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Abstract

The rate of future global sea-level rise will likely increase due to elevated ocean temper-
atures and land-ice loss. Coastal properties are expected to become more prone to coastal
flooding in coming decades due to relative sea-level rise caused by both global and local fac-
tors. Translating sea-level rise projections into lost physical and economic value is critical
for companies, governments, and regulators. We use probability distributions of local sea-
level rise projections, National Oceanic and Atmospheric Administration (NOAA) coastal
digital elevation models, and CoreLogic housing data to estimate the timing of future sea-
level rise inundation and a range of housing market impairments in four U.S. coastal cities
(Atlantic City, NJ; Miami, FL; Galveston, TX; and Newport - San Pedro, CA) for a series
of climate scenarios. We implement a novel methodology, refining estimates for the timing
for future inundation, considering both housing properties’ elevation above the tidal datum
(Mean Higher High Water – MHHW) and hydrologic connectivity to the ocean – a critical
consideration where natural or human-built features alter the relationship between sea lev-
els and inundation. The unique risk factors in our four cities (housing market, topography,
and local sea-level) illustrate how our methods are applicable across geographies and scales
of observation. Our results provide an important perspective on the timing of future losses,
the associated uncertainty, and highlight positive (high-skewed) asymmetry of risk from
sea-level rise inundation. This information can aid planners, policy makers, and investors,
in cost-benefit decision-making related to mitigation, adaptation, and remediation at the
local and national level.
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1 Introduction

Climate change is a persistent and substantial threat to society and the functioning of eco-

nomic systems (USGCRP, 2018). Climate impacts are manifesting through more frequent and

extreme weather events (NOAAa, 2019), higher temperatures (IPCC, 2014), and rising seas

(Sweet et al., 2017). Sea-level rise (SLR) is one of the more pernicious consequences of climate

change and will likely negatively impact large portions of the United States’ (U.S.) population

and economy in the coming decades. Roughly 40 percent of the U.S. population lives in coastal

communities (NOAAb, 2019), with approximately 7 million people and 1.9 million homes at el-

evations within 1.8m (6ft) above current sea-level (Hauer et al., 2016; Rao, 2017). As sea-levels

slowly rise, these locations will likely face increased nuisance flooding (Moftakhari et al., 2015;

Sweet et al., 2017), enhanced storm surge inundation (Amante, 2019), and permanent coastline

changes. In extreme cases, some coastal areas may experience out-migration, and city planners

may need to implement policies to facilitate population departure (Wrathall et al., 2019). Con-

sequently, rising sea-levels over the next century will potentially disrupt housing markets and

cause large economic losses.

1.1 Climate Change, Sea-level Rise, and Economics

There is growing awareness from economists that climate change and climate risk is important

for local and regional economic outcomes, especially regarding risk to coastal real estate markets.

Recent empirical research suggests that properties exposed to coastal flooding from hurricanes

have lower values than similar properties in unaffected areas (Ortega & Taspinar, 2018). Multiple

markets prone to SLR inundation are also starting to witness slower price appreciation growth

(Mcalpine & Porter, 2018). Furthermore, properties most prone to SLR inundation may face

lower valuations compared with similar properties in less prone areas (Bernstein et al., 2019).

The banking and finance sector is beginning to consider the economic effects that climate
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change may pose for businesses, investors, and financial institutions in the coming decades.

Attention is being focused on increased physical impacts from climate change, such as fires,

floods, and hurricanes (FSB-TCFD, 2017; U.S. Department of the Treasury, 2021). In recent

years, central banks around the world have started to examine potential climate related financial

stability issues, their potential role in mitigating economic risks from climate change, and the

unique risks banks face from climate change, such as investments in areas more prone to extreme

weather events (Federal Reserve Board of Governors, 2020; Brunetti et al., 2021; Campiglio et

al., 2018). Furthermore, private financial institutions are not only starting to better analyze

physical climate risks, but are also shifting their businesses and investment strategies, signaling

the reallocation of financial capital away from carbon intensive industries, such as coal and other

fossil fuels, towards more sustainable, renewable energy sources (Goldman Sachs, 2019; Black

Rock, 2019; CoBank, 2019).

However, as the awareness of climate change grows, risk practitioners face challenges in

assessing the economic costs of climate change. Notably, uncertainty in climate projections needs

to be accounted for when estimating the economic implications of climate change, especially

when assessing the potential impacts of future SLR on the U.S. housing market. For example,

depending on carbon emissions, land-use changes, and other global, regional, and local factors

that affect sea-levels, SLR could displace between 4 - 13 million people in the U.S. over the

next century (Hauer et al., 2016). Coastal communities are facing a wide range of risks from

SLR, with differing social, economic, and financial costs. Properly accounting for the range of

economic and financial risks that results from climate change and SLR uncertainty is crucial for

balancing the financial costs and benefits of potential policy choices.

Our research offers the following contributions that can help practitioners better account

for local SLR risk: 1) We outline and employ a methodology for estimating property (parcel)

level inundation elevation using free, publicly available NOAA inundation shapefiles and digi-
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tal elevation models (DEMs); 2) Identify when properties may be inundated using local SLR

projections across a series of climate scenarios; 3) Account for and discuss the importance of cli-

mate uncertainty for SLR risk analysis; and 4) We present our results for diverse coastal cities,

demonstrating how our approach can be applied to a variety of locations in the U.S. and at

different scales of observation.

1.2 Climate Change Uncertainty and Sea-level Rise

1.2.1 Climate Models, Scenarios, and Uncertainty

Accounting for climate change uncertainty is critical for estimating the range of economic

impacts associated with future SLR. Climate change uncertainty can be separated into three

broad categories: climate scenario uncertainty, internal climate variability (i.e., natural climate

variability separable from human influences), and model uncertainty (Hawkins & Sutton, 2009).

In concert, these sources of climate uncertainty can influence economic decision-making and the

costs attributed to climate change impacts such as SLR inundation (Heal & Millner, 2014).

Future atmospheric greenhouse gas (GHG) concentrations are one major source of climate

uncertainty. The scientific literature and climate policy publications outline a series of com-

monly used, independent scenarios known as Representative Concentration Pathways (RCP),

e.g., RCP 2.6, 4.5, 6.0, and 8.5 (Rogelj, Meinshausen, & Knutti, 2012; Moss et al., 2010; IPCC,

2014). Each RCP scenario is associated with a time path of future atmospheric greenhouse

gas (GHG) concentrations that results from differing socioeconomic, technology, and biophysi-

cal assumptions in specific integrated assessment models (IAMs). Using these independent sets

of assumptions, the RCP scenarios depict progressively higher levels of GHG concentrations,

elevated global temperatures, and, by extension, accelerated increases in global sea-levels. For

example, under RCP2.6, global GHG concentrations are projected to rise modestly to 490 parts

per million (ppm) by 2100, global mean temperatures are projected to rise by 1.5oC, and global
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mean sea-level is projected to rise by 49 cm. Under RCP8.5, GHG concentrations are projected

to rise to 1370 ppm by 2100, mean temperatures are projected to rise by 4.9oC, and global mean

sea-level is projected to rise 79 cm (Moss et al., 2010; Kopp et al., 2017).1 As these outcomes

demonstrate, climate scenario uncertainty contributes to a wide range of potential outcomes

and is especially important on longer-term horizons (>60 years; (Hawkins & Sutton, 2009)). By

extension, the economic consequences of climate change can be very different solely based on

the climate scenario.

The second and third major sources of climate uncertainty are internal climate variability

(natural variability) and modeling uncertainty. In the near term (<20 years), a majority of

climate uncertainty is driven by internal variability (i.e., natural climate variation separable

from human influences). This is especially true for regional scenarios (Hawkins & Sutton, 2009).

The global climate system is chaotic, which makes it sensitive to initial model parameters. In the

medium-term (20-50 years), model uncertainty, or the spread of estimates across various climate

models, is the main contributor to climate uncertainty (Hawkins & Sutton, 2009). As previously

mentioned, global climate scenarios (i.e., GHG concentration scenarios) contribute most to total

uncertainty when time horizons exceed 60 years into the future (Hawkins & Sutton, 2009; Heal

& Millner, 2014). It is important to account for all three sources of climate change uncertainty

to estimate the range of economic costs associated with future SLR over the next 80 years.

1.2.2 Sea-level Rise Uncertainty

Large climate change uncertainty contributes directly to a wide range of future SLR projec-

tions through the end of the century and can make it challenging to assess potential economic

costs from SLR. Under the low GHG concentration scenario (RCP2.6), projections for global

mean SLR range from 0.3 to 0.8 meters (5th to 95th percentiles) by the end of the century (Kopp

1Under current carbon emission policies and energy transitions, empirical evidence would suggest that RCP8.5
is less likely, and we are currently closer to a medium GHG concentration scenario (RCP4.5) (Hausfather & Peters,
2020).
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et al., 2017). Under the high GHG concentration scenario (RCP8.5), mean SLR is expected to

range from 0.5 to 1.2 meters (5th to 95th percentiles) (Kopp et al., 2017). Uncertainty in local

SLR projections can be even larger than in global projections. Kopp et al. (2014, 2017) provide

local sea-level projections that are informed by a combination of expert community assessment,

expert elicitation, and process modeling, and incorporate the various sources of climate uncer-

tainty within GHG concentration scenarios (e.g., RCPs 2.6, 4.5, and 8.5). For example, future

SLR estimates for Miami, Florida range from 0.2 and 1.0 meters under RCP2.6 and between 0.4

to 1.4 meters under RCP8.5, by the end of the century (Kopp et al., 2017). SLR estimates for

Atlantic City are even more uncertain, ranging from 0.3 to 1.3 meters for RCP2.6 and from 0.5

to 1.7 meters for RCP8.5, through 2100 (Kopp et al., 2017). Other additional factors, such as

accelerated Antarctic ice sheet loss can further exacerbate uncertainty in global mean sea-level

and local SLR projections through this time span, amplifying the range of economic impacts

from SLR (Deconto & Pollard, 2016).

Our analysis incorporates uncertainty in future SLR projections caused by global climate

change and regional and local processes to estimate a range of future city-level housing market

value impairments. Specifically, we use probability distributions of local SLR projections ((Kopp

et al., 2014, 2017; Deconto & Pollard, 2016), National Oceanic and Atmospheric Administration

(NOAA) coastal digital elevation models (DEMs), and CoreLogic housing data to estimate

housing market value impairment from future SLR inundation in U.S. coastal cities.

2 Methods and Data

2.1 Housing Market Data and Economic Value Analysis

We use CoreLogic housing information from their Deeds, Tax, and Tax History data sets to

generate our housing market sample. Our housing market for this study spans roughly 590,000
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unique residences across our four highlighted U.S. coastal metros. Supplemental material section

2 provides a comparative analysis for a total of 17 metros with over 5.7 million unique residences

analyzed. We use precise geo-location information (latitude and longitude) available in the

housing data set to determine the current elevation above sea-level for each property and to

estimate the timing at which the property may be affected by local SLR. For each metro, we use

the U.S. Postal Service city and ZIP code data to filter the CoreLogic housing data to include

only ZIP codes within the four metropolitan areas (USPS, 2020). Our housing market sample

is restricted to single-family houses, townhomes, and 2-4 unit residential buildings.

For current housing price estimates, we index the most recent property transaction value

available in our data set to the current time period (2020) using CoreLogic ZIP code and county-

level combined single-family housing price indexes. Adjusting financial values to the current year

provides a time-consistent estimate of the value of each property and thereby allows us estimate

the total value of the housing stock within each metro.

Our primary analysis is structured in terms of the counts of impaired residential units rather

than the relatively less stable market (financial) values. We include economic dollar values in

our results, as an adjunct to the primary physical (property counts) analysis, in order to provide

additional context around estimated losses. As a baseline, when financial losses are mentioned,

these losses can be interpreted as the current estimate of a property’s value. Using the current

property value for losses over time implies a discount rate of 0% per year; indicating that, absent

of SLR, the relative value of the included properties is considered to remain constant over the rest

of this century. This implied discount rate is within the range of rates used by other researchers

(albeit at the lower end) and is consistent with persistently low real interest rates (Drupp et al.,

2018; Bauer & Rudebusch, 2020). Although we focus our results on property inundation counts

(as counts are less subject to issues arising from long-term discount rate and values over time),

we do evaluate losses under positive time discount rates of 2.6% and 4.0% per year, which lower
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financial values over time relative to nearer-term valuations(Arrow et al., 2013). Each of these

discount rates can be considered meaningful in terms of recent empirical research (Bernstein

et al., 2019; Nordhaus, 2013). Full methodological detail and explanation on these additional

economic analyses is provided in the supplemental material, sections 1.1 and 1.2.

2.2 Local Topography

Local topography has a large effect on the modeling of future coastal inundation from SLR

and the impairment of individual housing markets. Much of the Atlantic and Gulf Coasts of

the U.S. consist of low-lying areas with small terrain slope, which results in wide swaths of

potentially flooded areas and impaired housing markets. Conversely, the Pacific Coast of the

U.S. has many elevated areas with large terrain slope adjacent to the coastline, resulting in

narrower swaths of land prone to SLR inundation and future impaired housing markets. DEMs

depict the local topographies and are essential to modeling coastal flood risk and the future

impairment of housing markets.

Accurate, high-resolution DEMs are needed to both delineate areas with low elevations below

a projected sea-level and to determine hydrologic connectivity. Natural terrain features (e.g.,

gullies, hills) and human-made terrain features (e.g., culverts, levees) can enhance or impede

the flow of water and affect flooding at inland elevations (Li et al., 2009; Poulter & Halpin,

2008; Gesch, 2009; Zhang et al., 2013; Amante, 2019). The spatial resolution of the DEM

is an important factor in coastal flood modeling, as it determines the ability to resolve these

terrain features that can affect hydrologic connectivity. This ability is especially important for

modeling the future housing impairment for coastal regions with low-lying areas protected by

terrain features at present-day sea-levels. For example, the DEMs for Atlantic City and Miami

have spatial resolutions of 3m and 5m, respectively. We assume that these spatial resolutions

are able to resolve the most important terrain features that could enhance or impede water
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flow, but the effect of the DEM spatial resolution is not rigorously quantified in our analysis.

Furthermore, potential differences between DEM values and the “true” elevation represents the

DEM vertical uncertainty, and such uncertainty can cause differences in the modeled coastal

flood risk (Amante, 2018, 2019) and in housing impairment estimates.

We use geospatial data from NOAA’s Sea Level Rise Viewer (NOAAc, 2019) to estimate the

timing of inundation and associated housing market impairment. We use NOAA’s Sea Level

Rise Viewer DEMs to determine each property’s respective elevation above sea-level at the tidal

datum of Mean Higher High Water (MHHW) (i.e., the higher high water height of each tidal day

observed over the National Tidal Datum Epoch). We also use NOAA’s Sea Level Rise Viewer

inundation shapefiles, which were generated from NOAA’s Sea Level Rise Viewer DEMs. These,

shapefiles delineate areas that will be inundated at one-foot increments of SLR above MHHW

(0-10ft) (NOAAc, 2019). Depending on local topography and the built-environment, some low-

lying areas along the coast may be protected by natural levies or structures and might not be

inundated (i.e., are not hydrologically connected) until sea-level rises well above their actual

measured elevation (Poppenga & Worstell, 2015). For this reason, it is important to account

for hydrologic connectivity when estimating the inundation height and associated timing of

impairment for a property.

2.3 Combined Use of Sea Level Rise Viewer DEMs and Shapefiles

We use both the property elevations from the DEMs and the one-foot increment shapefiles

to refine our estimates of the timing of inundation for each property.2 The NOAA Sea Level

Rise Viewer shapefiles consider both the elevation and hydrologic connectivity when delineating

areas prone to SLR inundation at 1ft intervals. However, it will likely be many years to reach

a single foot of SLR under most scenarios and additional temporal granularity is needed to

2We convert all DEMs from the original vertical datum of the North American Vertical Datum of 1988
(NAVD88) and vertical units of meters to the same vertical datum (MHHW) and vertical units (feet) as the Sea
Level Rise Viewer inundation shapefiles using NOAA’s VDatum conversion tool (NOAAd, 2019).
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refine estimates of the year of inundation for each property. Thus, we use both the property

elevation from the DEM and the location of the property within the NOAA Sea Level Rise Viewer

shapefiles to estimate a more precise elevation and timing of inundation, while still accounting

for hydrologic connectivity.

First, we identify the most restrictive coastal inundation shapefile (i.e., lowest sea-level rise

increment inundation area that the property is located within). For example, a property with

an elevation from the DEM of 1.7ft may be located within the 2ft, 3ft, 4ft, ... , 10ft Sea Level

Rise Viewer shapefile. If we identify the most restrictive shapefile for this property to be the

2ft shapefile (i.e., the property is not located within the 1ft shapefile, but is within the 2ft

shapefile), we assume that the there are no large terrain or man-made barriers to inundation

and the inundation elevation is the DEM elevation. For that property, we estimate the year

of inundation to be associated with the year at which the sea-level rise projection reaches the

elevation of the property from the DEM (i.e., 1.7ft; Figure 1 Profile A).

In other cases, a property with an elevation of 1.7ft may be located in the 4ft, 5ft, 6ft,

... , 10ft Sea Level Rise Viewer shapefile. This could occur if the property is located in an

inland depression and surrounded by higher elevations from natural terrain barriers or man-

made barriers, such as levees, that would protect the property until sea-level rises above those

protective elevations. In such cases, we estimate the year of inundation to be associated with

the year at which the sea-level rise projection reaches the most restrictive Sea Level Rise Viewer

shapefile increment (i.e., 4ft; Figure 1 Profile B), which gives a conservative estimate for the

timing of inundation. See Figure 1 for an illustrative example of the combined use of Sea Level

Rise Viewer DEMs and shapefiles to estimate the timing of inundation for a property.

Considering both the DEM value and Sea Level Rise Viewer shapefiles increases the gran-

ularity of our estimate for the inundation year associated with each sea-level rise projection

where terrain or man-made barriers that would prevent inundation are unlikely. Figures 2 and 3
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Figure 1: Illustrative example of the combined use of Sea Level Rise Viewer DEMs and shapefiles
to determine when a property at 1.7ft elevation is inundated in Galveston, Texas. The blue area
represents the 2ft Sea Level Rise Viewer shapefile that considers hydrologic connectivity overlaid
on the DEM. Profile A shows an area that is hydrologically connected to the ocean where the
estimated year of inundation for a property (black circle) is determined by the year at which
the sea-level rise projection reaches the elevation from the DEM (i.e., 1.7ft). Profile B shows
an inland depression that is not hydrologically connected to the ocean due to terrain barriers
(red arrow). In such cases, the estimated year of inundation of the property (red circle) is
determined by the year at which the sea-level rise projection reaches the most restrictive Sea
Level Rise Viewer shapefile (i.e., 4ft) that exceeds the elevation of the terrain barrier (i.e., 3.75ft).

illustrate the improved precision of using both the DEM and shapefiles to determine the timing

of inundation compared to only using the shapefiles. By comparing across cities, such as Mi-

12



ami and Galveston, we observe differences in how our dual matching methodology performs in

different locations. For a city like Miami, with a low lying and moderately sloping topography

(and few natural barriers), our inundation profile is smooth, with few noticeable jumps in the

profile. A city like Galveston, with a more varied terrain (and some natural barriers), produces

an inundation profile that is mostly smooth, but with more noticeable jumps. This is due to our

matching methodology applying the shapefile inundation elevation, where necessary, to account

for protective features. The differences would be even more pronounced at a neighborhood or

property level, underscoring the importance of our more granular inundation elevation estimates.
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Figure 2: Combined use of Sea Level Rise Viewer DEMs and shapefiles refines impairment
estimates. Left side: Sea-level rise projection for Miami. (Deconto & Pollard, 2016) Right side:
Combined DEM and shapefile match (solid lines) vs. Only shapefile match (dashed lines)

One potential limitation of this dual-approach is that this improved temporal granularity can

lead to questionable results due to the uncertainty of the DEM. There are many sources of DEM

uncertainty, including the spatial resolution, interpolation method, and elevation measurement

uncertainty (Amante & Eakins, 2016; Amante, 2018). The vertical uncertainty of topographic

elevation measurements using modern light detection and ranging (lidar) technology is generally
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Figure 3: As Figure 2, but for Galveston

on the order of 10-20 cm at one standard deviation (Amante, 2018, 2019). Modeling a single

SLR projection at yearly time steps generally results in the annual SLR increment to be smaller

than the DEM uncertainty. For example, the SLR increment within a year is typically on

the order of millimeters, but the vertical uncertainty of the DEM is typically on the order

of centimeters. As such, the annual sea-level rise increment is within the uncertainty of the

DEM and can lead to questionable results for an individual SLR projection (Gesch, 2018).

This study does not incorporate DEM uncertainty into the analysis, however, previous research

indicates the DEM uncertainty (on the order of centimeters) is a much smaller contribution to the

uncertainty of coastal inundation modeling compared to the uncertainty of SLR projections (on

the order of meters), especially in distant decades (Amante, 2019). In our analysis, uncertainty

in topographic DEMs derived from lidar measurements is much smaller than the uncertainty

in SLR projections due to different RCP scenarios, and the full SLR probability distributions

within a given RCP scenario provided by (Kopp et al., 2014, 2017) and especially (Deconto &

Pollard, 2016) that considers uncertainty in ice sheet loss and the contributions to sea-level rise.
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Therefore, using this dual-approach to estimate the year of inundation is deemed acceptable

when determining a range of future coastal housing market impairment that incorporates SLR

uncertainty into the distant future (i.e., through 2100).

2.4 Local Sea-Level Projections

Coastal flooding occurs at the land-water interface, and, therefore, local information on

the relative vertical movement between the land and water surface is required to model future

flood risk and associated housing market impairment. Local sea-level projections account for

both potential vertical movement in the land topography and changes in water levels. Local land

topography can uplift or subside due to both long-term and short-term local or regional processes

that include loss of glacial ice (glacial isostatic adjustment), human extraction of ground water,

and tectonic processes (Horton et al., 2015; Church, 2013). Changes in local water levels can

also deviate from the global mean due to differences in ocean temperature, salinity, and currents

(Nerem & Mitchum, 2001; Cazenave & Nerem, 2004; Lombard et al., 2005; Milne et al., 2009).

Additional regular fluctuations of the climate system known as oscillations or “modes”, can also

affect local sea-levels. For example, the local sea-level along the U.S. East Coast is affected

by climate modes such as the North Atlantic Oscillation (Barnston & Livezey, 1987; Hurrell,

1995; Han et al., 2017) and the Atlantic Multidecadal Oscillation (Trenberth & Shea, 2006;

Wang & Zhang, 2013; Han et al., 2017). These regional and local factors affecting the relative

vertical movement between the land and water surfaces necessitate using local SLR projections

to accurately model future coastal flooding from SLR and associated individual housing market

impairments.

We use local sea-level projections for Permanent Service for Mean Sea-Level (PSMSL) tidal

stations from (Kopp et al., 2014, 2017) to estimate a range of future housing value impairments.

Our analysis uses SLR projections from 2020-2100 for three different climate scenarios (i.e., RCP
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2.6, 4.5. and 8.5) and includes the SLR uncertainty within each of the RCP scenarios (0.10,

0.25, 0.50, 0.75, and 0.90 percentiles). These SLR projections account for the wide-range of

climate and sea-level uncertainty, allowing for an analysis of SLR housing impairment at the

local level, while remaining climate scenario agnostic. We determine the local SLR projections

based on the nearest PSMSL tidal station to the centroid of the ZIP code shapefile for each

metro. These local SLR projections, along with a property’s elevations and its location within

the NOAA Sea Level Rise Viewer shapefiles, determine the potential year of inundation for an

individual property.3

The local SLR projections in (Kopp et al., 2014, 2017) (K14) are commonly used by NOAA

and other scientific agencies in their own local SLR projections (Sweet et al., 2017). The K14

results are a useful baseline for estimating local SLR and the economic consequences. However,

K14 SLR projections do not account for factors that may cause accelerated ice sheet loss such

as ice shelf hydrofracturing and ice cliff collapse. (Deconto & Pollard, 2016) (DP16) produce

local sea-level projections that account for both the mechanisms of ice sheet hydrofracturing and

ice cliff collapse, which are reinforcing factors that accelerate global mean sea-level (GMSL) rise

and exacerbate risk to local coastal communities. To provide context, the median projected 21st

century GMSL rise is expected to reach 0.59m for the medium GHG concentration scenarios

(RCP4.5) in K14 but under DP16, GMSL is expected to rise by 0.91m. Local, relative SLR

differences can be even more pronounced. We provide housing impairment estimates through

2100 for both K14 and DP16 in our analysis.

3With the climate risk field advancing quickly, other groups have started to produce propriety national
level flood risk models (First Street Foundation, 2020). However, the granular private label flood data from
these providers are only available at cost and use models not available in the public domain. Our SLR risk
matching methods use publicly available spatial and climate risk data sets, which are freely available to risk
practitioners. Thus, each component of our risk methodology is transparent and easy to replicate: 1) Refined
measure of property inundation elevation; 2) Estimated timing of SLR inundation; 3) SLR risk accounting for
climate uncertainty.
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3 Results

Our results provide a range of housing market impairment estimates for each of the four U.S.

coastal metros and the associated timing of those impairments. We chose to highlight these

four metros, as they represent geographically diverse areas of the U.S. with unique risk factors

(housing market exposure, topography, and local SLR risk), and their heterogeneity illustrates

how our methods can be applied at various locations and geographic scales. Figure 4 shows

area maps for each of the four metros we analyzed (i.e., Atlantic City, Miami, Galveston and

California: Newport - San Pedro). We focus our impairment estimates on property counts

and provide value impairment estimates to better contextualize the economics losses for each

metro. Specific impairment analyses (counts and values) for 15 additional U.S. coastal metros

are provided in the supplemental material section 2.
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(a) Miami (FL) (b) Newport-San Pedro (CA)

(c) Atlantic City (NJ) (d) Galveston (TX)

SLR Inundation Maps

ZCTA (out of metro)

1.8M SLR

ZCTA (in metro)

Tidal Gauges

Figure 4: Four City Area Maps

3.1 Atlantic City

Atlantic City, New Jersey is a small city located on the east coast of the U.S and is expected to

experience local SLR that exceeds the global average due to global, regional, and local processes

(Amante, 2019; Kopp et al., 2017; Deconto & Pollard, 2016). Figure 5 (panel a) shows the

sea-level rise trajectory for K14 and panel b shows the sea-level rise trajectory for DP16 through

2100. The respective uncertainty bands between 10th and 90th percentiles are shown by the
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dotted lines. Local sea-level is expected to increase by 0.82m under the medium (RCP4.5) GHG

concentration scenarios (50th percentile) for K14 and is expected to increase by 1.2m under the

medium (RCP4.5) GHG concentration scenarios (50th percentile) for DP16. Our housing sample

for Atlantic City (and nearby islands) has roughly 35,000 unique single-family houses compared

with an estimated population of approximately 62,000 people (Census, 2020). Atlantic City is

situated on a barrier island, has a relatively high concentration of single-family houses in the

metro, a fairly flat topographic gradient, and a large number of houses in areas at risk of SLR

(directly on the coast with low elevation). Consequently, we estimate noticeable risk to Atlantic

City’s single-family housing market through 2100 both in K14 and DP16 (see discussion section

for a more detailed description of local factors contributing to these impairments).
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Figure 5: Atlantic City
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a) SLR path and uncertainty bands (10-90th percentile) through 2100 for RCPs 2.6, 4.5, and 8.5

(Kopp et al., 2014) - K14; b) SLR path and uncertainty bands (10-90th percentile) through 2100

for RCPs 2.6, 4.5, and 8.5 (Deconto & Pollard, 2016) - DP16; c) Inundation path and uncertainty

bands (10-90th percentile) for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCPs 2.6, 4.5, and 8.5 (Kopp et al., 2014) - K14; d) Inundation path

and uncertainty bands (10-90th percentile) impaired property counts left vertical axis) and percent

of housing counts (right vertical axis) for RCPs 2.6, 4.5, and 8.5 (Deconto & Pollard, 2016) - DP16;

e) Box and whisker plot for impaired property counts through 2100 (left vertical axis) and share of

housing market (right vertical axis) for RCP 2.6, 4.5, and 8.5 - lower whisker 10th percentile, lower box

25th percentile, center line median, upper box 75th percentile, and upper whisker 90th percentile for

K14; f) Box and whisker plot for impaired property counts through 2100 (left vertical axis) and share

of housing market (right vertical axis) for RCP 2.6, 4.5, and 8.5 - lower whisker 10th percentile, lower

box 25th percentile, center line median, upper box 75th percentile, and upper whisker 90th percentile

for DP16. K26, K45, and K85 refer to results associated with RCP2.6, RCP4.5, and RCP8.5 from

(Kopp et al., 2014, 2017). DP26, DP45, and DP85 refer to results associated with RCP2.6, RCP4.5,

and RCP8.5 from (Deconto & Pollard, 2016).

We estimate that 3,146 properties (range 252 to 1,4272) by count and $1.1 Bn. (range $0.1

to $4.7 Bn.) by value will be inundated by 2100 at the 50th percentile of RCP 4.5 under the

base case K14 scenario. This equates to 9.0% (range 0.7-41.0%) of our 35,000 property sample

and 8.2% (range 0.8-35.4%) of those property values under that scenario (tile c,e).4

Comparatively in the more extreme DP16 scenario (accounting for accelerated ice sheet

melt), we estimate noticeably higher housing impairments though 2100. We estimate that 12,494

properties (range 2,365 to 25,438) by count and $4.1 Bn. (range $0.8 to $9.3 Bn.) by value will

be inundated by 2100 at the 50th percentile of RCP 4.5 under the DP16 scenario. This equates

to 35.9% (range 6.8-73.0%) of our 35,000 property sample and 30.7% (range 6.2-70.1%) of those

property values under RCP 4.5 (tile d,f).

3.2 Miami

Miami and Miami Beach (combined as “Miami”) is a relatively large metro in the southeast

U.S. and is also expected to experience local SLR that exceeds the global average due to global,

regional, and local processes (Kopp et al., 2017; Deconto & Pollard, 2016). Figure 6 (panel a)

4We focus our discussion of results on the medium GHG scenario (RCP 4.5) for both K14 and DP16 as recent
scientific evidence would suggest that we are closest to the medium scenario (Hausfather & Peters, 2020). For
detailed results across all metros and climate scenarios, see supplemental material section 2.
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shows the sea-level rise trajectory for K14 and panel b shows the sea-level rise trajectory for

DP16 through 2100. The respective uncertainty bands between 10th and 90th percentiles are

shown by the dotted lines. Local sea-level is expected to increase by 0.65m under the medium

(RCP4.5) GHG concentration scenario (50th percentile) for K14 and is expected to increase

by 1.02m under the medium (RCP4.5) GHG concentration scenario (50th percentile) for DP16.

Our housing sample for Miami has roughly 330,000 unique single-family houses and an estimated

population of approximately 563,000 (Census, 2020). Miami has a relatively high concentration

of single-family houses, flat topography with numerous low-lying areas, and a concentration

of homes in areas prone to SLR inundation (on the coast at lower elevations). We estimate

moderate risk to Miami’s single-family housing market through 2100 under K14 and noticeably

higher risk under DP16 (see discussion section for a more detailed description of local factors

contributing to these impairments).
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Miami: Impairment Uncertainty by Representative Concentration Pathway
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Figure 6: As Figure 3, but for Miami
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We estimate that 588 properties (range 20 to 5,857) by count and $0.7 Bn. (range $0.04 to

$5.9 Bn.) by value will be inundated by 2100 at the 50th percentile of RCP 4.5 under the base

case K14 scenario. This equates to 0.2% (range 0.01-1.8%) of our 330,000 property sample and

0.5% (range 0.03-4.5%) of those property values under that scenario (tile c,e).

Comparatively in the more extreme DP16 scenario we estimate higher housing impairments

though 2100. We estimate that 6,321 properties (range 347 to 27,522) by count and $6.4 Bn.

(range $0.5 to $23.2 Bn.) by value will be inundated by 2100 at the 50th percentile of RCP 4.5

under the DP16 scenario. This equates to 1.9% (range 0.1-8.3%) of our 330,000 property sample

and 4.9% (range 0.3-17.6%) of those property values under RCP 4.5 (tile d,f).

3.3 Galveston

Galveston is a small city on the Gulf Coast of U.S. that is also expected to experience local

SLR that exceeds the global average due to global, regional, and local processes (Kopp et al.,

2017; Deconto & Pollard, 2016). Figure 7 (panel a) shows the sea-level rise trajectory for K14 and

panel b shows the sea-level rise trajectory for DP16 through 2100. The respective uncertainty

bands between 10th and 90th percentiles are shown by the dotted lines. Local sea-level is expected

to increase by 1.04m under the medium (RCP4.5) GHG concentration scenario (50th percentile)

for K14 and is expected to increase by 1.41m under the medium (RCP4.5) GHG concentration

scenario (50th percentile) for DP16. Our housing sample for Galveston has roughly 21,000 unique

single-family houses compared with an estimated population of approximately 54,000 (Census,

2020). Galveston is on a barrier island and has a high concentration of single-family homes.

Galveston’s flat topography with numerous low-lying areas and concentration of homes in areas

prone to SLR inundation (on the coast at lower elevations), put the city’s single-family housing

market at high risk from SLR inundation through 2100 both under K14 and DP16 (see discussion

section for a more detailed description of local factors contributing to these impairments).
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Figure 7: As Figure 3, but for Galveston
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We estimate that 3,275 properties (range 1,502 to 6,027) by count and $1.1 Bn. (range $0.5

to $1.9 Bn.) by value will be inundated by 2100 at the 50th percentile of RCP 4.5 under the

base case K14 scenario. This equates to 15.5% (range 7.1-28.5%) of our 21,000 property sample

and 20.3% (range 9.8-34.3%) of those property values under that scenario (tile c,e).

Comparatively in the more extreme DP16 scenario we estimate much higher housing impair-

ments though 2100. We estimate that 6,181 properties (range 3,040 to 10,447) by count and $1.9

Bn. (range $1.1 to $3.3 Bn.) by value will be inundated by 2100 at the 50th percentile of RCP

4.5 under the DP16 scenario. This equates to 29.2% (range 14.4-49.4%) of our 21,000 property

sample and 35.0% (range 19.2-59.1%) of those property values under RCP 4.5 (tile d,f).

3.4 California: Newport - San Pedro

California: Newport - San Pedro, is expected to experience local SLR that is near the

global average (Kopp et al., 2017; Deconto & Pollard, 2016). Figure 8 (panel a) shows the

sea-level rise trajectory for K14 and panel b shows the sea-level rise trajectory for DP16 through

2100. The respective uncertainty bands between 10th and 90th percentiles are shown by the

dotted lines. Local sea-level is expected to increase by 0.54m under the medium (RCP4.5) GHG

concentration scenario (50th percentile) for K14 and is expected to increase by 0.91m under

the medium (RCP4.5) GHG concentration scenario (50th percentile) for DP16. Our housing

sample for the California: Newport - San Pedro metro has roughly 204,000 unique single-family

houses compared with a population nearing one million people (Census, 2020). This area of the

California coast has some low lying beaches and a steep topographic gradient moving inland.

With a relatively low concentration of single family homes concentrated in areas prone to SLR

inundation (on the coast at lower elevations), the single-family housing market in this area of

the California coast is at a relatively lower risk from SLR inundation through 2100 under K14

compared to other metro areas analyzed such as Galveston or Atlantic City. However, our
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analysis does indicate markedly higher risk in the DP16 scenario (see discussion section for a

more detailed description of local factors contributing to these impairments).
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Figure 8: As Figure 3, but for California: Newport - San Pedro

We estimate that 2,493 properties (range 395 to 7,583) by count and $2.7 Bn. (range $0.4 to
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$8.1 Bn.) by value will be inundated by 2100 at the 50th percentile of RCP 4.5 under the base

case K14 scenario. This equates to 1.2% (range 0.2-3.7%) of our 204,000 property sample and

1.7% (range 0.3-4.9%) of those property values under that scenario (tile c,e).

Comparatively in the more extreme DP16 scenario we estimate much higher housing impair-

ments though 2100. We estimate that 7,874 properties (range 2,202 to 22,303) by count and

$8.4 Bn. (range $2.4 to $21.7 Bn.) by value will be inundated by 2100 at the 50th percentile

of RCP 4.5 under the DP16 scenario. This equates to 3.9% (range 1.1-10.9%) of our 204,000

property sample and 5.1% (range 1.5-13.2%) of those property values under RCP 4.5 (tile d,f).

4 Discussion

Overall, our analysis provides an estimate of SLR risk to single family home markets, across a

series of geographically diverse metros. Although all four metros highlighted show at least some

risk from SLR, there are noticeable differences, with cities like Galveston and Atlantic City

facing much greater risks than areas like southern California. Our analysis provides conservative

lower-bound estimate of SLR impairments for a number of reasons. First, we restrict our housing

sample to single-family, townhouses, and buildings with four or less units. Roughly 17% of

residences in the U.S. are 5 units or greater (i.e., condominiums or multifamily), which can have

higher values than housing properties of four units or fewer. In some states, such as Florida

or California, the proportion of residences that are condominiums or multifamily exceed the

national average, ranging from 20-30% (Census, 2017), and proportions for cities like Miami are

larger yet. Additionally, our analysis focuses solely on the direct economic cost from terminal

impairment from local SLR, which is just one component of total costs from rising seas. Increases

in nuisance flooding and storm surge inundation enhanced from SLR, as well as changing risk

perceptions to SLR as it is occurring, would substantially increase the count of units considered

subject to impairment and add additional costs associated with rising seas (Amante, 2019;
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Bernstein et al., 2019; Kirezci et al., 2020).

Even with these conservative estimates, we identify noticeable SLR risk for some metros

(i.e. Galveston and Atlantic City) in the base case K14 scenario. Accounting for accelerated ice

sheet contributions to SLR (DP16), all 4 metros highlighted show much larger SLR risk through

2100. Ultimately, our analysis provides useful insights on SLR impairment risk and differences

across U.S. cities. Furthermore, we generate an understanding of risk asymmetry across climate

change scenarios. Lastly, and most importantly, our SLR risk matching methodology using free,

publicly available data provides estimates for the timing of SLR impairment, which can be useful

for city planners, governments, and other climate risk practitioners.

4.1 Housing Market Exposure and Local Factors

Our analysis indicates that proximity of low-lying areas to the coast, the structure of coastal

housing markets, and the locations of single-family houses all contribute to housing market

impairment within a city. Proximity to the coast has generally been considered a positive

amenity that typically drives up home prices (Benson et al., 1998). However, as expected, the

proximity of single-family houses to the coast, especially in low-lying areas along the Atlantic

and Gulf Coasts, makes houses more prone to SLR inundation. For example, in our Atlantic City

housing sample, 27,500 houses (79% of our Atlantic City housing sample) reside at an elevation

within 6ft of the current sea-level. Comparatively, Miami has roughly 49,614 houses (15% of our

Miami housing sample) that reside at an elevation within 6ft of the current sea-level. Compared

to Miami, Atlantic City’s concentration of properties in close proximity to low-lying areas clearly

suggests the likelihood of greater relative risk from SLR inundation, which is precisely what we

observe in our results.

Although more properties at or near the coast are linked to greater relative risk from SLR,

using cursory measures of “at risk”, such as matching to 6ft inundation shapefiles, are limited in
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assessing which properties will actually be affected by local SLR in the coming decades. For our

four cities, the share of our housing sample within the 6ft inundation shapefiles are: Atlantic City

(79%), Miami (15%), Galveston (47%), and California: Newport - San Pedro (14%). However,

these cursory estimates don’t incorporate local factors that influence the risk of properties to sea-

level rise. Under RCP4.5 (K14; 50th percentile), the share of properties we estimate as inundated

through 2100 are: Atlantic City (9%), Miami (0.2%), Galveston (16%), and California: Newport

- San Pedro (1.2%). Simply by comparing these summary statistics, we see that the cursory risk

measures (SLR shapefiles alone) are limited when assessing actual risk. For example, Atlantic

City (79%) has a much larger share of properties within the 6ft inundation shapefile compared

to Galveston (47%), but the share of properties at risk under RCP4.5 (K14; 50th percentile) are

higher in Galveston (16%) than Atlantic City (9%). These differences are attributable to local

SLR projections as Atlantic City has a projected 2.7ft SLR through 2100 under RCP4.5 (k14)

compared to 3.4ft in Galveston, and to the locations and elevations of individual properties in

each city. Ultimately, our results demonstrate that practitioners should account for local factors

(e.g., housing locations, local topography, and local SLR) to comprehensively assess SLR risk in

their local area.

4.2 Uncertainty and Risk Asymmetry

Two consistent features within our results are large uncertainties in housing market impair-

ment and asymmetry of impairment risk. First, our results generally indicate a larger impairment

uncertainty within each GHG concentration scenario than the uncertainty we find between each

of the GHG scenarios (figures 3-6, panel e). Using Atlantic City’s high GHG scenario (RCP8.5)

for K14 as an example, the range of impairment risk (90th - 10th percentiles) is 21,000 units

impaired (59% of total market by count), whereas the range of impairment risk is 5,800 units

impaired (17% of total market by count) between GHG concentration scenarios (RCP2.6 to
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RCP8.5 at the 50th percentile). This relationship of greater uncertainty within each GHG sce-

nario compared to across GHG scenarios is generally consistent whether we analyze SLR risk

in the base case (K14) or the accelerated ice sheet melt scenario (DP16). This speaks to the

critical importance of accounting for SLR uncertainty distributions when estimating housing

impairments within a given RCP scenario. A housing impairment analysis that focuses on me-

dian values of local SLR projections associated within each RCP scenario overlooks a highly

important source of uncertainty.

Second, our results generally indicate asymmetric risk to the upside (positive skewness) across

the three GHG concentration scenarios (RCPs 2.6, 4.5, and 8.5), except in some of the most at

risk metros under the most extreme scenarios. Generally, when we review the box and whisker

impairments, the upper portion of the box (50th to 75th percentile) is much larger than the

lower portion of the box (25th to 50th percentile). Additionally, the upper tails (to the 90th

percentile) are typically longer than the lower-tails (to the 10th percentile) (figures 4-6, panels

e,f), indicating strong positive risk asymmetry, which suggests more potential impairment under

a given GHG scenario than the median percentiles would indicate by themselves. For example,

we witness this positive skewness (i.e., larger upper boxes and longer upper tails) for Miami

(figure 4) under all GHG scenarios (both for K14 and DP16).

However, there are exceptions to the generally observed positive asymmetry. For example, we

witness positive skewness across all GHG scenarios in K14 for Atlantic City (figure 3). However,

in the most extreme SLR scenarios (i.e., RCP8.5 in DP16), our results indicate negative skewness

or a left tail risk. Under the most extreme case SLR case, Atlantic City begins to run out of

homes to impair (i.e., most of the city is under water at the 90th percentile for RCP 8.5 under

DP16), due to Atlantic City’s low lying topography and the city’s housing market being so close

to the coast. Outside of these types of edge cases (e.g. most at risk cities in the most extreme

scenarios), our results generally indicate positive asymmetry of SLR risk.
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Observed positive risk asymmetry is important as it provides motivation for cuts in GHG

emissions sooner rather than later, which may temper climate risk and nudge the global climate

towards lower risk GHG concentration scenarios (Hausfather & Peters, 2020; IPCC, 2014).

Future energy and carbon policies aside, taking into consideration the risk asymmetry is also an

important factor when assessing the overall risks coastal communities face from SLR through

the end of the century.

4.3 Policy Implications, Inundation Timing, and Economic Risk

Importantly, our analysis estimates the timing of housing impairment exposures from SLR

at the property and metro level. These inundation timing estimates can be of value for city

planners and local governments charged with implementing longer-term, risk-mitigating physical

infrastructure investments (e.g., levees, seawalls, etc.) or other climate policy actions (e.g., urban

planning decisions or carbon policies). Both of these actions require a robust understanding and

accounting of risks over time, to the best extent possible, which is one of the key goals of our

research. By analyzing a diverse set of metros across the U.S., our research identifies the unique

timing of risks a city may be facing from local sea-level rise. As an illustrative example, Figure

9 shows the cumulative median housing impairment (counts and values) under the medium

GHG concentration scenario (RCP4.5) through 2100 for Atlantic City, Miami, Galveston, and

California: Newport - San Pedro under K14 (tile a) and DP16 (tile b). Tile a (K14) is scaled to

the total impairment witnessed under tile b (DP16, the accelerated ice sheet scenario). For all 4

metros, property impairments are roughly doubled in DP16 compared to K14. Regardless of the

magnitude of impairment, these cumulative distribution functions provide an insight into when

SLR risk may occur in a given metro relative to other metros. For example, in Galveston roughly

12% of properties are inundated by 2050 under K14 compared to 11%, 5%, 2% of properties being

inundated by 2050 for Atlantic City, California: Newport - San Pedro, and Miami, respectively.
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Comparing Galveston and Miami for example, it is evident that SLR impairment takes place

much sooner in Galveston, while Galveston and Atlantic City face a more similar impairment

trajectory (not surprisingly as they are both barrier islands, subject to similar risks).

We also note that the differences between the K14 and DP16 impairment scenarios occur

largely after 2060. Thus, it is important for planners and decision makers to recognize that

relatively low levels of SLR from now until 2060 would not necessarily indicate that accelerated

ice sheet loss is not, in fact, occurring. Lack of recognition of these longer-term non-linear

acceleration dynamics could distort important SLR-related decisions and needs to be carefully

avoided to enable well-founded adaptive risk management. This highlights the possibility of

timing mismatches between the perception of risk – and associated mitigation or adaptation

strategies – and realized risk, which has been called the ”tragedy of the horizon” (Carney,

2015).

2020 2040 2060 2080 2100

0.00

0.25

0.50

0.75

1.00

S
h
ar

e 
Im

p
a
ir

ed
 H

ou
se

s

(a) K14

2020 2040 2060 2080 2100

(b) DP16

Count Cumulative Distribution Func.

Miami, FL

Atlantic City, NJ

Galveston, TX

CA Coast: Newport to San Pedro

Figure 9: Cumulative Distribution Function (CDF) of Housing Impairment under RCP4.5 (Kopp
et al., 2014, 2017; Deconto & Pollard, 2016); Left side: CDF for property impairment counts
(K14); Right side: CDF for property impairment counts (DP16).; Note: panel (a) values are
scaled to the cumulative values in panel (b), and therefore do not sum to 1.

The relative timing of SLR risk is important for city planners, as this information can help

improve decision-making regarding where and when infrastructure could be built to reduce risks

from SLR. By producing impairment estimates over time, we provide a measure of property
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exposure and cost from SLR inundation that urban planners can compare to the benefits of

mitigation (balancing costs and benefits), helping them determine optimal mitigation policies

and timing trajectories for their specific metro areas (Guthrie, 2020).

Perhaps a less obvious implication for our research is the risk to city finances or national

disaster programs from future SLR inundation. Our time series of local impairment estimates

provide a rough proxy for erosion of the tax base over time, due to SLR in each city evaluated.

As neighborhoods within a city face SLR inundation, out-migration may increase in the most

at-risk areas. This out-migration, may in turn, erode the tax base for a city at a time when it

needs to increase spending on risk mitigating infrastructure. On a national scale, these same

dynamics pose potential problems for the viability of disaster relief programs. As sea-level rises

and large areas of coastal cities are at greater risk from nuisance flooding and storm surge

inundation, the cost to national flood insurance programs, as well as disaster relief programs,

may also rise. Similar to local municipalities, higher costs may put significant strain on these

national programs.

Finally, our results on housing market value at risk have links to the financial sector, bond

markets, insurance companies, and financial regulatory agencies. Coincident with the housing

value at risk from SLR is the potential strain that may emerge in home mortgage markets.

Roughly 70 percent of homeowners have a mortgage on their property (Zillow, 2013), and a

negative effect on housing values may cause disruptions to home mortgage markets. Our results

indicate that a majority of risk from SLR takes place toward the end of the century, which is

outside the window of a standard 30-year mortgage. However, if these risks were unexpectedly

embodied in housing values, this may reduce the creditworthiness of some outstanding mortgages

as the loan to value ratios might decline (Keys & Mulder, 2020; Keenan & Bradt, 2020).5 Even if

a house is not currently prone to coastal inundation, future SLR and changes in risk perceptions

5Recent survey evidence indicates that coastal homeowners that are most at risk are reluctant to acknowledge
the risks they face from SLR and coastal inundation (Palm & Bolsen, 2020).
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may pose challenges for selling homes, refinancing a mortgage, or obtaining insurance due to

concerns about the viability of that property. These secondary and more investment focused

risks may be of concern to homeowners, lenders, and financial regulators.

5 Summary

We estimate a range of housing market value impairments at the property and city level for

select U.S. coastal metros through 2100, accounting for local topography and local SLR estimates

that incorporate several sources of climate uncertainty. We utilize a novel spatial matching

methodology, which allows us to estimate the timing of SLR inundation at the property level

with refined temporal granularity. These property impairment estimates are then summed to

create metro level SLR impairment estimates over time.

With nearly 40 percent of the U.S. population living along the coast, SLR is a substantial

threat to coastal communities. Our analysis provides insight into housing market value at risk for

major coastal cities. These results provide a useful model for the timing of losses and asymmetry

of risk from SLR inundation. Our risk matching methods could be used by other researchers

and practitioners to refine previous loss estimates for at risk properties, assess SLR risk in other

coastal markets (e.g. mortgages, commercial real estate, etc.), or be used to assess SLR risk for

various housing strata and populations (e.g., owner-occupied vs. renters, income level, etc). All

of these future research topics may benefit from the methodological approach outlined in this

paper.

In the near-term, our methods could also be utilized by policy makers, city officials, investors,

and bankers in cost-benefit decision-making related to mitigation, adaptation, and remediation

policies at the local and national level. Ultimately, our research provides a way (using pub-

licly available data) to measure the direct economic costs from SLR inundation within coastal

housing markets. Quantifying the range of future housing market value impairment is a first
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step in mitigating economic risks from SLR inundation. Our conservative impairment estimates,

which represent only a portion of the total housing market value at risk from SLR inundation,

contribute to the proper accounting of all climate-related risks.
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