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changing variables such as government expenditure or the money supply,
since these were now endogenous variables. Only exogenous shocks to them
might be varied. However, although the language was stochastic, often the
solution methods were essentially deterministic, and so there was no “clean”
incorporation of shocks into the models.

An issue that arose when these models were applied to a small-open economy
with the rest of the world being treated as exogenous was what modification
needed to be made to ensure that agents did not borrow indefinitely at the
fixed external rate of interest - see Schmidt-Grohe and Uribe (2003) for a
discussion of strategies for dealing with this issue. In practice, two of these
adjustments tended to be used to design models that ruled out such be-
haviour. In the first, the infinitely-lived consumer of the Ramsey model was
replaced by agents with finite lives. This formulation could be shown to be
equivalent to a model with a representative consumer whose discount rate de-
pended on the probability of death as in Blanchard (1985) and Yaari(1965).
A second approach was to have the risk premium attached to foreign debt
rising with the level of foreign borrowing, so that eventually agents would
not wish to borrow from foreign sources to finance consumption. The ratio of
foreign debt to GDP therefore became a crucial element in the latter models
and decision rules had to be constructed to ensure that this prescribed ratio
was achieved in steady state.

5 Fourth Generation (4G) Models

A fourth generation of models has arisen in the early 2000s. Representatives
are TOTEM (Bank of Canada, Murchinson and Rennison, 2006), MAS (the
Modelling and Simulation model of the Bank of Chile, Medina and Soto,
2005), GEM (the Global Economic Model of the IMF, Laxton and Pesenti,
2003), BEQM (Bank of England Quarterly Model, Harrison et al, 2004),
NEMO (Norwegian Economic Model at the Bank of Norway, Brubakk et al,
2006), The New Area Wide Model at the European Central Bank, Kai et al,
2008), the RAMSES model at the Riksbank (Adolfson et al, 2007), AINO at
the Bank of Finland (Kuismanen et al, 2003), SIGMA (Erceg et al, 2006) at
the U.S. Federal Reserve, and KITT (Kiwi Inflation Targeting Technology)
at the Reserve Bank of New Zealand, Beneš et al, 2009.
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5.1 Extensions of 3G Model Features

In some ways these new models represent a completion of the program for
adapting the Ramsey model for macro-econometric use. As with 3G models
they are designed to have an underlying steady state representation. But
other features of their design are different to what was standard with 3G
models. Four of these are of particular importance.

Firstly, shocks now become explicitly part of the model rather than being
appended at the end of the modelling process. Shocks are what is unpre-
dictable relative to the information set contained within the model, and so it
is necessary to be explicit about what this information is. In addition, how
persistent they are becomes important to describing the complete dynamics
of the model, and this makes it necessary to decide on the degree of persis-
tence. Given that shocks are unobservable (they are essentially defined by
the model itself) this inevitably points to the need to quantify the parameters
of the model from data.

Secondly, there is now no second-stage process to introduce dynamics. In-
stead, the adjustment cost terms used to rationalize slow adjustment in 3G
models now appear directly in the primary objective functions that lead to
the agent’s decision rules i.e. the short and long-run responses are found
simultaneously rather than sequentially. Of course the logic of the two-stage
process used in 3G models was a recognition that adjustment costs ( and
the parameters associated with them) don’t affect the steady state solutions,
and it was only the transition paths between steady states that depended on
those parameters. In fact, recognition of this feature was the motivation for
adapting 3G models to an existing forecasting environment by treating the
construction of dynamics in two steps.

Thirdly, the structural equations of the model are now kept in Euler equation
form rather than using a partially solved-out version as was characteristic of
3G models. Thus the optimal inter-temporal rule describing consumption
decisions appears in most 4G models as

Ct = βEt(Ct+1Rt+1),

which contrasts with the 3G model approach that combines this relation
with the wealth accumulation identity to express consumption as a function
of financial wealth and labour income. One reason for doing so is that it is
easier to modify the model design through its Euler equations. An example
is the extra dynamics introduced into consumption decisions by the use of
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habit persistence. This can take a number of forms, but often results in the
addition of Ct−1 to the equation to give

Ct = βEt(C
h
t−1C

1−h
t+1 Rt+1). (1)

Finally, because shocks were an integral part of some of these models, solution
methods needed to be shaped to account for them. Indeed, with this focus
on shocks one had to be careful when referring to “forward” and “backward”
expectations; all expectations are now formed using information available at
time t, and so technically all depend on past observations (unless there are
exogenous variables in the system). Thus the important feature becomes the
relative weights to be attached to the available information at time t when
forming expectations at different periods. A second consequence of the shift
to a “shocks” perspective is that the distinction between “parameters” and
“shocks” becomes blurry. Thus a depreciation rate might now be regarded
as a random variable that evolves stochastically over time with an expected
value equal to whatever specified value for it appears in the steady state
model. Thus this provides a formal way of allowing the model parameters to
change, something that was only done in an ad hoc way in 3G models.

5.2 New Features of 4G Models

The modifications above are essentially adjustments to the basic strategies
employed in the design of 3G models and are intended to produce a more
precise and satisfactory statement of the design criteria. But there are also
additions. Four can be mentioned.

1. Although the models are ultimately about aggregates the theoretical
structure is now often based on studying the actions of heterogenous
units and providing an account of how these are to be aggregated. This
heterogeneity is used in many contexts. Thus analysis often begins with
different types of labour services, many intermediate goods being pro-
duced and used to make a final good, many types of imported goods,
firms being differentiated in their price setting policies etc. The ques-
tion is then how one performs an aggregation of the micro decisions.
The solution is an extensive use of methods popular in CGE modelling.
These involve the presence of an “aggregator”. This intermediary uses
CES functions as a way of combining together the many separate items
into a composite commodity. Thus aggregate output in a two sector
model, Yt, would be the following combination of the sectoral outputs
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Yit

Yt = [Y −ρ1t + Y −ρ2t ]−1/ρ, ρ =
1− λ
λ

.

A continuum of micro-units over (0, 1) is generally used in place of a
finite number as above, and, in such a case, Yt would be represented as

Yt =

[∫ 1

0

Y
λ−1
λ

it di

] λ
λ−1

.

Profit maximization by the sectoral producers means that the amount
of the sectoral output produced would depend on Yt and the relative
price Pit

Pt
, with the functional form being

Yit = Yt

(
Pit
Pt

)−λ
.

As well, the aggregate price level relates to the sectoral ones as

P 1−λ
t =

∫ 1

0

(Pit)
1−λdi.

Models are then built for Pit and Yit and aggregated with these func-
tions. The method is well known from Dixit and Stiglitz (1977). Be-
cause of the use of CES functions any underlying heterogeneity has
an impact only through the presence of parameters that describe the
nature of the heterogeneity i.e. the distribution of the micro-decisions
(say on Pit). Basing the model design on a micro-economic structure
can potentially expand the range of information available for param-
eter estimation through the use of studies of micro-economic decision
making.

2. In the case of firms following different pricing strategies the aggregation
scheme just described forms the basis of the Calvo pricing model. In
this some firms can optimally re-set their prices each period and others
need to follow a simple rule-of-thumb. Consequently, the heterogeneity
in decisions about Pit can be summarized by a single parameter - the
fraction of firms (ξ) who are able to optimally adjust their price at each
point in time . The aggregate Phillips curve can then be shown to have
the form

πt − π =
1

1 + β
(πt−1 − π) +

(1− ξ)(1− βξ)
ξ(1 + β)

(rmct − rmc) +

β

1 + β
Et(πt+1 − π) + εt,
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where rmct is real marginal cost (or unit labour costs with a Cobb-
Douglas production function) and π is a target rate of inflation. An
appealing argument for building the curve up from a micro-unit level
was that it allowed for monopolistic and monopsonistic behaviour at
that level rather than the competitive markets of the 3G models. Thus
the rather awkward assumption used in QPM that there was a mark-
up of prices over marginal costs in the short run, but that it went to
zero in steady state (owing to the competitive markets assumption),
can be dispelled with. It should be observed though that, although
widespread, it is not always the case that the Calvo pricing structure
is used in 4G models. Sometimes the approach used by Rotemberg
(1982) is adopted. But the nature of the resulting Phillips curve is
very similar.

3. The steady state used in 3G models saw real variables such as out-
put, capital etc as either a constant or following a deterministic growth
path. This reflected the fact that labour augmenting technical change
was taken as growing at a constant rate, basically following Solow
and Swan. Although initially in 4G models technology was treated
as stationary, many models now allow the technical change to have a
stochastic permanent component as well as a deterministic one. Thus
the “steady state” solution evolves stochastically over time. With some
variables now having permanent components questions arise over how
one should treat this fact when operationalizing the model, and we
return to that later in the section.

4. Now that the models are treated as stochastically focused, when log-
linearized they can be represented as structural equations of the form5

B0z
M
t = B1z

M
t−1 + CEtz

M
t+1 + Fεt, (2)

where zMt and εt are the model variables and shocks respectively. The
solution to (2) when εt has no serial correlation is6

zMt = AzMt−1 +Gεt. (3)

5 Of course the system may have higher order lags. Any exogenous variables are placed
in zt and assumed to evolve as a VAR.

6 If the shocks εt follow a VAR(1) process then the solution to the system is a VAR(2), as
shown in Kapetanios et al (2007). Note that, while A is a function solely of B0, B1, C,
G will depend on these parameters plus any parameters describing the persistence in
the shocks εt - see Binder and Pesaran (1995). This demarcation can be a very useful
result.
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Because it is possible that some of the model variables are not observed,
it is useful to connect those variables that are observable, zDt , to the
model variables via an observation equation

zDt = HzMt + ηt, (4)

where ηt is what needs to be added on to the model solution to repli-
cate the data. Here ηt will be termed the “tracking shocks”. Altug
(1989) pioneered this approach assuming that the ηt were i.i.d. and
uncorrelated with model shocks. Ireland (2004) has a generalization of
this where ηt can be serially correlated. Sometimes the ηt are referred
to as “errors in variables”, but many of the variables modelled, such as
interest rates and exchange rates, are very accurately measured, and
any mis-match is due to difficulties with the model rather than mea-
surement issues. The equations (3) and (4) constitute a State Space
Form (SSF) and is pivotal to estimation methods for those models in
which not all model variables are observable i.e when the dimension of
zDt is less than zMt .

5.3 Quantifying the Parameters of 4G Models

There is no one method of estimating the parameters that appear in 4G
models. In some cases the approach used is the same as in 3G models.
Broadly, this involved estimating any parameters that appear in the steady
state with observable ratios of variables i.e. a method of moments estimator
was implicitly being utilized. For the other parameters, those describing the
transitional paths, quantification was generally based on opinions about de-
sirable model performance. Increasingly the latter been replaced by variants
of maximum likelihood estimation.

5.3.1 Identification of The Parameters

The equations to be estimated are in (2). A first complication in estimating
this system comes from the presence of Etzt+1.

7 Now it is clear from (3) that
Etzt+1 = Azt and so (2) becomes

7 We will ignore the distinction between observable and unobservable variables and drop
the “M” for the moment.
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Φzt = B1zt−1 +Gεt, (5)

where Φ = (B0 − CA). Now the first issue to be addressed pertains to the
identification of the parameters θ that appear in the 4G model, i.e. in B0, B1

and C. Here one has to distinguish between whether there are different val-
ues of the parameters in a given model which would reproduce the second
moments of the zt (assuming it is stationary) and whether there is just one
model that is consistent with those second moments. These are different
questions. As Preston (1978) emphasized, the first is a question of struc-
tural identification, and so the conditions are effectively those of the Cowles
Commission, as generalized by Rothenberg (1971). The latter depend upon
what transformations are allowed. If one can re-allocate the dynamics across
the model then they are like those in Hannan (1971). Even if the exist-
ing dynamics are to be retained i.e. B0, B1 and C are fixed it may still be
possible to re-combine the shocks εt to ζt = Uεt, where U is non-singular,
so that G in (5) becomes GU−1. This results in a different set of impulse
responses to the new shocks ζt, even though the second moments for zt are
identical to the model with the εt shocks. Such a re-combination strategy is
employed in the VAR sign restrictions literature to give new shocks which
obey certain restrictions - in particular U is chosen there so that the shocks
remain mutually uncorrelated. Now the new shocks essentially mean a new
model has been found but it is one that is observationally equivalent to the
old one (since the second moments of zt are the same). This distinction
between these two identification ideas is still not well understood. Many
demonstrations of identification problems, such as Canova and Sala (2009),
are concerned with structural identification, but recent work by Komunjer
and Ng (2009) has been more about model identification. Whether there
is a unique model might be of interest but, for estimation purposes. it is
structural identification that is paramount.

In most situations B0, B1 and C are relatively sparse and so standard simul-
taneous equation identification conditions can be applied to recover Φ and
B1, since there will be enough instruments to apply to each of the structural
equations. Of course it may be that the instruments are weak and, in a
finite sample, there is effectively a lack of identification. Indeed, many of
the examples of identification difficulties that pertain to the structural equa-
tions of 4G models, such as the New Keynesian Phillips curve, do seem to be
concerned with the presence of weak instruments – Mavroeidis (2004), and
Nason and Smith (2005).

In all these discussions of identification there is a further complication in that,
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even when Φ and B1 are identified, the mapping between these and the 4G
model parameters, θ, might not be one-to-one. Some of the experiments done
to look at identification failures are examples of this. Generally therefore one
can think that there are two aspects to identification. One involves the ability
to identify Φ and B1 from the data and the other is whether the model allows
one to recover θ from these matrices. This distinction has been promoted in
Iskrev (2007, 2008).

It should be noted that structural identification of 4G models is largely based
on exclusion restrictions as proposed by the Cowles Commission. In most
instances these models are strongly over-identified, as implied by the exclu-
sion restrictions. Even if they are not, there is a separate set of exclusion
restrictions that need to be taken into account - namely those that come from
the standard assumption in these models that the shocks εt are contempora-
neously uncorrelated. Those restrictions produce extra instruments that can
be used for estimation that were not present in the analysis provided by the
Cowles researchers, since they took the errors in their structural equations
to be correlated.

5.3.2 Maximum Likelihood and Bayesian Estimation of Parame-
ters

In studying identification issues A may be taken as known but, in estimation,
a decision has to be made whether it should be found from a regression on (3)
(Â) or forced to be consistent with the 4G model, in which case A depends
on values of the structural parameters θ. In the former case one can utilize
limited information methods of estimation, allowing each structural equation
to be estimated separately. For the latter a complete systems estimator is
needed. Which one to be used depends on the degree of robustness for the
parameter estimates that one wants. Using (3) to form an estimate of A
(and hence measuring expectations) will be much more robust to system
mis-specification i.e. Â will be a consistent estimator of A provided the
system generating the data can be represented by a VAR of the selected
order. However, a more efficient estimator of A is available by utilizing the
mapping between A and θ. As has been known for a long time, such efficiency
can come at the expense of bias and inconsistency of estimators, unless the
complete system is an adequate representation of the data. As Johansen
(2005) has pointed out, this is a price of MLE, and it should not be assumed
that the 4G model has that property.

Making A depend upon θ has meant that Full Information (FI) Maximum
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Likelihood (FIML) has become a standard way of estimating smaller 4G
models (what are generally referred to as DSGE models). This contrasts
with the earlier generations of models where Limited Information (LI) es-
timation methods prevailed i.e. the equations (or sub-sets of them) were
estimated separately, and the influence of the complete model was minimal.
It is interesting to note that the wheel has almost come full circle as this was
the recommendation by the Cowles Commission was to use FIML, but they
were frustrated by the fact that computers were not powerful enough at that
time for such an estimator to be effectively employed.

In practice the FIML estimator has increasingly been replaced by a Bayesian
full information (BFI) estimator. In this estimates of θ comparable to FIML
can be found by maximizing a criterion function L(θ) + ln p(θ), where p(θ)
is the prior on θ and L(θ) is the log likelihood. The resulting estimate of θ
is often referred to as the mode of the posterior. It is clear that the FIML
and the Bayesian FI mode (BFI) will converge as the sample size grows and
the prior information becomes dominated. Hence any difficulties arising with
FIML involving mis-specification of the system cannot be avoided by using
a Bayesian estimator. This seems to be widely mis-understood as one often
sees comments that Bayesian methods do not require correct specification of
the model.

An advantage of the Bayesian method is that there is often information
about the range of possible values for θ, either from constraints such as the
need to have a steady state or from past knowledge that has accumulated
among researchers. Imposing this information upon the MLE is rarely easy.
It can be done by penalty functions, but often these make estimation quite
difficult. Adding on ln p(θ) to the log likelihood generally means that the
function being maximized is quite smooth in θ, and so estimation becomes
much easier. We think that this advantage has been borne out in practice;
the number of parameters being estimated in 4G models, like that of Smets
and Wouters (2003) and the New Area Wide Model, is quite large, and one
suspects that ML estimation would be quite difficult. There is however a
cost to Bayesian methods. Although sometimes it is portrayed as a way of
“filling in the potholes” of the likelihood surface - for example in Fernández-
Villaverde (2009), often it is more like a “highway re-design”. Unlike penalty
functions the use of a prior can severely change the shape of the function
being optimized. In particular, if L(θ) is flat in θ then the choice of prior
will become very important in determining the estimated parameter values,
and so one needs to have methods for detecting that.

To illustrate that Bayesian methods can easily hide the fact that the data has
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little to say about the estimation of certain parameters, take the exchange
rate equation in the model of Lubik and Schorfheide (LS) (2007)

∆et − πt = −(1− α)∆qt − π∗t , (6)

where et is the log of the exchange rate, qt is the observable (exogenous)
terms of trade and π∗t is the (unobservable) foreign inflation rate. The latter
are assumed to be generated as AR(1) processes with parameters ρq and ρπ∗
respectively and uncorrelated shocks (as befits the exogeneity assumption in
force for ∆qt). Under these assumptions (6) is actually a regression equation,
with ∆et−πt as dependent variable, ∆qt as the regressor and with first order
serially correlated errors. Hence the FIML and LIML estimators should be
close. However there will be a difference between a Bayesian estimator based
on limited and full information when there are informative priors about the
other parameters of the system.

Table 1 gives the LIML estimates of the parameters of (6) using U.K. data
from LS. Also reported are the BFI estimator, which estimates the complete
system (this involves imposing a zero correlation between all shocks of the
system), and a LI Bayesian (BLI) estimator that imposes only a zero correla-
tion between qt and π∗t . Two BLI estimators are given depending on whether
the prior is assumed to be Beta(a1, a2) or N(a1, a2). The BFI estimator is
performed with Beta priors (for parameters appearing in the remainder of
the system priors are those in LS). For the estimation of α the Beta prior
has a1 = .2, a2 = .05, while for ρπ∗ , a1 = .8, at = .5. The normal priors set
{a1 = 0, a2 = .05} and {a1 = .8, a2 = .5} respectively.

Table 1: FIML and Bayesian Estimates of the Parameters of (6)

α ρπ∗
Mean est 95% range Mean est 95% range

FIML/LIML -0.11 -0.56 – 0.34 0.07 -0.13 – 0.32
BFI-Beta 0.19 0.12 – 0.27 0.39 0.39 – 0.67
BLI-Beta 0.19 0.06 – 0.31 0.44 0 .29 – 0.59
BLI-Normal 0.01 -0.07 – 0.08 0.08 -0.15 – 0.31

Now it is clear how important the prior is in changing the results. The Beta
prior used for ρπ∗ is fairly close to what is traditionally used in estimating 4G
models. With just the BFI results you would never discover that the value
most consistent with the data is negative. As the BLI estimates show this
is not a question of using a more efficient estimator. To get the Bayesian
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estimator to reveal the lack of information about α in the data it is neces-
sary to choose the prior so as to encompass a wide range of values for the
parameter, but often one sees a very restricted parameter range specified so
as to get “sensible values”, mostly ruling out certain signs for the estimates.
However, a “wrong sign” can be very informative, In times past it was often
taken to suggest that there are specification problems with the equation. In
the case of α, a negative value is certainly unattractive, since it is meant to
be an import share, but the proper way to interpret the MLE estimate is
really that one can not estimate the parameter with any precision, rather
than it is negative. What is disturbing about this example is that one does
not get any such feeling from the Bayesian estimates, unless one allows for
the possibility that the coefficient can easily be negative, as with the last
prior. A different way of seeing how the prior has re-shaped the surface is in
Figure 1, which shows how the log likelihood and the criterion generating the
Bayesian modal estimate change with two priors. Notice how the prior can
lead to the conclusion that this is a parameter whose value can be determined
very precisely.

Although there is nothing surprising in these outcomes, the point is that the
Bayesian estimates suggest the opposite i.e. there seems to be a good deal of
information in the sample, as shown by the fact that the mean of the prior for
ρπ∗ is not contained in the 90% confidence interval for either of the Bayesian
estimators. Thus a commonly suggested criterion that there are issues if
the posterior and prior distributions co-incide would not flag any warnings
here. It leads one to ask why one wouldn’t just compare the Bayesian modal
estimate and its implied ranges for the parameter value to those coming from
the MLE as a check on undue influence from the prior? Oddly enough, this
information is rarely supplied by those estimating 4G models with Bayesian
methods.

It has been observed above that not all the model variables may be observed.
This has the effect of potentially making the solved solution in the observed
variables a VARMA rather than a VAR process.8 This has to be allowed for
when forming the likelihood. It is here that expressing the model and obser-
vation information in a state space form is very useful, since the likelihood
can be computed recursively (at least when the shocks are normal) using the

8 There is a large literature on this and related issues now e.g. Fernandez-Villaverde et
al (2007). Simple conditions under which this occurs are set out in Fukač and Pagan
(2007). Thus in the basic Real Business Cycle model in King et al (1988), variables
such as consumption can be eliminated and the model will remain a VAR, but the
capital stock cannot be.
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Figure 1: Criterion function for α in (6)
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information provided by the Kalman filter. Most computer programs esti-
mating 4G models use this method e.g. the DYNARE program. Assuming
that the process is a VAR in the observables can lead to quite large biases
in the estimates of impulse responses unless there are enough observations
to estimate a high order VAR (as that can approximate a VARMA process).
For example Kapetanios et al (2007) found that, for a model which was a
smaller version of the 4G model BEQM, one needed a VAR(50) to recover
the true impulse responses. Otherwise the biases were large when the sample
size was that commonly available, around 200 observations, and the VAR
order was chosen with standard statistical order selection methods such as
BIC and AIC. Of course a VAR(50) is not something that is estimable in
sample sizes like 200.

But there are limits to this strategy. One cannot have too many unobserved
variables. Strong assumptions may need to be made about variances in order
to achieve identification of these parameters if there is a big discrepancy,
something that does not seem to be appreciated by many of those applying
the methods. For example it is not enough to follow Smets and Wouters
(2003, p1140) who say “Identification is achieved by assuming that four of
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the ten shocks follow a white noise process. This allows us to distinguish
those shocks from the persistent ’technology and preference’ shocks and the
inflation objective shock”.

To see the problem that arises with having an excess of unobservables con-
sider the simplest case where there is one observed variable yt but two un-
observed components y1t and y2t. One of these components (y1t) follows an
AR(1) with parameter ρ1 and innovation variance σ2

1, and the other is white
noise (ρ2 = 0) with variance σ2

2. Then we would have

(1− ρ1L)yt = (1− ρ1L)y1t + (1− ρ1L)y2t,

and it is clear that, as
σ2
2

σ2
1

becomes large, it becomes impossible to identify

ρ1. In this case the likelihood is flat in ρ1, and any prior placed on ρ1 will
effectively determine the value of ρ1 that results. To avoid this situation a
prior would need to be placed on the relative variance and not just the values
of ρ1 and ρ2, as Smets and Wouters argue. To illustrate this we simulated
some data from the set up above and then estimated ρ1 with a beta prior
centered at different values. The true value of ρ1 is .3 and Table 2 shows the

posterior mode for different values of
σ2
2

σ2
1
. It is clear that recovering the true

value of ρ1 is extremely difficult if the type of prior used in many 4G models
is adopted.

Table 2: An example of a too-many-unobservables model estimation. Esti-
mates of ρ1 and 90% confidence interval

True σ2
2/σ

2
1

Prior 1 2 5
ρ1 = 0.85 0.67 0.71 0.80

[0.49-0.84] [0.53-0.89] [0.64-0.94]
ρ1 = 0.50 0.46 0.48 0.49

[0.32-0.60] [0.31-0.62] [0.35-0.65]
ρ1 = 0.30 0.28 0.28 0.29

[0.12-0.41] [0.13-0.46] [0.12-0.44]
Note: We use a beta prior on ρ1, with a standard error 0.1. The true value is ρ1 = 0.3.
For σ1 and σ2 we use an inverse gamma with a mean 1 and standard error 4 as a prior.

5.4 Handling Permanent Components

Increasingly it has been recognized that there are likely to be permanent
components in the data and these must be introduced into the model design
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in some way. Most commonly this is done by making the log of the level of
technology, At, an integrated process. Then to keep ratios such as the real
capital-output and consumption-output constant in equilibrium, it follows
that the permanent components of capital, output and consumption must be
identical. To see one implication of this assume that production is done via a
Cobb-Douglas production function of the form Yt = Kα

t (AtHtPt)
1−α, where

Ht is hours worked and Pt is the potential work force. In most models Pt is
taken to grow exogenously and it is Ht that fluctuates, although the latter
is regarded as a stationary process with some average (steady-state) value of
H∗. Potential output is then naturally defined as the permanent component
of Yt, Y

P
t . Under the restriction mentioned above that Y P

t = APt = KP
t ,

Y P
t = (APt )α(APt H

∗Pt)
1−α = APt (H∗Pt)

1−α.

Taking logs and defining an output gap as the transitory component

lnYt − lnY P
t = lnAt − lnAPt + (1− α) ln(Ht/H

∗),

shows that the output gap depends upon the transitory component of tech-
nology, as well as the deviations of hours from its steady state value H∗. In
the special case when lnAt is a pure random walk the transitory component
of lnAt is zero. This special case is used quite extensively.

Models exist in the literature where there is more than one permanent com-
ponent. The presence of more than one generally arises from noticing that the
ratios of certain variables cannot be reasonably treated as a constant in the
long run. In some instances this lack of stability is due to changes in relative
prices. In these cases it is often the nominal rather than the real ratios that
appear to be relatively constant, suggesting that the case be handled within
a 4G model by employing a second unobservable permanent component that
drives the relative prices. An example of a 4G model which incorporates such
an adjustment is the KITT model - Beneš et al (2009). Obviously the fact
that ratios are to be taken as constant in equilibrium implies co-integration
between the logs of the variables making up the ratio, and the co-integration
vectors have the specific form of (1 −1).

How does one handle permanent components in the solution and estimation
of 4G models? Two strategies are available. One involves formulating the
optimization problems used to get the Euler equations of the 4G models
in such a way that any I(1) variable appears as a ratio to its permanent
component. In this variant, the utility function would be expressed in terms
of Ct

Cpt
. An example of where this was done is Del Negro and Schorfheide

(2008). The second strategy has been to re-express the Euler equations
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derived from functions of the levels of the variables in terms of such ratios
e.g. the consumption Euler equation in (1) would become

Ct
CP
t

= Et

[(
Ct−1

CP
t−1

)h(
Ct+1

CP
t+1

)1−h

Rt+1

(CP
t−1)

h(CP
t+1)

(1−h)

CP
t

]
.

After log linearization this is

ζt = hζt−1 + Et{(1− h)ζt+1 +Rt+1 + (1− h)∆cPt+1} − h∆cPt ,

where ζt = lnCt − lnCP
t . An assumption now needs to be made concerning

how ∆at = ∆cPt is to be generated. In the special case where ∆at = εat and
εat is white noise, Et∆c

P
t+1 = Et∆a

P
t+1 = Etε

a
t+1 = 0. Which of these two

strategies is best is a question that has not been examined much. Certainly
they lead to different specifications for the Euler equations of any model. The
presence of permanent components in technology makes it highly unlikely
that any 4G model can be represented as a VAR and so estimation using
the on-model approach is best done within the framework of an SSF. This
simply involves specifying ∆ζt = ∆ct−∆cpt as an observation equation, with
∆cPt being latent and ∆ct being observed.

Notice that what the above strategy does is to replace any I(1) series with
their transitory components or “gaps”. Essentially it is performing a multi-
variate Beveridge-Nelson decomposition of the I(1) variables into their per-
manent and transitory components. However, often one sees a second strat-
egy, which involves an “off-model” approach wherein permanent components
are removed from variables by a filter that is not model consistent. By far
the most popular would be the Hodrick-Prescott (HP) filter. Econometrically
using off-model filters is a bad idea. To see this consider the consequences of
working with HP filtered data. To assess these we note that the HP filter is
a two sided filter which, when applied to a variable yt produces a transitory
component of Σj=T

j=−Tωj∆yt−j
9. Now, if this component is used as a regressor,

the fact that it involves ∆yt+j at time t means that one would get incon-
sistent estimators of the parameters attached to the gaps. Moreover, the
correlation of the regressor with ∆yt+j is likely to contaminate estimators of
other parameters. Even if one used a one-sided version of this filter it is well
known - see Harvey and Jaeger (1993) and Kaiser and Maravell (2002) - that
the filter is designed to extract a permanent component from a series that is

9 Simulating data from yt when it is a pure random walk, and then regressing the mea-
sured HP transitory component (λ = 1600) on to ∆yt±j , j = 0, ..., 10, gives an R2 of
.982 and ω0 = .47, ωj (j = 1., , 10) = {.41,.36, .31, .26,.22,,.18,.15,.14,.11,.08,.06}. For
j = −1, ...,−10 they are the same but negative.
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I(2), not one that is I(1), and hence it is not model consistent unless lnAt
is I(2) - see Fukač and Pagan (2009) for more details. Few 4G modellers are
prepared to make that assumption.

5.5 Evaluation Issues

Evaluation really has two dimensions to it. One concentrates upon the op-
erating characteristics of the model and whether these are “sensible”. The
other is more about the ability of the model to match the data along a variety
of dimensions. The two themes are not really independent but it is useful
to make the distinction. Thus it might be that while a model could produce
reasonable impulse responses, it may not produce a close match to the data,
and conversely.

5.5.1 Operating Characteristics

Standard questions that are often asked about the operating characteristics of
the model are whether the impulse responses to selected shocks are reasonable
and what the relative importance of various shocks are to the explanation of
(say) output growth. Although the latter is often answered by recourse to
variance decompositions perhaps a better question to ask is how important
the assumptions made about the dynamics of shocks are to the solutions, as
it seems crucial to know how much of the operating characteristics and fit to
data comes from the economics and how much from exogenous assumptions.
This concern stems back at least to Cogley and Nason (1993) who argued
that standard RBC models produced weak dynamics if shocks were not highly
serially correlated. It would seem important that one investigate this question
by examining the impact of setting the serial correlation in the shocks to zero.

The appropriate strategy for assessing operating characteristics depends on
whether the model parameters have been formally or informally quantified. If
done informally researchers such as Amano et al (2002) and Canova (1994)
have asked the question of whether there is a set of such parameters that
would be capable of generating some of the outcomes seen in the data e.g.
ratios φ such as (say) the consumption-income ratio. This ratio is a function
of the model parameters θ. The existing value used for θ in the model, θ∗, is
then taken as one element in a set and a search is conducted over the set to
see what sort of variation would occur in the resulting value of φ. If it is hard
to reproduce the observed value of φ in the data, φ̂, then the model might be
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regarded as suspect. In this approach possible values of model parameters
are selected to trace out a range of values of φ. An efficient way of doing this
search is a pseudo- Bayesian one in which trial values of θ are selected from a
multivariate density constructed to be consistent with the potential range of
values of θ. This enables the corresponding density for φ to be determined.
If the observed value φ̂ lies too far in the tails of the resulting density of φ,
one would regard the model as inadequately explaining whatever feature is
summarized by φ. A second approach treats the parameter values entered
into the model, θ∗, as constant and asks whether the estimate φ̂ is close to
the value φ∗ = φ(θ∗) implied by the model. This is simply an encompassing
test of the hypothesis that φ = φ∗.

5.5.2 Matching Data

Since 4G models are structural models there are many tests that could be
carried out regarding their implied co-integrating and co-trending vectors,
adequacy of the individual equations etc. Moreover many of the old tech-
niques used in 1G and 2G models, such as an examination of the tracking
performance of the model, might be applied. But there are some issues which
are specific to 4G models that need to be addressed in designing such tests.

In the first and second generation of models a primary way of assessing
their quality was via historical simulation of them under a given path for
any exogenous variables. It would seem important that we see such model
tracking exercises for 4G models, as the plots of the paths are often very
revealing about model performance, far more than might be gleaned from
any examination of just a few serial correlation coefficients and bivariate
correlations, which has been the standard way of looking at 4G model output
to date. It is not that one should avoid computing moments for comparison,
but it seems to have been overdone in comparison to tests that focus more
on the uses of these models such as forecasting (which is effectively what the
tracking exercise is about).

Now there a problem arises in doing such exercises for 4G models. If the
model’s shocks are taken to be an integral part of it then there is no way
to assess the model’s tracking ability, since the shocks always adjust to pro-
duce a perfect match to the data. Put another way there is no such thing
as a residual in 4G models. The only exception to that is when we explic-
itly allow for tracking shocks, as described earlier, and this technology has
sometimes been used to examine the fit. The main difficulty in doing so
is the assumption used in setting up the SSF that the tracking shocks and
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model shocks are uncorrelated (since one cannot estimate such a parameter
from the likelihood). Some relaxation of this assumption is needed i.e. an
auxiliary criterion needs to be supplied that can be used to set a value for
the correlation. Watson (1993) suggested that one find the correlation that
minimized the gap between the spectra of the model and the data, as that
produces the tracking outcome most favourable to the 4G model. Oddly
enough Watson’s approach does not seem to have been used much, although
it is obviously a very appealing way of getting some feel for how well a 4G
model is performing.

Rather than focus on tracking one might ask whether the dynamics are ade-
quately captured by the model. One way to examine this is to compare the
VAR implied by the model with that in the data. Canova et al (1994) pro-
posed this. In small models this seems to be a reasonable idea but, in large
models, it is unlikely to be very useful, as there are just too many coefficients
to fit in the VAR. Consequently, the test is likely to lack power. Focussing
on a sub-set of the VAR coefficients might be instructive. Thus Fukač and
Pagan (2009) suggest a comparison of Etzt+1 generated from the model with
that from a VAR. As there are only a few expectations in most 4G models
this is likely to result in a more powerful test and has the added advantage
of possessing some economic meaning. They found that the inflation expec-
tations generated by the Lubik and Schorfheide(2007) model failed to match
those from a VAR fitted to UK data.

A different way of performing “parameter reduction” that has become pop-
ular is due to Del Negro and Schorfheide (2007) - the so-called DSGE-VAR
approach. To explain this in a simple way consider the AR(1) equation

zt = ρzt−1 + et,

where et has variance of unity. Now suppose that a 4G model implies that
ρ = ρ0, and that the variance of the shock is correctly maintained to be unity.
Then we might think about estimating ρ using a prior N(ρ0,

1
λT

), where T is
the sample size. As λ increases we will end up with the prior concentrating
upon ρ0 while, as it tends to zero, the prior becomes very diffuse. In terms of
the criterion used to get a Bayesian modal estimate this would mean that the
likelihood will be a function of ρ but the other component of the criterion-
the log of the prior - would depend on λ. Hence we could choose different
λ and see which produces the highest value of the criterion (or even the
highest value of the density of zt when ρ is replaced by its various model
estimates as λ varies). For a scalar case this is not very interesting as we
would presumably choose the λ that reproduces the OLS estimate of ρ (at
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least in large samples) but in a multivariate case this is not so. Basically the
method works by reducing the VAR parameters down to a scalar measure,
just as in computing expectations. As λ varies one is effectively conducting
a sensitivity analysis.

6 Conclusion

The paper has looked at the development of macroeconometric models over
the past sixty years. In particular the models that have been used for
analysing policy options. We argue that there have been four generations of
these. Each generation has evolved new features that have been partly drawn
from the developing academic literature and partly from the perceived weak-
nesses in the previous generation. Overall the evolution has been governed
by a desire to answer a set of basic questions and sometimes by what can be
achieved using new computational methods. We have spent a considerable
amount of time on the final generation of models, exploring some of the prob-
lems that have arisen in how these models are implemented and quantified.
It is unlikely that there will be just four generations of models. Those who
work with them know that they constantly need to be thinking about the
next generation in order to respond to developments in the macro-economy,
to new ideas about the interaction of agents within the economy, and to new
data sources and methods of analysing them.
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