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A The Derivation of the Maximum Entropy Prior

In this section we detail the derivation of the maximum entropy distribution for our forecast
consistent prior. Let π0 be the Lebesgue measure on R. Under the weak consistency, the
prior π(g) must satisfy the following two moment restrictions.

∫
gπ(g)dg = 0 ,

∫
g2π(g)dg = (λW )−1. (1)

Maximizing the entropy of π(g) under moment restrictions with respect to the reference
measures π0 is equivalent to minimizing the Kullbeck-Leibler distance between π and π0 as
follows:

π?(g) = argminπ(g)

∫
π(g) ln( π(g)

π0(g))dg − µ1(
∫
gπ(g)dg)− µ2(

∫
g2π(g)− (λW )−1dg). (2)

The first-order condition for this is π?(g) = π0(g)e1+µ1g+µ2g2 . Hence, π? ∝ eµ1g+µ2g2 and
π? is the normal distribution whose mean and variance are equal to − µ1

2µ2
and − 1

2µ2
. Since

π? must satisfy the above two moment restrictions, µ1 = 0 and µ2 = −λW
2 .

π?(g) ∝ e−
λWg2

2 → g ∼ N (0, (λW )−1). (3)

B Full Impulse Responses for Alternative Specifica-
tions of the Forward Guidance SVAR Model

In Section 3.5 of the main text we present alternative specifications of our forward guidance
VAR model. However, to conserve space, in Figure 6 of the main text we only present
impulse responses for select variables for each alternative specification. In Figures B.1, B.2,
and B.3, we present the full set of impulse responses for each alternative specification. For
the “Full Sample” specification, we calibrate λ according to the marginal likelihood criterion
which selects λ = 8.03×108. For the “High-Frequency Calibration of Lambda” specification,
we select λ to maximize the correlation between the SVAR forward guidance shocks and the
high-frequency forward guidance shocks from Swanson (2021). We translate his daily forward
guidance shocks to a monthly frequency using the time-aggregation procedure outlined in
Gertler and Karadi (2015). This procedure selects λ = 6.24 × 108, a value very near our
baseline marginal likelihood calibration of λ = 6.36 × 108. See the main text for further
details of each alternative SVAR specification.
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C Monte Carlo Simulations: Interpreting the Forecast
Consistent Prior

This section provides further details on our Monte Carlo simulations, shown in Section 3.6
of the main text. We present detailed descriptions of the DSGE model and the calibration.
We also present results from several variant of our baseline model.

C.1 Monte Carlo Experiment Design

Before describing the DSGE model in more detail, we provide an overview of how we conduct
these Monte Carlo simulations.

1. Specify a structural New-Keynesian DSGE model in which the central bank’s interest-
rate rule is subject to τ -period ahead news/forward guidance shocks, denoted by εfgτ,t−τ .
These shocks are announced in period t but don’t directly affect the policy rate until
period t + τ . We also include in the model a preference shock, a supply shock, and a
noise shock in the measurement of survey forecasts (the number of shocks equals the
number of VAR variables). The DSGE model is fully specified below.

2. Simulate a time series of 50,000 observations of the vector yt = [xt, πt, it,ESt it+τ ]′, where
xt is output, πt is inflation, it is the nominal policy rate, and ESt it+τ is the τ -period
(survey) forecast of the nominal policy rate.

3. Estimate a reduced form “population” VAR using the time series {yT−l}50,000
l=0 with the

number of lags selected by the AIC.

4. Identify forward guidance shocks from this reduced form population VAR model, de-
noted by εfgt (λ), by imposing the sign restrictions and varying degrees of tightness on
the forecast consistent prior (the same identifying restrictions imposed in the empirical
forward guidance application in the manuscript):

Sign Restrictions: iSt+τ increases and πt falls for the first 6 periods following a
forward guidance shock.

Forecast Consistent Prior: VAR expectations and survey expectations are (pos-
sibly) subject to some degree of forecast consistency, governed by the value of λ,
with larger values of λ leading to a tighter prior over forecast consistency and
λ = 0 reverting to the pure sign restrictions approach.
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5. Calculate the correlation between the the SVAR-identified forward guidance shocks
and each of the four underlying shocks from the DSGE model for alternative degrees
of forecast consistency (alternative values of λ). Then scale each pairwise correlation
by the norm of the four correlations.

C.2 Baseline DSGE Model: Noisy Survey Forecasts

Our baseline DSGE model used as the DGP for our Monte Carlo analysis is, at its core,
a three equation New-Keynesian model. However, we model “survey” forecasts as being
subject to information rigidities of the form documented in Coibion and Gorodnichenko
(2012). For completeness, the model is characterized by the following equations:

xt = Etxt+1 − (it − Etπt+1 − (at − Et(at+1))) (4)

πt = κxt + βEtπt+1 + µt (5)

it = φiit−1 + (1− φi) (φxxt + φ∆x (xt − xt−1) + φππt) + σfgε
fg
τ,t−τ +

τ−1∑
j=0

σjε
j
j,t−j (6)

We set τ = 1 for our baseline DGP and explore higher values of τ for robustness in this
appendix. We calibrate the structural model parameters using the post-1990 estimates from
Del Negro et al. (2020), a sample period which aligns well with our empirical application
of identifying forward guidance shocks in the manuscript, and set κ = 0.002 and φi = 0.84,
φx = 0.22, φ∆x = 0.18, and φπ = 1.42. The shock processes mirror those specified in models
estimated by Ireland (2011) and therefore we rely on his estimates for ρa = 0.98, σa = 0.08,
ρµ = 0, and σµ = 0.002. Ireland (2004a,b) estimates that σmp is near 0.0025 but has no
forward guidance shocks in his models. Given the findings in Gurkaynak, Sack and Swanson
(2005) that, since 1994, the dominant source of monetary policy innovations arise from “path
shocks,” or surprises in the expected future path of policy rates, rather than “target shocks,”
or surprise changes in the current federal funds rate, we set σfg = 0.0025, leaving the vari-
ance of monetary policy shocks essentially unchanged from Ireland (2004a,b). Finally, we
set σ0 = 0.25 ∗ σfg and which is sufficient to ensure that the current policy rate remains
unchanged in response to a forward guidance announcement.

We define the τ -period ahead forecast for the nominal policy rate by qt = ESt it+τ :

qt = (1− ρ)Et(it+τ ) + ρqt−1 + σnε
n
t , (7)
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where Et(it+τ ) is the rationale expectations forecast for the τ -period ahead nominal interest
rate, 0 ≤ ρ ≤ 1, and σn ≥ 0. Therefore, unless ρ = 0 and σn = 0, survey forecasts are a
noisy and imperfect measure of the rational expectations 12-period ahead forecast for interest
rates. We set ρ = 0.86 so that, as documented in Coibion and Gorodnichenko (2012), survey
forecasts only gradually incorporate new information. And we set σn = 4∗σfg so the “noise”
in the survey forecasts is sufficiently large relative the “signal” from the shock of interest.
All of the innovations εa, εµt , εnt , and εfgτ,t are i.i.d., mean zero, and unit variance shocks.

C.3 Expanded Description of Monte Carlo Analysis

Due to the specification of the survey forecast in equation (7), the survey forecast sys-
tematically differs from the VAR-implied forecast (and DSGE rational expectations). To
be explicit, unconditional forecast consistency between VAR and survey forecasts does not
hold in this model. To illustrate this point, Figure C.1 reports the (unconditional) root-mean
squared error (RMSE) between the VAR and survey forecast of interest rates 1-period ahead.
Even with a large number of lags in the VAR, a discrepancy persists between the survey and
VAR interest rate forecasts. This feature of the model is critical as it enables the forecast
consistent prior to shape structural shock identification even with a large number of lags in
the VAR. For example, if in contrast ESt it+τ = Et(it+τ ), then, with a sufficient number of lags
in the VAR, we find that survey and VAR-implied forecasts unconditionally align, rendering
the forecast consistency restrictions following a forward guidance shock inconsequential.

In order to assess the ability of the forecast consistent prior to shape the identification of
forward guidance shocks, we report the pairwise correlations between the SVAR-identified
forward guidance shock and each of the four DSGE model shocks. We then scale these pair-
wise correlations by the norm of the four correlations so that the shock weights sum to unity
in an L2 sense. While not the same as the weights in Wolf (2020), these correlation-based
weights are closely related to the regression coefficients from regressing the SVAR-identified
forward guidance shock on the four (standardized) DSGE model shocks and therefore can
be compared to give a sense of the relative relationship between our SVAR-identified for-
ward guidance shock and each of the DSGE model shocks. Figure C.2 shows that as λ in-
creases —and therefore the tightness of the forecast consistency restrictions increases —the
SVAR-identified forward guidance shock places more weight on the true forward guidance
shock. Moreover, as λ increases, the weight that the SVAR-identified shocks places on the
DSGE noise and supply shocks is diminished. Intuitively, forecast consistency restrictions
can deliver better alignment between the SVAR-identified and true forward guidance shocks
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because forward guidance shocks in the DSGE model imply a greater degree of forecast con-
sistency than does the linear combination of noise and other shocks that could masquerade
as forward guidance shocks based on sign-restrictions alone. For example, we can construct a
linear combination of the four DSGE shocks which places a relatively low weight on the true
forward guidance shocks but nevertheless satisfies the sign restrictions.1 Refer to this as the
“masquerading” forward guidance shock. This masquerading shock produces a cumulative
forecast discrepancy of about 19 basis points whereas the cumulative forecast discrepancy
following the true forward guidance shock is just 3 basis points.2

The confusion of the sign-restricted SVAR model can be further illustrated by studying
the DSGE and SVAR impulse responses to a forward guidance shock. Figure C.3 of this ap-
pendix shows the true impulse responses to a forward guidance shock from the DSGE model
along with impulse responses estimated by the SVAR models with both sign restrictions and
sign restrictions combined with forecast consistency restrictions. The responses of survey
forecasts and inflation appears to largely reflect the weights this model places on noise and
supply shocks to satisfy the sign restrictions. The resulting response of realized policy rates
is revealing that the SVAR-implied expected path of rates is largely disconnected from the
survey expectations. The result is an underestimation of the true output effects from forward
guidance. In contrast, combining sign restrictions with forecast consistency restrictions re-
sults in SVAR impulse responses which closely mirror the true response of output. This close
match is achieved by better aligning the realized paths of rates with survey expectations,
thereby down-weighting linear combinations of noise and supply shocks which satisfy the
sign restrictions. Therefore, imposing forecast consistency in the SVAR helps to distinguish
forward guidance shocks from linear combinations of other shocks that could masquerade as
a forward guidance shock based on sign-restrictions alone (as in Wolf, 2020).

C.4 Point Identification With the Forecast Consistent Prior

As we note in the main text, SVAR models identified by sign-restrictions on impulse responses
only identify the model parameters up to a set, as discussed by Moon and Schorfheide (2012)
and Uhlig (2017). This characteristic of sign restrictions has exposed this literature to multi-
ple criticisms, especially related to conducting inference on this posterior set and interpreting

1In particular, we use the results with λ = 0 from Figure C.2 to form a linear combination of the DSGE
forward guidance, demand, supply, and noise shocks with weights (0.32, -0.50, -0.50, 0.63). This shock
represents the “median” identified SVAR forward guidance shock using solely sign restrictions.

2To sharpen this intuition, below we consider the extreme case that, in the DSGE model, forward guidance
shocks imply perfect forecasts consistency whereas other shocks do not.
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median responses (See, among others, for a discussion Fry and Pagan, 2011; Baumeister and
Hamilton, 2015; Kilian and Lütkepohl, 2017; Baumeister and Hamilton, 2018).

However, when using the forecast consistent prior along with sign restrictions for shock
identification, achieving point identification is quite feasible. Intuitively, this is true because
the forecast consistent prior induces a non-arbitrary distribution over the posterior set of
SVAR models. Moreover, in practice, the “best draw” (the draw of the rotation matrices
that comes the closest to satisfying forecast consistency) is a reasonable starting point for
selecting one particular structural VAR model among the set of models which satisfy the
sign restrictions. However, we can move beyond the “best draw” by minimizing the forecast
discrepancy over the set of rotation matrices which satisfy the sign restrictions.

Table C.1 extends our Monte Carlo analysis by comparing three alternative approaches
to identifying forward guidance shocks in a structural VAR in terms of their implied degree
of (conditional) forecast consistency, as well as their relationship with the structural shocks
from the DSGE model. The first column shows that a pure sign-restrictions approach re-
sults in a low degree of forecast consistency and a weak (inverse) relationship between the
SVAR-implied and true forward guidance shocks. Instead, the SVAR-implied forward guid-
ance shock is highly correlated with the DSGE noise shocks which, when combined with the
model’s supply and demand shocks, can satisfy the sign restrictions implied by a forward
guidance shock despite failing to correlate with the true forward guidance shock. The second
column shows that augmenting sign restrictions with a tightly imposed forecast consistent
prior (a large value of λ), by construction, reduces the discrepancy between VAR-implied
and survey forecasts of interest rates. Moreover, the forecast consistent prior delivers SVAR-
identified forward guidance shocks which are much less correlated with the noise shocks and,
instead, share a large positive correlation with the true forward guidance shocks. Finally,
the third row shows results from a point-identification strategy that chooses a single rotation
matrix to minimize the degree of forecast discrepancy among the set of orthonormal matri-
ces that satisfy the sign restrictions. By construction, numerically minimizing the forecast
discrepancy results in forward guidance shocks with a greater degree of forecast consistency.
The point-identified model also delivers SVAR-identified forward guidance shocks which are
better linked with the true forward guidance shocks. However, relative to imposing the
forecast consistent prior, the improvements are somewhat modest along both dimensions
(forecast discrepancy and shock correlation). Nevertheless, achieving point identification is
one way in which our approach addresses a common criticism of sign-restricted SVAR models.
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C.5 Robustness of Monte Carlo Results to Alternative DGPs

We now examine the robustness of our Monte Carlo results to three alternative DGP spec-
ifications. The first two robustness checks examine the durability of our findings to al-
ternative forward guidance shock strictures. First, we relax the assumption that current
policy rates remain unchanged following a forward guidance announcement by assuming
that ∑τ−1

j=0 σjε
j
j,t−j = 0 so that, mechanically following the policy rule, the central bank par-

tially offsets its own guidance. The second robustness check we consider sets τ = 4 which, in
this quarterly DSGE model, aligns better with the one-year ahead forward guidance shocks
we study in our empirical application. In addition to setting τ = 4, we continue to assume
that ∑τ−1

j=0 σjε
j
j,t−j = 0. Panels A and B in Table C.2 of this appendix shows the Monte Carlo

results from these alternative DGPs.

In both settings, the forecast consistency restrictions meaningfully improve the ability of
the SVAR to recover the true forward guidance results. The sign-restricted SVAR continues
to confound forward guidance shocks with a combination of noise and supply shocks. In
contrast, the combination of sign and forecasts consistency restrictions down-weights noise
and supply shocks given the forecast discrepancies they generate and, instead, places greater
weight on the true forward guidance shocks. However, the magnitude of improvement is
somewhat diminished in both settings relative to our baseline Monte Carlo analysis as the
forecast consistent SVAR somewhat struggles to distinguish forward guidance shocks from
demand shocks. For some intuition, the impulse responses in Figure C.4 illustrate that the
promise of future policy accommodation, either 1 or 4 periods ahead, leads to increases in
inflation and output, inciting an immediate, mechanical tightening of policy in the present
period through period t + τ − 1. This mechanism is absent in our baseline DGP by the
calibration of ∑τ−1

j=0 σjε
j
j,t−j. However, when ∑τ−1

j=0 σjε
j
j,t−j = 0, interest rates initially move

in the opposite direction of output and inflation following a forward guidance shock, leading
the SVAR to initially believe that a demand shock has occurred. As described in Wolf
(2020, pg.27-28), once the forward guidance is realized in (t+ τ), SVAR understands that a
forward guidance shock had occurred. This is true for our forecast-consistent SVAR model
too. In Table C.2, we also report the correlation-based the SVAR forward guidance shock
places on the true forward guidance shock that was announced τ periods ago. This weight is
significantly increased by forecast consistency restrictions. Reassuringly, Figure C.4 in this
response suggests that this timing challenge does not prevent the forecast-consistent SVAR
from largely recovering the true peak effects form forward guidance. Instead, it merely
inhibits the estimated timing of the peak output response.
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Finally, for the third robustness check, we adjust the information rigidity that accompa-
nies forward guidance shocks. The baseline DSGE model used as the DGP for our Monte
Carlo analysis assumes that forward guidance shocks, like other shocks, generate some de-
gree forecast disagreement. However, one could argue that forward guidance may be unique
from other shocks in that it can better align interest rate forecasts. One counter argument
however might be that this alternative model is inconsistent with the evidence in Coibion
and Gorodnichenko (2012) who show that professional survey forecast errors display inertia
in response to essentially all structural shocks. For this reason, we present results solely
from the baseline model in the paper and present results from this alternative model in this
appendix.

We execute the simulations from this alternative DGP using Dynare as follows. Within
a single .mod file we create two identical model blocks. The parameters in the first model
block are set to the values in our baseline model except we assume in this first model block
that σfg = 0 such that there are no forward guidance shocks (however noise shocks remain).
Then, in the second model block, we set σfg = 0.0025, its value in our baseline model, but we
set σa = σu = σn = 0 such that there are only forward guidance shocks in the second model
block. Moreover, in the second model block, we set ρ = 0 so that there are no information
rigidities for the forward guidance shock and, therefore, conditional on a forward guidance
shock, survey forecasts perfectly align with the rationale expectations forecast for interest
rates. The econometrician observes the sum of output, inflation, nominal interest rates, and
survey forecasts across the two blocks.3

Table C.2 shows results when using this alternative DGP. Comparing the two columns,
the pure sign restrictions approach versus the combination of sign restrictions with the
forecast consistent prior, Table C.2 reveals that we find a similar pattern of improved shock
identification from the use of the forecast consistent prior in this alternative model as we
found in our baseline model. The forecast consistent prior SVAR now delivers a forecast
discrepancy of less than 1 basis point and, as one might expect given the DGP, very low
weights on the noise and supply shocks.4

3Since all the structural shocks are orthogonal, the aggregate variables from the DSGE model are always
equal to the sum of the variable conditional on the realizations of each individual structural shock. This
logic would fail if the structural shocks were correlated.

4The fact that the weight on the true forward guidance shock is not exactly one in this alternative
model could reflect the possibility that linear combinations of appropriately signed noise, supply, and de-
mand shocks can deliver offsetting forecast discrepancies, allowing these masquerading shocks to still evade
forecast consistency restrictions. Nevertheless, the pattern of improved identification suggests that forecast
consistency restrictions greatly diminish the masquerading shocks problem in both DGP settings.
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D Details of TVP-VAR Model

In Section 4 of the main text we present an application of our forecast consistent prior in a
time-varying parameter vector autoregression (TVP-VAR) model. In this section, we provide
further details of this model.

D.1 TVP-VAR Data

The specification of our TVP-VAR follows Clark and Davig (2011) closely by including long-
term and near-term survey forecasts of inflation alongside realized inflation, a measure of
real economic activity, and a measure of the policy rate. We use both 1 year and 10-year
ahead forecasts for Consumer Price Index (CPI) inflation from the Survey of Professional
Forecasters (SPF) as well as realized CPI inflation.5 We include the Chicago Fed National
Activity Index to broadly measure real activity and the effective federal funds rate to ac-
count for the stance of monetary policy. Our formal estimation sample is 1982-2015 which
includes the zero lower bound period. Therefore, to better account for the full spectrum of
the FOMC’s policy actions from 2009-2015 we splice the federal funds rate together with
Wu and Xia (2016) shadow federal funds rate.

We collect these five series together into a vector yt = [πS,Lt , πS,St , πt, xt, rt] where πS,Lt
denotes the long-term survey forecast of CPI inflation, πS,St denotes the 1 year ahead survey
forecast of CPI inflation, πt denotes the realized CPI inflation rate, measured as the quarter
over quarter percent change at an annual rate, xt denotes the CFNAI, and rt denotes the
short-term policy rate. Figure D.1 shows all the variables used in estimation. While the
real economic activity measure does not show any trending behavior, all the other nominal
variables exhibit downward trends since the early 1980s. The TVP-VAR model can accom-
modate time-varying trends in variables with the random-walk drifts of VAR coefficients.

5The 10-year ahead forecasts for CPI inflation from SPF are available beginning in 1991. Prior to 1991, we
use long-run inflation forecasts obtained from the public release of the Federal Reserve Board of Governors’s
FRB/SU econometric model which is constructed using alternative surveys and econometric estimates. We
use realized inflation and inflation nowcasts to construct our inflation expectations measures to prevent
overlap between long-term survey forecasts, near-term survey forecasts, and realized inflation.
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D.2 TVP-VAR Model Details

We consider the following TVP-VAR(4) model with stochastic volatility for the five variables
yt = [πS,Lt , πS,St , πt, xt, rt]:

yt = AD,t +
4∑
j=1

Aj,tyt−j + ut , ut ∼ N (0, B−1Σu,tB
−1′),

Σu,t =



σ2
1,t 0 · · · 0
0 σ2

2,t
. . . ...

... . . . . . . 0
0 · · · 0 σ2

5,t

 , B =



1 0 · · · 0
B21 1 . . . ...

... . . . . . . 0
B51 · · · B54 1

 ,

ỹt = Ã0,t + Ã1,tỹt−1 + ũt,

ỹt =


yt

yt−1

yt−2

yt−3

 ,AD,t =
 AD,t

0(15×5)

 ,At =


A1,t A2,t A3,t A4,t

I5 0(5×5) 0(5×5) 0(5×5)

0(5×5) I5 0(5×5) 0(5×5)

0(5×5) 0(5×5) I5 0(5×5)

 ,ut =
 ut

0(15×5)

 ,

At = [AD,t, A1,t, A2,t, A3,t, A4,t]′,

vec(At) = vec(At−1) + εt , εt ∼ N (0, Q),

ln(σ2
i,t) = ln(σ2

i,t−1) + ei,t , ei,t ∼ N (0, σ2
e,i).

(8)

Since the forecast horizon of the 10-year forecast from the SPF changes only at the first
quarter of each year, the number of quarterly forward inflation observations contained in the
10-year forecast varies depending on the quarter of year. Let l(t) index the starting quarter
for the long-horizon forward forecast where l(t) = 5 in the first quarter, l(t) = 6 in the
second quarter, l(t) = 7 in the third quarter, and l(t) = 8 in the fourth quarter.6 Let πt
denote realized CPI quarterly annualized inflation and let πe,Lt and πe,St denote the long-term
forward and short-term weighted averages of expected inflation at different horizons under

6In principle, we could treat four quarterly observations of the 10-year forecast of any given year as one
quarterly observation for four different measures of long-term forecasts to keep the same forecast period for
each measure of long-term forecasts. However, doing so would require us to estimate a mixed-frequency
TVP-VAR which would substantially increase the dimension of parameters and latent variables. We leave
this for future research.
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the expectation operator Ee:

πe,Lt =
∑40
j=l(t) E

e
t (πt+j)

40− l(t)

πe,St =
∑4
j=1E

e
t (πt+j)

4

(9)

where Ee
t is the survey expectation when e = S and the VAR-based expectation when

e = V AR.

Forecast consistency at both forecast horizons requires the following 42 cross-equation
restrictions:

πS,Lt − πV AR,Lt = e′π,S,Lỹt − e′π
[∑40

h=5
∑h−1
j=0 Aj

tAD,t +∑40
h=5 Ah

t ỹt]
36 ,

g(At)L = [−e′π
[∑40

h=5
∑h−1
j=0 Aj

tAD,t])
36 , e′π,L − e′π

[∑40
h=5 Ah

t ]
36 ]′

πS,St − πV AR,St = e′π,S,S ỹt − e′π
[∑4

h=1
∑h−1
j=0 Aj

tAD,t +∑4
h=1 Ah

t ỹt]
4 ,

g(At)S = [−e′π
[∑4

h=1
∑h−1
j=0 Aj

tAD,t]
4 , e′π,S − e′π

[∑4
h=1 Ah

t ]
4 ]′,

g(At) = [g(At)L, g(At)S]′,

(10)

where ei is a selection vector whose ith element is 1 while all the other elements are zeros. In
the above calculations of the VAR-implied forecasts, we assume no future parameter drift:

EVAR
t (AD,t+h|Ft) = AD,t EVAR

t (
h∏
k=1

At+k|Ft) = Ah
t .

This “anticipated utility” approximation works well for mean forecasts. Since we impose
consistency requirements only on point forecasts from surveys, using the approximation
should be even less problematic.

D.3 Priors and Posterior Simulation

To determine priors for initial states (AD,0, A1,0, A2,0, A3,0, A4,0,Σu,0) and parameters (Q,B, σ2
e),

we use a training sample from 1970:Q2 to 1981:Q2. Initial values of time-varying coefficients
(A0) and the covariance matrix of innovations to time-varying coefficients (Q) are calibrated
from the Ordinary Least Squares (OLS) estimates of a time-invariant VAR(4) using the
training sample data. The prior mean of A0 are the OLS estimates of coefficients from the
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VAR(4) for the training sample data. The prior mean of Q is set to be proportional to
the covariance matrix of the OLS estimates. As is common in the TVP-VAR literature, we
assume that the initial values of latent states and other parameters are a-priori independent.

To impose forecast consistency requirements, we need to calibrate hyperparameters such
as λ and W that determine the maximum entropy prior for g(At). Since the prior for g(At)
follows a normal distribution, W needs to match the inverse of the covariance matrix of
g(At). We simulate multiple draws of At from the prior distribution and compute g(At) for
each draw. From these multiple realizations of g(At), we compute the covariance matrix
and set W−1 equal to it. In order to calibrate the hyperparameter λ, as is common in a
hierarchical model, we estimate the TVP-VAR(4) model with different values of λ and pick
the value that gives the best fit for the sample according to the marginal likelihood.

We obtain the posterior output of latent states and parameters using Gibbs sampling.
While the joint posterior distribution of (AT ,ΣT

u , Q,B, σ
2
e) is difficult to characterize analyt-

ically, the distribution of one component conditional on all the other components is either
analytically tractable or easy to simulate.7 Given hyperparameters (λ,W ), the joint posterior
distribution of latent states and parameters can be obtained as the product of conditional
posterior distributions as follows:

pλ,W (AT ,ΣT
u , B,Q, σ

2
e |yT ) ∝ p(Q|AT ,ΣT

u , B, σ
2
e , y

T )p(Q)

× p(σ2
e |AT ,ΣT

u , B,Q, y
T )p(σ2

e)

× p(ΣT
u |AT , B,Q, σ2

e , y
T )p(Σu,0)

× p(B|AT ,ΣT
u , Q, σ

2
e , y

T )p(B)

× pλ,Wg(AT |ΣT
u , B,Q, σ

2
e , y

T )p(A0).

(11)

In the last step, we first simulate M draws of AT from pλ,Wg(AT |ΣT
u , B,Q, σ

2
e , y

T )p(A0) and
then resample them using importance-sampling weights given by

w(AT (j)) = exp−0.5g(AT (j))′(λW )g(AT (j))∑M
k=1 exp−0.5g(AT (k))′(λW )g(AT (k)) . (12)

To choose the hyperparameter λ that controls the tightness of forecast consistency prior
restrictions, we calculate the following marginal data density for different values of λ. We
calculate the marginal likelihood using the harmonic mean of the likelihood implied by
posterior draws. The details are explained in the next section.

7We use superscript to denote an array of observations up to the point at the superscript. For example,
AT represents an array of [A0, · · · , AT ].
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E The Calculation of the Marginal Likelihood

This section details the calculation of the marginal likelihood in both the TVP-VAR, as well
as the forward guidance application.

E.1 Marginal Likelihood Calculation in TVP-VAR

Since draws of VAR parameters from prior distributions are likely to have very low likeli-
hood, calculating the marginal likelihood from prior draws is quite inefficient and practically
infeasible. We calculate the marginal likelihood by using importance sampling for posterior
draws. Let’s notice that the posterior density of VAR parameters can be expressed as the
ratio of the posterior density kernel to the marginal likelihood.

p(AT ,ΣT
u , B,Q, σ

2
e |yT , λ) = p(yT |AT ,ΣT

u , B,Q, σ
2
e)p(AT ,ΣT

u , B,Q, σ
2
e |λ)∫

p(yT |AT ,ΣT
u , B,Q, σ

2
e)p(AT ,ΣT

u , B,Q, σ
2
e |λ)d(AT ,ΣT

u , B,Q, σ
2
e)
,

= p(yT |AT ,ΣT
u , B,Q, σ

2
e)p(AT ,ΣT

u , B,Q, σ
2
e |λ)

pλ(yT ) ,

p(AT ,ΣT
u , B,Q, σ

2
e |λ) = p(AT ,ΣT

u , B,Q, σ
2
e)h(AT ,ΣT

u , B,Q, σ
2
e |λ),

h(AT ,ΣT
u , B,Q, σ

2
e |λ) = p(g(AT ,ΣT

u , B,Q, σ
2
e)|λ)∫

p(g(AT ,ΣT
u , B,Q, σ

2
e)|λ)d(AT ,ΣT

u , B,Q, σ
2
e)
.

(13)

Here, h stands for the density for the weak forecast consistency prior with respect to VAR
parameters. Obtaining the exact value of the marginal likelihood is challenging in this case
because the normalizing constant for the forecast consistency prior is difficult to compute,
even by simulation. But what we are interested in is the relative evaluation of the marginal
likelihood across multiple values of λ. Therefore, we only need pλ1 (yT )

pλ0 (yT ) , which is feasible to
approximate by simulation. To do this calculation, first let’s take the harmonic mean of the
likelihood for posterior draws of VAR parameters.

∫ 1
p(yT |AT ,ΣT

u , B,Q, σ
2
e)
p(AT ,ΣT

u , B,Q, σ
2
e |λ, yT )d(AT ,ΣT

u , B,Q, σ
2
e)

=
∫
p(AT ,ΣT

u , B,Q, σ
2
e |λ)d(AT ,ΣT

u , B,Q, σ
2
e)

pλ(yT ) . (14)

Since the tail of the inverse of the likelihood can be thick, we truncate the region of
posterior draws that we calculate the harmonic mean of the likelihood to between the 16%
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quantile and the 84% quantile of VAR parameters in terms of the likelihood. Let’s denote
this region by χ. Then, we can compute the marginal likelihood as follows.

pλ(yT ) =
∫
χ
p(AT ,ΣT

u , B,Q, σ
2
e |λ)d(AT ,ΣT

u , B,Q, σ
2
e)

× [
∫
χ

1
p(yT |AT ,ΣT

u , B,Q, σ
2
e)
p(AT ,ΣT

u , B,Q, σ
2
e |λ, yT )d(AT ,ΣT

u , B,Q, σ
2
e)]−1, (15)

= Pλ(prior)× L(likelihood).

Therefore, the posterior odds ratio is reduced to the multiplication of the prior odds ratios
and the ratio of the harmonic mean of the likelihood. Notice that χ potentially depends on
λ.

pλ1(yT )

pλ0(yT )
=

∫
χ(λ1) p(A

T ,ΣTu , B,Q, σ2
e)p(g(AT ,ΣTu , B,Q, σ2

e)|λ1)d(AT ,ΣTu , B,Q, σ2
e)∫

χ(λ0) p(AT ,ΣTu , B,Q, σ2
e)p(g(AT ,ΣTu , B,Q, σ2

e)|λ0)d(AT ,ΣTu , B,Q, σ2
e)

×
[
∫
χ(λ1)

1
p(yT |AT ,ΣT

u ,B,Q,σ
2
e)p(A

T ,ΣTu , B,Q, σ2
e |λ1, y

T )d(AT ,ΣTu , B,Q, σ2
e)]−1

[
∫
χ(λ0)

1
p(yT |AT ,ΣT

u ,B,Q,σ
2
e)p(AT ,ΣTu , B,Q, σ2

e |λ0, yT )d(AT ,ΣTu , B,Q, σ2
e)]−1 .

(16)

Unlike h(AT ,ΣT
u , B,Q, σ

2
e |λ), we can easily compute p(g(AT ,ΣT

u , B,Q, σ
2
e)|λ). We can

replace the integral by using simulated posterior draws. When we do not impose the forecast
consistency prior (in other words, λ = 0), we set h(AT ,ΣT

u , B,Q, σ
2
e |λ) = 1.8

The log marginal likelihood in Figure E.1 for λ ∈ [0, 1.5] suggests that marginal likelihood
is maximized at λ = 1.42. We truncate the value of λ at 1.5 because the effective sample
size becomes too small (less than 2 percent of posterior draws) above that value. The rapid
increase of the marginal likelihood above a positive threshold of λ in Figure E.1 indicates
that imposing a modest degree of forecast consistency restrictions improves the time series
fit of the TVP-VAR model.

E.2 Marginal Likelihood Calculation in Forward Guidance Appli-
cation

We can apply a similar idea to our forward guidance application. Here, we have two sets
of reduced-form parameters: VAR coefficients (α) and the Cholesky factor of the covariance
matrix (Σ) and the forecast consistency prior imposes restrictions on the impulse response up

8In practice, we used p(g(AT ,ΣTu , B,Q, σ2
e)|λ) 1

n , which is a geometric average of the prior at each point
of time. Considering the joint prior for each trajectory of time-varying parameters led to sample depletion
in which only a few draws have non-negligible importance sampling weights.
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to horizon H. On top of sign restrictions, the forecast consistency prior induces restrictions
on (α,Σ, Q) where Q is an orthonormal matrix to identify structural shocks. As in the above
example, we use the harmonic mean of the likelihood from posterior draws to the calculate
the posterior odds ratio as follows:

pλ1(yT )

pλ0(yT )
=
∫
χ(λ1) psign restriction(α,Σ, Q)p(g(B,C,Q|H)|λ1)d(α,Σ, Q)∫
χ(λ0) psign restriction(α,Σ, Q)p(g(B,C,Q|H)|λ0)d(α,Σ, Q) (17)

×
[
∫
χ(λ1)

1
p(yT |α,Σ)p(α,Σ, Q|λ1, y

T , H)d(α,Σ, Q)]−1

[
∫
χ(λ0)

1
p(yT |α,Σ)p(α,Σ, Q|λ0, yT , H)d(α,Σ, Q)]−1 .

As the top chart in Figure E.2 shows, the marginal likelihood displays significant curva-
ture across moderate values of λ and then becomes flat as λ further increases. While the
number of unique posterior draws decrease in resampling as we increase λ, sample deple-
tion does not appear to drive the flatness of the marginal likelihood because the number of
resampled draws also stabilizes.

16



References

Baumeister, Christiane, and James D Hamilton. 2015. “Sign restrictions, structural
vector autoregressions, and useful prior information.” Econometrica, 83(5): 1963–1999.

Baumeister, Christiane, and James D Hamilton. 2018. “Inference in structural vector
autoregressions when the identifying assumptions are not fully believed: Re-evaluating
the role of monetary policy in economic fluctuations.” Journal of Monetary Economics,
100: 48–65.

Clark, Todd E, and Troy Davig. 2011. “Decomposing the Declining Volatility of Long-
term Inflation Expectations.” Journal of Economic Dynamics and Control, 35(7): 981–999.

Coibion, Olivier, and Yuriy Gorodnichenko. 2012. “What Can Survey Forecasts Tell
Us about Information Rigidities?” Journal of Political Economy, 120(1): 116–159.

Del Negro, Marco, Michele Lenza, Giorgio E Primiceri, and Andrea Tambalotti.
2020. “What’s Up with the Phillips Curve?” Brookings Papers on Economic Activity.

Fry, Renée, and Adrian Pagan. 2011. “Sign Restrictions in Structural Vector Autore-
gressions: A Critical Review.” Journal of Economic Literature, 49(4): 938–60.

Gertler, Mark, and Peter Karadi. 2015. “Monetary Policy Surprises, Credit Costs, and
Economic Activity.” American Economic Journal: Macroeconomics, 7(1): 44–76.

Gurkaynak, Refet S, Brian Sack, and Eric T Swanson. 2005. “Do Actions Speak
Louder Than Words? The Response of Asset Prices to Monetary Policy Actions and
Statements.” International Journal of Central Banking.

Ireland, Peter N. 2004a. “Money’s Role in the Monetary Business Cycle.” Journal of
Money, Credit, and Banking, 36(6): 969–983.

Ireland, Peter N. 2004b. “Technology shocks in the New Keynesian Model.” Review of
Economics and Statistics, 86(4): 923–936.

Ireland, Peter N. 2011. “A New Keynesian Perspective on the Great Recession.” Journal
of Money, Credit and Banking, 43(1): 31–54.

Kilian, Lutz, and Helmut Lütkepohl. 2017. Structural vector autoregressive analysis.
Cambridge University Press.

17



Moon, Hyungsik Roger, and Frank Schorfheide. 2012. “Bayesian and frequentist in-
ference in partially identified models.” Econometrica, 80(2): 755–782.

Swanson, Eric T. 2021. “Measuring the effects of Federal Reserve forward guidance and
asset purchases on financial markets.” Journal of Monetary Economics, 118: 32–53.

Uhlig, Harald. 2017. “Shocks, Sign Restrictions, and Identification.” Vol. 2, 95, Cambridge
University Press.

Wolf, Christian K. 2020. “SVAR (Mis)identification and the Real Effects of Monetary
Policy Shocks.” American Economic Journal: Macroeconomics, 12(4): 1–32.

Wu, Jing Cynthia, and Fan Dora Xia. 2016. “Measuring the macroeconomic impact
of monetary policy at the zero lower bound.” Journal of Money, Credit and Banking,
48(2-3): 253–291.

18



Figure B.1: Forward Guidance Shock Alternative SVAR Specification: Full
Sample Estimates
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Notes: This figure shows the impulse responses to an identified forward guidance shock using
sign restrictions as well as our forecast consistent prior. The solid blue line is the median
response and the shaded region is the 68% error band. The green-dashed line shows the
median impulse response to an identified forward guidance shock using only sign restrictions.
The estimation sample period is 1994-2015.
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Figure B.2: Forward Guidance Shock Alternative SVAR Specification: High-
Frequency Calibration of Lambda
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Notes: This figure shows the impulse responses to an identified forward guidance shock
using sign restrictions as well as our forecast-consistent prior now calibrated to maximize
the correlation between our structural VAR forward guidance shocks and high-frequency
financial market measure of forward guidance shocks as constructed by Swanson (2021).
The solid blue line is the median response and the shaded region is the 68% error band.
The green-dashed line shows the median impulse response to an identified forward guidance
shock using only sign restrictions. The estimation sample period is 1994-2007.
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Figure B.3: Forward Guidance Shock Alternative SVAR Specification: Joint
MCMC Draws
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Notes: This figure shows the impulse responses to an identified forward guidance shock using
sign restrictions as well as our forecast-consistent prior over the full set of VAR parameters.
The solid blue line is the median response and the shaded region is the 68% error band.
The green-dashed line shows the median impulse response to an identified forward guidance
shock using only sign restrictions. The estimation sample period is 1994-2007.
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Table C.1: Comparing Alternative Approaches to Identifying Forward Guidance Shocks
Baseline DGP: NK DSGE Model with Noisy Survey Forecasts

Pure Forecast Consistency Minimum Forecast Discrepancy
Sign Restrictions with Sign Restrictions with Sign Restrictions

Identification Set Set Point

Forecast Discrepancy 10.37‡ 5.85‡ 5.52
(RMSE, annualized bps)†

Weight of SVAR-identified Forward Guidance Shock on DSGE Shocks
Forward Guidance Shock 0.32‡ 0.82‡ 0.84
Demand Shock −0.50‡ −0.48‡ −0.48
Supply Shock −0.50‡ 0.00‡ 0.04
Noise Shock 0.63‡ 0.31‡ 0.23
† Conditional discrepancy following an SVAR-identified 100 basis point forward guidance shock (RMSE, annualized bps).
‡ Denotes median across posterior set. In the pure sign restrictions case, we therefore caution that the median correlations
are purely an artifact of the Haar prior (Baumeister and Hamilton, 2015).
Notes: Each VAR is a 5-lag VAR estimated on one sample consisting of 50,000 DSGE model-generated observations with
the number of selected lags based on the AIC.
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Table C.2: Robustness of Monte Carlo Results to Alternative DGPs

A: 1-period Ahead Forward Guidance Allowing For Policy Reaction to Forward Guidance
Pure Forecast Consistency

Sign Restrictions with Sign Restrictions
Forecast Discrepancy† 6.91‡ 3.59‡

Weight of SVAR-identified Forward Guidance Shock on DSGE Shocks
Forward Guidance Shock 0.31‡ 0.49‡
Demand Shock −0.48‡ −0.76‡
Supply Shock −0.52‡ −0.37‡
Noise Shock 0.64‡ 0.21‡
Forward Guidance Shock (t-τ) −0.20‡ 0.81‡

B: 4-period Ahead Forward Guidance Allowing For Policy Reaction to Forward Guidance
Pure Forecast Consistency

Sign Restrictions with Sign Restrictions
Forecast Discrepancy† 6.87‡ 3.60‡

Weight of SVAR-identified Forward Guidance Shock on DSGE Shocks
Forward Guidance Shock 0.23‡ 0.42‡
Demand Shock −0.50‡ −0.90‡
Supply Shock −0.53‡ 0.02‡
Noise Shock 0.64‡ 0.15‡
Forward Guidance Shock (t-τ) −0.23‡ 0.84‡

C: Noisy Survey Forecasts But Perfect Forecast Consistency for Forward Guidance Shocks
Pure Forecast Consistency

Sign Restrictions with Sign Restrictions
Forecast Discrepancy† 9.82‡ 0.28‡

Weight of SVAR-identified Forward Guidance Shock on DSGE Shocks
Forward Guidance Shock 0.38‡ 0.81‡
Demand Shock −0.47‡ −0.58‡
Supply Shock −0.52‡ 0.03‡
Noise Shock 0.61‡ 0.09‡
† Conditional discrepancy following an SVAR-identified 100 basis point forward guidance shock (RMSE, annualized bps).
‡ Denotes median across posterior set. In the pure sign restrictions case, we therefore caution that the median correlations
are purely an artifact of the Haar prior (Baumeister and Hamilton, 2015).
Notes: Each VAR is estimated on one sample consisting of 50,000 DSGE model-generated observations with the number
of selected lags based on the AIC.

23



Figure C.1: Monte Carlo Simulation Results: Degree of Unconditional
Forecast Consistency
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Notes: This figure shows the root-mean squared error between the (noisy) survey and
VAR-implied 1-period ahead interest rate forecasts across various lag-lengths of the
VAR. Each VAR lag-specification is estimated on one sample consisting of 50,000 DSGE
model-generated observations.
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Figure C.2: Monte Carlo Simulation Results: Recovering Forward Guidance
Shocks with Sign Restrictions and the Forecast Consistent Prior
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Notes: This figure shows the correlation-based weights that forward guidance shocks identified from SVAR
models place on various structural shocks from a New-Keynesian DSGE model with noisy survey forecasts
which serves as the data-generating process. These weights are shown for alternative values of λ, which
governs the tightness of the forecast consistent prior. When λ = 0, only sign restrictions are used to identify
forward guidance shocks. The VAR is a 5-lag VAR estimated on one sample consisting of 50,000 DSGE
model-generated observations with the number of selected lags based on the AIC.
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Figure C.3: Monte Carlo Simulation Results from a NK DSGE Model with
Noisy Survey Forecasts: Estimating Forward Guidance Shock Impulse Re-
sponses with Sign Restrictions and the Forecast Consistent Prior
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0 4 8 12 16 20 24
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
er

ce
nt

Output

0 4 8 12 16 20 24
-0.1

0

0.1

0.2

0.3

0.4

A
nn

ua
lz

ie
d 

P
er

ce
nt

ag
e 

P
oi

nt

Inflation

0 4 8 12 16 20 24
-2

-1.6

-1.2

-0.8

-0.4

0

0.4

A
nn

ua
lz

ie
d 

P
er

ce
nt

ag
e 

P
oi

nt

Interest Rate

DSGE Model
SVAR: Pure Sign Restrictions
SVAR: Sign & Forecast Consistency Restrictions

0 4 8 12 16 20 24
-2

-1.6

-1.2

-0.8

-0.4

0

0.4

A
nn

ua
lz

ie
d 

P
er

ce
nt

ag
e 

P
oi

nt

1-Qtr Survey Forecast of Interest Rate

Notes: This figure shows the estimated impulse responses to a forward guidance shocks from the DSGE
model which serves as the DGP, the SVAR model estimated on simulated data and identified using solely
sign restrictions, and the SVAR model estimated on simulated data and identified using sign restrictions
and forecast consistency restrictions. Each SVAR is a 5-lag VAR estimated on one sample consisting of
50,000 DSGE model-generated observations with the number of selected lags based on the AIC. The DSGE
model is the noisy survey forecasts model wherein survey forecasts exhibit information rigidties along the
lines empirically documented by Coibion and Gorodnichenko (2012).
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Figure C.4: Robustness of Monte Carlo Results to Alternative DGPs: Im-
pulse Responses

Alt DGP: Allowing For Policy Reaction to Forward Guidance
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(a) Allowing For Endogenous Response From the Policy Rule to For-
ward Guidance

Alt DGP: Allowing For Policy Reaction to Forward Guidance
Impulse Responses to a 4-Period Ahead Forward Guidance Shock
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(b) 4-Period Ahead Forward Guidance Shocks While Allowing For En-
dogenous Response From the Policy Rule to Forward Guidance

Notes: This figure shows the estimated impulse responses to a forward guidance shocks from alternative
DSGE models which serve as the DGP, the SVAR model estimated on simulated data and identified using
solely sign restrictions, and the SVAR model estimated on simulated data and identified using sign restrictions
and forecast consistency restrictions. Each SVAR is estimated on one sample consisting of 50,000 DSGE
model-generated observations with the number of selected lags based on the AIC.
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Figure D.1: Sample Data 1970:Q2-2017:Q4
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Figure E.1: Log Posterior Odds Ratio: TVP-VAR Application
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Figure E.2: Marginal Likelihood and the Number of Unique Resampled Draws: Forward Guidance Appli-
cation
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Notes: The top chart shows the log marginal likelihood as a function of λ. The bottom chart shows the number of unique
posterior draws when resampled with alternative values of λ. Without resampling, the number of total posterior draws is 5000.
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