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Abstract 

Macroeconomic models often generate nominal price rigidity via menu costs. This paper provides 

empirical evidence that treating menu costs as a structural explanation for sticky prices may be spurious. 

Using supermarket scanner data, I note two empirical facts: (1) price points, embodied in nine-ending prices, 

account for more than 60 percent of prices; (2) at the conclusion of sales, post-sale prices return to their 

pre-sale levels nearly 90 percent of the time. I construct a model that nests roles for menu costs and price 

points and estimate model variants via simulated method of moments. Excluding the two facts yields a 

statistically and economically significant role for menu costs in generating price rigidity. Incorporating the 

two facts yields an incentive to set nine-ending prices two orders of magnitude larger than the menu costs in 

this model. In this setting, the price point model can match the two stylized facts, but menu costs are 

effectively irrelevant as a source of price rigidity. The choice of a mechanism for price rigidity matters for 

aggregate dynamics.  
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Sticky prices are an integral component of most macroeconomic models that generate 

considerable periods of monetary nonneutrality.  Understanding the mechanisms that produce 

price rigidity is therefore an important task for building proper micro foundations of these macro 

models.  Following a long tradition, the most commonly modeled structural impediments to price 

adjustment are menu costs—the costs associated with literally changing the price of an item.  In 

this paper, I provide empirical evidence that menu costs per se are largely irrelevant as a source 

of price rigidity. 

Using scanner price data from Dominick’s Finer Foods, a Chicago-area supermarket 

chain, I document and discuss two stylized facts.  First, more than 60 percent of Dominick’s 

prices end in the digit nine—a highly prominent price point.  Second, at the conclusion of sales 

(i.e., temporary price mark-downs), post-sale prices return to their pre-sale levels nearly 90 

percent of the time. 

I set out a simple menu cost model and show that this class of models is inconsistent with 

these facts.  The inability to match the former fact is partly mechanical, since menu cost models 

usually treat the firm’s real price instead of its nominal price as the relevant state.  Nevertheless, 

retaining nominal prices would only result in approximately 10 percent of prices ending in 

nine—the probability of drawing this digit by chance.  The inability to match the second fact is 

more problematic.  By design, menu cost models are inherently forward looking.  If the firm 

decides to pay the menu cost and adjust its price, the new price it sets will incorporate all 

relevant information.  This implies that, under even extremely low rates of inflation similar to 

what Dominick’s experienced, post-sale prices will rarely if ever return to their pre-sale levels. 

I then consider an extension of the menu cost model that allows for the possibility that a 

firm may have an incentive to use price points.  This model yields several noteworthy effects.  
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First, it can generate an overreliance on prices that end in the digit nine.  Second, the use of these 

price points can result in both price rigidity—since the firm may be reluctant to change its price 

away from a nine ending—and relatively large price changes when it does adjust even in 

response to small changes in its costs—since it may jump to nearby nine-ending prices.  Third, 

price points also naturally create an incentive for a firm to return post-sale prices precisely back 

to their pre-sale levels. 

Using simulated method of moments, I estimate these models on the Dominick’s data.  

Excluding the above facts and price points to focus on menu costs, I show that one would 

estimate a statistically and economically significant menu cost to match commonly cited 

moments related to price rigidity.  However, asking the model to match the two above facts 

causes it to predictably break down.   

I next turn to the model that allows for price points and menu costs.  Incorporating the 

two stylized facts into the estimation along with the other price rigidity moments yields an 

incentive to set price points roughly two orders of magnitude larger than the menu costs in this 

model.  In this setting, the price point model can match the two stylized facts, but menu costs are 

now effectively too small to generate substantial price rigidity.  These results suggest that relying 

on menu costs as a structural explanation for price rigidity—which is arguably their most 

attractive feature in macro models featuring state-dependent pricing—may be spurious. 

Extending the model to illustrate its implied aggregate behavior, I show that the choice of 

a mechanism for price rigidity matters for macro dynamics.  Using the estimated parameters, the 

price point model generates movements in output distinct from those of the simple menu cost 

model.  In particular, money is essentially neutral in the aggregated price point model.  This 

result weakens the case for using sticky prices as a key source of monetary nonneutrality. 
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The marketing and retailing literatures have long recognized the importance of price 

points and price endings, especially the digit nine.  With the notable exceptions of empirical 

work by Kashyap (1995), Blinder et al. (1998), and Levy et al. (forthcoming), the sticky price 

literature has largely avoided this issue, instead relying primarily on menu costs to generate price 

rigidity in state-dependent pricing models.  This paper integrates price points and menu costs 

into a single framework and estimates the parameters of the model. 

This paper also contributes to the sticky price literature and the debate about the 

importance of sales.  Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008), and Kehoe 

and Midrigan (2008) show that whether one includes sales or not has a dramatic impact on 

estimated average durations between price changes, which in turn can strongly affect the results 

of macro models that are calibrated to one or the other duration.  Furthermore, the fact that most 

sales are ―undone‖—in that the firm’s post-sale price returns to its pre-sale level—lends at least 

some support to the view that sales should either be treated as special or as a nuisance to abstract 

from in macro models.  Instead, I argue that the behavior of prices around sales serves as an 

important test of structural price-setting models.  Ultimately, this behavior is more supportive of 

price point models than canonical menu cost models. 

An additional drawback of menu cost models is their inability to generate small price 

changes: the presence of a menu cost that is sufficiently large to deter too-frequent adjustment 

also prevents many small price changes.  As noted by Midrigan (forthcoming), while the average 

absolute size of price changes tends to be relatively large in the empirical data, there are also 

many small changes in absolute value.  While not a part of the estimation, the price point model 

closely matches the frequency of very small price changes (less than 2.5 percent and less than 1 

percent in absolute value) in the Dominick’s data.   
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Price points can help rationalize the inertia that Eichenbaum et al. (forthcoming) find in 

reference prices—i.e., the most commonly used prices within a quarter.  Intuitively, price points 

help to channel firms’ prices to certain nominal levels.  In this framework, there is no longer a 

need to assume that firms are restricted to choosing from a small set of prices prescribed by a 

―price plan‖ that is costly to adjust, as in Eichenbaum et al. (forthcoming). 

Section I discusses the Dominick’s data that are used in this paper and the stylized facts 

of interest.  Section II presents a model that allows a role for price points and menu costs in a 

firm’s price-setting problem, and Section III sets out the estimation strategy.  Parameter 

estimates are presented in Section IV.  Section V discusses the results in the context of the 

literature.  Section VI considers the aggregate implications of the models, and Section VII 

concludes. 

 

I. Stylized Facts on Price Endings and Sales in the Dominick’s Data 

 

The data for this paper come from the scanner database of prices for Dominick’s Finer Foods, a 

Chicago-area supermarket chain.  The database contains more than 3,500 items with UPC labels.  

The data are available at a weekly frequency, beginning in September 1989 and running for 400 

weeks through May 1997.  The entire dataset contains nearly 99 million observations, and the 

vast majority of items are relatively inexpensive, as shown in Figure 1.  For computational 

feasibility when working with the estimation below, I restrict attention to prices in the range of 

$0.50 to $3.00, capturing 74.3 percent (about 74 million) of the observations in the dataset. 

This paper focuses on two facts from the Dominick’s data.  First, prices ending in the 

digit nine dominate the dataset.  Figure 2 shows that 62.2 percent of prices have a nine in the 
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final cents digit, far from the 10 percent level that would result if price endings were uniformly 

distributed.  In addition, price endings are correlated with measures typically of interest in the 

price rigidity literature.  For instance, the unconditional frequency of price changes is 25.0 

percent in the Dominick’s data.  Conditional on the last period’s price (pt−1) ending in the digit 

nine, the frequency of price changes is 21.5 percent.  If pt−1 did not end in the digit nine, the 

frequency of price adjustment is 30.5 percent.
1
 

The second fact of interest concerns the behavior of prices around sales.  Sales, or 

temporary price markdowns, feature prominently in the Dominick’s data.
2
  Conditional on a 

good not being on sale in the previous period, the probability of starting a sale is nearly twice the 

probability of a non-sale price change (10.0 percent versus 5.6 percent).  Since sales involve two 

changes—an initial decrease and a subsequent increase—they comprise the majority of all price 

adjustments in the dataset. 

In the Dominick’s data, prices exhibit memory around sales: at the conclusion of a sale, 

return precisely to their level from immediately prior to the sale 89.0 percent of the time.  Such a 

finding is not unique to supermarkets.  Using data underlying computation of the U.S. consumer 

price index, Klenow and Kryvtsov (2008) and Nakamura and Steinsson (2008) find broadly 

similar patterns.   

Moreover, the frequency with which post-sale prices return to their pre-sale levels differs 

depending on the pre-sale price ending.  As Figure 3 shows, the unconditional frequency of post-

sale prices not returning to their pre-sale levels is 11.0 percent.  However, conditional on the last 

                                                 
1
 Levy et al. (forthcoming) present more detailed empirical analysis relating to nine endings in the Dominick’s data.  

Studies of micro data underlying consumer price indices from the Eurosystem’s Inflation Persistence Network also 

find a statistically significant role for ―attractive prices‖—i.e., price points, including nine endings—in regressions 

on the frequency of price changes; see Dhyne et al. (2006) for a review of this evidence.   
2
 The Dominick’s data contain a variable indicating whether a good was on sale for the week or not, but the sale 

codes were not applied in a consistent manner and thus are not used in this analysis.  For consistency and 

comparability between the Dominick’s data and the model simulations below, I construct a sales filter to determine 

the start and end dates of sales.  The Appendix provides details on the sales filter.  
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pre-sale price ending in the digit nine, only 6.1 percent of post-sale prices differ from their pre-

sale level; that is, in this case Dominick’s is more likely to return the price of the good to its old 

level than normal.  By contrast, conditional on the last pre-sale price ending in a digit other than 

nine, post-sale prices differ from their pre-sale level 22.4 percent of the time.
3
  These statistics 

suggest that Dominick’s treats prices that end with the digit nine as price points with special 

properties. 

 

II.   A Model of Price Points and Menu Costs  

 

The model I consider has the following features.  Within a given period, the firm determines the 

nominal price p it would like to charge for an item.  As in the canonical Dixit-Stiglitz 

framework, in a frictionless world the firm would always wish to set p equal to a desired markup 

μ over its nominal marginal cost, denoted mc.   

The firm potentially faces two consequential frictions.  The first friction allows for the 

possibility that price changes are costly: there is a menu cost to changing a price from its 

previous level, due to the physical costs of literally adjusting the price of an item.  Each price 

change reduces profits by a constant, fixed amount Φ≥0.
4
  Such nonconvex adjustment costs 

follow in a long tradition in the sticky price literature. 

The second friction comes from the possibility that price points may factor into the firm’s 

pricing problem.  The marketing and retailing literatures have proposed a number of mechanisms 

through which price points, especially nine-ending prices, may benefit sellers.  Typically, these 

                                                 
3
 Of those 22.4 percent of prices, greater than 50 percent go to a nine-ending price.   

4
 This notably differs from the framework of Midrigan (forthcoming), where there are economies of scale in 

changing prices; and Midrigan and Kehoe (2008), where there are different menu costs associated with regular and 

temporary price changes.  I discuss these points in more detail below.  
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mechanisms involve a departure from pure rationality: consumers are assumed to truncate or 

underestimate price points—due to rational inattention, limited recall, or the desire to simplify 

price comparisons across items by mentally coding using left-to-right, digit-by-digit comparisons 

until the first difference is noted—or they associate price points with sales.
5
   

As a result, price points can result in kinks (or discontinuities) in the demand curve that 

are then present in the firm’s profit function as well—with the effect that the price points are 

local profit maxima.  For example, consider the case in which consumers truncate the final cents’ 

digit.  This would transform an otherwise linear (log-linear, etc.) demand curve into a step 

function.  Since demand would be identical for a price of $1.50 and $1.59, the firm would earn 

higher revenues and profits from setting the $1.59 price.  Furthermore, moving from $1.59 to 

$1.60 would result in a disproportionate decline in demand and, under general circumstances, a 

lower level of profits.  For the sake of tractability and estimation feasibility, and to remain 

agnostic on the precise mechanism at play, this paper posits that firms may benefit directly from 

the use of price points ending in the digit nine via κ≥0, which captures the profit implications of 

setting a price point. 

The above concepts can be parsimoniously represented as affecting a firm’s profits for 

good i at time t through the use of a quadratic loss function  

(1) 

2

( , , ) [ ( {price points})]
p

p mc I p
mc

   
 

      
 

. 

In the absence of any frictions (κ=0 and Φ=0), the firm would set its price p equal to its desired 

markup over marginal cost, earning some level of profits χ.   

                                                 
5
 Among others, Georgeoff (1970) and Schindler and Kirby (1997) discuss truncation and underestimation, Brenner 

and Brenner (1982) and Thomas and Morwitz (2005) discuss mental coding, and Schindler (1991) discusses the 

association with sales prices. 
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In the presence of frictions, deviations of the actual price p from its frictionless optimal 

level (equal to mc×μ) entail a reduction in profits via the curvature of the profit function.  These 

deviations can arise in the presence of a menu cost Φ>0 that must be paid when changing the 

price of good i, since in this case the firm may not always pay the menu cost in order to keep its 

price at its desired markup over marginal cost.  They can also arise when κ>0, since in this case a 

firm’s profits will depend on whether p is a nine-ending price point—and hence the indicator 

variable ( {price points}) 1I p  —or not.  As a result, under some circumstances profits may be 

higher from setting a nine-ending price point than from setting p=mc×μ. 

Within a given period t, the firm observes its contemporaneous marginal cost mc and 

desired markup μ—both of which evolve exogenously to the firm—and decides whether to keep 

its price p or change it.  The firm discounts the future at rate β.  The value to the firm of keeping 

its price p is 

(2) ( , , ) ( , , ) ( , , )KV p mc p mc EV p mc       , 

with E the expectations operator over future unknown values of marginal costs and desired 

markups.  The value to the firm of changing its price is  

(3) ( , , ) max ( , , ) ( , , )C

p
V p mc p mc EV p mc       , 

which captures the menu cost Φ needed to change the price to p .  Thus, the firm decides 

whether to change its price or not based on 

(4) ( , , ) max{ ( , , ), ( , , )}K CV p mc V p mc V p mc   . 

Intuitively, menu costs generate price rigidity by creating a range of inaction around the 

most recently set price.  In response to small enough shocks, a firm facing a menu cost will wish 

to maintain the previous price.  Once the shocks push the firm outside of this range, it will pay 

the menu cost and select a new price.  By contrast, price points create incentives for the firm to 
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select from a set of prices (e.g., those with nine-endings).  This will cause prices from this set to 

be used disproportionately.  In addition, price rigidity will depend on the characteristics of the 

current price itself (i.e., situational price rigidity).  If the current price is a price point, this again 

generates a range of inaction in response to small enough shocks and hence price rigidity.  But if 

the current price is not a price point, these prices may appear more flexible. 

 

III.   Calibration and Estimation Strategy 

 

Central to this paper are the sizes of the menu cost, Φ, and the price point effect, κ, in the firm’s 

profits.  Estimating these parameters requires calibrating other parameters where possible and 

specifying the exogenous processes for marginal costs mc and markups μ.  

The data in the Dominick’s database are weekly, which is the relevant timeframe for the 

firm’s decisions.  As such, the discount rate is β=0.96
1/52

, as in Kehoe and Midrigan (2008).  

Without loss of generality, χ is normalized to ensure the value function is not near zero. 

In keeping with the spirit of the sticky price literature, nominal marginal costs for a good 

have two components: a ―price‖ component P and a ―real‖ component c, such that mc=P×c.
6
  

The price component evolves according to 

(5) 1ln lnP P    , 

with δ an i.i.d. normal random variable with mean zero and standard deviation  .  Converting 

monthly inflation for the non-seasonally adjusted consumer price index for food and beverages 

to weekly inflation over the Dominick’s sample period yields  =5.7×10
−4

 and  =1.7×10
−3

.   

                                                 
6
 That is, sticky price models typically use the firm’s real price p/P as the relevant state.  Since profits in equation 

(1) depend on p/mc, this interpretation of nominal costs is equivalent to having (p/P)/c in the profit function.  The 

component c then captures the idiosyncratic productivity shocks that have become standard in state-dependent 

pricing models based on menu costs; see, e.g., Golosov and Lucas (2007). 
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The real component of marginal costs evolves according to 

(6) 1ln lnc c   . 

As in Gertler and Leahy (2008), the shock has two components: ε=γ×ε.  The random variable γ 

governs the arrival of cost shocks, with Pr(γ=1)=λ and Pr(γ=0)=1−λ.  The random variable ε 

determines their size, with ε distributed uniformly on [−ζ,ζ].  Marginal cost is not well-measured 

in the Dominick’s data and cannot be used to inform these parameters (see, e.g., Peltzman 2000). 

Taking the model to the Dominick’s data requires a prominent role for sales.  While 

various theories have been proposed to explain sales, this paper models sales as arising in 

response to time-variation in the firm’s exogenous desired markup μ, which follows  

(7)     . 

In a New Keynesian framework using Dixit-Stiglitz preferences, exogenous time-variation in the 

firm’s desired markup could arise for instance through time-variation in demand elasticities.  

Based on the median markup of non-sale prices over average acquisition cost—which can be 

inferred from the measure of gross profit margins in the Dominick’s dataset, and which I assume 

proxies for marginal cost in steady state—I calibrate the steady-state desired markup   to 1.42. 

The random variable ξ captures the desired sales state.  If ξ=0, the firm wishes to set its 

price equal to its steady-state markup over marginal cost.  If ξ>0, the potential for a sale occurs 

since the firm then wishes to set a lower markup and hence a lower price.  The sales state is 

given by {0, , }s b   , which affords the opportunity for ―big‖ and ―small‖ sales ( 0)b s   .  

The sales state follows a Markov process with transition matrix, 

 ξ′=0 ξ′=ξs ξ′=ξb 

ξ=0 δ0 δ0s 1−δ0−δ0s 

ξ=ξs δs 1−δs 0 

ξ=ξb δb 0 1−δb 
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which rules out the possibility of sale-to-sale transitions. 

Thus, the model has ten parameters to estimate: (1) the sensitivity of profits to nine-

ending price points, κ; (2) the menu cost, Φ; (3) the probability of a marginal cost shock, λ; (4) 

the support of the marginal cost shocks, ζ; (5–6) the ―big‖ and ―small‖ sales states, ξb and ξs, 

respectively; and (7–10) four parameters from the transition matrix, δ0, δ0s, δs, and δb.  I reduce 

the computational burden slightly by using two moments from the Dominick’s data to inform δ0s 

and δb.  First, approximately 60 percent of sales are smaller than average, implying 

δ0s=0.6(1−δ0).  Second, the average duration of a ―big‖ sale is approximately 70 percent of the 

average duration of a ―small‖ sale, implying δb=1.4δs.  This leaves eight parameters for 

estimation. 

The model is estimated via simulated method of moments (SMM).  Let Z denote the 

vector of parameters to be estimated: Z=[κ, Φ, λ, ζ, ξb, ξs, δ0, δs].  The estimates Ẑ  minimize the 

weighted difference between a vector of estimated moments from the Dominick’s data, ̂ , and a 

vector of moments produced via model panel simulations using parameters Z, ( )Z :   

(8) 
1 1

1 1ˆ ˆ ˆarg min ( ) ( )
S S

s s
Z s s

Z Z Z
S S

   
 


   

      
   

  , 

where S=50 is the number of replications of the simulated panel dataset over I=50 items and 

T=81 time periods, which is the average number of observed weeks per item in the Dominick’s 

data.  The positive definite weighting matrix Ω is the inverted bootstrapped variance-covariance 

matrix for the moments estimated from the Dominick’s data. 
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IV. Estimation Results 

 

I estimate two variants of the model.  The first is a typical menu cost model omitting price 

points, in line with the sticky price literature.  Next, I consider the complete model, estimating 

both the role of price points and menu costs.  While the former exercise finds a significant 

statistical and economic role for menu costs, the latter exercise shows that menu costs are 

essentially irrelevant as a source of price rigidity after incorporating a role for price points into 

the analysis.  These results are robust to several variations in the moments used in the estimation. 

I select moments to identify the model’s parameters based on common moments in the 

sticky price literature reflecting information on the frequency of price changes, their size, and the 

standard deviation of their size, along with moments related to sales behavior.  I consider: (1) the 

frequency of non-sale price changes; (2) the average absolute size of non-sale price changes; (3) 

the standard deviation of the size of non-sale price changes; (4) the frequency of beginning a 

sale, conditional on not having a sale in the previous period; (5) the frequency of ending a sale, 

conditional on a sale in the previous period; (6) the average size of price changes associated with 

the start of sales; and (7) the standard deviation of the size of price changes associated with the 

start of sales.  The final two moments are the facts from Section I: (8) the percentage of prices 

that end in the digit nine; and (9) the frequency with which post-sale prices differ from their pre-

sale levels.  Column (a) in Table 1 provides estimates from the Dominick’s data. 
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A Typical Menu Cost Model 

 

To estimate the model with only menu costs (i.e., constrained estimation with κ=0), I 

discretize the actual markup state, p/mc, in 0.1 percent intervals over the relevant regions and 

constrain actions to this grid.
7
  With the nine-ending price point effect κ set to zero by 

assumption, this leaves the menu cost Φ and six other parameters related to the frequency and 

size of the shocks in the model.  Consequently, the model is just-identified with the first seven 

moments listed above. 

Column (b) in Table 1 provides the parameter estimates and the resulting moments for 

the model with only menu costs.
8
  As the bottom panel shows, the model closely matches the 

data at the estimated parameters.  The point estimate of the menu cost for this case is 2.51×10
−3

, 

with a 90-percent confidence interval computed to be from 2.18×10
−3

 to 2.91×10
−3

.  Cost shocks 

arrive (λ) in approximately 5.9 percent of periods, and the maximum absolute size of a cost 

shock (ζ) is 9.8 percent, similar to the calibrations in Kehoe and Midrigan (2008). 

Unlike in Kehoe and Midrigan (2008), matching the large standard deviation of the size 

of sale-related price changes requires allowing for multiple sales states.  Thus, the big sale 

estimate (ξb) implies a desired markup of 0.90, while the desired markup during an estimated 

small sale (ξs) is 1.32.  These numbers are consistent with large sales being ―loss leaders‖ that are 

more transient than other sales.   

The final two parameters relate to the transition matrix that governs the evolution of 

desired markups in Section III.  The estimate of δ0 implies a 10 percent probability that the 

                                                 
7
 By the assumptions of the previous section, the other relevant state variable, μ, can take on three values in each of 

the model variants: { , , }s b        . 
8
 The 90-percent confidence intervals reported in the table were constructed by re-estimating each model 100 times 

using different underlying draws for the shock processes.  In this way, I account for variability arising from the 

selected set of random draws in the estimation procedure.   
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desired markup will switch from its steady-state level to a lower, sale level in any given period.  

The estimate of δs implies that, conditional on the desired markup being 1.32s     , the 

desired markup will stay at that level in the next period with a two-thirds probability. 

Interpreting the size of the menu cost is complicated by the fact that the simple loss 

function in equation (1) does not have a role for revenues or profits per se, since these are often 

compared with menu costs as in Levy et al. (1997) or Dutta et al. (1999).  Column (b) in Table 2 

presents an alternative interpretation: it computes the percent deviation between the actual 

markup, p/mc, and the steady-state desired markup,  , that is equivalent to the estimated menu 

cost.  For this model variant, paying the menu cost has the same contemporaneous negative 

effect on profits as allowing the actual markup to differ from the desired markup by 3.46 percent 

for one period.  While not directly translatable to a dynamic setting, this estimate nevertheless 

implies that for ―small‖ shocks to marginal cost there is an incentive for the firm to not 

necessarily pay the menu cost and change its price. 

While the menu cost model can match the moments used in the estimation, it is incapable 

of matching the two facts set out in Section I: more than 60 percent of prices end in the digit 

nine, and post-sale prices return to their pre-sale levels nearly 90 percent of the time.  As the gray 

shaded boxes show, the menu cost model would produce nine-ending prices 10 percent of the 

time—the probability of drawing this digit by chance.
9
   

The inability to match the second fact is because of the forward-looking nature of menu 

cost models.  If the firm decides to pay the fixed cost and adjust its price, the new price it sets 

will incorporate all relevant information since its last change.  This implies that, under even 

extremely low rates of inflation similar to what Dominick’s experienced, post-sale prices will 

                                                 
9
 Since p/mc is the relevant state in this model and essentially all menu cost models, the notion of a nominal price is 

somewhat arbitrary and clearly not constrained to the traditional grid of prices, $1.00, $1.01, $1.02, etc.  This figure 

is found by rounding to two digits.  
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rarely exhibit memory and return to their pre-sale levels, a pattern clearly illustrated in Figure 4.  

As the table shows, the menu cost model would predict that post-sale prices differ from their pre-

sale levels more than 90 percent of the time; the Dominick’s data put this figure at 11 percent.  

Discretizing the state variables of the menu cost model in successively finer increments would 

push this moment arbitrarily close to 100 percent, though it would also render impractical the 

estimation due to time considerations.
10

 

 

Price Points and Menu Costs  

 

I next consider the unconstrained estimation of the model by allowing a role for price 

points and menu costs.  This estimation requires keeping track of nominal prices as a state, due 

to the indicator function ( {price points})I p  in equation (1).  It also requires that prices be 

feasible under the monetary denominations.
11

  To this end, I discretize the nominal price p and 

nominal marginal cost mc states in one cent increments.  Because the time required to solve, 

simulate, and estimate the model increases exponentially with the number of nodes in each state, 

I restrict attention to nominal prices in the range of $0.50 to $3.00 inclusive, which comprises the 

vast majority of the Dominick’s data.  Given this assumption and the values of the markup 

process, the bounds of the marginal cost process are endogenized.  By adding another parameter 

(κ) to be estimated, I need at least one more moment; I add the two stylized facts set out above, 

then consider robustness below. 

                                                 
10

 The state space of the model was finely discretized to conform to standard practice in menu cost models.  

Conversely, requiring this model to use whole cent nominal price increments would produce a higher incidence of 

memory around sale prices, but the model would still not be able to match this particular moment. 
11

 This rules out pricing in fractions of a cent, or pricing patterns such as two for $0.99.  Less than 1% of prices in 

the Dominick’s database violate this assumption.  
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Column (c) in Table 1 presents the results.  In general, the model continues to be largely 

consistent with the moments commonly associated with the sticky price literature, but it is also 

now consistent with the two facts from Section I.  The estimated nine-ending price point effect is 

5.30×10
−4

, with a 90-percent confidence interval computed to be from 5.19×10
−4

 to 5.65×10
−4

.  

Thus, the estimation rejects the nested menu-cost-only specification for the larger set of 

moments.  The estimate of the menu cost falls to 1.78×10
−6

, with 90-percent confidence interval 

3.5×10
−7

 to 1.12×10
−5

.  That is, the estimated nine-ending price point effect is roughly two 

orders of magnitude greater than the estimated menu cost in this model.  

Even though the menu cost is statistically estimated to be greater than zero, it is 

effectively irrelevant as a source of price rigidity.  For instance, setting the menu cost Φ to zero 

and keeping the other estimated parameters has a trivial effect: to two decimal places, the 

resulting moments are unchanged.  Furthermore, as column (c) shows in Table 2, paying the 

menu cost now has the same contemporaneous negative effect on profits as allowing the actual 

markup to differ from the desired markup by a mere 0.09 percent.  This implies that, by itself, 

virtually any shock to marginal costs would be big enough to justify a price change based on 

menu costs alone.  By contrast, the price point effect is equivalent to a 1.6 percent difference 

between actual and desired markups.  This friction is now a much bigger impediment to price 

changes than menu costs. 

In terms of other parameters, the estimated arrival rate of cost shocks falls to 2.2 percent 

from 5.9 percent in the menu cost model.  In spite of this, the frequency of non-sale price 

changes remains at 6 percent, in line with the Dominick’s data.  Implicitly, this means that some 

―sales‖—i.e., price changes in response to desired markup shocks—may last longer than the 

sales window and instead be classified as non-sale price changes, and that some non-sale price 
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changes are caused by drift in the price component of marginal cost.  Indeed, sales are slightly 

more likely to occur under this case than under the menu-cost-only model, as implied by the 

lower estimate of δ0.  Regardless, this is not necessarily a drawback to this model, since the 

Dominick’s data also contain ―sales‖ that last longer than the window used in the sales filter and 

therefore appear as non-sale price changes.  While the sizes of the big and small sales states are 

comparable, the absolute size of cost shocks is slightly smaller than in the menu-cost-only case 

as well, at 8.3 percent.   

 

Robustness to Moment Selection 

 

These results are robust to the exact moment chosen in addition to the more common 

sticky price moments.  Since the model is now overidentified, I re-estimate the parameters by 

excluding one of the two added moments.  Column (d) presents results from excluding the pre- 

versus post-sale pricing moment.  As the table indicates, the parameter estimates and resultant 

moments are only trivially affected.  The model continues to produce an extremely high 

percentage of post-sale prices that return to their pre-sale levels, even though this is not explicitly 

part of the criterion function used in the estimation procedure any longer. 

Column (e) omits the ―nines‖ moment from the estimation.  Doing so produces a 

considerably larger estimate for the price point effect κ than in columns (c) and (d).
12

  This 

results in a greater reliance on nine-ending prices in the simulations (91 percent) than what we 

see in the data (62 percent), since the larger estimate of κ provides price setters in this estimation 

greater incentives to set these prices.  By contrast, the estimate of the menu cost Φ is little 

                                                 
12

 Because the 90-percent confidence intervals were constructed using different draws for the shock processes, there 

is no guarantee that the original parameter estimates will fall within a given 90-percent confidence interval—as is 

the case with the κ estimate here. 
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changed.  As a result, the nine-ending price point effect is an even greater barrier to action than 

the menu cost, as indicated by column (e) in Table 2. 

 

Ability to Match Additional Moments 

 

Beyond robustness exercises, it is also possible to consider how well the model matches 

moments not used in the estimation.  Table 3 presents additional moments of interest in the 

Dominick’s data in column (a).  Columns (b) through (e) give the results from model simulations 

using the estimated parameters from Table 1. 

Midrigan (forthcoming) notes that the Dominick’s data contain many small price 

changes.  Table 3, lines 1 through 3, shows that more than half of non-sale price changes are 

smaller than 5 percent in absolute value, 26.1 percent are smaller than 2.5 percent, and 6.7 

percent are smaller than 1 percent.  These facts typically pose a challenge for menu cost models 

to match, since a menu cost large enough to prevent too-frequent price adjustments also prevents 

the firm from making many very small price changes.  This problem is shared by the estimated 

menu cost model considered in this paper: in column (b), there are too few small price changes 

compared with the empirical data.  Midrigan (forthcoming) and Dotsey et al. (1999) assume 

heterogeneity in menu costs, which is helpful in generating small price changes—in cases when 

the firm faces a small menu cost—alongside larger price changes as well. 

The model with price points does not have as much trouble generating small price 

changes, as shown in columns (c) and (d).  The model nearly matches the empirical data for non-

sale price changes smaller than 2.5 percent and 1 percent in absolute value.  While the model in 

column (e) matches the percentage of price changes smaller than 5 percent in absolute value, it 
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fails to generate a reasonable number of very small changes.  Intuitively, this shortcoming is 

similar to the shortcoming of most menu cost models: the large estimated κ prevents many small 

price adjustments, as prices bounce too heavily between nine-ending levels. 

Section I documented that the frequency of price changes in the Dominick’s data varies 

depending on the previous period’s price ending (lines 4 through 6 in Table 3).  Columns (b) 

through (e) provide these moments using the estimated parameters.  While the frequency of all 

price changes was not used in the estimations, the models produce frequencies comparable to but 

slightly less than the empirical data.
13

  More importantly, in the empirical data the frequency of 

price change is higher conditional on non-nine-ending prices than it is conditional on nine-

ending prices.  Such a pattern is qualitatively present in all the models that allow a role for price 

points.  Quantitatively, column (e)—which was estimated without explicitly including a nine-

ending moment—comes reasonably close to matching the data. 

Section I also documented that the frequency with which post-sale prices differ from their 

pre-sale level varies with the pre-sale price ending (lines 7 through 9 of Table 3).  Such a pattern 

is generated endogenously by the model if one allows for a nine-ending price point effect.  Once 

again, column (e) comes closest to quantitatively matching the patterns in the Dominick’s data, 

suggesting that the nine-ending effect may be toward the higher end of the estimates provided.  

Taken together, these facts and the above results provide strong evidence that price points play 

an important role in the memory prices exhibit around sales. 

 

                                                 
13

 The Dominick’s data contain sale-to-sale changes that were ruled out for the sake of tractability in the model in 

Section III; this explains most of the discrepancy between the models and the data. 
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V. Discussion 

 

Developing models in which prices return to their pre-sale levels has proven challenging.  

In one approach, Kehoe and Midrigan (2008) present a stylized model featuring multiple menu 

costs: a large menu cost for non-sale price changes, a smaller menu cost for price changes 

associated with the start of a sale, and a de facto zero menu cost to change from the sale price 

back to the regular price.
14

  Because of the latter zero menu cost, this framework generates many 

prices that return exactly to their pre-sale levels.  However, it contradicts the notion of a menu 

cost as the literal cost of implementing a price change; why should it be completely costless a 

priori to physically adjust some prices but not others?  Further, it is not clear a priori that the 

physical costs of implementing a price change associated with a sale are lower than those 

associated with making a non-sale price change, especially if the former involves special tags, 

signs, etc.  For these reasons, this paper posits a single menu cost. 

In a second approach, Eichenbaum et al. (forthcoming) present a model in which a firm 

chooses a ―price plan,‖ which consists of a set of two prices.  Firms can change between prices in 

the plan costlessly, but altering the plan requires paying a fixed cost.  Intuitively, limiting the 

number of prices in the plan to two—for instance, to one regular and one sale price—and 

requiring a cost to changing the plan prevents firms from making the types of small adjustments 

seen in Figure 4 that plague menu cost models around sales.  However, it is less clear why a 

profit-maximizing firm would select a plan with only two prices; specifically, when facing drift 

in the price level, the firm would optimally wish to have a cluster of ―regular‖ prices to choose 

from, along with at least one sale price.  The nine-ending price point model in this paper can 

                                                 
14

 Kehoe and Midrigan (2008) focus on ―regular‖ and ―temporary‖ price changes, where the latter include both sales 

and temporary price increases above the regular level.  For comparison with this paper, I reframe the issue in terms 

of only sales. 
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explain why firms might endogenously choose to use relatively few prices.
15

  In addition, the 

trivial size of the estimated menu costs is not too far from the assumption in Eichenbaum et al. 

(forthcoming) of costless price changes within a plan. 

Clearly, price changes per se are not costless.  Levy et al. (1997) provide direct evidence 

from time-use studies on the costs of changing prices for supermarkets: cumulatively, they 

average more than $100,000 per year per store, or about 0.70 percent of firm revenues.  The 

results above suggest that the estimated nine-ending price point effect is roughly two orders of 

magnitude larger than the cost associated with a single price change.  Another way to compare 

these estimates is to combine them with the actual Dominick’s pricing data across stores, items, 

and time to form the ratio: 

 (9) 
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Line 10 of Table 3 shows that these ratios vary, based on the parameter estimates, from 852.8 to 

4225.0.  If we assume that Dominick’s is similar to the supermarket chains in the study by Levy 

et al. (1997) and pays 0.70 percent of revenues in the form of menu costs on average each year, 

these ratios would imply that Dominick’s received a benefit from setting nine-ending prices in 

the range of 600 percent to 3000 percent of total revenues on average per year! 

                                                 
15

 Limiting the set of prices to those between $0.50 and $3.00 may increase the estimated importance of nine-ending 

prices if these are used to a greater extent for lower prices, or if they are a bigger factor in effecting price rigidity at 

lower levels simply because—in percentage terms—the distance between consecutive nine-ending prices is a 

decreasing function of the price level itself.  However, price changes tend to be large in percentage terms (greater 

than 15% across all price changes), so above $0.69 the distance between any two consecutive nine-ending prices is 

smaller than the average price change, suggesting this is not likely a binding constraint.  In addition, firms may 

actually be more apt to focus on nine-ending prices at higher price levels, especially if they are used to simplify 

firms’ pricing decisions (i.e., by limiting the realm of possible prices to one-tenth of the feasible pricing set).  This 

latter point appears to be most likely: between $0.50 and $3.00, 62.2% of prices end in the digit nine, whereas 

63.6% of all prices use this digit, signifying that they are more heavily used outside of the range of prices that are 

the focus of this study.  
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These numbers are implausibly large.  An alternative interpretation of the evidence is that 

Dominick’s views menu costs differently from the standard menu cost set-up outlined above.  

Two previously modeled possibilities include economies of scale in changing prices (Midrigan 

forthcoming) and time variation in menu costs (Dotsey et al. 1999).  But Dominick’s may also 

simply view menu costs as a fixed cost of doing business rather than an impediment to price 

changes, as they are modeled in state-dependent pricing frameworks. 

This paper’s finding that menu costs are largely irrelevant as a source of price rigidity per 

se is in keeping with several recent lines of research that have looked to other explanations for 

sticky prices.  In a case study of a large industrial manufacturer, Zbaracki et al. (2004) document 

that physical menu costs associated with changing prices were an order of magnitude smaller 

than the costs associated with collecting information and negotiating with customers.  Blinder et 

al. (1998, p. 179) document that 15 of the 17 retailers in their survey identified price points as a 

significant source of price rigidity; by contrast, menu costs were cited by a below-average 

proportion of these same firms (p. 233).  Overall in the Blinder et al. (1998) survey, the fear of 

antagonizing customers ranked very high as a primary reason behind firms’ desires to keep their 

prices unchanged.  Anderson and Simester (2010) and Rotemberg (2005, 2008) consider 

customer antagonization, anger, and perceptions of fairness over firms’ prices as mechanisms 

that can generate price rigidity, even in the absence of menu costs.  Related to antagonization, 

Knotek (2008, forthcoming) shows that under certain circumstances firms may choose to set 

convenient prices, which simplify and expedite transactions and result in price rigidity in a 

manner similar to price points.  
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VI. Aggregate Implications 

 

Deriving a structural explanation for price points and embedding this within a general 

equilibrium framework is beyond the scope of this paper.  Instead, I assess the aggregate 

implications arising from the model with price points and menu costs developed above and 

compare them with the typical menu cost model through the following exercise. 

First, I assume the quantity equation with unit velocity holds, t t tM P Y  .  Second, I 

assume money follows the dynamics previously assumed for the ―price‖ component of nominal 

marginal cost in equation (5),  

(10) 
2

1ln ln ,  ~ i.i.d. N(0, )t t t tM M       , 

with   and   calibrated as in Section III.  Third, individual prices aggregate to the price index 

Pt via 

(11) 
1

1
ln ln

N

t it

i

P p
N 

  . 

Recall that the model in Section III assumed nominal marginal cost for a good was 

mct=Pt×ct, where Pt was the ―price‖ component and ct was the ―real‖ component of marginal 

cost.  If monetary shocks are neutral, then 
tY Y  and recasting nominal marginal cost as 

mct=Mt×ct differs from its earlier incarnation by a constant factor, which I omit to focus on 

dynamics.  Under this conjecture, an individual price setter’s problem is not affected by the 

decisions of other price setters, and the aggregation of the framework above is straightforward.  

If monetary shocks are not neutral, however, then a price setter would more accurately need to 

take aggregate dynamics into account when making decisions; i.e., movements in output would 

enter marginal cost. 
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To compare and contrast the behavior of the typical menu cost model with the model 

with price points and menu costs, I simulate a large panel of firms and derive the aggregate 

implications.  Both models use the parameter estimates from Section IV and are simulated under 

the conjecture that monetary shocks are neutral, in keeping with the partial equilibrium model 

above.  Figure 5 illustrates the simulated path of output deviations from trend over 200 weeks, 

using the same money process across models.
16

   

The figure shows that output in the model with price points and menu costs is very nearly 

equal to its trend value throughout the simulation: the largest absolute deviation is 0.008 percent.  

That is, the model ex post largely confirms the ex ante conjecture that money is neutral.  This 

result echoes Caplin and Spulber (1987), wherein price rigidity at the individual level is washed 

away in the aggregate. 

By contrast, the typical menu cost model produces considerable movements in output 

related to changes in money: the largest absolute deviation is 0.651 percent.
17

  This result has 

two implications.  First, the aggregate dynamics of the price point model appear to be quite 

distinct from those of the menu cost model.  As such, the choice of a mechanism for generating 

price rigidity matters.  However, the second point is that assuming ex ante monetary neutrality is 

more problematic in the menu cost case, since price setters would need to incorporate 

movements in Yt into marginal cost in their price-setting problem.  Of course, a smaller menu 

cost would bring the model closer to monetary neutrality since this would allow price setters to 

change their prices more frequently; Figure 6 illustrates the dynamics that occur if, instead of 

using the estimated menu cost Φ=2.51×10
−3

 from the typical menu cost model, one instead used 

                                                 
16

 Because of the different parameter estimates for the arrival rate and size of idiosyncratic real marginal cost 

shocks, and the frequency and size of sales shocks, the same cannot be said for all the shocks hitting individual price 

setters. 
17

 The standard deviation of output deviations from trend is 0.003 percent in the price point model and 0.208 percent 

in the typical menu cost model. 
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the estimate Φ=1.78×10
−6

 from the price point model.  But even with the same menu cost, the 

model continues to generate dynamics different from the price point model. 

 

VII. Conclusion 

 

This paper considers the extent to which menu costs—interpreted literally as the physical costs 

of changing a price—provide a structural explanation for price rigidity.  Using scanner data from 

Dominick’s Finer Foods, I show that in a simple menu cost model one would estimate a 

statistically and economically significant menu cost based on moments commonly used in the 

sticky price literature.  By expanding the model to allow a role for price points and using 

additional empirical data in the estimation, the results change dramatically.  In this case, the price 

point model can match the additional empirical facts, but menu costs are now effectively 

irrelevant as a source of price rigidity.  These results suggest that treating menu costs as a 

structural explanation for sticky prices may be spurious. 

This paper has made a number of simplifying assumptions for the sake of estimation 

feasibility.  Most notably, in this paper prices that end in the digit nine raise the level of profits, 

while all other prices do not have any special effects.  This tractable approach only adds one 

additional parameter to the estimation, but the exact manner in which price points enter the 

firm’s problem is a subject of contention.  While the marketing and retailing literatures have 

suggested many alternative theories to explain the prevalence of price points, further work is 

necessary to justify a structural interpretation of how they affect firms’ decision-making and 

therefore produce price rigidity.  Embedding this structural framework into a fully dynamic, 

stochastic general equilibrium model is left for future research. 
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VIII. Appendix: The Sales Filter 

 

For the sake of compatibility and comparability between the Dominick’s data and the simulated 

price data, I construct a sales filter that is applied to both sets of data.  In any given period, the 

filter determines whether a price observation is a sale or not by comparing the current price with 

an inferred ―regular‖ price for the item.  In short, if the price today has fallen below the ―regular‖ 

price and increases within the next F periods, then it is a sale price; otherwise, it is not a sale 

price.  The window size, F, is set to four weeks in this paper; moments computed using a 

window size of three or five weeks are only slightly affected. 

More formally, the following steps were used for a given item i. 

1. Initially set ―regular‖ prices {rt} to their observed values {pt} for all t. 

2. Compare the current price with the previous period’s regular price: if 1t tp r  , the 

observation is not a sale, move to the next period; if 1t tp r  , then continue to step 3. 

3. Over the next F periods, does the price increase?  If so, then time t was part of a sale and 

the previous ―regular‖ price needs to be carried forward to this period ( 1t tr r  ); if not, 

there was not a sale at time t. 

4. Move to the next period ( 1)t t   and return to step 2. 

Note that the ―regular‖ prices are only used in the sales filter; none of the moments 

presented in the paper rely on these ―regular‖ prices per se. 
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Table 1: Parameter Estimates and Moments 

 
 (a) 

Dominick’s 

data 

(b) 

Typical menu 

cost model 

(c) 

Model with price 

points and menu 

costs  

(d) 

Excluding the pre- 

v. post-sales 

moment  

(e) 

Excluding the 

―nines‖ moment  

 

Estimates      

Nine-ending price point effect: κ  – 5.30×10
−4

 5.30×10
−4

 1.77×10
−3

 

   [5.19, 5.65]×10
−4

 [5.17, 5.65]×10
−4

 [1.78, 2.25]×10
−3

 

Menu cost: Φ  2.51×10
−3

 1.78×10
−6

 1.18×10
−6

 1.20×10
−6

 

  [2.18, 2.91]×10
−3

 [0.35, 11.2]×10
−6

 [0.23, 17.8]×10
−6

 [0.83, 51.7]×10
−6

 

Arrival probability of cost shocks: λ  0.059 0.022 0.022 0.157 

  [0.058, 0.062] [0.021, 0.025] [0.020, 0.028] [0.150, 0.173] 

Absolute bound on cost shocks: ζ  0.098 0.083 0.090 0.020 

  [0.095, 0.101] [0.069, 0.098] [0.065, 0.096] [0.019, 0.022] 

No sale to no sale transition probability: δ0  0.895 0.875 0.875 0.878 

  [0.893, 0.896] [0.867, 0.878] [0.868, 0.879] [0.874, 0.887] 

Small sale to no sale transition probability: δs  0.329 0.399 0.399 0.412 

  [0.316, 0.341] [0.394, 0.410] [0.390, 0.411] [0.407, 0.423] 

Size of big sale: ξb  0.521 0.517 0.517 0.526 

  [0.517, 0.522] [0.501, 0.525] [0.505, 0.527] [0.517, 0.541] 

Size of small sale: ξs  0.102 0.106 0.106 0.114 

  [0.097, 0.103] [0.102, 0.110] [0.102, 0.110] [0.109, 0.119] 

Moments      

1. Frequency of non-sale price changes 0.06 0.06 0.06 0.06 0.06 

2. Avg. absolute size of non-sale price changes 0.08 0.08 0.09 0.09 0.09 

3. St. dev. of size of non-sale price changes 0.09 0.09 0.12 0.12 0.11 

4. Frequency of beginning a sale 0.10 0.10 0.11 0.11 0.11 

5. Frequency of ending a sale 0.51 0.51 0.54 0.54 0.54 

6. Avg. size of price changes at start of sales -0.22 -0.22 -0.23 -0.23 -0.23 

7. St. dev. of size of price changes at start of sales 0.19 0.19 0.19 0.19 0.19 

8. Percentage of all prices that end in 9 0.62 0.10 0.63 0.63 0.91 

9. Frequency of post-sale prices differing from pre-sale levels 0.11 0.93 0.10 0.10 0.10 

Notes: Moments computed from the Dominick’s data were for prices between $0.50 and $3.00 inclusive. The models were estimated using 

simulated method of moments. For the parameter estimates, 90-percent confidence intervals are reported in square brackets [-], as detailed in 

the text. For columns (b)-(e), the reported moments were computed based on the estimated parameters; moments shaded in gray were not used 

in the estimation. See Section II and Section III for details on the parameters.  
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Table 2: Interpreting the Menu Cost Φ and the Nine-Ending Price Point Effect κ 

 
 (b) 

Typical menu 

cost model 

(c) 

Model with price 

points and menu 

costs 

(d) 

Excluding the 

pre- v. post-sales 

moment  

(e) 

Excluding the 

―nines‖ moment  

 

The percent deviation between the actual markup and 

the steady-state desired markup comparable to: 

    

1. The estimated menu cost Φ 3.46% 0.09% 0.08% 0.08% 

2. The estimated nine-ending price point effect κ – 1.60% 1.60% 2.91% 
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Table 3: Additional Moments of Interest 

 
 (a) 

Dominick’s 

data 

(b) 

Typical menu 

cost model 

(c) 

Model with price 

points and menu 

costs 

(d) 

Excluding the 

pre- v. post-sales 

moment 

(e) 

Excluding the 

―nines‖ moment  

Small Price Changes      

1. Percentage of non-sale changes < |5%| 52.3 38.9 41.6 39.9 51.9 

2. Percentage of non-sale changes < |2.5%| 26.1 16.9 26.0 25.9 4.7 

3. Percentage of non-sale changes < |1%| 6.7 0.2 5.6 6.9 2.1 

      

Frequency Measures      

4. Frequency of all price changes 25.0 22.8 23.2 23.3 24.2 

5. Frequency | last price ended in 9 21.5 – 22.1 22.2 22.9 

6. Frequency | last price did not end in 9 30.5 – 25.4 25.4 38.0 

      

Prices around Sales      

7. Frequency of post-sale prices differing from pre-sale levels 11.0 93.2 9.7 9.7 10.4 

8. Frequency | last non-sale price ended in 9 6.1 – 8.1 8.2 9.1 

9. Frequency | last non-sale price did not end in 9 22.4 – 12.7 12.5 23.6 

      

Ratio      

10. (Gains from nine endings)/(Menu costs paid) – – 852.8 1286.4 4225.0 

Notes: All numbers are expressed in percentage (%) terms. Moments computed from the Dominick’s data were for prices between $0.50 and 

$3.00 inclusive. The moments in columns (b) through (e) from the models were computed using the parameter estimates in Table 1. The ratios 

(gains from nine endings)/(menu costs paid) are computed using equation (9). 
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Figure 1: The Distribution of Prices in the Dominick’s Dataset 

 
Notes: Prices are from the Dominick’s Finer Foods database. The red bars indicate the data used for this study. Less than 

0.01% of prices in the Dominick’s dataset are greater than $24.99. 
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Figure 2: The Distribution of Price Endings in the Dominick’s Dataset 

 
Notes: Prices are from the Dominick’s Finer Foods database, for prices in the range of $0.50 to $3.00 inclusive. The red 

dashed line represents a uniform distribution of price endings.  
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Figure 3: The Frequency of Post-Sale Prices Differing from Their Pre-Sale Levels 
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Figure 4: Sales and the Problem with Menu Cost Models 

 

 
Note: The frictionless optimal price in each period is given by the product of the firm’s nominal marginal costs mc and the 

desired markup μ. 
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Figure 5: Simulated Output Deviations from Trend in Two Models 

 

 
Notes: The thin blue line shows output deviations from trend for the typical menu cost model. The thick red line shows 

output deviations from trend for the model with price points and menu costs. Both models were simulated using the 

parameter estimates from Section IV. Both models assume ex ante that monetary shocks are neutral.  
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Figure 6: Simulated Output Deviations from Trend in Menu Cost Models 

 

 
Notes: The thin blue line shows output deviations from trend for the typical menu cost model, using the parameter estimates 

from Section IV. The thick green line shows output deviations from trend for the typical menu cost model under the 

assumption that the menu cost was instead 1.78×10
−6

, as in the estimated model with price points and menu costs. Both 

models assume ex ante that monetary shocks are neutral.  
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