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Abstract

We examine the macroeconomic effects of forward guidance shocks at the zero lower

bound. Empirically, we identify forward guidance shocks using unexpected changes

in futures contracts around monetary policy announcements. We then embed these

policy shocks in a vector autoregression to trace out their macroeconomic implications.

Forward guidance shocks that lower expected future policy rates lead to moderate

increases in economic activity and inflation. After examining forward guidance shocks

in the data, we show that a standard model of nominal price rigidity can reproduce

our empirical findings. To estimate our theoretical model, we generate a model-implied

futures curve which closely links our model with the data. Our results suggest no

disconnect between the empirical effects of forward guidance shocks around policy

announcements and the predictions from a standard theoretical model.
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1 Introduction

In December 2008, the Federal Open Market Committee (FOMC) lowered the federal funds

rate to its effective lower bound. With economic conditions continuing to deteriorate and

its conventional policy tool unavailable, the Federal Reserve announced its intention to keep

future policy rates exceptionally low “for some time.” Such communication about the future

path of policy, known as forward guidance, became a fixture of U.S. monetary policy.

However, recent theoretical and empirical works are divided on the macroeconomic ef-

fects of forward guidance. In standard models with nominal price rigidities, Eggertsson and

Woodford (2003) show that lowering the expected path of policy rates can effectively stimu-

late economic activity and increase inflation. However, Del Negro, Giannoni and Patterson

(2015), McKay, Nakamura and Steinsson (2016), and others argue that these theoretical

models overstate the expansionary effects of forward guidance. In contrast, empirical work

by Campbell et al. (2012) and Nakamura and Steinsson (2018) argues that communicating

lower expected rates may signal bad news about the state of the economy. Through this

macroeconomic news effect, these papers suggest that lowering expected policy rates may

cause a contraction in expected economic activity.

We examine this apparent disconnect between the empirical evidence and theoretical pre-

dictions of macroeconomic models. First, we study the empirical effects of forward guidance

shocks at the zero lower bound (ZLB). We identify forward guidance shocks in the data

using high-frequency changes in futures contracts around FOMC announcements. To trace

out the dynamic effects of these policy changes on macroeconomic aggregates, we embed

our identified forward guidance shocks in a standard vector autoregression (VAR). We find

forward guidance shocks that lower expected future policy rates result in a persistent eco-

nomic expansion. Following a one standard deviation forward guidance shock, which lowers

8-quarter ahead futures rate by about 6 basis points, output increases by about 15 basis

points and prices are about 5 basis points higher at their peak responses. Similar to conven-

tional policy shocks, we find that forward guidance shocks explain only a small fraction of

overall business-cycle fluctuations. Our findings are robust to alternative ordering schemes

in the VAR, different measures of economic activity and prices, and alternative measures of

expected future interest rates. We also document similar macroeconomic effects when we

estimate our empirical model prior to the onset of the zero lower bound.

After identifying forward guidance shocks in the data, we examine their effects in a stan-
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dard model of nominal price rigidity. Using a nonlinear solution method, we estimate a

standard New-Keynesian model with a zero lower bound constraint. We model a forward

guidance shock as an exogenous innovation to the central bank’s desired policy rate at the

zero lower bound. When desired rates are less than zero, shocks that reduce the desired rate

act like an exogenous extension of the zero lower bound episode. This exogenous extension

of the zero lower bound lowers expected future policy rates, which we link with our identified

forward guidance shock in the data. To appropriately calibrate our forward guidance shock

process, we generate a model-implied counterpart to the futures contracts used in our em-

pirical results. Using impulse response matching, we choose the parameters of our nonlinear

model such that a forward guidance shock in the model generates the same movements in

futures rates that we observe in the data.

Our theoretical model can reproduce the macroeconomic effects of forward guidance

shocks we find in the data. In the model, an exogenous decline in expected future policy

rates generates movements in economic activity and prices similar in shape and magnitude

to our empirical responses. The key features of our model are a reasonable degree of nominal

price rigidity, habits in household consumption, investment adjustment costs, and variable

capital utilization. Our results suggest that dynamic equilibrium models along the lines of

Christiano, Eichenbaum and Evans (2005) remain useful in examining the effects of mone-

tary policy shocks both at and away from the zero lower bound.

We find no disconnect between the empirical effects of forward guidance shocks around

FOMC announcements and the predictions from a standard theoretical model. Our findings

contrast with Del Negro, Giannoni and Patterson (2015), who argue that standard models

with nominal rigidities overestimate the expansionary effects of forward guidance. Our al-

ternative conclusion emerges from the size of the forward guidance shock we estimate. A

typical expansionary forward guidance shock around a monetary policy announcement low-

ers 8-quarter ahead futures rates by about 6 basis points. This shock extends the zero lower

bound duration by only one month in our model. Del Negro, Giannoni and Patterson (2015),

however, simulate a much longer one-year exogenous extension of the zero lower bound pe-

riod. In our high-frequency identification of policy shocks around FOMC announcements, we

do not observe forward guidance shocks of that size. Thus, our results suggest that standard

models work well in analyzing the size of forward guidance shocks we observe in the data

around FOMC announcements. However, our findings cannot speak to the plausibility of

the model’s predictions for substantially larger shocks.
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2 Forward Guidance Shocks in the Data

We use a two-step procedure to examine the macroeconomic effects of forward guidance

shocks in the data. First, we identify forward guidance shocks associated with regularly-

scheduled FOMC meetings using high-frequency changes in interest rate futures. Then,

we embed these policy shocks into a Bayesian VAR to trace out their dynamic effects on

macroeconomic aggregates. In our baseline results, we focus on the effects of forward guid-

ance shocks during the zero lower bound period (December 2008 - December 2015). After

presenting our baseline empirical results, we then also examine the effects of forward guidance

shocks prior to the onset of the zero lower bound in Section 2.6.

2.1 High-Frequency Futures Data

We use a combination of federal funds and eurodollar futures contracts to measure unex-

pected changes in forward guidance. For each regularly-scheduled FOMC meeting from

1994–2015, we compute the daily change in the current month or 3-month ahead federal

funds futures rates and the 2-8 quarter ahead eurodollar futures rates.1 Since any expected

changes in policy should be reflected in futures prices ahead of the meeting, the change in

futures prices on the day of the meeting provides a measure of the unexpected portion of the

policy announcement. Following Gurkaynak, Sack and Swanson (2005), we extract a target

and path factor that together summarize almost all of the variation in these futures rates

around policy announcements. In this paper, we focus on the path factor which captures

unexpected changes to the future path of policy rates that are unrelated to changes in the

current policy rate.2 We scale the path factor so that it moves the 8-quarter ahead eurodollar

futures rate one-for-one around FOMC meetings.

The path factor displays significant variation both prior to and during the zero lower

bound period and these fluctuations line up with key changes in FOMC forward guidance.

Figure 1 plots our forward guidance shock series from 1994–2015 and annotates the dates

associated with the some of the largest fluctuations. During the zero lower bound period,

we observe large declines in the expected path of rates when the FOMC announced its

intention to keep future policy rates exceptionally low for “some time” in December 2008,

when “some time” was replaced by “an extended period” in March 2009, and after the

1The payoffs of these contracts depend the effective federal funds rate for federal funds futures and the

3-month LIBOR on dollar denominated deposits for eurodollar futures.
2In the appendix, we provide additional details on the construction of our target and path factors and

provide a comparison with the Gurkaynak, Sack and Swanson (2005) path factor for the overlapping sample.
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change to date-based guidance in August 2011. Figure 1 also illustrates that the magnitude

of the movements in the path factor is similar before and during the zero lower bound period,

which suggests that the FOMC used forward guidance in both periods. Moreover, several of

the largest path factor observations before December 2008 coincide with the observations in

Table 4 of Gurkaynak, Sack and Swanson (2005) who carefully document the use of forward

guidance by the FOMC since the early 1990s. Thus, we leverage this pre-zero lower bound

sample in our empirical analysis in two ways. First, we use this earlier sample to elicit priors

for our VAR parameters at the zero lower bound. Second, we estimate the macroeconomic

effects of forward guidance before the onset of the zero lower bound which, unlike the zero

lower bound sample, was not accompanied by simultaneous large-scale asset purchases.

2.2 Baseline Empirical Model

To trace out the macroeconomic effects of a forward guidance shock, we embed the cumula-

tive sum of the path factor in a structural VAR.3 We estimate our baseline empirical model

at a monthly frequency using several indicators of real economic activity, a measure of ag-

gregate prices, and a government bond yield. Specifically, we include a monthly measure of

real GDP, a proxy for real equipment investment, capacity utilization, the GDP deflator,

the path factor, and the 2-year Treasury yield. The choice to include the 2-year Treasury

yield follows Gertler and Karadi (2015) and others who argue that the FOMC’s forward

guidance operates with roughly a two-year horizon. We use the Macroeconomic Advisers

monthly GDP series and its corresponding price deflator to measure aggregate real activity

and prices. We proxy equipment investment at a monthly frequency with deflated core cap-

ital goods shipments, a series the Bureau of Economic Analysis uses to calculate the official

quarterly investment data. Appendix B contains details on the data construction. GDP, the

GDP deflator, and investment enter the VAR in natural log form.4

Following much of the previous VAR literature studying the effects of conventional mon-

3This approach follows Romer and Romer (2004) and Barakchian and Crowe (2013) who point out that

including the cumulative sum of unexpected interest rate changes in a VAR is most consistent with the many

VAR models which include the federal funds rate in levels. Following these papers, we assign a value of zero

to months in which there is no FOMC meeting before cumulatively summing the path factor series.
4We could instead follow Romer and Romer (2004) and estimate the coefficients of interest from the

vector moving average (VMA) more directly by regressing macroeconomic aggregates on lags of the path

factor. However, this approach implies that we lose a number of initial data points. Since our sample is

already limited, we use a VAR approach which is asymptotically equivalent assuming that the VMA has a

VAR representation.
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etary policy shocks, we order our forward guidance shock measure after real activity and

the price level but before the 2-year Treasury yield using a recursive identification scheme.

This ordering assumes that macroeconomic conditions adjust slowly to changes in expected

policy rates but financial markets may respond immediately. At a monthly frequency, the as-

sumption that a monetary policy announcement today does not affect real activity or prices

within the period seems plausible. However, our results are not sensitive to this ordering.

In Section 2.5, we show that our results are unchanged if we order the path factor first.

We estimate and conduct statistical inference on the VAR from a Bayesian perspective.

Our primary interest is to examine the effects of forward guidance shocks during the zero

lower bound period. However, Figure 1 illustrates that changes in FOMC forward guidance

around policy announcements also occurred prior to the onset of the zero lower bound.

Therefore, we use the data from the pre-zero lower bound period as a pre-sample to form

our priors for the VAR parameters during the zero lower bound period. We refer to this as

our empirical Bayes prior.5 In Section 2.5, however, we show that we find similar results

if we instead use a standard Minnesota prior or an uninformative prior which centers the

VAR coefficients at the OLS estimates during the zero lower bound period. Using standard

information selection criteria, we include three lags in the VAR.6

2.3 Empirical Impulse Responses

We now turn to our key empirical question: What are the macroeconomic effects of forward

guidance shocks? Figure 2 plots the estimated impulse responses to an identified forward

guidance shock along with 90% probability intervals. A one standard deviation forward

guidance shock lowers the path factor by about 6 basis points. Since we normalized our

path factor to move one-for-one with the 8-quarter eurodollar future, this decline in the path

factor implies that two-year ahead futures rates also decline by about 6 basis points.

A forward guidance shock induces a gradual expansion in economic activity accompanied

by increases in investment and capacity utilization and some modest inflationary pressures.

Per our ordering assumption, economic activity and prices remain unchanged at impact. In

the following months, output rises in a hump-shaped pattern and remains elevated for the

5More specifically, for the pre-zero lower bound period, we assume a non-informative natural conjugate

Gaussian-Inverse Wishart prior such that the posterior distribution of the VAR parameters is based on the

OLS quantities. Then, we use this posterior distribution to define our prior for the VAR parameters at the

zero lower bound period.
6In the appendix, we illustrate that our results are robust to including twelve lags in the VAR.
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next four years. At its peak response, output increases by almost 15 basis points. Investment

and capacity utilization also exhibit hump-shaped responses and remain elevated for several

years. However, they rise by more than output and reach their peaks more quickly. Prices

move up slowly over the horizon of the impulse response and level out after three or four

years. Notably, the increase in economic activity and prices persists well beyond the time

that expected future rates remain depressed. For instance, the 2-year Treasury yield initially

declines with expected future rates but starts to overshoot after just two years. However,

output and prices remain elevated throughout the impulse response horizon. Thus, we find

that forward guidance shocks share many of the same empirical features of conventional

policy shocks as identified by Christiano, Eichenbaum and Evans (2005) and others.

These estimated responses contrast with the work of Campbell et al. (2012) and Naka-

mura and Steinsson (2018), which finds that an unexpected decline in future policy rates

lowers forecasts of real activity and inflation. In the appendix, we show that meaningful dif-

ferences in our policy shock series relative to these two papers help to reconcile our differing

conclusions. However, we prefer our path factor shock series for two reasons. First, prior to

the zero lower bound, our estimated path factor shock moves closely with the path factor

developed in Gurkaynak, Sack and Swanson (2005) and thus is consistent with the seminal

work in this area. Second, changes in our path factor during the zero lower bound are consis-

tent with the narrative of FOMC communications. Around some key policy announcements,

the policy shocks series of Nakamura and Steinsson (2018) and Campbell et al. (2012) either

show little variation or have signs that differ from market commentary at that time.

2.4 Forecast Error Variance Decompositions

Similar to conventional policy shocks, forward guidance shocks only account for a small

fraction of business-cycle fluctuations. At the two-year horizon, we find that forward guid-

ance shocks explain less than 10 percent of the total unexpected fluctuations in output.

For comparison, we also estimate variance decompositions for conventional monetary policy

shocks based on the VAR models of Romer and Romer (2004) and Christiano, Eichenbaum

and Evans (2005). These models find that conventional policy shocks explain 25 and 41 per-

cent (respectively) of the unexpected fluctuations in output over the two-year horizon. While

forward guidance shocks account for a smaller fraction of the variation in output at business-

cycle frequencies compared to conventional monetary policy shocks, these differences do not

appear to be statistically meaningful.
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2.5 Robustness of Empirical Results

Our baseline results show that a decline in the expected path of the policy rate leads to a

persistent expansion in economic activity, a gradual rise in prices, and lower Treasury yields.

Before asking whether a standard theoretical model can match these estimated responses, we

explore the robustness of our empirical findings. Figures 3 and 4 show the impulse responses

to a forward guidance shock from several alternative specifications of the VAR model. To

keep these figures easily readable, we omit the probability intervals in the main text. In the

appendix, however, we present the probability intervals that accompany the point estimates

for each alternative empirical specification. Based on the analysis in this section, we con-

clude that the qualitative and quantitative features of our estimated responses to a forward

guidance shock are robust across several dimensions of our VAR model.

The estimated responses to a forward guidance shock do not meaningfully change when

we alter the ordering of the variables in the VAR or use different macroeconomic indicators.

Figure 3 shows the impulse responses when we order our policy surprise series first in our

recursive VAR. This ordering interprets the policy surprises as predetermined with respect to

macroeconomic aggregates and allows economic activity and prices to respond immediately

to the forward guidance shock. When the path factor is ordered first, the point estimates of

the responses of all the variables are almost identical to our baseline VAR model. Figure 3

also shows the impulse responses if we measure economic activity and prices using industrial

production and the consumer price index, the same variables Gertler and Karadi (2015)

use in their study of monetary policy shocks. Using these alternative indicators, the peak

responses of output and prices occur a bit earlier and the response of output is a bit larger

than our baseline model. However, when we account for the uncertainty surrounding the

estimated responses, neither difference appears to be significant.

We find similar macroeconomic effects if we use a Minnesota prior rather than the empir-

ical Bayes prior we employ in our baseline specification. This prior is standard in the VAR

literature and balances the need to capture the rich dynamics in the data with the concern

of over-fitting the data by adding too many lags. Figure 3 illustrates that the responses of

real variables and prices are remarkably similar under a Minnesota prior with 13 lags. The

only notable difference is the response of the 2-year Treasury yield which exhibits a shallower

decline and subsequently over-shoots by more in later months. However, this quantitative

difference with our baseline specification is not outside the range of 90% probability inter-

vals for the two empirical models. Figure 3 also shows the estimated responses if we further

8



restrict the VAR coefficients such that we treat the high-frequency policy surprises as ex-

ogenous. In particular, we adjust the Minnesota prior so that only own lags have non-zero

coefficients in the path factor equation. The dynamics of the path factor following a forward

guidance shock in this alternative specification are similar to those in Figure 2; however, the

path factor and 2-year Treasury yield no longer overshoot. The responses of macroeconomic

aggregates are also similar compared to the baseline impulse responses.7

The estimated effects of forward guidance shocks do not depend on the use of informa-

tive priors. Figure 4 shows the impulse responses if we center the VAR parameters at the

OLS estimates over the zero lower bound period rather than using an empirical Bayes or

Minnesota prior.8 Using only data beyond December 2008 to inform the VAR coefficients,

we observe slightly larger responses of investment, capacity utilization, and prices as well as

a more persistent response of overall output to a forward guidance shock. Yet, the hallmark

features we previously documented remain, including the hump-shaped responses of real

variables, the gradual rise in prices, and the persistence of these effects beyond the reduction

in rates.

Up to this point, we have relied on the path factor to measure forward guidance surprises

that are orthogonal to unexpected changes in the current federal funds rate. However,

focusing only on the zero lower bound period, we can also identify forward guidance shocks

by examining fluctuations in the raw interest rate futures around policy announcements

since the target range for the federal funds rate remained unchanged during this period.

Figure 4 shows that we find similar macroeconomic effects to our path factor during the

zero lower bound if we instead use 4-, 8-, or 12-quarter ahead eurodollar futures to measure

forward guidance shocks. This finding confirms that the path factor is able to synthesize the

behavior of many futures rates around FOMC meetings. The stability of our results when we

measure forward guidance shocks using the 12-quarter ahead eurodollar rate is particularly

reassuring for two reasons. First, this horizon of rates lies beyond the range of futures we

use to construct our path factor. Second, Swanson and Williams (2014) suggest that this

rate was less constrained during the zero lower bound period.

7In the appendix, we compare our approach to the Proxy VAR approach in Gertler and Karadi (2015)

and document similar effects on output following a forward guidance shock.
8Given the short sample, we include only one lag for the VARs estimated with uninformative priors.
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2.6 Quantitative Easing & Forward Guidance Before 2009

The previous section provides evidence that forward guidance announcements that lower the

expected path of rates at the zero lower bound lead to a modest but statistically significant

expansion of economic activity. During this period, however, the FOMC also conducted

several rounds of large-scale asset purchases known as quantitative easing. Similar to for-

ward guidance, the stated goal of these asset purchases was to ease financial conditions and

promote economic activity. Announcements regarding these asset-purchase programs often

appeared alongside changes in the FOMC’s forward guidance. Thus, one may be concerned

that some of the macroeconomic effects we attribute to forward guidance actually emanate

from large-scale asset-purchases.

If asset purchases solely operate by signaling the path of future short-term interest rates,

then the simultaneous quantitative easing announcements would not affect our results. For

example, Krishnamurthy and Vissing-Jorgensen (2011), Woodford (2012), Bauer and Rude-

busch (2014), and Bhattarai, Eggertsson and Gafarov (2015) argue that asset purchases

acted as a commitment device to reinforce the FOMC’s guidance about future policy rates.

However, if asset purchases also operate through a portfolio-rebalancing channel, then the

simultaneous quantitative easing announcements could bias our estimates of the macroeco-

nomic effects of forward guidance. To address this concern, we estimate three additional

empirical specifications which are shown in Figure 5.9

The first two robustness checks continue to focus on the use of forward guidance during

the zero lower bound period. First, we simply omit observations from the path factor series

that coincided with the announcement of a new asset purchase program.10 Figure 5 illus-

trates that dropping these observations results in impulse responses that are similar to our

baseline estimates. Next, we include one-year ahead Blue Chip forecasts for the short-term

interest rates in place of the 2-year Treasury yield. This specification helps determine if our

forward guidance measure is capturing revisions to the expected path of interest rates versus

changes in risk premia. If our results are solely driven by a portfolio-rebalancing channel,

then survey-based expectations of future short-term interest rates would likely be unchanged

or even rise following the policy announcement as the portfolio-rebalancing channel would

raise output and inflation independent of the FOMC’s forward guidance. However, Figure 5

shows that expectations of short-term interest rates fall after a forward guidance announce-

9We use an uninformative prior for all three of these robustness checks.
10Specifically, we drop March 18, 2009, November 3, 2010, September 21, 2011, and September 13, 2012,

which correspond to the expansion of QE1 and beginning of QE2, QE3, and the MEP.
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ment. Moreover, the decline is of similar magnitude to the movement in the path factor,

which suggests that the path factor is primarily capturing revisions to the expected path of

future interest rates and not portfolio-rebalancing effects from large-scale asset purchases.

Finally, we examine the macroeconomic effects of forward guidance announcements prior

to the zero lower bound, a time when the FOMC made numerous announcements about

the future path of policy rates but did not engage in large-scale asset purchases. Therefore,

we can use this earlier sample period to trace out the macroeconomic effects of a forward

guidance shock without worrying about the simultaneous use of quantitative easing. Fig-

ure 5 plots the impulse responses to a one standard deviation path factor shock over the

1994–2008 and 2009–2015 sample periods (estimated separately). We find that forward

guidance shocks produce similar macroeconomic effects in both samples which suggests that

quantitative easing is not driving our empirical estimates during the zero lower bound period.

Taken together, these results provide further evidence that forward guidance shocks that

lower expected future policy rates lead to hump-shaped increases in real variables, a gradual

rise in prices, and that these effects persist beyond the reduction in expected rates. Moreover,

the presence of quantitative easing does not appear to be biasing these findings. We now take

these VAR results as stylized evidence on the effects of forward guidance in the data and ask

whether a standard model of nominal price rigidity can reproduce these dynamics. Overall,

our findings suggest no disconnect between the empirical effects of forward guidance shocks

around FOMC announcements and the predictions from a standard theoretical model.

3 A Theoretical Model of Nominal Price Rigidity

This section outlines the dynamic stochastic general equilibrium model we use to analyze

forward guidance shocks. The model shares features with the models of Ireland (2011) and

Christiano, Eichenbaum and Evans (2005). Our model features optimizing households and

firms and a central bank that systematically adjusts the nominal interest rate to offset shocks

to the economy but is constrained by the zero lower bound. We allow for sticky prices using

the staggered price-adjustment specification of Calvo (1983). The model considers shocks to

household preferences and the central bank’s desired policy rate. To appropriately calibrate

our forward guidance shock process, we generate a model-implied counterpart to the futures

contracts from our empirical results. Following Rotemberg and Woodford (1997) and Chris-

tiano, Eichenbaum and Evans (2005), we assume that consumption, investment, and pricing

decisions are made prior to the realization of both shocks. This timing assumption ensures
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that the impact responses of macroeconomic aggregates in the model following a forward

guidance shock are consistent with the recursive identification scheme from our baseline

VAR model. Appendix C provides details regarding the model’s equilibrium conditions.

3.1 Households

The representative household maximizes lifetime expected utility over streams of consump-

tion Ct and leisure 1 − Nt. The household derives utility from consumption relative to a

habit level Ht. The household receives income from the intermediate goods-producing firm

in the form of wages Wt for each unit of labor Nt supplied and through lump-sum dividends

Dt. The household has access to zero net-supply one-period nominal Bt and real BR
t bonds.

Nominal bonds pay one dollar and are purchased at a discounted price 1/Rt, where Rt is

the one-period gross nominal interest rate. Real bonds return one unit of consumption and

have a purchase price 1/RR
t , where RR

t denotes the one-period gross real interest rate.

The representative household maximizes lifetime utility by choosing Ct+s, Nt+s, Bt+s+1,

and BR
t+s+1, for all s = 0, 1, 2, . . . by solving the following problem:

max Et−1

∞∑
s=0

at+sβ
s

(
log (Ct+s − bHt+s)− ξ

N1+η
t+s

1 + η

)
subject to the intertemporal household budget constraint each period,

Ct +
1

Rt

Bt+1

Pt
+

1

RR
t

BR
t+1 ≤

Wt

Pt
Nt +

Bt

Pt
+
Dt

Pt
+BR

t .

λt denotes the Lagrange multiplier on the household budget constraint. Consumption habits

are external to the household and linked to last period’s aggregate consumption Ht = Ct−1.

The discount factor of the household β is subject to shocks via the stochastic process at.

We interpret these fluctuations as demand shocks since an increase in at induces households

to consume more and work less today for no technological reason. We use these shocks to

simulate a large decline in household demand which generates a zero lower bound episode.

The stochastic process for these fluctuations is as follows:

at = (1− ρa) a+ ρaat−1 + σaεat , (1)

where εat is an independent and standard normal random variable.

3.2 Final Goods Producers

The representative final goods producer uses Yt(i) units of each intermediate good produced

by the intermediate goods-producing firm i ∈ [0, 1]. The market for final goods is per-
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fectly competitive, and thus the final goods-producing firm earns zero profits in equilibrium.

Following Ireland (2011), the aggregate price index Pt can be written as follows:

Pt =

[∫ 1

0

Pt(i)
1−θµdi

] 1
1−θµ

3.3 Intermediate Goods Producers

Each intermediate goods-producing firm i rents labor Nit from the household to produce

intermediate good Yit, which is sold in a monopolistically competitive market. Each period,

producers can reoptimize their nominal price Pit with a constant probability 1 − ω. Firms

that cannot reset their price index it to a weighted combination of past and steady-state in-

flation. Intermediate-goods firms own their capital stock Kit and face a convex cost governed

by κ when changing their level of investment Iit. Firms also choose the rate of utilization

of their installed physical capital Uit which affects its depreciation rate. The intermediate

goods firms all have access to the same constant returns-to-scale production function. A

production subsidy Ψ = θ/(θ − 1) ensures that the steady state of the model is efficient.

We determine the optimal decisions of the intermediate goods-producing firm in two

steps. First, firms determine the minimal cost method to meet the current level of demand

for their product. Thus, each firm solves the following cost minimization problem:

min Et−1

∞∑
s=0

(
βs
λt+s
λt

)(
Wt+s

Pt+s
Ni,t+s + Ii,t+s

)
subject to the production function,

Yit ≤
(
KitUit

)α(
Nit

)1−α
and its capital accumulation equation,

Kit+1 =

(
1− δ

(
Uit

))
Kit +

(
1− κ

2

( Iit
Iit−1

− 1
)2)

Iit.

We assume depreciation depends on utilization via the following functional form:

δ
(
Uit

)
= δ + δ1

(
Uit − U

)
+

(
δ2
2

)(
Uit − U

)2
.

Ξt denotes the marginal cost of producing one additional unit of intermediate good i and qt is

the price of a marginal unit of installed capital. After solving its cost minimization problem,
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firms that can reoptimize choose their optimal price to maximize their lifetime discounted

real profits. Their profit maximization problem is as follows:

max Et−1

∞∑
s=0

ωsβs
λt+s
λt

(
Ψ Πs(1−χ)Πχ

t−1,t−1+s
Pit
Pt+s

Yit+s − Ξt+s Yit+s

)

subject to the following demand curve,

Yit+s =

[
Πs(1−χ)Πχ

t−1,t−1+s
Pi,t
Pt+s

]−θ
Yt+s.

The inflation rate between periods t and t+ s is defined as follows:

Πt,t+s =

1 s = 0

Pt+1

Pt
× Pt+2

Pt+1
× · · · × Pt+s

Pt+s−1
s = 1, 2, . . .

The parameter χ controls the degree of indexation to lagged inflation.

3.4 Equilibrium

In the symmetric equilibrium, all intermediate goods firms face the same marginal costs and

hence choose to employ the same amount of labor, capital, and utilization rate. All firms

that can change their nominal price choose the same optimal price P ∗t . We denote the gross

one-period inflation rate as Πt = Pt/Pt−1. Under the assumption of Calvo (1983) pricing

frictions, the aggregate price index Pt evolves as follows:

P 1−θ
t = θ

(
Π1−χ Πχ

t−1

)1−θ(
Pt−1

)1−θ
+
(

1− θ
)(
P ∗t
)1−θ

3.5 Monetary Policy

We assume the monetary authority sets the one-period net nominal interest rate rt = log(Rt).

Due to the zero lower bound on nominal interest rates, the central bank cannot lower its

nominal policy rate below zero. In the spirit of Reifschneider and Williams (2000), we assume

the monetary authority sets its policy rate according to the following history-dependent rule

subject to the zero lower bound:

rdt = φrr
d
t−1 +

(
1− φr

)(
r + φπ

(
πt − π

)
+ φy yt

)
+ νt (2)

νt = ρννt−1 + σνενt (3)

rt = max
(

0, rdt

)
(4)
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where rdt is the desired policy rate of the monetary authority and rt is the actual policy rate

subject to the zero lower bound. πt denotes the log of the one-period gross inflation rate Πt

and yt is the gap between the log of current and log of steady-state output. Finally, νt is

an autocorrelated monetary policy shock. Away from the zero lower bound, this policy rule

acts like a Taylor-type policy rule with interest rate smoothing. Also, an exogenous ενt shock

away from the zero lower bound acts like a conventional monetary policy shock.

When the economy encounters the zero lower bound, however, this history-dependent

rule lowers the future path of policy to help offset the previous higher-than-desired nominal

rates caused by the lower bound constraint. Households fully internalize this future conduct

of policy. When desired rates are less than zero, an exogenous shock to the desired rate ενt

acts like an exogenous extension of the zero lower bound episode. This exogenous extension

of the zero lower bound lowers future expected policy rates but leaves current policy rates

unchanged, which we link with our identified forward guidance shock in the data. We believe

this modeling framework closely aligns with our empirical measure of forward guidance as

the path factor is constructed to be orthogonal to changes in the current policy rate.11

3.6 Generating Model-Implied Futures Contracts

We want to ensure our simulated forward guidance shock in the model is consistent with the

typical forward guidance shock we identify in the data. Since we measure forward guidance

shocks empirically using fluctuations in futures rates, we generate a model counterpart to

the eurodollar futures contracts we examine in the data.

We denote the price of a n-month ahead eurodollar futures contract at time t by fnt . The

payoff on this futures contract equals one minus the current annualized 3-month LIBOR

rate in the contract expiration month. For the 1-month ahead contract in our model, this

payoff concept equals 1 − 12 ∗ 1
3
∗ (rt+1 + rt+2 + rt+3), where rt+n is the policy rate of the

central bank in month t+ n. Therefore, we calculate the price of the one-month ahead zero

net-supply futures contract by including the following equilibrium condition in our model:

f 1
t = Et

{
1− 12 ∗ 1

3
∗
(
rt+1 + rt+2 + rt+3

)}
. (5)

11Our forward guidance shock specification differs from the works of Del Negro, Giannoni and Patterson

(2015) and others, which use anticipated “news” shocks about future monetary policy to model forward

guidance shocks. In the appendix, we show that we can achieve identical macroeconomic effects from either

our specification or a news-shock approach. We prefer our specification because it is parsimonious and it

allows us to estimate our model.
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For contracts of maturity longer that one month, we can determine the equilibrium futures

prices as follows:

fnt = Et

{
1− 12 ∗ 1

3
∗
(
rt+n + rt+n+1 + rt+n+2

)}
. (6)

Note that the structure of the futures contracts implies that an n-month contract at time

t becomes an n − 1 contract at time t + 1. Therefore, we can also conveniently write the

futures prices for maturities longer than one month recursively:

fnt = Et

{
fn−1t+1

}
. (7)

For a given horizon, we can determine the futures-implied interest rate by computing one

minus the contract price.12 These model counterparts allow us to determine the appropriate-

sized forward guidance shock to simulate in the model.

Since we also examine the effects of forward guidance shock on 2-year Treasury yields in

the data, we evaluate the model’s predictions for bond yields. Therefore, following Rude-

busch and Swanson (2012), we compute the price of a n-month default-free zero-coupon

bond that pays one dollar at maturity using the following equilibrium condition:

pnt = Et

{(
β
λt+1

λt

1

Πt+1

)
pn−1t+1

}
, (8)

where the term in parenthesis is the household’s nominal stochastic discount factor and

p0t = 1. The continuously-compounded yield to maturity on the n-period bond is as follows:

ynt = − 1

n
log pnt . (9)

To be consistent with the timing assumptions in our structural VAR, we assume that futures

rates and bond yields can change in the same period as the forward guidance shock but

output and prices are fixed at impact.

3.7 Solution Method

We solve our model using the OccBin toolkit developed by Guerrieri and Iacoviello (2015).

This piecewise linear approximation solution method allows us to model the occasionally-

12Payoffs on futures contracts are not discounted using the household’s stochastic discount factor since, in

reality, investors in futures contracts post collateral (which also earns a return). Thus, there is no opportunity

cost of funds associated with futures positions and it is not necessary to discount the payoffs until maturity.
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binding zero lower bound and solve for the model-implied futures prices in only a few seconds,

which permits us to estimate several key model parameters.13

3.8 Estimation Strategy

Our primary interest is evaluating the model’s ability to reproduce the empirical impulse

responses of a forward guidance shock from Section 2. Therefore, we estimate our model

using impulse response matching. To compute the impulse responses in our model, we gen-

erate two time paths for the economy. In the first time path, we simulate a large negative

demand shock which causes the zero lower bound to bind for an extended period. In the

second time path, we simulate the same large negative demand shock but also simulate a

negative shock to the desired policy rate in Equation 2. We assume that the economy is

hit by no further shocks and compute the percent difference between the two time paths as

the impulse response to an expansionary forward guidance shock at the zero lower bound.

Since the economy is at the zero lower bound, this reduction to the desired rate acts like an

exogenous extension of the zero lower bound period.

Our estimation strategy chooses model parameters such that the model’s impulse re-

sponses come as close as possible to the empirical VAR responses. To implement this strat-

egy, we follow Rotemberg and Woodford (1997) and Christiano, Eichenbaum and Evans

(2005) who choose the size of a conventional monetary policy shock such that the move-

ments in their model-implied policy indicator are consistent with the impulse responses from

an identified vector autoregression. Since the focus of this paper is on forward guidance

shocks during the zero lower bound period, however, we discipline the model using expec-

tations of future policy rates. In particular, our estimation procedure picks the size and

persistence of the forward guidance shock process which enables the model to generate the

same movement in 8-quarter ahead futures rates that we observe in the VAR. We find that

linking the model and data counterparts is crucial in order to evaluate the model’s fit. In

particular, if we were to leave the movements in model-implied expected future interest rates

unconstrained, then it is unclear what size forward guidance shock to simulate in the model.

Following much of the previous literature, we partition the model parameters into two

groups. The first group is composed of β, Π, η, ξ, θ, φπ, φy, ρa, σ
a. We calibrate these pa-

13Using a fully nonlinear, but simplified, version of our model with a policy function iteration method.

We find that the Guerrieri and Iacoviello (2015) toolkit provides a good approximation dynamics of the full

nonlinear economy after a forward guidance shock.
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rameters using steady-state relationships or results from previous studies. Since the model

shares features with the model of Ireland (2011), we calibrate some of our parameters to

match his values or estimates. To match our VAR evidence, we calibrate the model to a

monthly frequency. We set ξ to normalize output Y to equal one at the deterministic steady

state. We choose standard values for the monetary policy reaction to inflation and output

(φπ = 1.5, φy = 0.1). Our monthly calibrations of β and Π imply a steady state annualized

real interest rate of two percent and a two percent annualized inflation target.

We estimate the second set of model parameters which consists of the household habit

parameter b, the probability that a firm can not reoptimize its price ω, the degree of lagged

inflation indexation χ, the degree of smoothing in the monetary policy rule φr, the degree of

investment adjustment costs κ, the elasticity of the return on capital with respect to capacity

utilization σδ = δ2/δ1, and the forward guidance shock parameters ρν and σν . In addition,

we also estimate the size of the initial negative demand shock εa0 which takes the economy

to the zero lower bound prior to the forward guidance shock. We collect these parameters

into a vector γ = (b, ω, χ, φr, κ, σδ, ρν , σν , ε
a
0).

Using a Bayesian impulse response matching estimator, we estimate these key model

parameters by finding the values which maximize the posterior distribution. Let ψ̂ denote

the impulse response functions for the 6 variables in our empirical VAR stacked into a single

vector with (6 × 48 = 288) rows and let the diagonal matrix V −1 denote a measure of the

precision of the empirical impulse responses.14 Then, let ψ(γ) denote the theoretical model’s

corresponding counterpart to ψ̂. Following Christiano, Trabandt and Walentin (2010), we

can write the approximate likelihood function as follows:

L(ψ̂ | γ, V ) = (2π)−
N
2 | V |−

1
2 exp

[
−0.5(ψ̂ − ψ(γ))′V −1(ψ̂ − ψ(γ))

]
.

Let p(γ) denote the joint prior density over γ. According to Bayes rule,

f(γ | ψ̂, V ) ∝ L(ψ̂ | γ, V )p(γ), (10)

where f(γ | ψ̂, V ) is the posterior density over γ. Our estimator solves the following problem:

max
γ

f(γ | ψ̂, V ). (11)

14The diagonal of V −1 contains one over the squared difference between the 95th and 5th percentile

of the empirical probability interval. Omitting off-diagonal terms from V helps make our estimator more

transparent as it attempts to place the model’s impulse responses inside the empirical probability intervals.
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3.9 Priors Over Parameters

For our priors, we use a Beta distribution for parameters that lie between 0 and 1 and a

Gamma distribution for parameters which are positive but unbounded. For the household

habit parameter b, degree of indexation χ, and the persistence of the forward guidance shock

ρν , we center the prior mode at 0.5 with a standard deviation of 0.25. For the Calvo param-

eter ω, we tightly center our prior mode at 0.93 which is consistent Nakamura and Steinsson

(2008)’s evidence that prices remain fixed for about one year on average. We center our

prior mode over φr at 0.95 which is consistent with a large literature arguing that historical

Federal Reserve policy features a high degree of inertia. However, we set a loose prior on this

parameter since, as we discussed in Section 3.5, its interpretation changes when the economy

encounters the zero lower bound.

For the investment adjustment cost parameter κ and elasticity of capital utilization σδ,

we center our prior at the quarterly estimates of Christiano, Eichenbaum and Evans (2005).

However, since our model is calibrated to a monthly frequency, we set loose priors over these

parameters to reflect our uncertainty over the exact time-aggregation function. Our prior for

the size of the forward guidance shock σν is similarly uninformative. We restrict the initial

aggregate demand shock εa0 to be negative in order to simulate a decline in aggregate demand

that takes the economy to the zero lower bound prior to the forward guidance shock.

4 Estimated Responses to a Forward Guidance Shock

We now analyze the effects of a forward guidance shock in our estimated model and show

that the model can reproduce our empirical evidence. Figure 2 plots both the empirical and

model-implied impulse responses to a forward guidance shock. At impact, the forward guid-

ance shock causes the model-implied 8-quarter eurodollar rate to decline by about six basis

points, which is consistent with our empirical findings. Output, investment, and capacity

utilization in the model all rise after the shock in hump-shaped patterns similar to their VAR

counterparts. The model also replicates the gradual increase in prices we observe in the data.

The peak response of output in the model is quantitatively similar to our empirical results,

although the model-implied peak occurs slightly earlier than in the data. As in the data,

the 2-year bond yield falls as the forward guidance shock lowers the expected path of short-

term interest rates in the economy. Importantly, all of the model’s impulse responses fall

within the VAR’s probability intervals, which suggests the predictions from a standard model

of monetary policy are generally in line with the empirical effects of a forward guidance shock.

19



To provide additional intuition for our results, Figure 6 shows the impulse responses

for consumption, additional futures contracts, and real interest rates. Prior to the forward

guidance shock, the estimated negative aggregate demand shock implies that the economy

is expected to be at the zero lower bound for 20 months. The estimated forward guidance

shock then extends the zero lower bound duration by one month. Since households expect

the zero lower bound to persist for total of 21 months, 12-month ahead futures rates do not

move immediately after the forward guidance shock. However, the 24-month ahead contract

falls by several basis points as expected future nominal policy rates decline. The combination

of the forward guidance shock, nominal price and investment rigidities, and the zero lower

bound produces a hump-shaped response of real interest rates. At impact, current nominal

policy rates are fixed at zero and expected inflation rises very slightly due to the nominal

rigidity in price setting. Thus, real interest rates only fall modestly while the economy

remains at the zero lower bound. However, real rates fall sharply once the economy exits the

zero lower bound and the monetary authority can lower its current nominal policy rate. This

time path for real interest rates, in addition to habits in consumption, causes a very gradual

increase in consumption, which peaks about one year after the forward guidance shock.

4.1 Role of the Initial Demand Shock

While many features of our model are standard, simulating a forward guidance shock at the

zero lower bound requires us to estimate the initial conditions in the economy prior to the

forward guidance shock. In Figure 6, we illustrate how our estimate of the initial aggregate

demand shock affects our main results.

Disciplining the model using futures contracts helps the estimation procedure determine

the appropriate zero lower bound episode to simulate in the model. In our baseline results,

we find that a total zero lower bound episode of 21 months allows the model to match the

data. For comparison, we simulate a larger initial shock to the economy such that the zero

lower bound persists for significantly longer.15 Figure 6 plots the responses under the longer

36-month zero lower bound duration and our baseline 21-month scenario. If we simulate too

large of an initial demand shock, the 24-month ahead futures rate fails to move at impact and

displays a somewhat hump-shaped pattern. This time path is clearly inconsistent with the

empirical evidence from Figure 2 where futures rates fall at impact and rise monotonically.

15Our estimated zero lower bound duration of a little less than two years is consistent with the ex ante

views of professional forecasters as detailed in Figure 4 of Swanson and Williams (2014).
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Thus, appropriately choosing the initial demand shock ensures that the model can generate

movements in futures rates similar to what we observe in the data.

4.2 Parameter Estimates

The model requires a mix of nominal as well as real rigidities to match the VAR impulse

responses. The top panel of Table 2 shows that our estimated degree of nominal rigidity ω

implies that prices remain fixed for about 7 quarters, on average. While prices in our model

are more persistent than the micro-level estimates of Nakamura and Steinsson (2008), our

results are consistent with the findings of Gali and Gertler (1999) and Del Negro, Giannoni

and Schorfheide (2015). We find essentially no role for lagged indexation of prices with

χ = 0.04, which likely reflects a decline in the persistence of inflation over time.

In addition to a moderate degree of nominal rigidity, three real rigidities help the model

reproduce the empirical evidence. Our estimate of consumption habits b is higher than the

estimate of Christiano, Eichenbaum and Evans (2005), as one might expect when moving

from a quarterly to a monthly frequency. As in Christiano, Eichenbaum and Evans (2005),

our estimate of the capacity utilization adjustment cost parameter is very small and not sig-

nificantly different from zero. Since 1/σδ governs the elasticity of capacity utilization with

respect to the return on capital, our estimate of σδ implies a large response of utilization

to a given movement in capital returns, which is consistent with our VAR evidence. Turn-

ing to investment, we find a much larger monthly investment adjustment cost parameter κ

than the quarterly estimates of Christiano, Eichenbaum and Evans (2005), which suggests

that, at a monthly frequency, firms make more incremental adjustments in their capital stock.

We estimate a significant degree of desired-rate smoothing in the central bank’s policy

rule. However, our estimate of φr = 0.94 doesn’t significantly differ from its prior mode which

suggests that φr may not be well-identified by our impulse response matching procedure. In

Appendix G, we explore alternative priors for φr and consistently find point estimates of

φr which are very near to the prior mode but imply no significant change in the model’s

fit of the data. This result is not too surprising since we are only informing our estimation

procedure with information on monetary policy shocks. Coibion and Gorodnichenko (2012)

show that the degree of endogenous interest-rate smoothing is likely better informed by the

policy response to non-monetary shocks. However, these additional results show that the

overall fit of our model does not rely on a particular assumption about the amount of history
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dependence in the central bank’s policy rule.16

4.3 Quarterly Model Estimates

Parameter estimates from our monthly-frequency model are difficult to compare with the pre-

vious literature estimating the effects of conventional monetary policy shocks at a quarterly-

frequency. Thus, to facilitate a quantitative comparison of our estimated parameters with

those in Christiano, Eichenbaum and Evans (2005), we take the parameter estimates from

their Table 2, row 5 (unconditional indexation) and the associated standard errors they es-

timate to form priors for the parameters in a quarterly version of our model.17 Then, we

estimate the posterior distribution of the parameters by minimizing the distance between

the impulse responses in the data and the model. Figure 7 shows the resulting impulse

responses, which are well within the posterior intervals of the VAR impulse responses for

all variables and all horizons. In addition, the model’s responses are very close to the point

estimates from the VAR for most variables.

What parameters deliver this close fit? The bottom panel of Table 2 shows the the pos-

terior modes and standard deviations of the parameters. All of the estimated parameters are

near the Christiano, Eichenbaum and Evans (2005) estimates except for the Calvo pricing

friction parameter for which we estimate ω = 0.88 compared to the Christiano, Eichenbaum

and Evans (2005) estimate of ω = 0.72. However, our estimate of ω is within a one standard

error range of the Christiano, Eichenbaum and Evans (2005) estimate.

Other than a change in the frequency of price adjustment, the same model and parameters

that can account well for the dynamics of conventional monetary policy shocks prior to the

zero lower bound can also account for the dynamic effects of forward guidance shocks at the

zero lower bound. The increase in the Calvo parameter that we find necessary to explain

these dynamics relative to the estimated value in Christiano, Eichenbaum and Evans (2005)

could represent either the absence of wage rigidity or the absence of a working-capital friction

in our model. Christiano, Eichenbaum and Evans (2005) show that removing either of these

frictions increases the average duration of prices in their model. Specifically, they find ω = 1

when they allow for flexible wages and ω = 0.89 when they assume that firms do not need

to borrow their wage bill in advance. Moreover, our estimate of ω = 0.88 is well within the

range reported in the literature, including recent work of Del Negro, Giannoni and Patterson

16In the appendix, we also discuss the role of the persistence of the forward guidance shock process.
17We choose to work with this set of estimates since we find little need for indexation in our sample.
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(2015) and Del Negro, Giannoni and Schorfheide (2015).

4.4 Model-Implied Responses to Specific Forward Guidance Shocks

Our results suggest that a standard model with nominal price rigidities can account for the

effects of an average forward guidance shock as estimated from a VAR. However, our linear

VAR only allows us to trace out the effects from a typical forward guidance shock in the

data which moves futures rates by about 6 basis points. Figure 1 shows that some policy

announcements generated significantly larger movements in the path factor. For example,

on August 9, 2011, 8-quarter ahead eurodollar futures rates declined by 28 basis points when

the FOMC announced that rates were likely to remain low until “mid-2013.” This size of

movement in futures rates equates to a 4.8 standard deviation forward guidance shock in our

model. In order to further evaluate the predictions of our theoretical model, we now examine

whether the model generates reasonable quantitative responses following this significantly

larger forward guidance shock.

In response to the August 2011 announcement, we find that the model predicts a much

larger expansion of economic activity than a typical forward guidance shock. Figure 8 illus-

trates the model-implied responses to the forward guidance shock on August 9, 2011. To

generate these responses, we increase the size of the forward guidance shock such that the

2-year ahead futures rates in the model decline by 28 basis points, the same movement in

futures rates we observe in the data. As expected, this substantially larger forward guidance

shock generates a much larger increase in economic activity and prices. At its peak response,

output rises by about 0.5% which occurs a little over one year after the shock.

Are the model’s predicted effects from the August 2011 announcement reasonable? Unlike

the responses to a typical forward guidance shock we identify from our VAR, we have no clear

data counterpart to compare with the model’s responses for this specific shock. Alternatively,

to gain some sense of reasonable magnitudes, we can compare the model-implied movement in

output with the estimated effects of other unexpected monetary policy interventions. In the

VAR model of Christiano, Eichenbaum and Evans (2005), a typical expansionary monetary

policy shock raises output by just over 0.5% after about one year. In addition, the Romer

and Romer (2004) estimates imply that a one standard deviation expansionary policy shock

increases output by around 0.6% at its peak.18 Therefore, the model’s response to one of

18We estimate this output response by simulating a one standard deviation shock in Romer and Romer’s

(2004) three-variable VAR using their shock series and their monthly measures of output and prices.
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the largest forward guidance shocks we observe around FOMC meetings seems reasonable in

the context of other work measuring the potency of monetary policy.

4.5 Additional Model Results

In the appendix, we provide further robustness checks on the model estimation. Our baseline

model assumes that monetary policy responds to deviations of output from its steady-state

level. However, Coibion and Gorodnichenko (2011) provide evidence that policymakers re-

spond more to output growth. We find that the model can fit the VAR evidence similarly

well if we replace output in the policy rule with output growth. Also, a simplified model with

a fixed capital stock, a common benchmark in the literature, can reproduce the empirical

impulse responses to a forward guidance shock from a smaller VAR. In addition, we illustrate

how our estimated degree of investment adjustment costs facilitate the model’s ability to fit

the empirical responses of investment and futures rates. We also use simulated data from

our structural model to show that our empirical strategy generally works well in recovering

the true forward guidance shocks and the associated impulse responses.

5 Discussion

Our empirical results and our conclusions regarding the ability of standard theoretical models

to match these results are both at odds with a growing literature on the effects of forward

guidance. One strand of this literature emerges from the work of Del Negro, Giannoni

and Patterson (2015), which argues that the output response to a forward guidance shock is

implausibly large resulting in a “forward guidance puzzle.” A second strand of this literature

suggests that forward guidance announcements may contain two pieces of news: news about

the future state of the economy as well as news about future interest rates. Work by Campbell

et al. (2012) and Nakamura and Steinsson (2018) argues that the macroeconomic news effect

dominates resulting in an “event-study activity puzzle.” In this section, we relate our findings

to this literature and provide some explanations as to why we reach different conclusions.

5.1 The Forward Guidance Puzzle

Our findings contrast with the work by Del Negro, Giannoni and Patterson (2015) which

argues that standard models with nominal rigidities overestimate the expansionary effects of

forward guidance. Our alternative conclusion emerges from the size of the forward guidance
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shock we estimate. In both our empirical evidence and theoretical model, a typical expan-

sionary forward guidance shock in a one-day window around a policy announcement lowers

8-quarter ahead futures rates by about six basis points. This shock extends the zero lower

bound duration by one month in our model, which produces modest increases in output and

inflation that are consistent with our empirical evidence.

Del Negro, Giannoni and Patterson (2015) simulate a much larger forward guidance

shock. Motivated by the FOMC’s extension of its date-based guidance from “late 2014”

to “mid 2015” in September 2012, they simulate an exogenous one-year extension of the

zero lower bound period which results in a very large expansion in economic activity. These

authors argue this increase in activity is implausibly large and denote their finding the “For-

ward Guidance Puzzle.” However, in our estimated model, a one-year exogenous extension

requires a highly unlikely 25+ standard deviation shock. In Figure 9, we reproduce the key

forward guidance experiment in Del Negro, Giannoni and Patterson (2015) by simulating a

forward guidance shock large enough to exogenously extend the zero lower bound duration

by one year. Similar to their findings, we observe an extremely large increase in economic

activity compared to our baseline results.

Are the model-implied responses to a one-year exogenous extension plausible or do they

illustrate a fundamental flaw in the model? Unfortunately, we do not believe our results

can fully answer this question. In our high-frequency identification of policy shocks around

FOMC announcements, we do not observe forward guidance shocks of that size in the data.

For example, while the change in the language of the FOMC statements between the Au-

gust and September 2012 meetings suggests roughly a one-year extension, 8-quarter ahead

eurodollar futures rates only fell by 6 basis points in the one-day window around the Septem-

ber 2012 FOMC meeting. In our model, this shock implies a one-month extension of the

zero lower bound episode and Figure 9 shows that this shock has only modest effects on

the economy. Therefore, our results suggest that standard models work well in analyzing

the typical forward guidance shocks we observe around FOMC announcements. However,

our work cannot speak to the plausibility of the model’s predictions for substantially larger

shocks that may occur between FOMC meetings or all possible experiments that might be

of interest to macroeconomic modelers or policymakers.

5.2 Macroeconomic News in Forward Guidance Announcements

Nakamura and Steinsson (2018), building on the work of Campbell et al. (2012), argue
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that, in addition to providing news about future interest rates (an Odyssean component),

monetary policy announcements contain a significant amount of macroeconomic news (a

Delphic component). If the Delphic component dominants, then an unexpected decline in

policy rates could lower forecasts of economic activity. Our estimates of the effects of forward

guidance should be interpreted as an on-average, net-effect of FOMC communication. The

VAR evidence we find seems to suggest that, among these two channels, the Odyssean

effect dominates, on average. While there may be Delphic components to some FOMC

announcements, we find that those influences are typically more than offset by expansionary

Odyssean effects. To illustrate this idea, Figure 10 shows the impulse responses if we include

the five-year inflation-protected Treasury yield in our VAR model, a key variable of interest

in Nakamura and Steinsson (2018). These authors argue that a lower path of the policy

rate signals a lower natural real rate of interest, which causes long-term real interest rates to

fall and lowers expectations for output growth. In contrast, we find that forward guidance

shocks lower financial market measures of long-term real interest rates and raise actual

output, which is consistent with the predictions of a standard model of monetary policy

without a macroeconomic news channel.

6 Conclusion

This paper reconciles empirical evidence on the effects of forward guidance shocks with the

predictions from a standard model of nominal rigidity. Our analysis suggests no disconnect

between the empirical effects of forward guidance shocks around policy announcements and

the predictions from a standard model of monetary policy. Moreover, we find that the

estimated parameters that govern the model’s key frictions lead us to a model economy that

does not appear all that different from the model of conventional policy shocks of Christiano,

Eichenbaum and Evans (2005). These findings suggest that the same models economists use

to study the effects of conventional monetary policy shocks remain useful in studying the

effects of forward guidance shocks at the zero lower bound.
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Table 1: Calibrated Parameters in Baseline Model

Parameter Description Calibrated Value

β Household Discount Factor 0.9983

Π Steady State Inflation Rate 1.02
1
12

δ0 Steady State Depreciation 0.1 / 12

δ1 First-Order Utilization Parameter 1/β − 1 + δ0

η Inverse Frisch Labor Supply Elasticity 0.5

ξ Utility Function Constant 58.43

θ Elasticity of Substitution Intermediate Goods 6.0

α Capital Share in Production Function 0.33

φπ Central Bank Response to Inflation 1.5

φy Central Bank Response to Output 0.1

ρa Preference Shock Persistence 0.95

σa Std. Dev. of Preference Shock 0.005
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Table 2: Estimated Parameters

Baseline Monthly-Frequency Model
Prior Posterior

Parameter Description Distribution Mode Std. Dev. Mode Std. Dev.

b Habit Persistence Beta 0.50 0.25 0.8898 0.0146

ω Calvo Probability Beta 0.93 0.01 0.9558 0.0015

χ Degree of Lagged Indexation Beta 0.50 0.25 0.0358 0.0299

φr Policy Rate Smoothing Beta 0.95 0.25 0.9442 0.0021

κ Investment Adjustment Gamma 2.48 60.0 36.7530 2.3256

σδ Capacity Utilization Curvature Gamma 0.01 60.0 0.0003 0.0002

ρν Policy Shock Persistence Beta 0.50 0.25 0.8358 0.0055

σν Std. Dev. of Policy Shock (APR) Gamma 0.25 12 0.0850 0.0035

Quarterly-Frequency Model
Prior Posterior

Parameter Description Distribution Mode Std. Dev. Mode Std. Dev.

b Habit Persistence Beta 0.63 0.05 0.6134 0.0403

ω Calvo Probability Beta 0.72 0.16 0.8858 0.0022

φr Policy Rate Smoothing Beta 0.80 1×10−6 0.8000 3×10−6

κ Investment Adjustment Gamma 1.92 0.35 2.3355 0.1896

σδ Capacity Utilization Curvature Gamma 0.01 1×10−6 0.01 3×10−7

ρν Policy Shock Persistence Beta 0.50 0.25 0.0059 0.0218

σν Std. Dev. of Policy Shock (APR) Gamma 0.25 4 0.7180 0.0569

Notes: The top panel shows the estimated parameters from our monthly-frequency baseline model. The bottom panel

contains the estimated parameters from a quarterly-frequency version of our model. The calibrated parameters in the

quarterly model are identical with the exception of β, Π, and δ0 which are transformed to their implied quarterly values.

The priors for the estimated parameters in the bottom panel are based on the estimates of Christiano, Eichenbaum and

Evans (2005). In particular, we use the estimates from their model with no indexation (Rows 5 and 6 from their Table

2). The interest-rate smoothing is calibrated in a version of their model so we set a very tight prior at their calibrated

value. The policy shock persistence and standard deviation are not estimated in their paper, so we set diffuse priors for

these parameters. See Sections 3.9, 4.1, and 4.2 for more details.
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Figure 1: Forward Guidance Shock Series
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Figure 2: Empirical & Model-Implied Impulse Responses to Forward Guidance Shock
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the

shaded areas denote the 90% probability interval of the posterior distribution. The red dashed line denotes

the model-implied impulse response.
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Figure 3: Empirical Impulse Responses Using Alternative Orderings, Indicators, and Priors
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Note: Each line denotes the point estimates to a one standard deviation forward guidance shock from a

different empirical specification.
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Figure 4: Empirical Impulse Responses Using Different Policy Measures
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different empirical specification.
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Figure 5: Empirical Impulse Responses: Robustness to QE Announcements
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different empirical specification. The 2-year Treasury yield is included in all models except the “ZLB - Blue

Chip Forecast” model.
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Figure 6: Role of the Initial Demand Shock
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Figure 7: Implied Impulse Responses to Forward Guidance Shock in a Quarterly Model
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the

shaded areas denote the 90% probability interval of the posterior distribution. The red dashed line denotes

the model-implied impulse response. The quarterly empirical impulse responses are three month averages

of the monthly empirical impulse responses in Figure 2.
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Figure 8: Model-Implied Impulse Responses to August 9, 2011 Announcement
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Note: We choose the size forward guidance shock in the model such that the model-implied 2-year Eurodollar

rates by the same amount as we observe in the data around the August 9, 2011 FOMC announcement.
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Figure 9: Model-Implied Impulse Responses to Exogenous Zero Lower Bound Extensions
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Note: The plot of the nominal interest rate reflects its level after the forward guidance shock. The forward

guidance shock in the top panel is chosen to match the 6 basis point decline in the 8-quarter ahead futures

rates that occurred after the September 13, 2012 FOMC meeting. The shock in the bottom panel is chosen

to generate a one-year extension of the zero lower bound.
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Figure 10: Empirical Impulse Responses Including Real Treasury Yields
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the

shaded areas denote the 90% probability interval of the posterior distribution. Due to the availability of

Treasury-Inflation Protected Securities (TIPS) data, our sample for the empirical Bayes prior begins in

January 1999.
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