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Figure 1: TV Industry Shakeout: US vs. UK

1 Introduction

1.1 Questions on Industry Life Cycle

As a new industry evolves from birth to maturity it is typically observed that price

falls, output rises, and the net number of firms initially rises and later falls (Gort and

Klepper 1982, Klepper and Graddy 1990). In particular, the nonmonotonic time path

of firm numbers, termed as “shakeout”, has been the focus of many recent studies of

industry economics. The big question is why there is a shakeout and when it occurs.

To answer that question, most existing theories emphasize supply-side factors,

particularly the inter-firm differences in technology. It is shown that shakeout can

be triggered by “emergence of dominant design” (Utterback and Suárez 1993), “race

of innovation” (Jovanovic and MacDonald 1994, Wang 2005), or “scale economy of

R&D” (Klepper 1996, Klepper and Simons 2000). Some other explanations appeal

to uncertainties in new product markets. For example, “uncertain profit” (Horvath,
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Schivardi and Woywode 2001) or “uncertain market size” (Rob 1991, Zeira 1987,

1999) can also result in a mass entry and later shakeout.

Though these theories have contributed to a much improved understanding of

industry shakeout, some important issues are still underexplored. In particular, the

impacts of demand characteristics on industry life cycle dynamics are largely over-

looked.1 As a result, it remains difficult to explain certain empirical facts. For

example, Figure 1 plots the firm numbers in the US and UK television industries.2

The television was commercially introduced into the US and the UK at the same time

after the WWII, and the two markets were segmented for the following two decades

because of their different technical standard.3 This natural experiment shows that

the patterns of industry evolution were very similar across countries, but the mass

entry and shakeout of TV producers were uniformly lagged behind in the UK.

What can explain this cross-country difference of timing of shakeout? The existing

theories may apply to some extent, but not quite enough. On one hand, industry

studies (e.g. Arnold 1985, LaFrance 1985, Klepper and Simons 1996) document

numerous technological changes in the TV industry that may have a major cumulative

effect on inter-firm heterogeneity. However, they do not directly explain the timing

of shakeout, let alone the cross-country difference. On the other hand, the market

uncertainty could not have caused the shakeout repeatedly since at least the UK

producers could easily learn from the US market experience. Moreover, the TV

shakeouts, especially the Black & White TV shakeouts, had little to do with foreign

competition since the import and export were very insignificant at that time.4

1An exception is Hopenhyan (1993), where some demand issues are briefly discussed.
2Data source: Simons (2002), Television Factbook (various issues).
3The UK adopted the 405-line screen standard in 1943, but other nations proceeded to adopt

standard with higher resolutions. The UK standard remain anomalous through 1964, when some

UK broadcasts began using the internationally common PAL 625-line color standard. Hence through

1964 and even later, UK market was isolated from the foreign competition. See Levy (1981).
4In 1950s, US and UK were the two largest TV producers in the world, but imports and exports

were nil for both nations. Imports started to increase in 1960s as Japan took off, but did not
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Figure 2: Household Adoption of TV: US vs. UK

1.2 New Hypothesis

One potential problem is that the aforementioned theories may have overlooked the

importance of demand-side issues. A new product, over its life cycle, typically experi-

ences strong demand growth at the early stage but the growth eventually diminishes

as the market reaches maturity. As a result, the demand characteristics can have

influential, sometimes critical, effects on the evolution of industry. Without taking

that into account, the analyses on industry life cycle would be incomplete.

In this paper, we consider explicitly the roles that demand plays in driving the

industry life cycle, and reveal how country-specific demand factors, the income dis-

tribution and market size in particular, shape this process. When a new product

is introduced, high-income consumers tend to adopt it first. The technology then

improves with cumulative production (Learning by Doing) and S -shaped diffusion is

reach 10% of domestic production until 1965 in US, and until 1970 in UK. Data sources: Television

Factbook (US), Monthly Digest of Statistics (UK).
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generated as the product penetrates a positively skewed income distribution (Trickle

Down Effect and Income Growth Effect). Eventually fewer new adopters are available

and the number of firms starts to decline. It is shown that faster technological learn-

ing, higher mean income or larger market size contributes to faster demand diffusion

and earlier industry shakeout. This new theory therefore offers additional demand-

side explanations for the varying pattern of industry evolution across products and

countries. For example, it suggests it was the lower per capita income and smaller

market size in the UK that led to a slower diffusion of TV (Figure 2)5 and hence a

lagged industry shakeout.

1.3 Relation to Other Research

The main purpose of this paper is to complement existing theories of industry life

cycle by exploring the previously largely unexplored demand side. In doing that, it

also links the studies of industry economics with research in several separate fields.

For example, in the marketing literature, the diffusion of new products has been

studied for the purpose of demand forecast and monopoly pricing (Bass 1969, Kalish

1983, Horsky 1990). In the growth literature, the learning by doing is one of the

most important sources of technology progress (Arrow 1962, Lucas 1993, Jovanovic

& Rousseau 2002, Matsuyama 2003). In the international trade literature, the most

celebrated “product cycle theory” claims that the demand for new consumer goods is

initially greatest in high-income countries, and diffuse to lower-income countries later

on (Vernon 1966, Stokey 1991 and Grossman & Helpman 1991). In the technology

adoption literature, it has been found that per capita GDP is one of the key variable

that explains the diffusion rate of new technology across nations (Comin & Hobijn

2004). Those studies have so far been unconnected with the study of industry evolu-

tion. This paper is a first step to fill this gap, and show that the typical pattern of

industrial evolution is closely related and consistent with the findings in those fields.

5Data source: Television Factbook (various issues), Bowden & Offer (1994).
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1.4 Road Map

The paper is organized as follows. Section 2 studies the supply structure of a compet-

itive industry and reveals the comovement between the firm numbers and the relative

industry GDP. Section 3 endogenizes the logistic diffusion curves by modeling explic-

itly consumers’ heterogeneity of income and preference. Section 4 puts together the

supply and demand, and introduces the law of motion for technology and income.

Section 5 characterizes the industry dynamics and discusses the time paths of key

industry variables. Section 6 extends the model to durable goods. Section 7 esti-

mates our model using data of the US and UK TV industries as well as ten other US

industries. Section 8 contains concluding remarks.

2 The Supply Structure

In this section, we model the supply structure of a competitive industry and reveal

some important relationship among key industry variables, namely the comovement

between the firm numbers and the relative industry GDP.

2.1 The Model

Assume a competitive industry produces one homogenous product. There are M po-

tential producers that differ in their production efficiency θ ∈ (0,∞) for participating

in this industry. The efficiency θ is distributed with cdf function S(θ). Each period,

a firm that actively produces in this industry incurs an opportunity cost C, which

corresponds to the foregone earnings of human capital needed to run the firm.6 For

6Our model of firm is a simplified treatment as in Lucas (1978), but can be interpreted broadly.

For example, the parameter θ may include any firm-specific factors that affect production efficiency,

e.g. management ability, physical location, industry experience and etc. Also, C captures the

foregone earnings of firm human capital that are compensated from the production residual, e.g.

the management group and R&D team. For simplicity, C is assumed identical across firms. However,
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a typical firm, x and y respectively denote the input and output. The production

function is assumed to be y = θAxα where A is the technology and 0 < α < 1 is the

“span of control” parameter.7 Let P denote the price of output, w the price of input.

We also assume that firms can enter and exit freely.8

An individual firm, indexed by its efficiency θ, has zero measure. Each period,

firm θ takes the market price P as given to maximize the profit:

πθ = max
yθ,xθ

Pyθ − wxθ − C s.t. yθ = θAxαθ

and gets the following solution:

y∗θ = (
αPA

1
α θ

1
α

w
)

α
1−α ; x∗θ = (

αPAθ

w
)

1
1−α ;

πθ = (1− α)(α)
α

1−αw
−α
1−α
(PAθ)

1
1−α − C.

The free entry and exit condition ensures that the marginal firm θ̃, the lowest-

efficiency player allowed in the industry, breaks even. The market price is then

determined as

πθ̃ = 0 =⇒ P =
C1−αwα

(1− α)1−α(α)αAθ̃
(1)

and we can solve more explicitly each firm’s choice:

y∗θ = (
αC

(1− α)w
)αAθ

1
1−α θ̃

α
α−1 ; x∗θ =

αC

(1− α)w
θ

1
1−α θ̃

1
α−1 ; (2)

πθ = [(θ/θ̃)
1

1−α − 1]C. (3)

The total market supply Y is the sum of incumbent firms’ outputs:

Y =M

Z ∞

θ̃

y∗θdS(θ) = (
αC

(1− α)w
)αθ̃

α
α−1AM

Z ∞

θ̃

(θ
1

1−α )dS(θ). (4)

this assumption is not at all essential. Allowing C to be heterogenous, e.g. C ∈ [C,C] does not

change the analysis. A detailed proof is available from the author.
7Assuming 0 < α < 1 implies that firms face diseconomy of scale in the short run when technology

and market condition are given. See Lucas (1978).
8This is also a simplifying assumption but not essential. Our main conclusions remain unchanged

if the entry incurs a sunk cost. The proof is available from the author.
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The corresponding number of firms is

N =M

Z ∞

θ̃

dS(θ). (5)

At equilibrium, the market supply equals the market demand. Equation 1 and 4

then imply the relative industry GDP, defined as PY/C, to be

PY

C
=

1

1− α
θ̃

1
α−1M

Z ∞

θ̃

(θ
1

1−α )dS(θ). (6)

If C, the foregone earning of firm human capital, grows with the mean income

μ of the economy (e.g. C = φμ) and the parameters α and S(θ) are time-invariant,

there exists an important time-series relationship between the firm numbers N and

the relative industry GDP, PY/μ.

Proposition 1 In a competitive market, the number of firms is positively related with

the relative industry GDP, i.e. ∂N/∂(PY/μ) > 0.

Proof. It follows Equation 5 and 6.

2.2 Examples and Remarks

There should be no surprise to find out a comovement between the number of firms

N and the relative industry GDP, PY/μ. In fact, the profit of the marginal firm

increases with PY (the total industry GDP) and the opportunity cost of participation

is determined by μ (the mean income of the economy). It follows that the ratio PY/μ

keeps track with the viable number of firms.9

This result is fairly robust for a homogeneous-product industry under free entry

equilibrium. Supporting empirical evidence can be found from many industries in-

cluding TV (see Figure 3, 4 and section 7.3).10 To derive this result, the production

9Under some addtional assumptions, such as θ follows a Pareto distribution or a degenerate

distribution, we can further show that the number of firms is proportional to the relative industry

GDP, i.e. N ∝ PY/μ. However, those assumptions are not necessary for the purpose of this paper.
10Data source: Gort and Klepper (1982).
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Figure 3: Firm Numbers and Relative Industry GDP: Evidence I

function that we assumed is not crucial but will help make our following dynamic

analysis more tractable. However, assuming α and S(θ) to be time-invariant is nec-

essary.11 In fact, by not allowing α and S(θ) to change, we constrain the role that

the inter-firm heterogeneity can play in the industry dynamics, which is a major dis-

tinction between our theory and the existing supply-side literature. In Appendix A,

we relax the assumptions to consider more supply-side effects, and show the essence

of our analysis still carry over.

3 The Demand Structure

Now let us turn to the demand side. To explain the industry evolution, it is very

crucial to understand the dynamics of new product demand. In this section, we

propose a novel analysis on that.

11Throughout the paper, we do not require θ to be fixed over time for each individual firm, but

rather the overall distribution S(θ) is time-invariant. See section 5.3. for more discussions.
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Figure 4: Firm Numbers and Relative Industry GDP: Evidence II

3.1 Questions on Traditional Wisdom

It has long been a challenge to explain the demand diffusion of new products. In the

economics and marketing literature, the most popular theory relies on the behavioral

assumption of social contagion, i.e. consumers imitate early adopters. This expla-

nation has been formalized by introducing the logistic model and its variants since

1950s (Griliches 1957, Mansfield 1961 and Bass 1969).

The logistic model assumes that the hazard rate of adoption rises with cumulative

adoption.
Ḟt

1− Ft
= vFt =⇒ Ft =

1

[1 + ( 1
F0
− 1)e−vt] (7)

where Ft is the fraction of consumers who have adopted the product at time t, and v

is a constant contagion parameter.

Though the logistic model has traditionally fit data very well, some important

issues remain unclear. In particular, assuming homogenous adopters and exogenous

diffusion parameters does not explain why diffusion rates are historically so different
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Figure 5: Per Capita GDP and TV Adoption in 104 Countries, 1980

across countries (regions), consumer groups and products. To compromise those

issues, many following studies added rather ad hoc assumptions to the contagion

framework, e.g. assuming the diffusion parameters to be function of traits like region,

consumer type and product.

However, the key question is — how much does the contagion effect really matter?

Figure 5 plots the TV adoption rate verse per capita GDP for 104 countries in 1980.12

At that time, TV was no longer a new product so that there really leaves little room

for contagious spread of information to explain the diffusion.13 However, it is evident

that adoption is so strongly related with income across countries.

12Data source: UN Common Database.
13Sometimes, the social contagion model is interpreted more broadly to include network effects of

consumption. However, as Bowden & Offer (1994) shows, the US enjoyed a uniformly faster adoption

than the UK in consumer appliances including TV, Cloth Washer, Cloth Dryer, Dishwasher, Electric

Blanket, Freezer, Radio, Refrigerator, Vacuum Cleaner and etc. Many of them certainly have litter,

if any, network effects of consumption among consumers.
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3.2 Alternative Approach

This paper is hence motivated to take a different approach. Without assuming social

contagion framework, we derive the logistic diffusion curve as a demand function

generated from heterogeneity of consumers.14 As a result, it becomes more clear how

the diffusion process is shaped by economic forces like price and income.

The model is as follows. Assume a new nondurable product sells for price P in

the market.15 An individual consumer adopts it only if her disposable income Id on

that product allows her to do so, i.e.

y = {
1 if Id > P,

0 if Id < P.

Consumers are heterogenous in their disposable income Id on this new product.

This heterogeneity comes from their different income and preference. We assume for

an individual consumer the disposable income Id is the product of her total income

I (I ≥ 0) and propensity of spending c (1 ≥ c ≥ 0), i.e. Id = cI. I and c are

independently distributed over the population. A direct implication of this assump-

tion is that new products diffuse faster in higher-income groups.16Figure 6 presents

supporting evidence from the Black & White TV in the US and the UK.17

Notice that the disposable income Id is generally not directly observable, but it

can be nonetheless inferred from the observables. In particular, the way we model it

suggests that with a given distribution of preference c, a higher mean (inequality) of

total income I implies a higher mean (inequality) of disposable income Id.

14This is not a totally new idea (e.g. Cramer (1969) and Bonus (1973) derive normal diffusion

from individual consumers’ Quasi-Engel curves), but the way this paper derives logistic diffusion

and connects it to demand models is new.
15In chapter 6 and 7 we will see that introducing durability does not change the analysis.
16Denote H(c) the cdf function of c. For a given income group the fraction of adopter is Pr(Id >

P | I) = 1−H(P/I) and it rises with I.
17Data source: US from Bogart (1972), UK from Emmett (1956).
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Figure 6: TV Penetration Rates by Income Class: US and UK

3.3 An Explicit Formulation: Log-logistic Distribution

To take our analysis a step further, we have to model the disposable income more

explicitly. By the way that it is constructed, we know that Id is distributed over the

positive domain [0,∞), so its distribution tends to be positively skewed. The possible

candidates for this group of distribution are far from unique, so we choose to pick a

reasonable one.

In the following discussion, we introduce the log-logistic distribution as our specific

example.18 The reason for us to pick the log-logistic distribution is not only because

it serves as an easily tractable example, but also because it connects our study to the

typically observed logistic diffusion curves as we will show next.

The log-logistic distribution is defined as the distribution of a variate whose loga-

rithm is logistically distributed. Assuming that the disposable income Id follows the

18The application of log-logistic distribution in economics has a long history, traced back to the

study of Lomax (1954) on business failure rates, and to Fisk (1961) on the size distribution of income.

Figure 7 gives an example of using the Fisk (log-logistic) distribution to fit US family income in

year 1970 (Data source: Statistical Abstract of the United States).
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Figure 7: US Family Income Distribution 1970

log-logistic distribution, the cdf function is given as

GId(x) = 1−
1

1 + a1xa2

with the mean E(Id) and Gini coefficient g(Id) given as

E(Id) = a
−1/a2
1 Γ(1 +

1

a2
)Γ(1− 1

a2
); g(Id) =

1

a2

where Γ denotes the gamma function Γ(μ) ≡
R∞
0

iμ−1 exp(−i)di.

Hence, we may rewrite the cdf function into a more meaningful form:

GId(x) = 1−
1

1 + (Γ(1+g)Γ(1−g)
E(Id)

x)1/g

where g = g(Id).

Recall E(Id) = E(c)μ. We can now derive the adoption rate F to be a function

of price, mean income and other parameters:

F = 1−GId(P ) =
1

1 + η(P/μ)1/g
(8)

where η = (Γ(1 + g)Γ(1− g)/E(c))1/g.
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3.4 Endogenous Diffusion vs. Exogenous Diffusion

The appealing feature of introducing log-logistic distribution is to endogenize the

logistic diffusion curves. To see that, let us assume that the price declines at a

constant rate Pt = P0e
−ρt, and mean income grows at a constant rate μt = μ0e

zt.

Then we can rewrite Equation 8 as follows

Ft =
1

1 + η[P0/μ0]
1/ge−(ρ+z)t/g

. (9)

Comparing Equation 9 with Equation 7, we realize that our formula is equivalent

to the logistic model under very reasonable assumptions. In particular, the diffusion

parameters traditionally treated exogenous now have clear economic meanings — the

contagion parameter v is determined by the growth rates of price and income, and

the initial condition F0 is the fraction of adopters who can afford the new product at

the initial price and mean income:

v = (ρ+ z)/g; F0 =
1

1 + η[P0/μ0]
1/g

.

This result is also empirically plausible. Sultan et al. (1990) analyzed the para-

meter estimates of 213 published application of the logistic model and its extension.

They report the average value of v = 0.38. Jeuland (1993, 1994) finds that the value

of v is rarely greater than 0.5 and rarely less than 0.3. Assigning reasonable values of

Gini coefficient and growth rates of income and price, our model can easily generate

the value of v within that range.

4 The Industry Equilibrium

4.1 The Momentary Equilibrium

Combining the supply and demand analyses, we are now ready to derive the industry

equilibrium. At a point of time, the industry equilibrium implies (1) individual firms
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take the market price as given and maximize profit; (2) individual consumers take

the market price as given and maximize utility; (3) industry price, output and firm

numbers are uniquely determined to clear the market. All the findings are summarized

as follows:

P =
C1−αwα

(1− α)1−α(α)αAθ̃
; (10)

Y = (
αC

(1− α)w
)αθ̃

α
α−1AM

Z ∞

θ̃

(θ
1

1−α )dS(θ); (11)

Y = mF =
m

1 + η(P/μ)1/g
; (12)

N =M

Z ∞

θ̃

dS(θ). (13)

Notice that m denotes the total number of potential consumers. It is reasonable

to assume that the normalized ratio M/m is a constant, and does not vary with the

population size.

This is a system of four equations with four unknowns. The solution suggests

that the equilibrium values of P, Y, θ̃ and N are endogenously determined by four

important parameters: technology A, mean income μ, foregone earning C and input

price w. With reasonable assumptions on the law of motion for those parameters, we

will then be able to characterize the time path of industrial evolution.

4.2 Law of Motion Equations

4.2.1 Learning-by-Doing Technology Progress

Technology progress is commonly observed over the industry life cycle. Many theo-

retical and empirical studies (e.g. Arrow 1962, Boston Consulting Group 1972) have

identified learning by doing as one of the most important sources. Therefore, we

assume that the technology A is determined by the cumulative industry output:
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At = A0(Qt)
γ (14)

in which Qt =
R t
0
Y (s)ds+Q0 and γ is the learning rate.

Equation 14 implies that only aggregate cumulative output matters to every pro-

ducer’s productivity. In fact, a firm’s own contribution to Q may matter more,

especially at high frequencies ( Irwin & Klenow 1994, Thompson & Thornto 2001).

However, at lower frequencies, the distinction between own and outside experience

should fade given a wide range of channels by which information diffusion can occur.19

4.2.2 Income Growth and Its Effects

As an economywide variable, it is reasonable to assume the mean income μ grows at

an exogenous rate z. The foregone earning C of firm human capital, as we discussed

in section 2.1, may grow with the mean income μ:

μt = μ0e
zt with μ0 > 0, z > 0;

Ct = φμt with φ > 0.

The law of motion for the input price w is a little complicated. Since we assume

there is only one input in our model, w is actually a composite price index for both

labor and non-labor inputs. Though the price of labor inputs may grow with the

mean income, the price of non-labor inputs such as capital and materials does not.

Therefore, it is reasonable to assume that d(w/μ)/dμ < 0. A simple formulation is

wt = σμψt with σ > 0, ψ < 1.

4.3 The Dynamic Equilibrium

Given the law of motion equations, it becomes clear that there are two driving forces

of industry dynamics — technological learning (due to cumulative production) and
19Lieberman (1987) lists many of these channels: employees may be hired away; products can be

reverse-engineered; patents can be invented around or infringed and etc.

17



Figure 8: Product Diffuses as Technology and Income Change

income growth. As the initial adoption of a new product starts, these two forces

interact to generate further technology progress and demand diffusion, and keep this

process going (See Figure 8).

The dynamic industry equilibrium can be summarized as follows:

Pt

μt
=

(φ)1−α(σμψ−1t )α

(1− α)1−α(α)αAtθ̃t
; (15)

Yt = (
αφμ1−ψt

(1− α)σ
)αθ̃

α
α−1
t AtM

Z ∞

θ̃t

(θ
1

1−α )dS(θ); (16)

Yt = mFt =
m

1 + η(Pt/μt)
1/g
; (17)

Nt =M

Z ∞

θ̃t

dS(θ); (18)

At = A0(Qt)
γ where Qt =

Z t

0

Y (s)ds+Q0; (19)
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μt = μ0e
zt (20)

from which we are ready to characterize the time path of industry evolution.

5 The Industry Evolution

5.1 Industry Dynamics: Characterization

With the assumption of learning by doing, the market demand equation 17 implies a

first-order differential equation

Q̇t = f(Qt, t) =
m

1 + η(P
μ
(Qt, t))1/g

(21)

where the relatively price Pt/μt is a function of (Qt, t), and the function is determined

by the equilibrium conditions 15 - 17 as follows

m

1 + η(Pt/μt)
1/g
= (

αμ1−ψt

σ
)

α
1−α
(Pt/μt)

α
1−α

A
1

1−α
t M

Z ∞

(φ)1−α(σμψ−1t )α

(1−α)1−α(α)αAtPt/μt

(θ
1

1−α )dS(θ),

(22)

where At = A0(Qt)
γ; μt = μ0e

zt.

Characterizing the solution to the differential equation, we have following findings:

Theorem 1 (Unique Solution): There exists a unique dynamic path Q(t) of

Q̇t = f(Qt, t) for t ≥ 0 which satisfies Q(0) = Q0.

Proof. Given f is continuously differentiable, it satisfies the Lipschitz condition:

| f(x, t)− f(y, t) |≤ L | x− y | where L = sup | ∂f/∂Q | .

Theorem 1 then follows Theorem 5 of p23 in Birkhoff & Rota (1968).
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Theorem 2 (Unique Shakeout): Given a log-logistic distribution of disposable

income, there exists a unique shakeout.

Proof. With a log-logistic distribution, the relative industry GDP is given by

PtYt
μt

= (Pt/μt)
m

1 + η(Pt/μt)
1/g

.

Therefore

∂Nt/∂t =
∂Nt

∂(PtYt
μt
)

∂(PtYt
μt
)

∂(Pt/μt)

∂(Pt/μt)

∂t
.

As shown in Proposition 1, ∂Nt/∂(
PtYt
μt
) > 0. Furthermore, Equation 22 implies

that Pt/μt decreases with At and μt. Since At = A0(Qt)
γ and μt = μ0e

zt are strictly

increasing with time t, we have ∂(Pt/μt)/∂t < 0. In addition, we have

∂(PtYt
μt
)

∂(Pt/μt)
S 0 for Pt/μt T [

g

η(1− g)
]g.

Hence, the unique shakeout occurs at (Pt/μt)
∗ = [ g

η(1−g) ]
g and the corresponding

adoption rate is F ∗ = 1− g. If P0/μ0 > [
g

η(1−g) ]
g, the firm numbers initially rise and

later fall. If P0/μ0 < [
g

η(1−g) ]
g, the firm numbers decline from the beginning.

Theorem 3 (Comparison Theorem): Anything else being equal, the relative

price Pt/μt falls more quickly, the diffusion Ft proceeds faster and the timing of

shakeout t∗ comes earlier if (1) technology is better (higher Q0, higher A0 or higher

γ); (2) mean income is higher (higher μ0 or higher z); (3) market size is larger

(higher m); (4) input price is lower (lower φ, lower σ or lower ψ).

Proof. Let us take γ as an example, and the other proofs are similar. The proof

takes the following three steps:

(1) Equation 21 and 22 define Q̇t = f(Qt, t), where f satisfies the Lipschitz

condition. Since ∂f/∂γ > 0 for any given (Qt, t), a higher γ leads to a higher Qt

(hence higher At) at any time t. This result follows Theorem 8 and Corollary 2 of

p25-26 in Birkhoff & Rota (1968).
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(2) With ∂At/∂γ > 0 at any time t, Equation 22 and 17 imply that a higher γ

leads to a lower relative price and faster diffusion:

∂(Pt/μt)

∂γ
=

∂(Pt/μt)

∂At

∂At

∂γ
< 0;

∂Ft

∂γ
=

∂Ft

∂(Pt/μt)

∂(Pt/μt)

∂γ
> 0.

(3) At the time of shakeout t∗, ∂(PtYt/μt)/∂t = 0 and ∂2(PtYt/μt)/∂t
2 < 0,

∂(PtYt/μt)

∂t
= 0 =⇒ ∂(Pt/μt)

∂t

m

1 + η(Pt/μt)
1/g
{1− η/g

η + [Pt/μt]
−1/g } = 0.

Since we have proved in Theorem 2 that ∂(Pt/μt)
∂t

< 0, we have

J =
m

1 + η(Pt/μt)
1/g
{1− η/g

η + [Pt/μt]
−1/g } = 0 and

∂J

∂(Pt/μt)
< 0.

Therefore,

∂t∗

∂γ
= −∂

2(PtYt/μt)/∂t∂γ

∂2(PtYt/μt)/∂t
2
= −

∂(Pt/μt)
∂t

∂J
∂(Pt/μt)

∂(Pt/μt)
∂γ

∂2(PtYt/μt)/∂t
2

< 0.

Hence a higher γ leads to an earlier shakeout.

5.2 Industry Dynamics: An Intuitive Illustration

More intuitively, the industry dynamics can be illustrated as follows. First, Equation

17 implies that there is a downward-sloping demand curve on (P/μ, F ). Notice that

only the normalized demand F = Y/m matters for our discussion:

F =
1

1 + η(P/μ)1/g
(23)

and the inverse demand function is convex (∂2(P/μ)/∂F 2 > 0) for F ∈ (0, 1+g
2
), but

concave (∂2(P/μ)/∂F 2 < 0) for F ∈ (1+g
2
, 1).

Second, Equation 15 and 16 suggest that the supply curve is upward sloping on

(P/μ, F ), and shifts to the right if the technology A or mean income μ is higher. The

normalized supply F is given as

F = (
αμ1−ψ

σ
)

α
1−α
(P/μ)

α
1−α

A
1

1−α
M

m

Z ∞

(φ)1−α(σμψ−1 )α
(1−α)1−α(α)αA(P/μ)

(θ
1

1−α )dS(θ). (24)
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Figure 9: Industry Life Cycle: An Illustration

Plotting the demand and supply curves on the graph of (P/μ, F ) for a given tech-

nology A and mean income μ, we can then pin down the solution for the momentary

equilibrium with Figure 9.

For the dynamic analysis, we need notice that there is an important property of

the demand function 23 for the relative price elasticity,

ε =| ∂F/F

∂(P/μ)/(P/μ)
|= (1− F )

g
,

which decreases with F and achieves unit at F ∗ = 1 − g. It suggests something

crucial for the time path of relative industry GDP, PF/μ, as well as the number of

firm N : if an industry starts from an initial condition that F0 < 1 − g, the supply

curve will keep shifting to the right as the technology and mean income improve and

the industry achieves the unique shakeout at F ∗ = 1− g.20

20It is clear that our core results hold in more generality. The only key assumption we need is

the decreasing price elasticity of demand. Introducing log-logistic distribution enables us to justify
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With Figure 9, we can clearly identify the two driving forces of industrial evolution

and discuss their effects as follows.

• In the presence of technology progress (γ > 0) but no income growth (z = 0),

the supply curve shifts to the right due to cumulative production. As the result,

the industry relative price P/μ as well as the absolute price P keeps falling,

and the product penetrates into lower-income groups. Eventually, the demand

growth is overtaken by the technology progress so less firms are needed. Hence

we observe the aggregate demand turns inelastic and the shakeout starts.

• In the presence of income growth (z > 0) but no technology progress (γ = 0),

the supply curve shifts to the right due to income growth. Though the absolute

price P may not fall (e.g. ∂P/∂t > 0 if 0 ≤ ψ < 1), the relative price P/μ

keeps falling and induces more adoption.21 Eventually, as the market demand

turns inelastic to the relative price, the growth of industry profit is outstripped

by the growth of foregone earnings of human capital so the shakeout comes in.

• In the presence of both technology progress (γ > 0) and income growth (z > 0),

the supply curve shifts to the right due to both cumulative production and

income growth, and the two driving forces interact to result in demand diffusion

and industry shakeout.

With Figure 9, it is also easy to understand the comparative dynamics proved in

Theorem 3: if the technology is better (higher Q0, higher A0 or higher γ), the mean

this assumption with typically observed diffusion curves and uncover the links with the underlying

income distribution.
21In the literature of international economics, it is termed as the “Balassa-Samuelson Effect” that

a non-tradable good typically has a higher price in a richer country due to the higher foregone

earning for producing it. However, in spite of the higher price, the consumers in a richer country

typically consume more of the good given their higher income. It is consistent with our model that

it is the relative price P/μ rather than the absolute price P that drives the demand diffusion.
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income is higher (higher μ0 or higher z), the market size is larger (higher m) or the

input prices is lower (lower φ, lower σ or lower ψ), it contributes to the cumulative

production and/or income growth so the supply curve shifts faster to the right. As

the result, the industry achieves faster demand diffusion and earlier shakeout.

The above discussion provides a meaningful explanation for the variation of in-

dustrial evolution across countries. For the US and the UK, the income inequality

and consumer preference are similar, so their threshold adoption level for shakeout

F ∗ = 1 − g should be close. Therefore, the US, being relatively richer and larger,

tends to enjoy faster demand diffusion and earlier industry shakeout.

5.3 Industry Life Cycle: Further Implications

Our model also delivers rich implications on other aspects of the industry life cycle.

As suggested, firms are different in size and profit due to their heterogenous effi-

ciency (i.e. ∂y∗θ/∂θ > 0 and ∂πθ/∂θ > 0). Assume each individual firm’s efficiency θt

is fixed over time. Since the minimum ability requirement θ̃t falls before the shakeout

and rises afterwards, we then observe that high-efficiency firms enter the industry

earlier and survive longer. It is usually termed as “first mover advantage” though it

indeed is firms who have advantage that move first.

This result can be easily generalized. In fact, our analysis does not require a fixed

θt for each individual firm over time. As a simple example, we may assume

ln θt = ln θ + εt (25)

where θ is an individual firm’s fixed efficiency, and εt are i.i.d. random shocks.

It implies that the overall distribution of θt is time-invariant, but individual firms

have idiosyncratic shocks.22 As a result, we may observe both entry and exit before

and after the shakeout, and the net number of firms evolves as our model describes.

22For example, if ln θ and εt are normally distributed, θt then has a time-invariant log-normal

distribution.
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Moreover, since firm efficiency is time persistent, we also observe early entrants tend to

be larger and have higher survival rate. This result is consistent with well-established

findings of industry studies on firm age and size effects (Evans 1987a, 1987b, Dunne,

Roberts and Samuelson 1988, 1989, Audretsch 1991). Simons (2002) shows it is

particularly true for the US and UK TV industries.

As technology improves, each individual firm’s output tends to grow. Given the

assumption 25, our model suggests that surviving firms tend to have the same propor-

tionate growth, usually quoted as the “Gibrat’s Law”.23 To see that, notice Equation

2 implies

ln(y∗θ,t) = α ln
αφ

(1− α)σ
+ α(1− ψ) lnμt + ln(At)−

α

1− α
ln θ̃t +

1

1− α
(ln θ + εt),

which suggests

ln(y∗θ,t)− ln(y∗θ,t−1) = α(1− ψ) ln
μt
μt−1

+ ln
At

At−1
− α

1− α
ln

θ̃t

θ̃t−1
+

1

1− α
(εt − εt−1).

Since ∂Y/∂t > 0, Equation 16 implies

α(1− ψ) ln
μt
μt−1

+ ln
At

At−1
− α

1− α
ln

θ̃t

θ̃t−1
> 0.

Therefore, given 1
1−α(εt − εt−1) are i.i.d. random shocks, we tend to observe that

surviving firms grow at the same positive rate.

Furthermore, as the industry evolves, the market concentration ratio displays the

“U” shape over time, and the industry profitability goes to the reverse direction. To

see that, denote λq to be the market share for the top q firms that survive the period

of interest. We have

λq =
M
R∞
S−1(1−q/M)

y∗θdS(θ)

M
R∞
θ̃

y∗θdS(θ)
=>

dλq
dN

=
dλq

dθ̃

dθ̃

dN
< 0.

23Alternatively, if we assume ln θt = λ ln θt−1 + εt with 0 < λ < 1 and εt i.i.d. normally distrib-

uted, θt also follows a time-invariant log-normal distribution but the growth of a surviving firm is

decreasing in size. All the other results remain unchanged. It is consistent with studies of Evans

and of Dunne, Roberts and Samuelson.
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Also, the industry profitability π/μ rises before the shakeout and falls afterwards:

π/μ =M

Z ∞

θ̃

[(θ/θ̃)
1

1−α − 1]φdS(θ) =⇒ d(π/μ)

dN
=

d(π/μ)

dθ̃

dθ̃

dN
> 0.

6 Extension to Durable Goods

So far our theoretical work is built on consumer nondurable goods. However, the

analysis can be readily extended to durables. This extension will not only be of its

own theoretical interest, but also help our empirical work.

It is the issue of durability that complicates the analysis of durable goods. For

a durable good, consumers actually pay rental price for the service from the stock

of the good, and the producers are paid the output price to supply the increment of

stock to meet the demand. Therefore, some modifications are needed for our original

model.24

First, we have to derive the rental price from the output price. At equilibrium,

the output price is the discounted sum of expected future rents, i.e.

Pt = Et

∞X
τ=t

(1− δ)τ−t

(1 + r)τ−t
Rτ ,

where r is the market interest rate and δ is the depreciation rate. It implies that the

rental price Rt can be written into the following form

Rt = [1−
1− δ

1 + r
Et(

Pt+1

Pt
)]Pt (26)

and the consumers make their adoption decisions based on this rental price

Ft =
1

1 + η(Rt/μt)
1/g

. (27)

Second, the output Yt for durable goods is made of two parts. One is the demand

growth of the stock m(Ft − Ft−1). The other is the replacement demand δmFt−1.

24The model is now set in discrete time so that it can be directly brought to the empirical study

in the next section.
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Therefore, the total output is

Yt = m(Ft − Ft−1 + δFt−1). (28)

For a durable good, the rest equilibrium conditions stay the same as the non-

durable goods. Notice that if δ = 1, the full depreciation, we actually get back to the

case of nondurable goods.

Assuming learning-by-doing technology progress and constant income growth, we

can then characterize the industry dynamics. As we go through the empirical study

in the next section, we will see that with some minor reinterpretation most our

theoretical analyses for nondurable goods remain unchanged for durable goods, and

are supported by the data.

7 Model Estimation

In this section we mainly use the data of TV, a durable good, to estimate our model.

Given the complex dynamic system and limited data, it is generally difficult to di-

rectly test against competing theories with standard statistical tests. However, the

estimation results show that our model fits the data as well as, if not better than,

alternative theories.

7.1 Data

The origin of TV industry can be traced back to 1930s, when innovation and first

production of B&W TV started in the US and the UK. However, WWII resulted

in the curtailment of TV production in both countries and it was not until after

the war that the TV market got off the ground. In our study, we focus on the TV

industry evolution from late 1940s to late 1960s, namely the B&W TV age. During

that period, the US and the UK were the two major countries that pioneered the TV

adoption and production, and these two markets were segmented.
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To estimate our model, yearly data of 7 variables for the B&W TV industry in

both the US and the UK are collected. The dataset includes the number of TV

producers, TV output, value of TV output, household numbers, TV adoption rate,

nominal GDP per capita and CPI. For the UK, we also collect the data of TV licence

fee.

Two additional data are also used to extend our empirical work. One is the Gort

& Klepper (1982) dataset, which covers the firm numbers, price and output for many

US industries from their beginning years until 1970. The other is a panel dataset of

B&W TV adoption across 49 US continental states in the 1950s and 1960s.

A detailed description of our datasets is provided in Appendix B.

7.2 Estimation Strategy

Our model requires estimating a four-equation system for market structure, pricing,

adoption and output. For a consumer nondurable goods, it is the system of equations

15 - 20 that we should estimate. For a consumer durable good like TV, it is the system

that we discussed in section 6. Since both of them involve a system of equations, we

then have to deal with the issue of simultaneity. There are two approaches that we

may consider as follows.

• OLS (Ordinary Least Squares): If the heterogeneity of firms is negligible, OLS

yields consistent parameter estimates. Indeed under the assumption of identical

firms, the system of equations for a nondurable good can be simplified as follows:

Pt

μt
=

(φ)1−α(σμψ−1t )α

(1− α)1−α(α)αAt
=⇒ ln(Pt/μt) = κ+ α(ψ − 1) ln(μt)− γ ln(Qt−1) + εt;

(29)

Ft =
1

1 + η(Pt/μt)
1/g
=⇒ ln(

1

Ft
− 1) = β +

1

g
ln(Pt/μt) + �t (30)

where κ and β are constants, εt and �t are random errors. For a durable good,

the price equation 29 stays the same, and the adoption equation 30 still holds
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if the consumer expects the price to decline at an approximately constant rate

which typically fits well with data. Notice that the system of equations 29

and 30 is recursive since each of the endogenous variables can be determined

sequentially and the errors from each equation are independent of each other.

In a system of this sort, the OLS is the appropriate estimation procedure.

• 2SLS (Two-Stage Least Squares): If the heterogeneity of firms is not negligible,

we have to confront the problem of simultaneity. Notice that in the case of

nondurable goods, equation 29 actually is a reduced-form linear equation for

price. Hence it can be estimated with OLS in the first-stage regression and

the fitted values of the dependent variable ln(Pt/μt) can then be used in the

second-stage regression for the adoption equation 30. However, for durable

goods, equation 29 may be less robust since the lagged adoption rate is also

involved.

In the following sections, we report the estimation results of OLS since the 2SLS

results are very similar.

7.3 Market Structure Estimation

Proposition 1 predicts comovement of the firm numbers and the relative industry

GDP, i.e. ∂N/∂(PY/μ) > 0. To check it with data, we apply the following regression

to the US and UK B&W TV industries and ten other US industries in the Gort &

Klepper (1982) dataset:

lnNt = a+ b ln(PY/μ)t + νt

where νt is assumed to be a Gaussian white noise process.25

The regression results are reported in the following Table 1:

25The results are robust to alternative assumptions such as the error has time trend or serial

correlation.
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Table 1: Testing Proposition 1

Product Data Range b
(S.E.)

b ≤ 0 adj.R2 Corr
( N, PY/μ )

Black & White TV (US) 1947-1963 0.31
(0.12)

R 0.28 0.61

Black & White TV (UK) 1949-1967 0.57
(0.11)

R 0.57 0.72

Blanket, Electrical 1950-1970 0.43
(0.08)

R 0.55 0.75

Computer 1955-1970 0.10
(0.02)

R 0.59 0.63

Freezer 1947-1970 0.31
(0.07)

R 0.42 0.69

Nylon 1950-1970 1.65
(0.13)

R 0.89 0.97

Penicillin 1949-1960 0.49
(0.10)

R 0.67 0.78

Pens, Ball Point 1951-1970 1.01
(0.25)

R 0.45 0.81

Styrene 1943-1970 1.04
(0.29)

R 0.30 0.42

Tapes, Recording 1958-1970 0.73
(0.08)

R 0.90 0.92

Tires, Automobile 1913-1953 1.30
(0.13)

R 0.72 0.78

Transistors 1954-1970 0.29
(0.02)

R 0.92 0.88

R: Reject at 5% significance level

For all 12 products included in the test, we reject the null hypothesis b ≤ 0 at

5% significance level, which suggests that Proposition 1 works well for this sample

group of products. Given the evidence presented in Figure 3 and 4, the results are not

surprising at all. As we mentioned before, it is still possible to find counterexamples

but that does not necessarily invalidate our analysis (See Appendix A).

7.4 Price Estimation

We estimate here three alternative models on price. Model (P-2), derived from our

theory (Equation 29), estimates the relative price using real per capita income and
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Figure 10: TV Relative Price Estimation: US and UK

cumulative industry output. The parameters to be estimated are changing rate of

relative input price α(ψ − 1) and technological learning rate γ. For comparison, we

also estimate two additional models. In Model (P-1), the relative price is estimated

with a time trend only, which provides the average annual price change. In Model

(P-3), the cumulative output of the US production is included in the estimation of

the UK TV relative price so we can estimate how much the UK producers may have

benefited from the technology spillover from the US.

ln(Pt/μt) = κ+ ωt+ εt; (P-1)

ln(Pt/μt) = κ+ α(ψ − 1) ln(μt)− γ ln(Qt−1) + εt; (P-2)

ln(
Puk,t

μuk,t
) = κ+ α(ψ − 1) ln(μuk,t)− γ ln(Quk,t−1 + hQus,t−1) + εt (P-3)

where μ is real per capita GDP in 1953 dollar (pound) and Q is cumulative output.

The results are in Table 2. All the parameter estimates have the expected signs

and most are statistically significant.26 The estimation of Model (P-1) shows the

26Notice that the regressions may involve nonstationary time series so that the t test becomes
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US enjoyed a much faster annual declining rate of the relative TV price than the

UK. By estimating the learning by doing equation, Model (P-2) suggests that the US

advantage was due to a faster declining rate of input price in addition to the larger

cumulative output. Figure 10 provides the data fitting using Model (P-2).

Since the TV industry was developed earlier and faster in the US, we may wonder

whether and how much the UK producers could have learned from the US experience.

Model (P-3) tests this hypothesis by including the US cumulative output into UK

relative price equation. The regression is conducted using nonlinear least squares.

Comparing the estimation results with Model (P-2), we find that introducing the US

experience does not improve fitting the UK price data, and the parameter estimates

are almost unchanged.27 Moreover, the magnitude of h, the coefficient of US experi-

ence, is very small if it exists at all. This finding is consistent with our assumption

that these two markets were technologically segmented during that period.

Table 2: TV Price Estimation

Data Model ω
(S.E.)

α(ψ − 1)
(S.E.)

−γ
(S.E.)

h
(S.E.)

adj.R2

US (P-1) −0.08∗
(0.005)

0.93

(1948-1963) (P-2) −2.61∗
(0.38)

−0.06∗
(0.02)

0.97

UK (P-1) −0.05∗
(0.003)

0.94

(1949-1967) (P-2) −1.26∗
(0.23)

−0.08∗
(0.02)

0.96

(P-3) −1.26
(0.71)

−0.08
(0.25)

0.003
(0.77)

0.96

* Statistically significant at 5% level.

less meaningful. However, OLS still consistently estimates the parameters as long as the regression

equations are correctly specified. Cointegration tests are conducted for each model specification,

but the results are not conclusive because of the small sample size.
27It is not surprising that the estimates of Model (P-3) are not statistically significant given the

limited data we use to estimate a nonlinear model.
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7.5 Adoption Estimation

We estimate here four models for the B&W TV adoption. First, if the diffusion is a

social contagion process, we have the logistic model:

ln(
1

Ft
− 1) = β + wt+ �t (A-1)

where β = ln( 1
F0
− 1), w = −v.

For a consumer durable good like TV, if the decision makers predict a constant

price declining rate, i.e. Et(
Pt+1
Pt
) = ρ, our adoption equations 26 and 27 suggest

ln(
1

Ft
− 1) = β +

1

g
ln(Pt/μt) + �t (A-2)

where β = ln η + 1
g
ln(1− 1−δ

1+r
ρ).

To check the robustness of our theory, we also conduct a panel estimation using

TV diffusion data across 49 US continental states in year 1950, 1955, 1959 and 1963.

ln(
1

Fi,t
− 1) = β +

1

g
ln(Pt/μi,t) + ui + �t (A-3)

where Fi,t is the TV adoption rate of state i at time t, μi,t is the per capita income

of state i at time t, and ui is the fixed effect of state i.

One thing special about the UK TV market is that the UK government imposes

a TV licence fee, which is in fact a tax on TV ownership. As our theory predicts, it

would further delay the TV adoption and shakeout. To include the TV licence fee

into our regression, Equations 26 and 27 suggest

ln(
1

Ft
− 1) = β +

1

g
ln(R

Pt

μt
+

Lt

μt
) + �t (A-4)

where R = [1− 1−δ
1+r

ρ] is the TV rental rate, Lt is the TV licence fee at year t.

The estimation results are in Table 3. In term of R2 value, we find the endogenous

diffusion models (A-2) and (A-4) fit data better than Model (A-1). Of course, this

result by itself is not sufficient to reject the contagion model, but at least suggests

our theory, built on consumer heterogeneity, provides a very competitive explanation.
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Figure 11: TV Adoption Estimation: US and UK

Model (A-3) reports the panel-data estimates using the fixed-effect model (random-

effect model is rejected by the Hausman specification test). Impressively, the results

are very close to what we estimate using Model (A-2). It hence gives us more confi-

dence on our theory. See Figure 11 for the data fitting.

Table 3: TV Adoption Estimation

Data Model w
(S.E.)

R
(S.E.)

1/g
(S.E.)

adj.R2

United States (A-1) −0.34∗
(0.06)

0.84

(1948-1963) (A-2) 4.52∗
(0.44)

0.95

(A-3) 5.38∗
(0.30)

0.55

United Kingdom (A-1) −0.35∗
(0.04)

0.94

(1949-1967) (A-2) 6.46∗
(0.61)

0.94

(A-4) 0.25∗
(0.11)

8.56∗
(0.97)

0.95

* Statistically significant at 5% level.
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Figure 12: TV Output Estimation: US and UK

7.6 Output Estimation

Having estimated the adoption rates of B&W TV, the output estimation becomes

straightforward. The demand function takes the following simple form as Equation

28:

Yt = mt(Ft − Ft−1 + δFt−1) + υt

where mt is the number of households at time t, δ is the annual depreciation rate. It

implies that the annual output consists of two parts: the first purchase from the new

adopters and the replacement purchase from the existing adopters.

Table 4: TV Output Estimation

Data δ
(S.E.)

adj.R2

US (1948-1963) 0.10∗
(0.005)

0.84

UK (1949-1967) 0.08∗
(0.009)

0.53

* Statistically significant at 5% level.
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Given the data of Yt,mt and Ft, the only parameter to estimate is the depreciation

rate δ. Though a constant δ seems to be a relatively strong assumption, the estimation

results in Table 4 suggest that it does explain the data pretty well. See Figure 12 for

the data fitting.

7.7 Demand Factors, Diffusion and Shakeout

The regression results show that our model fits the time paths of industry variables

very well. We are now ready to explore the specific roles that demand factors played

in shaping the TV industry evolution in the US and the UK.

The facts are for the UK in that period, the per capita GDP was 70-80% of the US

and the number of households was one third of the US. As our model suggests, the

lower mean income together with the smaller market size would lead to a sustainedly

higher TV price-income ratio in the UK than the US.28 In addition, the TV licence

fee in the UK added further cost of adoption. Therefore, TV diffusion in the UK was

delayed. The TV price-income ratio is plotted in Figure 13 (a).

How did this delayed diffusion affect the timing of shakeout for a durable good

like TV? Recall the early demand of durable goods is mainly the first purchase:

Yt ≈ m(Ft − Ft−1) (31)

where m is assumed to be a constant market size. Given the sustainedly higher Pt/μt

ratio, the TV market expansion was postponed in the UK so that the peak of first

purchase came in much later. The data of (Ft − Ft−1) is plotted in Figure 13 (b).

Comparing Figure 12 with Figure 13, we notice that the actual TV output declined

less severely in the US than what Equation 31 predicts, which was due to the fast

population growth during that period.29 However, the industry output did level off
28The absolute price of B&W TV in the UK was not necessarily higher than the US as we have

discussed in section 5.1. Using both official exchange rate and PPP, we found the price was actually

lower in the UK.
29During 1948-1963, the household numbers grew at 2% annually in the US and 0.5% in the UK.
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Figure 13: TV Relative Price and Adoption Increment: US vs. UK

in early 1950s, and the relative industry GDP as well as the firm numbers started

declining at that time. In the case of UK, where the population grew much slower,

the time path of actual output is very close to what we calculate with Equation 31,

which kept increasing until 1959. Consequently, the relative industry GDP as well as

the firm numbers had not declined until then.

8 Concluding Remarks

Understanding the industry life cycle is an important frontier of economics. One

limitation of the existing literature is its brief treatment of the demand side. Major

theories, like Jovanovic and MacDonald 1994 or Klepper 1996, emphasize the effects

of inter-firm technological differences but did little to explain the impacts of demand

characteristics. This paper therefore complements existing knowledge by exploring

a previously largely unexplored demand side. First, it shows that demand changes
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alone could drive a shakeout. Second, it connects characteristics of demand, including

income distribution and market size, to industry life cycle dynamics including timing

of shakeout and observed adoption rates. In addition, this paper provides a new

explanation for logistic demand diffusion curves other than the traditional social

contagion theories.

To simplify the analysis, our model assumes a stylized portrayal of firms. Firms

are assumed to face decreasing return to scale in the short run, achieve optimal pro-

duction scale immediately upon entry, and change optimal production without cost.

Moreover, the span of control α and efficiency distribution S(θ) are assumed time-

invariant. Although these assumptions are not unusual and work reasonably well in

the paper, we need be aware that not all of them always hold, and some may work bet-

ter than others in a case-by-case base. In particular, when the comovement between

firm numbers and relative industry GDP breaks down,30 it signals that additional

explanations may be required outside our theory (e.g. a supply-side explanation).

However, it is possible to extend our theory to consider additional supply-side effects.

As an example, Appendix B modifies the model to allow an increasing α. As a result,

the shakeout starts earlier than the decline of relative industry GDP, but nonetheless

our major findings on diffusion and shakeout remains valid.31

Two final comments. First, the competitive market does not internalize spillover

of learning, so the equilibrium derived in the model is not Pareto optimal. A social

planner would prefer a faster diffusion and earlier shakeout. Second, the close-country

framework can be generalized. In an open world, a country may specialize in certain

industries to explore the comparative advantage. Then it should be the world income

distribution and world market size that shape the industry life cycle.

30For example, the shakeout may start earlier than the decline in relative GDP (e.g. Auto and

Color TV), or may not occur at all (e.g. Shampoo). I thank Steven Klepper for pointing this out.
31This extension may explain the Auto shakeout in the 1910s. For Color TV, the shakeout was

probably also related to the change of S(θ) considering the entry of Japanese firms at the time (see

footnote 4).
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Appendix A: Increasing Span of Control

In the paper, we have shown that the relative industry GDP is a good indicator

for the number of firms. However, it is possible to find counterexamples. A dramatic

case is the automobile, for which the firm shakeout came in around 1910 but the

relative industry GDP kept rising up to the Great Depression. Does that mean our

theory is not consistent with the fact?

Not necessarily. Recall that Proposition 1 is derived on the assumption that the

span of control parameter α is constant over time. In the case of automobile, it is

less likely to be valid. In fact, as the assembly line was introduced in 1910s the auto

industry became more and more capital intensive, so the technology progress may

have also worked through the increasing span of control. If we take that into account,

it is possible for the number of firms to deviate from the relative industry GDP so

the shakeout comes in earlier. However, this extension does not necessarily invalidate

our previous analysis. In the following, we construct an example with endogenously

increasing span of control to clarify this point.

For simplicity, we assume the industry has identical firms. The production func-

tion is y = φαAx
α where φα = (1 − α)−(1−α)α−α. Assume that there is only labor

input, and the entrepreneur’s forgone earning equals labor’s wage, i.e. C = w, and

mean income of the economy is fixed over time. We then have the momentary industry

equilibrium conditions as follows:

P =
C

A
; (32)

Y = mF =
m

1 + η(P/μ)1/g
; (33)

N =
1− α

C
PY. (34)

Assume that there are two channels of learning by doing:

At = A0Q
γ
t ; αt = 1− α0Q

−λ
t

39



where Qt =
R t
0
Y (s)ds+Q0.

Characterizing the dynamics of this system, we can show most our analyses stay

unchanged except that the shakeout of firms now starts earlier than that of GDP.

Lemma 1 The number of firms starts declining when price elasticity falls to 1+λ/γ.

Proof. Given Pt =
C
A0
Q−γt and 1− αt = α0Q

−λ
t , we have

Nt =
1− αt

C
PtYt = α0A

λ/γ
0 (Pt/C)

1+λ/γYt.

Hence, the peak of firm numbers is determined as follows:

∂Nt

∂t
= 0 => (1 + λ/γ)

Ṗt

Pt
+

Ẏt
Yt
= 0 => ε∗ = 1 + λ/γ.

Recall the industry GDP starts declining at ε∗ = 1. Since the demand function

33 has a declining price elasticity, the shakeout of firm numbers hence starts earlier

at a lower adoption level, 1− g(λ+γ)
γ

, instead of 1− g for the industry GDP.

Using Figure 14, we can also check the effects of parameter changes. In particular,

the supply curve shifts down faster if the technology is better (higher Q0, higher A0

or higher γ), the mean income is higher (higher μ), the market size is larger (higher

m) or the input price is lower (lower C (w)). As a result, it leads to a faster demand

diffusion and earlier industry shakeout.

So far, we have not linked the foregone earning C and input price w to the mean

income μ. What if we do? For the model to be analytically solvable, we no longer

distinguish the entrepreneur’s foregone earning from the input price, i.e. C = w. It is

a little different from what we assumed in the paper: C = φμ and w = σμψ (ψ < 1).

Therefore, we have to discuss two special cases. In one case, C = w = φμ, a higher

mean income will be fully transferred into a higher production cost so that it does

not result in a lower relative price P/μ for a given technology. Hence it does not lead

to a faster diffusion and earlier shakeout. In the other case, if C = w = σμψ (ψ < 1),
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Figure 14: Industry Life Cycle with Increasing Span of Control

a higher mean income will only be partly transferred into the production cost so that

the relative price P/μ is lower for a given technology. As the result, it does lead to a

faster diffusion and earlier shakeout.

Appendix B: Data Details

• US-UK TV Dataset — The US data starts as early as 1946 when the B&W

TV was initially introduced, and ends at 1963 when the sale of color TV took

off. Most of the data (the number of TV producers, TV output, value of TV

output, household numbers and TV adoption rate) are drawn from periodic

editions of Television Factbook. The nominal GDP per capita is from Johnston

& Williamson (2003) and CPI is from International Historical Statistics: the

Americas, 1750-1993. The UK data also starts from 1946 but ends a little later
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than the US at 1967 when the color TV was introduced. The number of TV pro-

ducers is cited from Simons (2002). The TV output and value are fromMonthly

Digest of Statistics (1946-1968). The household numbers are calculated by pop-

ulation (from UN Common Database) divided by average household size (from

UN Demographic Yearbook). The TV adoption rate is from Table AI of Bowden

& Offer (1994), and TV licence fee is from the BBC press office. The nominal

GDP per capita is from Officer (2003) and the CPI is from International His-

torical Statistics: Europe, 1750-1993.

• Gort-Klepper Dataset — It covers time-series data of firm numbers (46 indus-

tries), price (23 industries) and output (25 industries) from the beginning of

each industry up to 1970. 10 industries are selected for our empirical study

considering their long enough coverage and continuos observations.

• US TV Panel Dataset — It covers the TV adoption rate and personal income

across 49 continental states of the US at year 1950, 1955, 1959 and 1963. The

TV adoption rate is drawn from the Television Factbook, and the personal

income is drawn from the Statistical Abstract of the United States.
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